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Abstract

Clustering Stability methods are a family of widely
used model selection techniques applied in data
clustering. Their unifying theme is that an appro-
priate model should result in a clustering which is
robust with respect to various kinds of perturba-
tions. Despite their relative success, not much is
known theoretically on why or when do they work,
or even what kind of assumptions they make in
choosing an 'appropriate’ model. Moreover, re-
cent theoretical work has shown that they might
'break down’ for large enough samples. In this pa-
per, we focus on the behavior of clustering stabil-
ity using k-means clustering. Our main technical
result is an exact characterization of the distribu-
tion to which suitably scaled measures of instabil-
ity converge, based on a sample drawn from any
distribution inR™ satisfying mild regularity con-
ditions. From this, we can show that clustering
stability does not 'break down’ even for arbitrarily
large samples, in the-means framework that we
study. Moreover, it allows us to identify the factors
which influence the behavior of clustering stability
for any sample size. This leads to some interest-
ing preliminary observations about what kind of

assumptions are made when using these methods.

While often reasonable, these assumptions might
also lead to unexpected consequences.

Introduction

the number of clusters, the metric used, etc.), the clumgeri
returned by the algorithm should not be overly sensitive to
the exact structure of the data.

In particular, we will focus on clustering stability meth-
ods which compare the discrepancy or 'distance’ between
clusterings of different random subsets of our data. These
methods seek a 'stable’ model, in the sense that the value of
such distance measures should tend to be small.

Although these methods have been shown to be rather ef-
fective in practice (cf. [2],[4],[7].[9]), little theorydsts so
far to explain their success, or for which cases are they best
suited for. Over the past few years, a theoretical study of
these methods has been initiated, in a framework where the
data are assumed to be an i.i.d sample. However, a funda-
mental hurdle was the observation [1] that under mild con-
ditions and for any model choice, the clustering algorithm
should tend to converge to a single solution which is optimal
with respect to the underlying distribution. As a resultiscl
tering stability might 'break down’ for large enough sangle
since we get approximately the same clustering hypothesis
based on each random subsample, and thus achieve stabil-
ity regardless of whether the model fits the data or not (this
problem was also pointed out in [6]). A possible solution to
this difficulty was proposed in [15]. In a nutshell, that pape
showed that the important factor in the way these clustering
stability methods work may not be the asymptotic stability
of the model, but rathenow fast exactly does it converge to
this stability With this more refined analysis, it was argued
that differences in the stability of different models shbul
usually be discernible for any sample size, no matter how
large, despite the universal convergence to absolutdistabi
Although it provided the necessary groundwork, that paper
only rigorously proved this assertion for a single toy exam-

The important and difficult problem of model selection in ple, as a proof-of-concept.

data clustering has been the focus of an extensive literatur In this paper, we formally investigate the application of
spanning several research communities in the natural and soclustering stability to the well known and populesmeans
cial sciences. Since clustering is often used as a first step i clustering framework, when the goal is to determine theealu
the data analysis process, the questions of what type of clus of k, or the number of clusters in the data. Assuming an
ters or how many clusters are in the data can be crucial. algorithm which minimizes thé-means objective function,
An important family of model selection methods, whose we consider arbitrary distributions iR™ satisfying certain
popularity has grown in the past few years, is based on clus-mild regularity conditions, and analyze the behavior of the
tering stability. The unifying theme of these methods id tha clustering distance measure, scaled by the square roog of th
an appropriate model for the data should result in a cluster-sample size. Rather than converging to zero in probability
ing which is robust with respect to various kinds of perturba as the sample size increases to infinity, this scaled measure
tions. In other words, if we choose an appropriate clusgerin converges to a non-degenerate distribution which depamds o
algorithm, and feed it with the correct’ parameters (sush a the choice of. From this we can show that clustering stabil-



ity does not 'break down’ even for arbitrarily large samples and returns a set of centroids= (cy, ..., c;) € R™, which
in the sense described earlier, at least forktheeans frame-  are a global minimum of the objective function:
work that we study.

m
The asymptotic distribution is also interesting for two ad- W(c) := L Z min ||lc; — x; .
ditional reasons. The first is that it can be seen as an ap- m = je(k]
proximation which improves as the sample size increases. ke ,
The second and more profound reason is that if we are in-L8t# = (144, ..., 1) € R™" be an optimak-means solu-

terested in discovering what fundamental assumptions arefion with respect td, defined as a minimizer of

implicit in performing model selection with clustering sta . 5

bility, these should not be overly dependent on the sample W(e) := /n p(x) et lej —xil[“dx.

size used. Therefore, as we look at larger samples, noisy and N . . .

hard to analyze finite sample effects diminish, and what re- /& assume that such a minimizer exists, is unique up to per-
mains are the fundamental characteristics, which should beMutation of the centroids, and that all centroids are distin
relevant forany sample size. As a result, the analysis leads (for all @  j, p; # p;). To avoid ambiguities involving
to some preliminary observations about the factors influenc P&rmutation of the centroids, we assume that the numbering

ing clustering stability ink-means, of both theoretical and ©f the centroids is by some uniform canonical ordering (for
practical interest. example, by sorting with respect to the coordinates).

For some set of centroids= (cy, ..., cx), and for each
cluster centroidt;, we denote the interior of its correspond-

2 Problem Setting and Notation ing cluster ag’,,, defined as:

We refer the reader to Fig. 1 for a graphical illustrationrf t . .

basic setting, and some of the notation introduced below. Ce,i = {X € R": arg min l[e; —x[|” = Z} :
Denote{1,...,k} as[k]. Vectors will be denoted by o =

bold-face characters|| - || will denote the Euclidean norm From the continuity assumptions @nwe may assume

unless stated otherwise\/(u, ) denotes the multivariate  that the set of points not in the interior of some cluster has

normal distribution with meap and covariance matrix. zero measure with respectjioWe can therefore neglect the
We will use the stochastic order notatioy(-) ando, (-) issue of how points along cluster boundaries are assigned.

(cf. [18]). Let{X,,} and{Y,,} be sequences of random The (scaled) distance between two clusterifds; ) and

vectors, defined on the same probability space. We write Ax(S2), whereS;, S, are samples of size, is defined as:
X, = 0,(Y,,) to mean that for each > 0 there exists

a real numbe/ such thatPr(||X,,|| > M|Y,.|) < €if dp (Ax(51), A(S2)) :=

m is large enough. We writé,, = 0,(Y,,) to mean that Vm o Pr (A(S1)(x1,%x2) # A(S2)(x1,%2)),
Pr([| X || > €|[Y;n|) — 0 for eache > 0. Notice that{Y;, } x1xoD

may also be non-random. For examplg,, = 0,,(1) means whereA, (S)(x1,x2) is an indicator function of whether
thatX,, — 0 in probability. the instances, x, are in the same cluster according to the

LetD be a probability distribution oR™, with abounded  clustering given by, (S). This definition follows that of [1]
probability density functiorp(-) which is continuous as a  and [15], with the additional scaling by'm (the 'correct’
function onR™. Assume that the following two regularity ~ scaling factor as will become evident later on). A typical
conditions hold: way to measure instability in practice is to cluster indepen

dent subsamples of the data, and empirically estimate she di
o / p(x)||x||2dx < oo (in words, D has bounded vari- ~ tance between the resulting clusterings. Thus, underisignd
the behavior ofl}5 (Ax(S1), Ax(S2)) (over drawing and clus-
ance). tering independent samples) is of much interest in anajyzin
_ . . the behavior of clustering stability.
e There exists a bounded, monotonically decreasing func- Any choice of cluster centroidsinduces a Voronoi par-

tiong() : R — R, such thap(x) < g(||x|)) forall tition onR". We will denoteF , ;, for i # j, as the bound-
x € R™, and/ rg(r) < co. ary face between clustersandj. Namely, the points ifR"™
=0 whose two closest cluster centroids areandc;, and are

. . i equidistant from them:
The second requirement is needed in order to apply the

main theorem of [13] (it is a slightly stronger version of eon Foo— {X € R" : arg min |jc, — x| = {i j}} )
dition (iv) there), and can probably be improved. Neverthe- e aclk] " ’
less, it is quite mild, and holds in particular for any distri i o o ;
bution that is not heavy-tailed or has bounded support. As subéZtS gmwg%ﬁe%?aggtmqi;ﬁﬁeg :S(pOSSIny empty)
to the continuity requirement gf(-), it should be noted that el
our results hold even if we assume continuity solely in some { citci\

cij = x e R": <X— ]> '(Cl—Cg):O .

neighborhood of the optimal cluster boundaries, but we will
take this stronger assumption for simplicity.

Let A, denote an ’ideal’ version of the standdraneans In our discussion, we use integrals with respect to both
algorithm, which is given a samplg¢ = {x;}", C R", then-dimensional Lebesgue measure, as well agithel)-
sampled i.i.d fromD, and a required number of clustets dimensional Lebesgue measure. The type of integral we are



using should be clear from the context, depending on the set
over which we are integrating. For example, integrals over

someC.; are of the first type, while integrals over some
F. ; ; are of the second type.

Let I" be thekn x kn matrix, which is the Hessian of
the mapping¥ (-) at the optimal solution:. This matrix is
composed of: x k blocksI'; ; for i, j € [k]. Each blocK; ;
can be shown to be equalto

Fi,j =2 /
C

_QZ

a#i
if i = 7, and fori # j itis defined as

/F PR (x — p1,)(x — ;) Tdx

232V

p(x)dx] I,

J

oisa

B,

p()(x = ;) (x = py) " dx

i = pall

;= 2
“ [l pe; —HjH

We will use the same block notation later for its inverse
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Figure 1: An illustrative drawing of the setting and notatio
used. Thicker lines represent the optinkaieans cluster-
ing partition (fork = 3 clusters) with respect to the un-
derlying distribution. Clustering two independent random

I'~!. The existence of these integrals can be shown to follow samples gives us two random centroid sedc’. These

from the assumptions agn(-). We assume that the matrix

is positive definite. This is in fact an almost redundant re-
quirement, since the optimality @f entails thaf is always
positive semidefinite. Therefore, cases wheris not posi-
tive definite correspond to singularities which are appidyen
pathological (for more discussion on this, see [14]).

Let V be akn x kn matrix, which represents (up to a
constant) the covariance matrix &f with respect to each
cluster, assuming the optimal clustering inducegymore
specifically,V is composed of: diagonal blocks/; of size
n x n fori € [k] (all other elements of are zero), where

V= 4/
C“”i

We shall assume th&f # 0 for anyi.

p(x)(x — p)(x — p,) " dx.

3 Main Results

In this section, we present the main results of our paper, and
discuss observations that might be drawn from them about

the use of clustering stability in themeans framework. All
the detailed proofs are presented in Sec. 4.

3.1 Statement of Technical Results

Our main technical result is the following theorem, which
characterizes the exact distribution to whit(Ax (S1), Ax(S2))
converges for any appropriate underlying distributidrand

its expected value.

Theorem 1. AssumeD has a bounded probability density
functionp(-), which is continuous as a function @f" and
fulfills the two regularity conditions specified in Sec. 2t Le
A, be an algorithm which returns a global minimizerof

This is proven in [13]. The definition df there differs from

ours in one of the signs, apparently due to a small error in that paper

[12].

induce two different Voronoi partitions a&&™, and the dis-
tance measure is intimately related to the probability ntass
the area which switches between clusters, when we compare
these two partitions (gray area).

W (-) for any k of interest, and assume thatconverges in
probability to some set ¢f distinct centroidse which are
the unique global minimizer ¥/ (-). Furthermore, assume
that I is invertible and thaf; # 0 for any: € [k]. Then
we have thatl; (Ax(S1), Ax(S2)) converges in distribution

to that of
[(/ () )
CluiUC, 5

2v2 )
1<i<j<k
.
Hy — X Ci — Ky
‘ <X_“j) (Ci_“J) ‘d
pe; = ﬂj||

“

[

p(x) x

wherec = (c1,...,cx) " ~ N(pu, T7VTY).
Denoting the expected value of this distribution as
instal(Ay, D), we have that it is equal to

4
# Sl 7o)

1<1<]<k‘
8 /
F,

232

o(x V(xi.5) o ,
llp; — Hj||
whereW (x, i, 7) is defined as

(5 ) (e &) ()]




All the integrals can be shown to exist by the assump- See the proof for further details. AIso,ﬁsHt(Aks,D) =0,

tions onp(-). It should be emphasized thastal{A,, D) is while ﬁs_at(Aku,D) > 0 (corresponding td? = o), it is
not necessarily the same Hs,, .o Ed (Ax(S1), Ax(S2)). easy to show that the probability of detectingas the most
This is because our convergence result does not necessarilgtable model converges taasm — oc.

imply convergence of expectations. Thus, formally speak-

ing, the result above does not deal directly with the limit 3.2 Factors Influencing Stability of Clustering Models

of Ed7; (Ax(51), Ak(S2)), which has been used in [1],[15] a5 according to Thm. 1, for any distribution satisfying the nec
the theoretical definition of clustering stability. Howevi¢ essary conditions, the distance between clusterings Gaf
turns out that for our purposes this is not tgo\significant. It ing by \/m) converges to a generally non-degenerate distri-
seems to be the asymptotic distribution anstat{A,, D), bution, which depends on the underlying distribution ared th
rather than the asymptotic expectation, which determiee th number of clusterd. As Thm. 2 shows, this implies that
asymptotic behavior of clustering stability. clustering stability does not 'break down’ in the large sam-
The following theorem exemplifies this on a simple em- ple regime, and its choice of the most 'appropriate’ value of
pirical estimator of clustering stability. The main diféerce k seems to depend essentiallyioatal{A,, D).
between the following estimator and those proposed in the

literature is that it measures the distance between just-a si : . .
Although one can always calculate it for specific cases, it is

gle pair of clusterings from a pair of independent samples, .

rather than averaging over several pairs based on subsam@f Much moreinterestto try and understand what are the gov-
pling the data. This just makes our result stronger, becauset'MNY factors mf!uencmg its value. Thesg factors 'e_vdiytua
these kind of bootstrap procedures should only increase thel€termine what is considered by clustering stability as the

reliability of the estimator, whereas here we are intetkste ~ 'correct’ model, with a low value fomstat{Ay, D). There-

Thm. 1 provides an explicit formula foﬁt{Ak,D).

a'lower bound’ on reliability. fore, analyzing these factors can explain what sample-size
i _ - _ . free assumptions correspond to the use of clustering gyabil
Theorem 2. Define a clustering stability estimataty, 4, at least in théi-means setting that we study. Since a rigor-

as follows: Given a sample of sizer, split it randomly into ous analysis is a complex endeavor in itself, we will limit
3 disjoint subsets',S,,53 of sizem,m and2m respectively.  ourselves to some preliminary and non-formal observations

Estimatedy; (Ax(S1), Ax(S2))/+/m by computing which should be taken as such.
1 According to Thm. 1, the value afistal{Ax, D) is asymp-
. o1 (Ak(Sl)(ﬂﬁf,, Timti) 7 Ae(S2) (4, xm+i))7 totically determined by three factors:
TiyTomi€S3

Where(zy, .., zm) is a random permutation ofs. For any e The probability density along the cluster boundaries.

distribution D satisfying the conditions of Thm. 1, assume o The Hessial' of the objective functiodV(-) at .
that for some two values éf k, # k., the ratio of

@HA;%, D) and @uAkS,D) (as defined in Thm. 1) is e The variancd” and mass of the clusters with respect to
oo > R > 3. Then we have that: the underlying distribution.
Pr (ékﬂm > O, 4m> < 0.3 + 3log(R) +0(1), A fourth factor appearing in the formula js; — s, but
' ’ R this can be seen simply as a normalization term, eliminating
where the probability is over a sample of sike used for the dependence on the normaf
both estimators, and(1) converges t® asm — oo. The probability density along the cluster boundaries seems

The theorem implies the following: Suppose we are con- to play an interesting role. For example, when the density at

sidering two possible values fé; designated ak, andk,, the boundaries is exactly, we get thatnstat{A,, D) = 0.
such that the ratio betwem/matiAku,D) and@t{Akg,D) Althogg'h this density is mule_phesi by (x,1,7), note that

is some reasonably large constant (one can think of it as a rel (X, %j) actually becomes ‘nicer’ when the boundary den-
atively unstable model correspondingktg, vs. a relatively S IS lower (sincel™ ~ approaches a diagonal matrix with
stable model corresponding tq). Then the probability of entries pro_portlonal to the inverse of the mass of the ctaste
not empirically detectingt, as the most stable model has hence having well-controlled eigenvalues assuming reason

an upper bound which actually decreases with the Sampleably balanced clusters). Therefore, we might expect low in-

size, converging to a constant value dependent on the ratioStablllty even when the boundary density is low but not ex-

: — ) actly 0.
of instal{A, , D) andinstalfAy,, D). In this sense, accord- g {5 the Hessia, an exact analysis of its influence
ing to the bound, clustering stability does not 'break down el A D) | bl tic in th | but
in the large sample regime, and the asymptotic reliability o ©" InStaliAx, D) is problematic in the general case, but a

. - N . — useful rough characterization is the spectrumlof If all
emphasize that the theorem deals ith he reliabiity of de. 115, E19oTYalues of ' are large’, then we might expect
tecting the most stable model, not whether a stable model isqj(x’ Z_’J)/”“Z ,uj_H/to\be relatively large as well, leading
really a 'good’ model in any other sense. to a higher value fomstal{A,, D). On trﬁo\ther hand, small
We note that our proof actually produces an entire range eigenvalues might lead to lower valuesmdtal{A,, D). Thus,
of bounds, which provides a trade off for the minimality re- we see that a small spectral radius of the HesEiarepre-
guirement onRk with the tightness in terms of the constants. senting a ’locally shallow’ optimal solution, may result in



more instability. It is interesting to note that shallow; il  setting. In this case, all three Gaussians are separated, bu

defined minima in terms of the objective function are often one of them is relatively more separated than the other two.

a sign of a mismatch between the model and the data, andAs before t = 4 is less stable thalh = 3 andk = 2, but now

therefore clustering stability seems to be doing a goodythin & = 2 is the most stable model. This is primarily because

on that regard. the sum of the boundary densitieskin= 3 is larger than the
When will the spectral radius af be small, contributing density at the boundary point fér = 2. Deciding onk =

to instability? By inspecting the formula fdt, and assum- 2 as the number of clusters in the data is not unreasonable

ing all clusters have equal sizes, we see that the diagonal(recall that clustering stability makes no explicit geriges

elements of" are at mos2/k, and can become smaller ifthe assumption on how the clusters look like). However, it can

density along the boundary points is larger. Since the mainindicate that in a hierarchical clustering setting, cltistg

diagonal majorizes the spectrum of the symmetric mdtrix  stability might prefer high levels in the hierarchy, whiclayn

(cf. [5]), it seems that a small spectral radius might corre- or may not be what we want.

spond to larger values @f, as well as high density along the

cluster boundaries. A similar analysis forseems to indi- 3.4 Convergence Rates

cate that high cluster variance increases instability &8 We  agter establishing the asymptotic distribution of the elus

_ These observation also.lmply that clustering instability tering distance measures fbrmeans clustering, a reason-
might tend to be larger for higher valuesiofAs k becomes  gpje next step is exploring what kind of guarantees can be
larger,instal{Ay, D) is the result of integrating over a larger made on the convergence rate to this asymptotic limit. As
area (all cluster boundaries), and the Hesgianight tend a first step, we establish the following negative result,ohhi
to have a smaller spectral radius, especially if the bound- demonstrates that without additional assumptions, noasniv
aries have high density. This is somewhat compensated insal guarantees can be given on the convergence rate. The the-
the formula by the mass and variance of each cluster becom-orem refers to the cage= 3, but the proof idea can easily
ing smaller, but these seem to scale down more slowly thanbe extended to other values/af
the cluster boundaries area (and number) scaling up, espe-
cially in high dimensions. This matches a well known ex- Theorem 3. For any positive integerm,, there exists a dis-
perimental phenomenon, in which clusterings tend to be lesstribution D such thatl’; (A3(S1), As3(S2)) converges in prob-
stable for highelk, even in hierarchical clustering settings ability to0 asm — oo, butPr(d5 (A3(S1), A3(S2)) > /m/4)
where more than one value é&fis acceptable. When the s at leastl /3 for somem > my.
‘correct’ model has a very low boundary density and nice
structure compared to competing models, this might over-  The theorem does not imply that taeymptoticconver-
come the general tendency of instability to increase with ~ gence rate is arbitrarily bad. In fact, a complicated second
However, when this is not the case, normalization procesdure order analysis (omitted from this paper due to lack of space)

might be called for, as in [7]. seems to indicate a uniform power-law convergence rate for
any distribution satisfying the conditions of Thm. 1, aslwel
3.3 Examples as a few other conditions such as Lipschitz-continuity and

To illustrate some of the observations from the previous sub Pounded third moment. However, the exact constants in this
section, we empirically evaluated the instability measame ~ POWer law can be arbitrarily bad, depending on various char-
a few simple toy examples, where everything is well con- acteristics of the distribution. Finding sufficient and érp
trolled and easy to analyze. The resuits are displayed incally ve_r|f|able conditions whlch provide finite sample guar
Fig. 2. We emphasize that these are just simple illustra- 2t€es is therefore of much interest.
tions of possible expected and unexpected charactergdtics
clustering stability in some very limited cases, whichcanb 4 Proofs
gleaned from the theoretical results above, and are nottmean
to represent more realistic or higher dimensional settings 4.1 Proof of Thm. 1

Firstofall, the average value df; (Ax(S1), Ax(S2)) tends  Before embarking on the proof, we briefly sketch its outline:
to converge to a constant value, which differs based on the
choice of the model ordér, and clustering stability doesnot 1 ysing the central limit theorem férmeans due to Pol-

seem to 'break down’ as sample size increases. The three  |5rq [13], we can characterize the asymptotic Gaussian
leftmost plots demonstrate how, for these particular exam- distribution of the cluster centroids in terms of the

ples, the density along the cluster boundaries seem to play a underlying distributiorD (Lemma 1).

important role in determinin'gTsEl:(Ak, D). For each distri-

bution, £ = 3 emerges as the most stable model, since the 2. The cluster boundaries are determined by the positions
boundaries between the clusters with= 3 have low den- of the centroids. Hence, we can derive the asymptotic
sity. However,k = 3 becomes less stable as the Gaussians distribution of these boundaries. In particular, for every
get closer to each other, leading to higher densities in the boundaryF ; ;, we characterize the asymptotic distri-

boundaries between them. At some point, when the den- bution of the pointwise Euclidean distance between two

sity along the cluster boundaries for= 3 becomes large realizations of this boundary, over drawing and clus-

enough% = 2 becomes more stable than= 3. tering two independent samples. This distance is de-
A different manifestation of this behavior can be seen in fined relative to a projection on the hyperplafg, ; ;

the rightmost plot, which simulates a hierarchical clustgr (Lemma 2).
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Figure 2: lllustrative examples of the behavior of clustgristability. In each column, the upper plot is the undedyin
distribution we sample from (a mixture of unit variance Gaass onR), while the lower plot is an empirical average of
d’ (Ax(S1), Ax(S2)) over1000 trials, for different sample sizes.

3. We show that the probability mass®f which switches Proof. We will separate the expression in the definition of
between clustersand; over the two independent clus-  ¢(x, c;, c;) into 2 components and analyze them separately.
terings, has an asymptotic distribution definable by an We have that:
integral involving the distance function above, and the L
values ofp(-) on F, ; ; (Lemma 3 and Lemma 4). This (C‘JFCJ _ X) (ei — )
allows us to formulate the asymptotic distribution of 2

d’ (Ax(S1), Ax(S2)), and its expected value. ;i + €+ €
. = ( —X) : ((Hi_ﬂj)"‘(ei—ej))
For convenience, we shall use= (¢4, . . ., €;) to denote 2
the random elemert — p. B+ By
Lemma 1. Under the notation and assumptions of the the- ( 2 X) (bi = 1y)
orem,\/me = /m(c — p) converges in distribution te, i+ 1
wherev ~ N (0,T7'VI~!). Asaresult|e|]| = O,(1/y/m). + (2 - X> (€ — €5)

. . : € T € 2
theorem in [13]. Notice that it allows us to assume that for — ) (1 — 1) + O(|[€]|7).
large enough values ofi, with arbitrarily high probability
and for anyi, j € [k],i # j, the nearest centroid f@; is c;, Notice that the first summand is exactlyby definition
all centroids are distinctic ; ; is non-orthogonal td, ; ;, of x as lying onF, ; ;), and can therefore be dropped. After
and||e|| is arbitrarily small. We shall tacitly use these as- expanding and simplifying, we get that the above is equal to
sumptions in the remainder of the proof.
Lemma 2. For somei, j € [k],i # j, assume thak), ; ; # (1, —x)- € — (p; — x) - €+ O(||e]|?) 1)
(. Foranyx € H, ; , define the function:

This lemmais a straightforward consequence of the main
u

As to the second component in the definitiod G, c;, c; ),

[ (”TCJ — x) (ci —¢;) we have that
R TR Y (R B e ot~ |
B — 1) - (¢ — ¢j) i — _ Hi — K
Then if| €| is smaller than some positive constant which (g, — ;) - (¢i —¢5) [l — w512 + (1 — ;) - (i — €5)
depends only op, £(x, c;, c;) can be rewritten as 1
_l_ =
: < X) (6> ’ iy — | (14 P bt e)
— Y 4+ O((1x] + 1)[lell?). Hi = Hj Tt =117
o (ko) () vowmiey (1 )
Considering the projection ofl. ; ; to H,, ; ;, we have Mo —wlll+t0
that/(x, c;, c;) is the signed Euclidean distanceofrom i = p;l 2+ OCllel))
the point onH, ; ; which projects to it (see the left half of ~ _ 1 __Odlel) Y _ 1+0(el) @
Fig. 3). This is becauséx, c;, c,;) must satisfy the equation: llpe; — ]l 14+ O(|lel)) lee; — w57
((x + 4(x, cis ;) Hi By ) _ G ;Cj)(ci—cj) =0. assuminge|| to be small enough. Multiplying Eq. (1)
lrs = bl and Eq. (2) gives us the expression in the lemma. [



In order to calculate the asymptotic distribution of The expression above is upper bounded in turn by:
d’5 (Ax(S1), Ax(S2)), we need to characterize the distribution ; 3
of the probability mass ab in the 'wedges’ created between / (e + e ())  sup  |p(y. &) —p(y,0)|dy,
two boundaries for clustersj, based on two independent “'"5 &y €lle(¥),. ()]

samples (see Fig. 1). For any two given boundaries, calcu-assyming the integral exists. Since’ have the same distri-
lating the probability mass requires integration of theemd  pytjon, it is enough to show existence and analyze the con-
lying density functiorp(-) over these wedges, making itvery yergence to zero in probability for

hard to write the distribution of this probability mass agpl

itly. The purpose of the next two lemmas is to derive a more / / _ )
tractable, asymptotically exact approximation for eaothsu F'NB )l @e[&?;l){)@a(y)] Py &y) =y Oy ()
wedge, which depends only on the valuep0f along the

boundaryF,, ; ;. This integral can be upper bounded by

We begin with an auxiliary lemma, required for the main ~
Lemma 4 which follows. To state these lemmas, we will 5P [ e el i ()] Py, &) = ply, 0)| ——
need some additional notation. For sotig ; ;, fix some e )
(possibly unbounded) polytop€ C H,,; ;. For notational SinceB is bounded, we have according to Lemma 2 that
convenience, we shall assume w.l.o.g thgf; ; is aligned if ||| is small enough,
with the axes, in the sense that for alle H,, ; ;, its last .
coordinate is0 (it can be easily shown that the regularity sup |le(y)| = O(llell + llell®), (6)
conditions orp(-) will still hold). Also, denoteF’ = {y € yeFr'nB

R"~1: (y,0) € F'}, which is simply then — 1 dimensional and a similar equation holds fég. (-) with € replaced by
representation of” on the hyperplane. Finally, for ease of /iy the rh.s. To make the equations less cumbersome, we
notation, denoté((y,0),c;,c;) for anyy € F’ aslc(y), will ignore the higher order terrfie||?, sincee converges to
wheree = ¢ — p. 0 in probability anyway by Lemma 1 (it is straightforward to
verify that the analysis below still holds). From Eq. (6) and
the sentence which follows, we have that

O(|l€]|). Since||€|| con-

Lemma 3. Lete, €’ be two independent copiesof i, each
induced by clustering an independent sample of gize. et S o
B = {x € R": ||x|| < R} be a ball of radiusR centered at ~ °"Pyer'nB.& ellc(y).lu ()] & =

the origin. Then we have that verges to zero in probability, this implies th@t converges
to zero in probability, uniformly for any € F' N B. More-
i (y) over, p(-) is uniformly continuous in the compact domain
/ | ply, &)d¢|dy B, and thusp(y, &) converges uniformly in probability to
FnB Ji(y) p(y,0). As a result, we have that
fe ) sup sup [p(y, &) = ply,0)| = 0,(1).  (7)
—/F . | /z . p(y,0)dé|dy| = o,(1/v/m), (3) YEF'NB ¢ e[l (y)l. ()] :
/m e y

o Substituting Eqg. (6) and Eq. (7) into Eqg. (5), and using

where the constants implicit in the r.h.s dependfan the fact that|e[| = O, (1//m), we get that the expression

Proof. Sincep(-) is a non-negative function, we can rewrite in Eq. (5) (and hence Eq. (4))ig(1/y/m) as required. [J

the expression in the lemma as Lemma 4. For some non-empt¥,, ; ;, lett(c,c’,i,;) be a
L random variable, defined as the probability mas®okhich

max{le(y),fe (¥)} switches between clusteis;j with respect to the two clus-

/F,mB /min{ie(y),és,<y)} Py, §)dedy terings defined by, ¢/, induced by independently sampling

and clustering a pair of samplé&s , S, each of sizen. More
formally, define the set-valued random variable

)

max{gE (y),ge/ (¥)}
_ /  ply.0)dedy
FInB Jmin{ia(y), () Qe,cyij) ={x eR": (x € Ces Ax € Cor ;)

or vV (X S Cc’,i NX € Cc,j)} U Fc,i,j U Fclﬂ',j,

max{le(y).ler (¥)} so that
,€) — p(y,0)dédy | . .
/F’ﬂB /min{éé(y),ée,(y)} PLy:¢) ~ ply, O)dedy t(c,c',i,7) =/ p(x)dx. (8)
Q(e,c’,i,5)
By the integral mean value theorem, singe is contin- Thent(c, ¢, 1, 7) is distributed as

uous, we have that the expression above is equal to:
i i / p(x)[U(x, i, €))|dx + 0, (1/v/m),
[ 1) - El5.6) - .0y i
F'nB wherel(x, c;, c}) is distributed as

whereé,, is between the minimum and maximum of

.
p R . N 1 - ¢
{le(y),Ler(y)}. For simplicity of notation, we will write - <“z X) (61 5;) .

X—[,l,j Ejfﬁj

&y € [le(y), Le (y)]- [0 = pa



Proof. The right half of Fig. 3 should help to clarify the no- As before, to avoid making our equations too cumbersome,

tation and the intuition of the following proof. Intuitivel we shall ignore in the analysis below the higher order term
the probability mass which switches between clustexsd lel|?, sincee converges td) in probability and therefore it
j over the two samples is the probability massIoiying becomes insignificant compared|tég||. Also, since we con-

‘between’F. ; ; andF. ; ;. A potential problem is that this  veniently assume thdf,, ; ; passes through the origin, then
probability mass is also affected by the positions of other any normal to a point i, ; ; N B¢ lies outsideB. This
neighboring boundaries. However, the fluctuations of theseis not critical for our analysis (in the general case, we doul
additional boundaries decreaseras— oo, and their effect ~ have simply defined as centered on some point#fy, ; ;),

on the probability mass in question becomes negligible. Our but does simplify things a bit. With these observations, we
goal is to upper and lower bound the integral in Eq. (8) by ex- have that

pressions which are identical updg(1/./m) terms, giving

us the desired result. la(y)
As in Lemma 3, we assume that, ; ; is aligned with / / p(y, §)dE| dy
the axes, such that for amy€ H,,.; ;, its last coordinate is Finax1B° [ TLe(y)
0. Define Fax(p,c,c’,4,5) € H,,; as the prOJectlon of </ 7 7
) s Uy € — Le/ su 5 d
Q(c,c,i,j) on H, ; ;. By definition of le(y), e (y), any o F,’mﬂB“| ®) (y|§€£p(y $)dy
pointx = (y,0) in me(p,c c,i,7) has the property that
<

the width of Q(c, ¢’, 4, j) relative toH,, ; ; atx is at most

(1e()| + e (9)1) sup ply, €)dy
£ER

|‘€ (D)f ge/é(}};(”. , ) H h . ' FxlulxﬂBc

efinedF(p,c,c',i,7) € H,,; as the projection on < a(llell + |I€ / +1)su ,€)d
Hu,i,j of aQ(C,C/, iaj)\(Fc,i,jUFc/,i,j)a WhereaQ(c, C/,i,j) = (” ” H ”) " C(HY” )ﬁe%l;p(y f) y
is the boundary of)(c, c¢’, 4, 7). In words, it is the projection
of the boundaries of)(c, c’,7, j), other thanF ; ;, Fer ; ;, (lell + Il II)/ (Il + Dg(l=l[)dx
onH, ; ;. Any pointx = (y,0) in §F(u, ¢, ¢/, 4, 7) has the Hy,i,;NBe

roperty that the W|dth relative toH, ; ; at i e
Propery ol ) o <allell+ €l [ Dgr)xer

x, is less thail. (y)—l (y)|. Thisis because the segment of
the normal toH , ; ; atx, betweenH. ; ; andHc ; ;, passes
through other clusters besides clusters whereg(:) is the dominating function op(-) assumed
For notational convenience, we will drop most of the pa- to exist by the regularity conditions (see section 2), arsl
rameters from now on, as they should be clear from the con-the surface area of andimensional unit sphere. By the as-
text. LetFinin = Fmax\0F. By the properties of i, 6 F, sumptions ory(-) and the fact thate||, |[€'|| = O,(1/v/m),
any pointx = (y,0) in Fy,i, has the property that the width  we have that
of Q relative toH,, ; ; atx is exactly|l(y) — le (y)].

LetF} .., Fr’n.n ‘andF’ be then — 1 dimensional projec-
tions of F,..x, Fruin @aNdF respectively, by removing the last Ler (y)
zero coordinate which we assume to charactefizg ;. As / / ply,€)d€| dy = O, (M(R)/v/m)
a result of the previous discussion, by Fubini’s theorem, we FraxNBe |/ Le(y)
have that: (10)
; whereh(R) — 0 asR — oo. Notice that to reach this

L (y)
[ ply. €)de
Le(y)

>// /gEl(y)p(y,E)dé

in |/ le(y)

Assuming these integrals exist. Our goal will be to show / p(y, 0)[l(x, ¢, ¢§)ldy = O, (h(R)//m) . (11)
that both the upper and lower bounds above are of the form Fnbe

J.

max

dy > / p(x)dx conclusion, we did not use any characteristicd 9., be-
Q side it being a subset @i, ; ;. Therefore, since

|l(x;, ¢i, ¢l < a(|lx]| + 1)(Ilell + |[€'[])//m for some con-
dy, (9) stanta > 0, a very similar analysis reveals that

I . c|d 1 ’ We note for later that none of the constants implicit in the
/F POONLX; iy €)ldx + 0p(1/Vm) O,(-) notation, other thah(R), depend orRk. Turning now
to what happens inside the ball, we have by Lemma 3 that

s,
which entails that the 'sandwiched’ integral in Eq. (9) Haes t
same form. We will prove this assertion for the upper bound 5
only, as the proof for the lower bound is almost identical. ter(y)
As in Lemma 3, we leB be a closed ball of radiug in / / p(y,€)d¢
R™ centered on the origin, and separately analyze the integral FraxB |/ £e(¥)

in the upper bound of Eq. (9) with respect to what happens _ 7 () T
inside and outside this ball. - Jr B [ber(v) = L) p(y, 0)dy + 0p(1/v/m).

max

By Lemma 2, assumin(ie|| is small enough, there exists (12)
a constant: > 0 dependent only op, such that

dy

1e(y)| < a(llyll + D) (llell + |lell?). Leaving this equation aside for later, we will now show



that

[ Je) -~ Lwlpty. o)y
F NB

’
max

[ 1) = Elply,0)dy| = o,1/vm). (13

The I.h.s can be upper bounded by

/ le(y) — L (y)|p(y, 0)dy
(F/ AF)NB

max

<

/ (18)] + I (9))p(y. 0)dy.
(Fl.xOF)NB

As €, €’ have the same distribution, we just need to show
that

/ ey ply 0)dy = 0,(1/v/m).  (14)
(Fl.«OAF")NB
By Lemma 2, inside the bounded domain/®fwe have

that |[¢.(y)| < all€|| for some constant dependent solely
on u and R (as before, to avoid making the equations too
cumbersome, we ignore terms involving higher powers of
|lel).- Moreover, sincep(y,0) is bounded, we can absorb
this bound intaz and get that

/ 17.(y)lp(y, 0)dy < alle] / Ldy,
(FhaxAF)NB (F!. . AF)NB
(15)

Note that/ 1dy is a continuous function of

(F! . AF)NB

max

€, €’ in some neighborhood 6f Moreover, sincé . = F’

whene = € = 0, the integral above iBate = ¢’ = 0. Since
|lell, ||e|| converge td) in probability, it follows that

/ 1dy = 0p(1).
(Fl AF')NB

a

Combining this with Eq. (15), and the fact thiat|| =
0,(1/y/m), justifies Eq. (14), and hence Eq. (13). Combin-
ing Eq. (10),Eq. (12) and Eq. (13), we get that

/ /Ze/ (y)
" ge (Y)

max

/F,mB e (y) = Le(y)Ip(y, 0)dy
+0p(1/v/m) + Oy (h(R) /v/m). (16)

By Lemma 2, definition of(x, c;, bc’;), and the fact that

lell, |l€'] = O, (1/+/m), we have thak, (y)—{. (y) is equal
to |I(x, ¢, })| + op((|ly|l + 1)/4/m). This implies that the
distribution of the r.h.s of Eq. (16) is equal to

| p 0l ei,ldy-+o, (1 Vm)+0, (h(R) Vi),

By Eq. (11), this is equal in turn to

| pl. 0l ldy + 0,(1/vim) + O, h(R) Vi)

p(y,&)d¢| dy

We now use the fact thak can be picked arbitrarily.
Notice that the first remainder term has implicit constants
which depend oz, but the second remainder term depends
on R only throughi(R) (recall the development leading to
Eqg. (10) and Eqg. (11)). Therefore, the first remainder term
converges td at a rate faster thah/\/m in probability for
any R, and the second remainder term can be made arbi-
trarily smaller thanl //m in high probability by pickingR
to be large enough, sindg R) — 0 asR — oo. Thus,
for anyé > 0, we can pickR so that the remainder terms
eventually become smaller thay,/m with arbitrarily high
probability. As a result, we can replace the remainder terms
by 0,(1/y/m), with implicit constants not depending df,
and get that Eq. (16) can be rewritten as

/ /Ze' (y)
F, le(y)

’
max

= [ sty ot ei.eldy +o,(1/vm).

This gives us an equivalent formulation of the upper bound
in Eq. (9). As discussed immediately after Eq. (9), an identi
cal analysis can be performed for the lower bound appearing
there, and this leads to the result of the lemma. O

p(y,§)dE| dy

We now turn to prove Thm. 1. Lefc,c’,i,j) be as de-

fined in Lemma 4. LeC, . ; denote the set of points in
R™ which remain in the same clustéefor both clusterings
defined byc, ¢’. Then by definitiond? (Ax(S1), Ax(S2)) is
equal to

2 3 (/ i p(x)dx> Vint(e,i. )
1<i<j<k Cc,c’,iUCc,c/,j
7)

1
As a straightforward consequence|jeff = O, (1/v/m)
we have that

/@ , UC.

c,c’ i c,c’,j

By Lemma 4, we have thaymt(c,c’,, j) is of the form

i) (o X)T (5-9)
X — fu; € —€;
(19)

/Fu,,-,,- s — ml
By the continuous mapping theorem [18] and standard
results on the difference of independent, identicallyritisted

Gaussian vectors [17], we have thain(e; — €], €; — e})T

converges in distribution te/2(v;,v;) T, wherev is as de-
fined in Lemma 1. Moreover, it is not difficult to show that
Eqg. (19), ignoring the remainder term, is a continuous func-
tion of (¢;— €, €;—€,) ". Theideais that it is obviously con-
tinuous with the integral restricted to some fixed ball abun
the origin, and the contributions outside the ball can beenad
arbitrarily small if the ball is large enough, by the assump-
tions onp(x) (a similar argument was made in the proof
of Lemma 4). Thus, by the continuous mapping theorem,
/mt(c,c,1i,7) converges in distribution to

/ V2p(x) (ui - X>T (Vz>
Frsy 11— Bl | \X— H; vj

p(x)dx:/c . .p(x)dx—i-op(l). (18)

dx + op(1).

dx.  (20)
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Figure 3: An illustrative drawing of some of the notation and
geometrical constructs used in the proof of Thm. 1. Solid
lines represent cluster boundaries with respect to the opti
mal cluster centroidg, while dashed lines represent cluster
boundaries with respect to cluster centroidsr ¢’ returned

by the clustering algorithm based on an empirical sample.
See the text for more details.

Substituting Eq. (18) and Eq. (20) into Eq. (17), we get
convergence in distribution to the one specified in our theo-
rem.

The only thing remaining is to derive the expected value
of this distribution. For notational convenience, et =

r-'vr-1 and
M — X ! i
XKy iji

the expected value of the distribution is equal to:

N 2\/§1<Z<k </C A0 -‘p(X)dX>
p(x)

.
< Fuoy e =yl [\X = H5 ) \Vs

By Fubini's theorem, this is equal to:

2V2 Z (/ p(x)dx>
1<i<j<k \YCwuiYUCu,;

(e () ()| =)

The expression inside the expectation is normally dis-
tributed, as a linear transformation of a normal random vec-
tor. Using standard results on the distribution of suchgran
formations [17], and since for any univariate~ A (u, 02)

it holds thatE[|a|] = o+/2/7, we can reduce the above to

13%9- [(qucw p(X)dx>
(=)
F,

waig ||I"L’L _I"l"jH

5

; By — X
Xji) \X~ M

V(x,4,j) =

)

dﬂ |

4

VT

p(x)

The final form ofﬁsﬁt{Ak, D) is achieved by rewriting
¥ as(V1/2r-1)Ty1/21-1 substituting into the expression
¥(x,1,7), and simplifying.

4.2 Proof of Thm. 2

The proof is composed of several lemmas. The key insight is
that the asymptotic distribution af (Ax(S1), Ax(S2)) can

be viewed as a certain non-standard norm of a Gaussian ran-
dom vector. Using theorems on Gaussian measures in Ba-
nach spaces allows us to bound the probability of

d’5 (Ax(S1), Ax(S2)) being much larger or much smaller than
its expectation, and thus bound the probability that the em-
pirical clustering stability estimator will return deceig re-
sults.

Lemma 5. The asymptotic distribution @5 (A, (S1), Ax(S2))
is equal to that oﬂ\vu*, wherev ~ N(0,T~'VT~1) and
Iv]|. is @ norm onR™".

Proof. Denotev = (vq,...,v,)wherev,; € R™. By Thm. 1,
the asymptotic distribution @5 (Ax(S1), Ax(S2)) is equal to

S / p(x)’(ﬁi}jf@j) dx, @D

1<i<j<k Fluig
wherev is as defined in the lemma, ang; are certain pos-
itive constants dependent dp. Perhaps unexpectedly, it
turns out that this expression defines a normvotinearity
and the triangle inequality are easy to show. Also, Eq. (1) i
always non-negative. Finally, Eq. (21) is zero if and only if
v = 0. One direction is trivial. For the other direction, note
that p(-) must be strictly positive for some non-degenerate

subset of some cluster boundary, in order ih/aﬁt(Ak, D)
be positive (which is implied by the assumptions in the the-
orem). From this, it is straightforward to show thatit~ 0
then Eq. (21) is larger thai O

Lemma 6. Letv be a non-degenerate normally distributed
random vector iR", let || - ||.. be a norm orR™ as defined in
Lemmab5, andlet € (1/2, 1) be a free parameter. Introduce
the following two parameters which dependébn

2(1-0) — exp(—(e 1 (9)?)
log (ﬁ) Vrerf~(6) .

Then for anyM, e such thatM by > 1 andeay < 1, it holds
that

1
ag = 1+ s bp = 1—60+

1-6
Pr(ivl. > MEvl.) <0 (4

)

)(1+Mbe)/2

and
Pr(||v]« < €Elv]«) < erf(erf‘l(e)age).

Proof. The distribution of a norm of a Gaussian random vec-
tor is continuous, except possibly @t(cf. [3]). For any
0 € (1/2,1), let med be a positive number which satisfies:

Pr(||v]. < med) = 6.

Using two results from the literature on Gaussian mea-
sures in Banach spaces (theorem 111.3 in [11], and theorem 1



from [8]), we have that forany/ > 1, and for any € [0, 1],
it holds that:

1-0

Pr(||v|l« > Mmed)) <0 (9

(1+M)/2
) (22)

Pr(||v]. < emed)) < erf(erf~(0)e). (23)

It remains to convert these bounds on the deviation from
med, to the deviation fronE||v||.. To achieve this, we need
to upper and lower boun@||v||../med,. By substitution of
variables, we have th@||v||. is equal to

/ Pr(||v].« > t)dt = medg/ Pr(||v|« > Mmed))dM.
0 0

Using Eq. (22), this can be upper bounded by

0o 1 g\ (HM)/2
med 1+/ 9<9> dM |,
1

which after straightforward computations lead&{gv||..] <
medyag, Whereay is as defined in the lemma.
In a similar manner, we can writg||v|.. as

/ 1 — Pr(|[v]], < t)dt
J0

= medg/ 1 —Pr(||v]l« < emed))de,
0

which is lower bounded in term, using Eq. (23), by

1
medg/ 1 — erf(erf ™ (0)e)de
0

Again by straightforward computations, we reach the con-
clusion thatE||v||. > medby, whereby is as defined in the
lemma.

Therefore, we have that #/by > 1, thenPr(||v]. >
ME||v||.) is upper bounded by

1-6

(1+Mbyg) /2
Pr(||v|l« > Mbsmed,) < 6 (9) :

The other bound in the lemma is derived similarly. [

We can now turn to the proof of Thm. 2. By Lemma 5,
both d/f5 (Ax, (S1), Ak, (S2)) and d’5 (A, (S1), Ak, (S2)) con-
verge in distribution td|vy, ||« and||vy, ||, wherevy, , v,

By a union bound argument, if we choodé ande so
that1.1M/e < R, whereR is as defined in the lemma, we
get thatPr(||vg, ||« < 1.1||v,||«) is upper bounded by

91<1

01

b1

((1+M)be,)/2
) (25)

+ erf(erf *(03)ag,€),

forany#,,0, € (1/2,1). Choosing different values for them
(as well as the choice of appropriaié, ¢) leads to differ-
ent bounds, with a trade off between the tightness of the
constants, and minimality requirements &n(which stem
from the requirements o/, e by Lemma 6). Choosing
01 =10.9,0, =08, M = 2log(R)/(bg, log(61/(1 — 61))),
e = 1.1M/R, and using the fact that €uf) < (2//7)z
for anyxz > 0, we get that Eq. (25) is upper bounded by
(0.3 +3log(R))/R forany R > 3, and therefore Eq. (24) is
upper bounded b§0.3 + 3log(R))/R + o(1).

Assume the event

dp (Ak,(S1), Ax, (S2)) > 1.1d75 (A, (S1), Ak, (52)),

occurs. Recall that the quantities in Eq. (26) depend on the
unknown underlying distributiof®, and therefore cannot be
calculated directly. Instead, we empirically estimatesthe
quantities (divided by,/m to be exact), as defined in the
theorem statement, to get the stability estima&pg%m and
éksAm. Thus, even if Eq. (26) occurs, it is still possible that
01, 4m < Or. am. Luckily, by Thm. 2in[15], the probability
for this, conditioned on the eventin Eq. (26pid ) (namely,
converges td asm — oo). Therefore, the probability that
Eq. (26) does not occur, or that it does occur but the empirica
comparison of these quantities fail,(i&3 + 31log(R))/R +

o(1) as required.

(26)

4.3 Proof of Thm. 3

To prove the theorem, we will borrow a setting discussed in
[10] for a different purpose.

Let A be some small positive constant (sAy< 0.1).
Consider the parameterized family of distributidrs, }
(wheree € (0,1/4)) on the real line, which assigns probabil-
ity mass(1—e¢)/4tox = —1landx = —1—A, and(1+¢€)/4
tox = 1 andz = 1 + A. Any such distribution satisfies
the requirements of Thm. 1, except continuity. However, as
mentioned in Sec. 2, the theorem only requires continuity in
some region around the boundary points, so we may ignore
this difficulty. Alternatively, we may introduce continyiby

are Gaussian random variables (non-degenerate by the asconvolution with a small local smoothing operator. For any

sumptions od" andV’). By Slutsky’s theorem and the defi-
nition of convergence in distribution,

Pr(dp (Ax, (S1), Ak, (52)) < 1.1d75 (A, (51), Ak, (52)))
(24)

= Pr([lvi, [« < LAf[ve.[l+) + o(1).

The combination of Lemma 5 and Lemma 6 allows us to
upper bound the probability thdit. ||, is smaller than its
expectation by a factar < 1, and upper bound the probabil-
ity that || vi. ||« is larger than its expectation by some factor

M > 1, provided thatk, M satisfy the conditions specified
in Lemma 6.

¢, itis easily seen that}; (Ax(S1), Ax(S2)) converges to in
probability, since the boundary points between the optimal
clusters have zero density.

Let A}, . denote the event where for a sample of size
m drawn i.i.d fromD,, there are more instances ¢n1 —
A, -1} thanon{1,1 + A}. Also, letA2, . denote the event
that for a sample of size: drawn i.i.d fromD., there are
more instances ofil, 1 + A} than on{—1 — A, —1}. Fi-
nally, let B,, . denote the event that every point{r-1 —
A, —1,1,1+ A} is hit by at least one instance from the sam-
ple. Clearly, ifA}, . N By, . occurs, then the optimal cluster
centers for the sample afe-1 — A, —1,1 4+ A’} for some
A’ € [0,4A], and if A2 _ N B,, . occurs, then the optimal

m,e



There are several directions for future research. The most
obvious perhaps is to extend our results and observations
from the asymptotic domain to the finite sample size domain.
Showing that clustering stability does not 'break down’ in
the large sample regime has theoretical and practical rele-
vance, but leaves open the question of why clustering sta-
bility can work well for small finite samples. One route to
achieve this might be through finite sample guaranteessbut a
demonstrated in Thm. 3, additional assumptions are needed
for such results. Also, it would be interesting to perform a
similar analysis for other clustering methods beyondithe
means framework.

cluster centers for the sample drel — A’,1,1 + A} for
someA’ € [0, A].

By Thm. 2.1 in [16], for any Bernoulli random variable
X such thatE[X] = p < 1/2, and any whole numbersuch
thata/m < 1 —p,if Xy,..., X, arem i.i..d copies ofX,

then
1 & a m a
iy ) sioe( (L)),
r(m; _m>_ < p(1—p) \m p)

where®(-) is the cumulative normal distribution func-
tion. The probability of the everm}m is equal to the prob-
ability of a success rate of more than halfsn Bernoulli
trials, whose probability of success(is — ¢)/2. Using the Acknowledgements The authors wish to thank Gideon
theorem above, we get after a few straightforward algebraic Schechtman and Leonid Kontorovich for providing the nec-
manipulations and relaxations that essary pointers for the proof of Thm. 2.

Pr(A}me) >1-9 (4m + 26\/%) . 27)

N
The probability of the evenﬁfn,e is equal to the proba-

bility of a success rate of less than halfrinBernoulli trials,

whose probability of success(is— ¢) /2. By a standard nor-

mal approximation argument, we have that for large enough

values ofm, and for anye € (0,1/4), it holds that
Pr(A2, ) >1/2. (28)

Finally, it is straightforward to show th&tr(B,, ) is ar-
bitrarily close tol uniformly for anye, if m is large enough.
Combining this with Eq. (27), Eq. (28) and the easily proven
formulaPr(A N B) > Pr(A) — Pr(BC) for any two events

A, B, we get that by choosing a large enough sample size

m > myg, and an appropriate valueit holds that
Pr(A}, .M Bpe),Pr(A2 \NBp)>1/2—v

for an arbitrarily smally > 0. For that choice ofn, ¢, if we
draw and cluster two independent sampbessS, of sizem
from D, then the probability that evest), N B, . occurs

for one sample, and?, . N B,, . occurs for the second sam-
ple, is at least(1/2 —v)?, or at least /3 for a small enough

v. Note that in this case, we get the two different clusterings [9]

Jm

discussed above, and
Vim(l+e)  ym

05, (ha(51), ha(52)) = Y ;

So with a probability of at least/3 over drawing and
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