
Model Selection and Stability ink-means Clustering

Ohad Shamir † and Naftali Tishby†‡

† School of Computer Science and Engineering
‡ Interdisciplinary Center for Neural Computation
The Hebrew University, Jerusalem 91904, Israel

{ohadsh,tishby}@cs.huji.ac.il

Abstract

Clustering Stability methods are a family of widely
used model selection techniques applied in data
clustering. Their unifying theme is that an appro-
priate model should result in a clustering which is
robust with respect to various kinds of perturba-
tions. Despite their relative success, not much is
known theoretically on why or when do they work,
or even what kind of assumptions they make in
choosing an ’appropriate’ model. Moreover, re-
cent theoretical work has shown that they might
’break down’ for large enough samples. In this pa-
per, we focus on the behavior of clustering stabil-
ity usingk-means clustering. Our main technical
result is an exact characterization of the distribu-
tion to which suitably scaled measures of instabil-
ity converge, based on a sample drawn from any
distribution inRn satisfying mild regularity con-
ditions. From this, we can show that clustering
stability does not ’break down’ even for arbitrarily
large samples, in thek-means framework that we
study. Moreover, it allows us to identify the factors
which influence the behavior of clustering stability
for any sample size. This leads to some interest-
ing preliminary observations about what kind of
assumptions are made when using these methods.
While often reasonable, these assumptions might
also lead to unexpected consequences.

1 Introduction

The important and difficult problem of model selection in
data clustering has been the focus of an extensive literature
spanning several research communities in the natural and so-
cial sciences. Since clustering is often used as a first step in
the data analysis process, the questions of what type of clus-
ters or how many clusters are in the data can be crucial.

An important family of model selection methods, whose
popularity has grown in the past few years, is based on clus-
tering stability. The unifying theme of these methods is that
an appropriate model for the data should result in a cluster-
ing which is robust with respect to various kinds of perturba-
tions. In other words, if we choose an appropriate clustering
algorithm, and feed it with the ’correct’ parameters (such as

the number of clusters, the metric used, etc.), the clustering
returned by the algorithm should not be overly sensitive to
the exact structure of the data.

In particular, we will focus on clustering stability meth-
ods which compare the discrepancy or ’distance’ between
clusterings of different random subsets of our data. These
methods seek a ’stable’ model, in the sense that the value of
such distance measures should tend to be small.

Although these methods have been shown to be rather ef-
fective in practice (cf. [2],[4],[7],[9]), little theory exists so
far to explain their success, or for which cases are they best
suited for. Over the past few years, a theoretical study of
these methods has been initiated, in a framework where the
data are assumed to be an i.i.d sample. However, a funda-
mental hurdle was the observation [1] that under mild con-
ditions and for any model choice, the clustering algorithm
should tend to converge to a single solution which is optimal
with respect to the underlying distribution. As a result, clus-
tering stability might ’break down’ for large enough samples,
since we get approximately the same clustering hypothesis
based on each random subsample, and thus achieve stabil-
ity regardless of whether the model fits the data or not (this
problem was also pointed out in [6]). A possible solution to
this difficulty was proposed in [15]. In a nutshell, that paper
showed that the important factor in the way these clustering
stability methods work may not be the asymptotic stability
of the model, but ratherhow fast exactly does it converge to
this stability. With this more refined analysis, it was argued
that differences in the stability of different models should
usually be discernible for any sample size, no matter how
large, despite the universal convergence to absolute stability.
Although it provided the necessary groundwork, that paper
only rigorously proved this assertion for a single toy exam-
ple, as a proof-of-concept.

In this paper, we formally investigate the application of
clustering stability to the well known and populark-means
clustering framework, when the goal is to determine the value
of k, or the number of clusters in the data. Assuming an
algorithm which minimizes thek-means objective function,
we consider arbitrary distributions inRn satisfying certain
mild regularity conditions, and analyze the behavior of the
clustering distance measure, scaled by the square root of the
sample size. Rather than converging to zero in probability
as the sample size increases to infinity, this scaled measure
converges to a non-degenerate distribution which depends on
the choice ofk. From this we can show that clustering stabil-



ity does not ’break down’ even for arbitrarily large samples,
in the sense described earlier, at least for thek-means frame-
work that we study.

The asymptotic distribution is also interesting for two ad-
ditional reasons. The first is that it can be seen as an ap-
proximation which improves as the sample size increases.
The second and more profound reason is that if we are in-
terested in discovering what fundamental assumptions are
implicit in performing model selection with clustering sta-
bility, these should not be overly dependent on the sample
size used. Therefore, as we look at larger samples, noisy and
hard to analyze finite sample effects diminish, and what re-
mains are the fundamental characteristics, which should be
relevant foranysample size. As a result, the analysis leads
to some preliminary observations about the factors influenc-
ing clustering stability ink-means, of both theoretical and
practical interest.

2 Problem Setting and Notation

We refer the reader to Fig. 1 for a graphical illustration of the
basic setting, and some of the notation introduced below.

Denote{1, . . . , k} as [k]. Vectors will be denoted by
bold-face characters.‖ · ‖ will denote the Euclidean norm
unless stated otherwise.N (µ,Σ) denotes the multivariate
normal distribution with meanµ and covariance matrixΣ.

We will use the stochastic order notationOp(·) andop(·)
(cf. [18]). Let {Xm} and{Ym} be sequences of random
vectors, defined on the same probability space. We write
Xm = Op(Ym) to mean that for eachǫ > 0 there exists
a real numberM such thatPr(‖Xm‖ ≥ M‖Ym‖) < ǫ if
m is large enough. We writeXm = op(Ym) to mean that
Pr(‖Xm‖ ≥ ǫ‖Ym‖) → 0 for eachǫ > 0. Notice that{Ym}
may also be non-random. For example,Xm = op(1) means
thatXm → 0 in probability.

LetD be a probability distribution onRn, with a bounded
probability density functionp(·) which is continuous as a
function onRn. Assume that the following two regularity
conditions hold:

•
∫

Rn

p(x)‖x‖2dx < ∞ (in words,D has bounded vari-

ance).

• There exists a bounded, monotonically decreasing func-
tion g(·) : R → R, such thatp(x) ≤ g(‖x‖) for all

x ∈ Rn, and
∫ ∞

r=0

rng(r) <∞.

The second requirement is needed in order to apply the
main theorem of [13] (it is a slightly stronger version of con-
dition (iv) there), and can probably be improved. Neverthe-
less, it is quite mild, and holds in particular for any distri-
bution that is not heavy-tailed or has bounded support. As
to the continuity requirement ofp(·), it should be noted that
our results hold even if we assume continuity solely in some
neighborhood of the optimal cluster boundaries, but we will
take this stronger assumption for simplicity.

Let Ak denote an ’ideal’ version of the standardk-means
algorithm, which is given a sampleS = {xi}m

i=1 ⊆ Rn,
sampled i.i.d fromD, and a required number of clustersk,

and returns a set of centroidsc = (c1, . . . , ck) ∈ Rnk, which
are a global minimum of the objective function:

Ŵ (c) :=
1

m

m∑

i=1

min
j∈[k]

‖cj − xi‖2.

Let µ = (µ1, . . . ,µk) ∈ Rnk be an optimalk-means solu-
tion with respect toD, defined as a minimizer of

W (c) :=

∫

Rn

p(x) min
j∈[k]

‖cj − xi‖2dx.

We assume that such a minimizer exists, is unique up to per-
mutation of the centroids, and that all centroids are distinct
(for all i 6= j, µi 6= µj). To avoid ambiguities involving
permutation of the centroids, we assume that the numbering
of the centroids is by some uniform canonical ordering (for
example, by sorting with respect to the coordinates).

For some set of centroidsc = (c1, . . . , ck), and for each
cluster centroidci, we denote the interior of its correspond-
ing cluster asCc,i, defined as:

Cc,i :=

{
x ∈ R

n : arg min
j∈[k]

‖cj − x‖2 = i

}
.

From the continuity assumptions onp, we may assume
that the set of points not in the interior of some cluster has
zero measure with respect top. We can therefore neglect the
issue of how points along cluster boundaries are assigned.

The (scaled) distance between two clusteringsAk(S1) and
Ak(S2), whereS1, S2 are samples of sizem, is defined as:

dm
D (Ak(S1), Ak(S2)) :=

√
m Pr

x1,x2∼D

(
Ak(S1)(x1,x2) 6= Ak(S2)(x1,x2)

)
,

whereAk(S)(x1,x2) is an indicator function of whether
the instancesx1,x2 are in the same cluster according to the
clustering given byAk(S). This definition follows that of [1]
and [15], with the additional scaling by

√
m (the ’correct’

scaling factor as will become evident later on). A typical
way to measure instability in practice is to cluster indepen-
dent subsamples of the data, and empirically estimate the dis-
tance between the resulting clusterings. Thus, understanding
the behavior ofdm

D (Ak(S1), Ak(S2)) (over drawing and clus-
tering independent samples) is of much interest in analyzing
the behavior of clustering stability.

Any choice of cluster centroidsc induces a Voronoi par-
tition on Rn. We will denoteFc,i,j , for i 6= j, as the bound-
ary face between clustersi andj. Namely, the points inRn

whose two closest cluster centroids areci andcj , and are
equidistant from them:

Fc,i,j :=

{
x ∈ R

n : arg min
a∈[k]

‖ca − x‖2 = {i, j}
}
.

Assumingci,cj are distinct,Fc,i,j is a (possibly empty)
subset of the hyperplaneHc,i,j , defined as

Hc,i,j :=

{
x ∈ R

n :

(
x − ci + cj

2

)⊤

· (c1 − c2) = 0

}
.

In our discussion, we use integrals with respect to both
then-dimensional Lebesgue measure, as well as the(n−1)-
dimensional Lebesgue measure. The type of integral we are



using should be clear from the context, depending on the set
over which we are integrating. For example, integrals over
someCc,i are of the first type, while integrals over some
Fc,i,j are of the second type.

Let Γ be thekn × kn matrix, which is the Hessian of
the mappingW (·) at the optimal solutionµ. This matrix is
composed ofk×k blocksΓi,j for i, j ∈ [k]. Each blockΓi,j

can be shown to be equal to1

Γi,j := 2

[∫

Cµ,i

p(x)dx

]
In

− 2
∑

a6=i

∫

Fµ,i,a

p(x)(x − µi)(x − µi)
⊤dx

‖µi − µa‖

if i = j, and fori 6= j it is defined as

Γi,j :=
2

‖µi − µj‖

∫

Fµ,i,j

p(x)(x − µi)(x − µj)
⊤dx

We will use the same block notation later for its inverse
Γ−1. The existence of these integrals can be shown to follow
from the assumptions onp(·). We assume that the matrixΓ
is positive definite. This is in fact an almost redundant re-
quirement, since the optimality ofµ entails thatΓ is always
positive semidefinite. Therefore, cases whereΓ is not posi-
tive definite correspond to singularities which are apparently
pathological (for more discussion on this, see [14]).

Let V be akn × kn matrix, which represents (up to a
constant) the covariance matrix ofD with respect to each
cluster, assuming the optimal clustering induced byµ. More
specifically,V is composed ofk diagonal blocksVi of size
n× n for i ∈ [k] (all other elements ofV are zero), where

Vi := 4

∫

Cµ,i

p(x)(x − µi)(x − µi)
⊤dx.

We shall assume thatVi 6= 0 for anyi.

3 Main Results

In this section, we present the main results of our paper, and
discuss observations that might be drawn from them about
the use of clustering stability in thek-means framework. All
the detailed proofs are presented in Sec. 4.

3.1 Statement of Technical Results

Our main technical result is the following theorem, which
characterizes the exact distribution to whichdm

D (Ak(S1), Ak(S2))
converges for any appropriate underlying distributionD, and
its expected value.

Theorem 1. AssumeD has a bounded probability density
functionp(·), which is continuous as a function onRn and
fulfills the two regularity conditions specified in Sec. 2. Let
Ak be an algorithm which returns a global minimizerc of

1This is proven in [13]. The definition ofΓ there differs from
ours in one of the signs, apparently due to a small error in that paper
[12].
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Figure 1: An illustrative drawing of the setting and notation
used. Thicker lines represent the optimalk-means cluster-
ing partition (for k = 3 clusters) with respect to the un-
derlying distribution. Clustering two independent random
samples gives us two random centroid setsc andc′. These
induce two different Voronoi partitions ofRn, and the dis-
tance measure is intimately related to the probability massin
the area which switches between clusters, when we compare
these two partitions (gray area).

Ŵ (·) for anyk of interest, and assume thatc converges in
probability to some set ofk distinct centroidsµ which are
the unique global minimizer ofW (·). Furthermore, assume
that Γ is invertible and thatVi 6= 0 for any i ∈ [k]. Then
we have thatdm

D (Ak(S1), Ak(S2)) converges in distribution
to that of

2
√

2
∑

1≤i<j≤k

[(∫

Cµ,i∪Cµ,j

p(x)dx

)

×





∫

Fµ,i,j

p(x)

∣∣∣
(

µi − x

x − µj

)⊤(
ci − µi
cj − µj

) ∣∣∣

‖µi − µj‖
dx








,

wherec = (c1, . . . , ck)⊤ ∼ N (µ,Γ−1V Γ−1).
Denoting the expected value of this distribution as

înstab(Ak,D), we have that it is equal to

4√
π

∑

1≤i<j≤k

[(∫

Cµ,i∪Cµ,j

p(x)dx

)

×
(∫

Fµ,i,j

p(x)
Ψ(x, i, j)

‖µi − µj‖
dx

)]
,

whereΨ(x, i, j) is defined as
∥∥∥∥∥

(
V

1/2
i 0

0 V
1/2
j

)(
(Γ−1)i,i (Γ−1)i,j

(Γ−1)j,i (Γ−1)j,j

)(
µi − x

x − µj

)∥∥∥∥∥.



All the integrals can be shown to exist by the assump-
tions onp(·). It should be emphasized that̂instab(Ak,D) is
not necessarily the same aslimm→∞ Edm

D (Ak(S1), Ak(S2)).
This is because our convergence result does not necessarily
imply convergence of expectations. Thus, formally speak-
ing, the result above does not deal directly with the limit
of Edm

D (Ak(S1), Ak(S2)), which has been used in [1],[15] as
the theoretical definition of clustering stability. However, it
turns out that for our purposes this is not too significant. It
seems to be the asymptotic distribution and̂instab(Ak,D),
rather than the asymptotic expectation, which determine the
asymptotic behavior of clustering stability.

The following theorem exemplifies this on a simple em-
pirical estimator of clustering stability. The main difference
between the following estimator and those proposed in the
literature is that it measures the distance between just a sin-
gle pair of clusterings from a pair of independent samples,
rather than averaging over several pairs based on subsam-
pling the data. This just makes our result stronger, because
these kind of bootstrap procedures should only increase the
reliability of the estimator, whereas here we are interested in
a ’lower bound’ on reliability.

Theorem 2. Define a clustering stability estimator,̂θk,4m,
as follows: Given a sample of size4m, split it randomly into
3 disjoint subsetsS1,S2,S3 of sizem,m and2m respectively.
Estimatedm

D (Ak(S1), Ak(S2))/
√
m by computing

1

m

∑

xi,xm+i∈S3

1

(
Ak(S1)(xi, xm+i) 6= Ak(S2)(xi, xm+i)

)
,

where(x1, .., xm) is a random permutation ofS3. For any
distribution D satisfying the conditions of Thm. 1, assume
that for some two values ofk, ks 6= ku, the ratio of
înstab(Aku

,D) and înstab(Aks
,D) (as defined in Thm. 1) is

∞ > R > 3. Then we have that:

Pr
(
θ̂ks,4m ≥ θ̂ku,4m

)
≤ 0.3 + 3 log(R)

R
+ o(1),

where the probability is over a sample of size4m used for
both estimators, ando(1) converges to0 asm→ ∞.

The theorem implies the following: Suppose we are con-
sidering two possible values fork, designated asks andku,
such that the ratio between̂instab(Aku

,D) andînstab(Aks
,D)

is some reasonably large constant (one can think of it as a rel-
atively unstable model corresponding toku, vs. a relatively
stable model corresponding toks). Then the probability of
not empirically detectingks as the most stable model has
an upper bound which actually decreases with the sample
size, converging to a constant value dependent on the ratio
of înstab(Aks

,D) andînstab(Aku
,D). In this sense, accord-

ing to the bound, clustering stability does not ’break down’
in the large sample regime, and the asymptotic reliability of
its empirical estimation is determined bŷinstab(Ak,D). We
emphasize that the theorem deals with the reliability of de-
tecting the most stable model, not whether a stable model is
really a ’good’ model in any other sense.

We note that our proof actually produces an entire range
of bounds, which provides a trade off for the minimality re-
quirement onR with the tightness in terms of the constants.

See the proof for further details. Also, if̂instab(Aks
,D) = 0,

while înstab(Aku
,D) > 0 (corresponding toR = ∞), it is

easy to show that the probability of detectingks as the most
stable model converges to1 asm→ ∞.

3.2 Factors Influencing Stability of Clustering Models

According to Thm. 1, for any distribution satisfying the nec-
essary conditions, the distance between clusterings (after scal-
ing by

√
m) converges to a generally non-degenerate distri-

bution, which depends on the underlying distribution and the
number of clustersk. As Thm. 2 shows, this implies that
clustering stability does not ’break down’ in the large sam-
ple regime, and its choice of the most ’appropriate’ value of
k seems to depend essentially on̂instab(Ak,D).

Thm. 1 provides an explicit formula for̂instab(Ak,D).
Although one can always calculate it for specific cases, it is
of much more interest to try and understand what are the gov-
erning factors influencing its value. These factors eventually
determine what is considered by clustering stability as the
’correct’ model, with a low value for̂instab(Ak,D). There-
fore, analyzing these factors can explain what sample-size-
free assumptions correspond to the use of clustering stability,
at least in thek-means setting that we study. Since a rigor-
ous analysis is a complex endeavor in itself, we will limit
ourselves to some preliminary and non-formal observations,
which should be taken as such.

According to Thm. 1, the value of̂instab(Ak,D) is asymp-
totically determined by three factors:

• The probability density along the cluster boundaries.

• The HessianΓ of the objective functionW (·) atµ.

• The varianceV and mass of the clusters with respect to
the underlying distribution.

A fourth factor appearing in the formula isµi − µj , but
this can be seen simply as a normalization term, eliminating
the dependence on the norm ofx.

The probability density along the cluster boundaries seems
to play an interesting role. For example, when the density at
the boundaries is exactly0, we get that̂instab(Ak,D) = 0.
Although this density is multiplied byΨ(x, i, j), note that
Ψ(x, i, j) actually becomes ’nicer’ when the boundary den-
sity is lower (sinceΓ−1 approaches a diagonal matrix with
entries proportional to the inverse of the mass of the clusters,
hence having well-controlled eigenvalues assuming reason-
ably balanced clusters). Therefore, we might expect low in-
stability even when the boundary density is low but not ex-
actly0.

As to the HessianΓ, an exact analysis of its influence
on înstab(Ak,D) is problematic in the general case, but a
useful rough characterization is the spectrum ofΓ. If all
the eigenvalues ofΓ−1 are ’large’, then we might expect
Ψ(x, i, j)/‖µi − µj‖ to be relatively large as well, leading

to a higher value for̂instab(Ak,D). On the other hand, small
eigenvalues might lead to lower values of̂instab(Ak,D). Thus,
we see that a small spectral radius of the HessianΓ, repre-
senting a ’locally shallow’ optimal solution, may result in



more instability. It is interesting to note that shallow, ill-
defined minima in terms of the objective function are often
a sign of a mismatch between the model and the data, and
therefore clustering stability seems to be doing a good thing
on that regard.

When will the spectral radius ofΓ be small, contributing
to instability? By inspecting the formula forΓ, and assum-
ing all clusters have equal sizes, we see that the diagonal
elements ofΓ are at most2/k, and can become smaller if the
density along the boundary points is larger. Since the main
diagonal majorizes the spectrum of the symmetric matrixΓ
(cf. [5]), it seems that a small spectral radius might corre-
spond to larger values ofk, as well as high density along the
cluster boundaries. A similar analysis forV seems to indi-
cate that high cluster variance increases instability as well.

These observation also imply that clustering instability
might tend to be larger for higher values ofk. As k becomes
larger,înstab(Ak,D) is the result of integrating over a larger
area (all cluster boundaries), and the HessianΓ might tend
to have a smaller spectral radius, especially if the bound-
aries have high density. This is somewhat compensated in
the formula by the mass and variance of each cluster becom-
ing smaller, but these seem to scale down more slowly than
the cluster boundaries area (and number) scaling up, espe-
cially in high dimensions. This matches a well known ex-
perimental phenomenon, in which clusterings tend to be less
stable for higherk, even in hierarchical clustering settings
where more than one value ofk is acceptable. When the
’correct’ model has a very low boundary density and nice
structure compared to competing models, this might over-
come the general tendency of instability to increase withk.
However, when this is not the case, normalization procedures
might be called for, as in [7].

3.3 Examples

To illustrate some of the observations from the previous sub-
section, we empirically evaluated the instability measureon
a few simple toy examples, where everything is well con-
trolled and easy to analyze. The results are displayed in
Fig. 2. We emphasize that these are just simple illustra-
tions of possible expected and unexpected characteristicsof
clustering stability in some very limited cases, which can be
gleaned from the theoretical results above, and are not meant
to represent more realistic or higher dimensional settings.

First of all, the average value ofdm
D (Ak(S1), Ak(S2)) tends

to converge to a constant value, which differs based on the
choice of the model orderk, and clustering stability does not
seem to ’break down’ as sample size increases. The three
leftmost plots demonstrate how, for these particular exam-
ples, the density along the cluster boundaries seem to play an
important role in determininĝinstab(Ak,D). For each distri-
bution,k = 3 emerges as the most stable model, since the
boundaries between the clusters withk = 3 have low den-
sity. However,k = 3 becomes less stable as the Gaussians
get closer to each other, leading to higher densities in the
boundaries between them. At some point, when the den-
sity along the cluster boundaries fork = 3 becomes large
enough,k = 2 becomes more stable thank = 3.

A different manifestation of this behavior can be seen in
the rightmost plot, which simulates a hierarchical clustering

setting. In this case, all three Gaussians are separated, but
one of them is relatively more separated than the other two.
As before,k = 4 is less stable thank = 3 andk = 2, but now
k = 2 is the most stable model. This is primarily because
the sum of the boundary densities ink = 3 is larger than the
density at the boundary point fork = 2. Deciding onk =
2 as the number of clusters in the data is not unreasonable
(recall that clustering stability makes no explicit generative
assumption on how the clusters look like). However, it can
indicate that in a hierarchical clustering setting, clustering
stability might prefer high levels in the hierarchy, which may
or may not be what we want.

3.4 Convergence Rates

After establishing the asymptotic distribution of the clus-
tering distance measures fork-means clustering, a reason-
able next step is exploring what kind of guarantees can be
made on the convergence rate to this asymptotic limit. As
a first step, we establish the following negative result, which
demonstrates that without additional assumptions, no univer-
sal guarantees can be given on the convergence rate. The the-
orem refers to the casek = 3, but the proof idea can easily
be extended to other values ofk.

Theorem 3. For any positive integerm0, there exists a dis-
tributionD such thatdm

D (A3(S1), A3(S2)) converges in prob-
ability to0 asm→ ∞, butPr(dm

D (A3(S1), A3(S2)) >
√
m/4)

is at least1/3 for somem ≥ m0.

The theorem does not imply that theasymptoticconver-
gence rate is arbitrarily bad. In fact, a complicated second-
order analysis (omitted from this paper due to lack of space),
seems to indicate a uniform power-law convergence rate for
any distribution satisfying the conditions of Thm. 1, as well
as a few other conditions such as Lipschitz-continuity and
bounded third moment. However, the exact constants in this
power law can be arbitrarily bad, depending on various char-
acteristics of the distribution. Finding sufficient and empiri-
cally verifiable conditions which provide finite sample guar-
antees is therefore of much interest.

4 Proofs

4.1 Proof of Thm. 1

Before embarking on the proof, we briefly sketch its outline:

1. Using the central limit theorem fork-means due to Pol-
lard [13], we can characterize the asymptotic Gaussian
distribution of the cluster centroidsc, in terms of the
underlying distributionD (Lemma 1).

2. The cluster boundaries are determined by the positions
of the centroids. Hence, we can derive the asymptotic
distribution of these boundaries. In particular, for every
boundaryFc,i,j , we characterize the asymptotic distri-
bution of the pointwise Euclidean distance between two
realizations of this boundary, over drawing and clus-
tering two independent samples. This distance is de-
fined relative to a projection on the hyperplaneHµ,i,j

(Lemma 2).
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Figure 2: Illustrative examples of the behavior of clustering stability. In each column, the upper plot is the underlying
distribution we sample from (a mixture of unit variance Gaussians onR), while the lower plot is an empirical average of
dm
D (Ak(S1), Ak(S2)) over1000 trials, for different sample sizesm.

3. We show that the probability mass ofD, which switches
between clustersi andj over the two independent clus-
terings, has an asymptotic distribution definable by an
integral involving the distance function above, and the
values ofp(·) onFµ,i,j (Lemma 3 and Lemma 4). This
allows us to formulate the asymptotic distribution of
dm
D (Ak(S1), Ak(S2)), and its expected value.

For convenience, we shall useǫ = (ǫ1, . . . , ǫk) to denote
the random elementc − µ.

Lemma 1. Under the notation and assumptions of the the-
orem,

√
mǫ =

√
m(c − µ) converges in distribution tov,

wherev ∼ N
(
0,Γ−1V Γ−1

)
. As a result,‖ǫ‖ = Op(1/

√
m).

This lemma is a straightforward consequence of the main
theorem in [13]. Notice that it allows us to assume that for
large enough values ofm, with arbitrarily high probability
and for anyi, j ∈ [k], i 6= j, the nearest centroid toµi is ci,
all centroids are distinct,Fc,i,j is non-orthogonal toFµ,i,j ,
and‖ǫ‖ is arbitrarily small. We shall tacitly use these as-
sumptions in the remainder of the proof.

Lemma 2. For somei, j ∈ [k], i 6= j, assume thatFµ,i,j 6=
∅. For anyx ∈ Hµ,i,j , define the function:

ℓ(x, ci, cj) =
‖µi − µj‖

(
ci+cj

2 − x

)
· (ci − cj)

(µi − µj) · (ci − cj)
.

Then if‖ǫ‖ is smaller than some positive constant which
depends only onµ, ℓ(x, ci, cj) can be rewritten as

1

‖µi − µj‖

(
µi − x

x − µj

)⊤(
ǫi

ǫj

)
+O((‖x‖ + 1)‖ǫ‖2).

Considering the projection ofHc,i,j to Hµ,i,j , we have
that ℓ(x, ci, cj) is the signed Euclidean distance ofx from
the point onHc,i,j which projects to it (see the left half of
Fig. 3). This is becauseℓ(x, ci, cj) must satisfy the equation:((

x + ℓ(x, ci, cj)
µi − µj

‖µi − µj‖

)
− ci + cj

2

)
·(ci−cj) = 0.

Proof. We will separate the expression in the definition of
ℓ(x, ci, cj) into 2 components and analyze them separately.
We have that:
(

ci + cj

2
− x

)
· (ci − cj)

=

(
µi + µj + ǫi + ǫj

2
− x

)
·
(
(µi − µj) + (ǫi − ǫj)

)

=

(
µi + µj

2
− x

)
· (µi − µj)

+

(
µi + µj

2
− x

)
· (ǫi − ǫj)

+

(
ǫi + ǫj

2

)
· (µi − µj) +O(‖ǫ‖2).

Notice that the first summand is exactly0 (by definition
of x as lying onFµ,i,j), and can therefore be dropped. After
expanding and simplifying, we get that the above is equal to

(µi − x) · ǫi − (µj − x) · ǫj +O(‖ǫ‖2) (1)

As to the second component in the definition ofℓ(x, ci, cj),
we have that

‖µi − µj‖
(µi − µj) · (ci − cj)

=
‖µi − µj‖

‖µi − µj‖2 + (µi − µj) · (ǫi − ǫj)

=
1

‖µi − µj‖
(
1 +

(µi−µj)·(ǫi−ǫj)

‖µi−µj‖
2

)

=
1

‖µi − µj‖ (1 +O(‖ǫ‖))

=
1

‖µi − µj‖

(
1 − O(‖ǫ‖)

1 +O(‖ǫ‖)

)
=

1 +O(‖ǫ‖)
‖µi − µj‖

, (2)

assuming‖ǫ‖ to be small enough. Multiplying Eq. (1)
and Eq. (2) gives us the expression in the lemma.



In order to calculate the asymptotic distribution of
dm
D (Ak(S1), Ak(S2)), we need to characterize the distribution

of the probability mass ofD in the ’wedges’ created between
two boundaries for clustersi,j, based on two independent
samples (see Fig. 1). For any two given boundaries, calcu-
lating the probability mass requires integration of the under-
lying density functionp(·) over these wedges, making it very
hard to write the distribution of this probability mass explic-
itly. The purpose of the next two lemmas is to derive a more
tractable, asymptotically exact approximation for each such
wedge, which depends only on the values ofp(·) along the
boundaryFµ,i,j .

We begin with an auxiliary lemma, required for the main
Lemma 4 which follows. To state these lemmas, we will
need some additional notation. For someHµ,i,j , fix some
(possibly unbounded) polytopeF ⊆ Hµ,i,j . For notational
convenience, we shall assume w.l.o.g thatHµ,i,j is aligned
with the axes, in the sense that for allx ∈ Hµ,i,j , its last
coordinate is0 (it can be easily shown that the regularity
conditions onp(·) will still hold). Also, denoteF ′ = {y ∈
Rn−1 : (y, 0) ∈ F}, which is simply then− 1 dimensional
representation ofF on the hyperplane. Finally, for ease of
notation, denoteℓ((y, 0), ci, cj) for any y ∈ F ′ as ℓ̃ǫ(y),
whereǫ = c − µ.

Lemma 3. Letǫ, ǫ′ be two independent copies ofc−µ, each
induced by clustering an independent sample of sizem. Let
B = {x ∈ Rn : ‖x‖ ≤ R} be a ball of radiusR centered at
the origin. Then we have that
∣∣∣∣∣

∫

F ′∩B

∣∣
∫ ℓ̃

ǫ′
(y)

ℓ̃ǫ(y)

p(y, ξ)dξ
∣∣dy

−
∫

F ′∩B

∣∣
∫ ℓ̃

ǫ′
(y)

ℓ̃ǫ(y)

p(y, 0)dξ
∣∣dy

∣∣∣∣∣ = op(1/
√
m), (3)

where the constants implicit in the r.h.s depend onR.

Proof. Sincep(·) is a non-negative function, we can rewrite
the expression in the lemma as
∣∣∣∣∣

∫

F ′∩B

∫ max{ℓ̃ǫ(y),ℓ̃
ǫ′

(y)}

min{ℓ̃ǫ(y),ℓ̃
ǫ′

(y)}

p(y, ξ)dξdy

−
∫

F ′∩B

∫ max{ℓ̃ǫ(y),ℓ̃
ǫ′

(y)}

min{ℓ̃ǫ(y),ℓ̃
ǫ′

(y)

p(y, 0)dξdy

∣∣∣∣∣ ,

or
∣∣∣∣∣

∫

F ′∩B

∫ max{ℓ̃ǫ(y),ℓ̃
ǫ′

(y)}

min{ℓ̃ǫ(y),ℓ̃
ǫ′

(y)}

p(y, ξ) − p(y, 0)dξdy

∣∣∣∣∣ .

By the integral mean value theorem, sincep(·) is contin-
uous, we have that the expression above is equal to:

∣∣∣∣
∫

F ′∩B

|ℓ̃ǫ′(y) − ℓ̃ǫ(y)|(p(y, ξy) − p(y, 0))dy

∣∣∣∣ ,

whereξy is between the minimum and maximum of
{ℓ̃ǫ(y), ℓ̃ǫ′(y)}. For simplicity of notation, we will write
ξy ∈ [ℓ̃ǫ(y), ℓ̃ǫ′(y)].

The expression above is upper bounded in turn by:
Z

F ′∩B

(|ℓ̃ǫ(y)|+ |ℓ̃ǫ′(y)|) sup
ξy∈[ℓ̃ǫ(y),ℓ̃

ǫ′
(y)]

|p(y, ξy)−p(y, 0)|dy,

assuming the integral exists. Sinceǫ, ǫ′ have the same distri-
bution, it is enough to show existence and analyze the con-
vergence to zero in probability for
∫

F ′∩B

|ℓ̃ǫ(y)| sup
ξy∈[ℓ̃ǫ(y),ℓ̃

ǫ′
(y)]

|p(y, ξy) − p(y, 0)|dy. (4)

This integral can be upper bounded by

sup
y∈F ′∩B

|ℓ̃ǫ(y)| sup
ξy∈[ℓ̃ǫ(y),ℓ̃

ǫ′
(y)]

|p(y, ξy) − p(y, 0)|

Z

F ′∩B

1dy.

(5)
SinceB is bounded, we have according to Lemma 2 that

if ‖ǫ‖ is small enough,

sup
y∈F ′∩B

|ℓ̃ǫ(y)| = O(‖ǫ‖ + ‖ǫ‖2), (6)

and a similar equation holds for̃ℓǫ′(·) with ǫ replaced by
ǫ
′ in the r.h.s. To make the equations less cumbersome, we

will ignore the higher order term‖ǫ‖2, sinceǫ converges to
0 in probability anyway by Lemma 1 (it is straightforward to
verify that the analysis below still holds). From Eq. (6) and
the sentence which follows, we have that
sup

y∈F ′∩B,ξy∈[ℓ̃ǫ(y),ℓ̃
ǫ′

(y)] ξy = O(‖ǫ‖). Since‖ǫ‖ con-
verges to zero in probability, this implies thatξy converges
to zero in probability, uniformly for anyy ∈ F ′ ∩B. More-
over, p(·) is uniformly continuous in the compact domain
B, and thusp(y, ξy) converges uniformly in probability to
p(y, 0). As a result, we have that

sup
y∈F ′∩B

sup
ξy∈[ℓ̃ǫ(y),ℓ̃

ǫ′
(y)]

|p(y, ξ) − p(y, 0)| = op(1). (7)

Substituting Eq. (6) and Eq. (7) into Eq. (5), and using
the fact that‖ǫ‖ = Op(1/

√
m), we get that the expression

in Eq. (5) (and hence Eq. (4)) isop(1/
√
m) as required.

Lemma 4. For some non-emptyFµ,i,j , let t(c, c′, i, j) be a
random variable, defined as the probability mass ofD which
switches between clustersi, j with respect to the two clus-
terings defined byc, c′, induced by independently sampling
and clustering a pair of samplesS1, S2 each of sizem. More
formally, define the set-valued random variable

Q(c, c′, i, j) = {x ∈ R
n : (x ∈ Cc,i ∧ x ∈ Cc′,j)

∨ (x ∈ Cc′,i ∧ x ∈ Cc,j)} ∪ Fc,i,j ∪ Fc′,i,j ,

so that

t(c, c′, i, j) =

∫

Q(c,c′,i,j)

p(x)dx. (8)

Thent(c, c′, i, j) is distributed as
∫

Fµ,i,j

p(x)|l(x, ci, c
′
j)|dx + op(1/

√
m),

wherel(x, ci, c
′
j) is distributed as

1

‖µi − µj‖

(
µi − x

x − µj

)⊤(
ǫi − ǫ

′
i

ǫj − ǫ
′
j

)
.



Proof. The right half of Fig. 3 should help to clarify the no-
tation and the intuition of the following proof. Intuitively,
the probability mass which switches between clustersi and
j over the two samples is the probability mass ofD lying
’between’Fc,i,j andFc′,i,j . A potential problem is that this
probability mass is also affected by the positions of other
neighboring boundaries. However, the fluctuations of these
additional boundaries decrease asm → ∞, and their effect
on the probability mass in question becomes negligible. Our
goal is to upper and lower bound the integral in Eq. (8) by ex-
pressions which are identical up toop(1/

√
m) terms, giving

us the desired result.
As in Lemma 3, we assume thatHµ,i,j is aligned with

the axes, such that for anyx ∈ Hµ,i,j , its last coordinate is
0. DefineFmax(µ, c, c

′, i, j) ⊆ Hµ,i,j as the projection of
Q(c, c′, i, j) onHµ,i,j . By definition of ℓ̃ǫ(y), ℓ̃ǫ′(y), any
pointx = (y, 0) in Fmax(µ, c, c

′, i, j) has the property that
the width ofQ(c, c′, i, j) relative toHµ,i,j at x is at most
|ℓ̃ǫ(y) − ℓ̃ǫ′(y)|.

Define δF (µ, c, c′, i, j) ⊆ Hµ,i,j as the projection on
Hµ,i,j of ∂Q(c, c′, i, j)\(Fc,i,j∪Fc′,i,j), where∂Q(c, c′, i, j)
is the boundary ofQ(c, c′, i, j). In words, it is the projection
of the boundaries ofQ(c, c′, i, j), other thanFc,i,j , Fc′,i,j ,
onHµ,i,j . Any pointx = (y, 0) in δF (µ, c, c′, i, j) has the
property that the width ofQ(c, c′, i, j), relative toHµ,i,j at
x, is less than|ℓ̃ǫ(y)−ℓ̃ǫ′(y)|. This is because the segment of
the normal toHµ,i,j atx, betweenHc,i,j andHc′,i,j , passes
through other clusters besides clustersi, j.

For notational convenience, we will drop most of the pa-
rameters from now on, as they should be clear from the con-
text. LetFmin = Fmax\δF . By the properties ofFmax, δF ,
any pointx = (y, 0) in Fmin has the property that the width
of Q relative toHµ,i,j atx is exactly|ℓ̃ǫ(y) − ℓ̃ǫ′(y)|.

LetF ′
max, F

′
min andF ′ be then− 1 dimensional projec-

tions ofFmax, Fmin andF respectively, by removing the last
zero coordinate which we assume to characterizeHµ,i,j . As
a result of the previous discussion, by Fubini’s theorem, we
have that:

∫

F ′

max

∣∣∣∣∣

∫ ℓ̃
ǫ′

(y)

ℓ̃ǫ(y)

p(y, ξ)dξ

∣∣∣∣∣ dy ≥
∫

Q

p(x)dx

≥
∫

F ′

min

∣∣∣∣∣

∫ ℓ̃
ǫ′

(y)

ℓ̃ǫ(y)

p(y, ξ)dξ

∣∣∣∣∣ dy, (9)

Assuming these integrals exist. Our goal will be to show
that both the upper and lower bounds above are of the form

∫

Fµ,i,j

p(x)|l(x, ci, c
′
j)|dx + op(1/

√
m),

which entails that the ’sandwiched’ integral in Eq. (9) has the
same form. We will prove this assertion for the upper bound
only, as the proof for the lower bound is almost identical.

As in Lemma 3, we letB be a closed ball of radiusR in
Rn centered on the origin, and separately analyze the integral
in the upper bound of Eq. (9) with respect to what happens
inside and outside this ball.

By Lemma 2, assuming‖ǫ‖ is small enough, there exists
a constanta > 0 dependent only onµ, such that

|ℓǫ(y)| ≤ a(‖y‖ + 1)(‖ǫ‖ + ‖ǫ‖2).

As before, to avoid making our equations too cumbersome,
we shall ignore in the analysis below the higher order term
‖ǫ‖2, sinceǫ converges to0 in probability and therefore it
becomes insignificant compared to‖ǫ‖. Also, since we con-
veniently assume thatHµ,i,j passes through the origin, then
any normal to a point inHµ,i,j ∩ Bc lies outsideB. This
is not critical for our analysis (in the general case, we could
have simply definedB as centered on some point inHµ,i,j),
but does simplify things a bit. With these observations, we
have that

∫

F ′

max∩Bc

∣∣∣∣∣

∫ ℓ̃
ǫ′

(y)

ℓ̃ǫ(y)

p(y, ξ)dξ

∣∣∣∣∣ dy

≤
∫

F ′

max∩Bc

|ℓ̃ǫ(y) − ℓ̃ǫ′(y| sup
ξ∈R

p(y, ξ)dy

≤
∫

F ′

max∩Bc

(|ℓ̃ǫ(y)| + |ℓ̃ǫ′(y)|) sup
ξ∈R

p(y, ξ)dy

≤ a(‖ǫ‖ + ‖ǫ′‖)
∫

F ′

max∩Bc

(‖y‖ + 1) sup
ξ∈R

p(y, ξ)dy

≤ a(‖ǫ‖ + ‖ǫ′‖)
∫

Hµ,i,j∩Bc

(‖x‖ + 1)g(‖x‖)dx

≤ a(‖ǫ‖ + ‖ǫ′‖)
∫ ∞

r=R

(r + 1)g(r) ∗ ern−1dr,

whereg(·) is the dominating function onp(·) assumed
to exist by the regularity conditions (see section 2), ande is
the surface area of ann dimensional unit sphere. By the as-
sumptions ong(·) and the fact that‖ǫ‖, ‖ǫ′‖ = Op(1/

√
m),

we have that

∫

F ′

max∩Bc

∣∣∣∣∣

∫ ℓ̃
ǫ′

(y)

ℓ̃ǫ(y)

p(y, ξ)dξ

∣∣∣∣∣ dy = Op

(
h(R)/

√
m
)
,

(10)
whereh(R) → 0 asR → ∞. Notice that to reach this

conclusion, we did not use any characteristics ofF ′
max, be-

side it being a subset ofHµ,i,j . Therefore, since
|l(x, ci, c

′
j)| ≤ a(‖x‖ + 1)(‖ǫ‖ + ‖ǫ′‖)/√m for some con-

stanta > 0, a very similar analysis reveals that

∫

F ′∩Bc

p(y, 0)|l(x, ci, c
′
j)|dy = Op

(
h(R)/

√
m
)
. (11)

We note for later that none of the constants implicit in the
Op(·) notation, other thanh(R), depend onR. Turning now
to what happens inside the ball, we have by Lemma 3 that

∫

F ′

max∩B

∣∣∣∣∣

∫ ℓ̃
ǫ′

(y)

ℓ̃ǫ(y)

p(y, ξ)dξ

∣∣∣∣∣ dy

=

∫

F ′

max∩B

|ℓ̃ǫ′(y) − ℓ̃ǫ(y)|p(y, 0)dy + op(1/
√
m).

(12)

Leaving this equation aside for later, we will now show



that
∣∣∣∣∣

∫

F ′

max∩B

|ℓ̃ǫ′(y) − ℓ̃ǫ(y)|p(y, 0)dy

−
∫

F ′∩B

|ℓ̃ǫ′(y) − ℓ̃ǫ(y)|p(y, 0)dy

∣∣∣∣ = op(1/
√
m). (13)

The l.h.s can be upper bounded by
∫

(F ′

max△F ′)∩B

|ℓ̃ǫ(y) − ℓ̃ǫ′(y)|p(y, 0)dy

≤
∫

(F ′

max△F ′)∩B

(|ℓ̃ǫ(y)| + |ℓ̃ǫ′(y)|)p(y, 0)dy.

As ǫ, ǫ′ have the same distribution, we just need to show
that

∫

(F ′

max△F ′)∩B

|ℓ̃ǫ(y)|p(y, 0)dy = op(1/
√
m). (14)

By Lemma 2, inside the bounded domain ofB, we have
that |ℓ̃ǫ(y)| ≤ a‖ǫ‖ for some constanta dependent solely
on µ andR (as before, to avoid making the equations too
cumbersome, we ignore terms involving higher powers of
‖ǫ‖). Moreover, sincep(y, 0) is bounded, we can absorb
this bound intoa and get that

∫

(F ′

max△F ′)∩B

|ℓ̃ǫ(y)|p(y, 0)dy ≤ a‖ǫ‖
∫

(F ′

max△F ′)∩B

1dy,

(15)

Note that
∫

(F ′

max△F ′)∩B

1dy is a continuous function of

ǫ, ǫ′ in some neighborhood of0. Moreover, sinceF ′
max = F ′

whenǫ = ǫ
′ = 0, the integral above is0 atǫ = ǫ

′ = 0. Since
‖ǫ‖, ‖ǫ‖ converge to0 in probability, it follows that

∫

(F ′

max△F ′)∩B

1dy = op(1).

Combining this with Eq. (15), and the fact that‖ǫ‖ =
Op(1/

√
m), justifies Eq. (14), and hence Eq. (13). Combin-

ing Eq. (10),Eq. (12) and Eq. (13), we get that
∫

F ′

max

∣∣∣∣∣

∫ ℓ̃
ǫ′

(y)

ℓ̃ǫ(y)

p(y, ξ)dξ

∣∣∣∣∣ dy

=

∫

F ′∩B

|ℓ̃ǫ′(y) − ℓ̃ǫ(y)|p(y, 0)dy

+ op(1/
√
m) +Op(h(R)/

√
m). (16)

By Lemma 2, definition ofl(x, ci, bc
′
j), and the fact that

‖ǫ‖, ‖ǫ′‖ = Op(1/
√
m), we have that̃ℓǫ(y)−ℓ̃ǫ′(y) is equal

to |l(x, ci, c
′
j)| + op((‖y‖ + 1)/

√
m). This implies that the

distribution of the r.h.s of Eq. (16) is equal to
∫

F ′∩B

p(y, 0)|l(x, ci, c
′
j)|dy+op(1/

√
m)+Op(h(R)/

√
m).

By Eq. (11), this is equal in turn to
∫

F ′

p(y, 0)|l(x, ci, c
′
j)|dy + op(1/

√
m) +Op(h(R)/

√
m).

We now use the fact thatR can be picked arbitrarily.
Notice that the first remainder term has implicit constants
which depend onR, but the second remainder term depends
onR only throughh(R) (recall the development leading to
Eq. (10) and Eq. (11)). Therefore, the first remainder term
converges to0 at a rate faster than1/

√
m in probability for

anyR, and the second remainder term can be made arbi-
trarily smaller than1/

√
m in high probability by pickingR

to be large enough, sinceh(R) → 0 asR → ∞. Thus,
for any δ > 0, we can pickR so that the remainder terms
eventually become smaller thanδ/

√
m with arbitrarily high

probability. As a result, we can replace the remainder terms
by op(1/

√
m), with implicit constants not depending onR,

and get that Eq. (16) can be rewritten as

∫

F ′

max

∣∣∣∣∣

∫ ℓ̃
ǫ′

(y)

ℓ̃ǫ(y)

p(y, ξ)dξ

∣∣∣∣∣ dy

=

∫

F ′

p(y, 0)|l(x, ci, c
′
j)|dy + op(1/

√
m).

This gives us an equivalent formulation of the upper bound
in Eq. (9). As discussed immediately after Eq. (9), an identi-
cal analysis can be performed for the lower bound appearing
there, and this leads to the result of the lemma.

We now turn to prove Thm. 1. Lett(c, c′, i, j) be as de-
fined in Lemma 4. LetĈc,c′,i denote the set of points in
Rn which remain in the same clusteri for both clusterings
defined byc, c′. Then by definition,dm

D (Ak(S1), Ak(S2)) is
equal to

2
∑

1≤i<j≤k

(∫

bC
c,c′,i∪

bC
c,c′,j

p(x)dx

)
√
mt(c, c′, i, j).

(17)
As a straightforward consequence of‖ǫ‖ = Op(1/

√
m),

we have that∫

bC
c,c′,i∪

bC
c,c′,j

p(x)dx =

∫

Cµ,i∪Cµ,j

p(x)dx+op(1). (18)

By Lemma 4, we have that
√
mt(c, c′, i, j) is of the form

∫

Fµ,i,j

√
mp(x)

‖µi − µj‖

∣∣∣∣∣

(
µi − x

x − µj

)⊤(
ǫi − ǫ

′
i

ǫj − ǫ
′
j

)∣∣∣∣∣ dx + op(1).

(19)
By the continuous mapping theorem [18] and standard

results on the difference of independent, identically distributed
Gaussian vectors [17], we have that

√
m(ǫi − ǫ

′
i, ǫj − ǫ

′
j)

⊤

converges in distribution to
√

2(vi,vj)
⊤, wherev is as de-

fined in Lemma 1. Moreover, it is not difficult to show that
Eq. (19), ignoring the remainder term, is a continuous func-
tion of (ǫi−ǫ

′
i, ǫj−ǫ

′
j)

⊤. The idea is that it is obviously con-
tinuous with the integral restricted to some fixed ball around
the origin, and the contributions outside the ball can be made
arbitrarily small if the ball is large enough, by the assump-
tions onp(x) (a similar argument was made in the proof
of Lemma 4). Thus, by the continuous mapping theorem,√
mt(c, c′, i, j) converges in distribution to
∫

Fµ,i,j

√
2p(x)

‖µi − µj‖

∣∣∣∣∣

(
µi − x

x − µj

)⊤(
vi

vj

)∣∣∣∣∣ dx. (20)



Q(c, c′, i, j)

ℓ(x, ci, cj)

ci

µi

x

cj

µj

Hc,i,j, Fc,i,j

Hµ,i,j, Fµ,i,j

Fµ,i,j

Hµ,i,j

Hc,i,j

Hc
′,i,j

Fmin(µ, c, c′, i, j)

Fmax(µ, c, c′, i, j)

Figure 3: An illustrative drawing of some of the notation and
geometrical constructs used in the proof of Thm. 1. Solid
lines represent cluster boundaries with respect to the opti-
mal cluster centroidsµ, while dashed lines represent cluster
boundaries with respect to cluster centroidsc or c′ returned
by the clustering algorithm based on an empirical sample.
See the text for more details.

Substituting Eq. (18) and Eq. (20) into Eq. (17), we get
convergence in distribution to the one specified in our theo-
rem.

The only thing remaining is to derive the expected value
of this distribution. For notational convenience, letΣ =
Γ−1V Γ−1, and

ψ(x, i, j) =

∣∣∣∣∣

(
µi − x

x − µj

)⊤(
Σi,i Σi,j

Σj,i Σj,j

)(
µi − x

x − µj

)∣∣∣∣∣ .

the expected value of the distribution is equal to:

E



2
√

2
∑

1≤i<j≤k

(∫

Cµ,i∪Cµ,j

p(x)dx

)

×
(∫

Fµ,i,j

p(x)

‖µi − µj‖

∣∣∣∣∣

(
µi − x

x − µj

)⊤(
vi

vj

)∣∣∣∣∣ dx
)]

.

By Fubini’s theorem, this is equal to:

2
√

2
∑

1≤i<j≤k

(∫

Cµ,i∪Cµ,j

p(x)dx

)

×
(∫

Fµ,i,j

p(x)

‖µi − µj‖
E

[∣∣∣∣∣

(
µi − x

x − µj

)⊤(
vi

vj

)∣∣∣∣∣

]
dx

)
.

The expression inside the expectation is normally dis-
tributed, as a linear transformation of a normal random vec-
tor. Using standard results on the distribution of such trans-
formations [17], and since for any univariatea ∼ N (µ, σ2)

it holds thatE[|a|] = σ
√

2/π, we can reduce the above to

4√
π

∑

1≤i<j≤k

[(∫

Cµ,i∪Cµ,j

p(x)dx

)

×
(∫

Fµ,i,j

p(x)

√
ψ(x, i, j)

‖µi − µj‖
dx

)]
.

The final form ofînstab(Ak,D) is achieved by rewriting
Σ as(V 1/2Γ−1)⊤V 1/2Γ−1, substituting into the expression
ψ(x, i, j), and simplifying.

4.2 Proof of Thm. 2

The proof is composed of several lemmas. The key insight is
that the asymptotic distribution ofdm

D (Ak(S1), Ak(S2)) can
be viewed as a certain non-standard norm of a Gaussian ran-
dom vector. Using theorems on Gaussian measures in Ba-
nach spaces allows us to bound the probability of
dm
D (Ak(S1), Ak(S2)) being much larger or much smaller than

its expectation, and thus bound the probability that the em-
pirical clustering stability estimator will return deceiving re-
sults.

Lemma 5. The asymptotic distribution ofdm
D (Ak(S1), Ak(S2))

is equal to that of‖v‖∗, wherev ∼ N (0,Γ−1V Γ−1) and
‖v‖∗ is a norm onRnk.

Proof. Denotev = (v1, . . . ,vn) wherevi ∈ Rn. By Thm. 1,
the asymptotic distribution ofdm

D (Ak(S1), Ak(S2)) is equal to

∑

1≤i<j≤k

ai,j

∫

Fµ,i,j

p(x)
∣∣∣
(

µi − x

x − µj

)⊤(
vi

vj

) ∣∣∣dx, (21)

wherev is as defined in the lemma, andai,j are certain pos-
itive constants dependent onD. Perhaps unexpectedly, it
turns out that this expression defines a norm onv: linearity
and the triangle inequality are easy to show. Also, Eq. (21) is
always non-negative. Finally, Eq. (21) is zero if and only if
v = 0. One direction is trivial. For the other direction, note
that p(·) must be strictly positive for some non-degenerate
subset of some cluster boundary, in order that̂instab(Ak,D)
be positive (which is implied by the assumptions in the the-
orem). From this, it is straightforward to show that ifv 6= 0
then Eq. (21) is larger than0.

Lemma 6. Let v be a non-degenerate normally distributed
random vector inRn, let‖·‖∗ be a norm onRn as defined in
Lemma 5, and letθ ∈ (1/2, 1) be a free parameter. Introduce
the following two parameters which depend onθ:

aθ = 1+
2(1 − θ)

log
(

θ
1−θ

) , bθ = 1−θ+1 − exp(−(erf−1(θ))2)√
πerf−1(θ)

.

Then for anyM, ǫ such thatMbθ > 1 andǫaθ < 1, it holds
that

Pr(‖v‖∗ > ME‖v‖∗) ≤ θ

(
1 − θ

θ

)(1+Mbθ)/2

,

and
Pr(‖v‖∗ ≤ ǫE‖v‖∗) ≤ erf(erf−1(θ)aθǫ).

Proof. The distribution of a norm of a Gaussian random vec-
tor is continuous, except possibly at0 (cf. [3]). For any
θ ∈ (1/2, 1), let medθ be a positive number which satisfies:

Pr(‖v‖∗ ≤ medθ) = θ.

Using two results from the literature on Gaussian mea-
sures in Banach spaces (theorem III.3 in [11], and theorem 1



from [8]), we have that for anyM ≥ 1, and for anyǫ ∈ [0, 1],
it holds that:

Pr(‖v‖∗ > Mmedθ) ≤ θ

(
1 − θ

θ

)(1+M)/2

(22)

Pr(‖v‖∗ ≤ ǫmedθ) ≤ erf(erf−1(θ)ǫ). (23)

It remains to convert these bounds on the deviation from
medθ to the deviation fromE‖v‖∗. To achieve this, we need
to upper and lower boundE‖v‖∗/medθ. By substitution of
variables, we have thatE‖v‖∗ is equal to
∫ ∞

0

Pr(‖v‖∗ > t)dt = medθ

∫ ∞

0

Pr(‖v‖∗ > Mmedθ)dM.

Using Eq. (22), this can be upper bounded by

medθ

(
1 +

∫ ∞

1

θ

(
1 − θ

θ

)(1+M)/2

dM

)
,

which after straightforward computations leads toE[‖v‖∗] ≤
medθaθ, whereaθ is as defined in the lemma.

In a similar manner, we can writeE‖v‖∗ as
∫ ∞

0

1 − Pr(‖v‖∗ ≤ t)dt

= medθ

∫ ∞

0

1 − Pr(‖v‖∗ ≤ ǫmedθ)dǫ,

which is lower bounded in term, using Eq. (23), by

medθ

∫ 1

0

1 − erf(erf−1(θ)ǫ)dǫ

Again by straightforward computations, we reach the con-
clusion thatE‖v‖∗ ≥ medθbθ, wherebθ is as defined in the
lemma.

Therefore, we have that ifMbθ > 1, thenPr(‖v‖∗ >
ME‖v‖∗) is upper bounded by

Pr(‖v‖∗ > Mbθmedθ) ≤ θ

(
1 − θ

θ

)(1+Mbθ)/2

.

The other bound in the lemma is derived similarly.

We can now turn to the proof of Thm. 2. By Lemma 5,
both dm

D (Aks(S1), Aks(S2)) and dm
D (Aku(S1), Aku(S2)) con-

verge in distribution to‖vku
‖∗ and‖vks

‖∗, wherevku
,vks

are Gaussian random variables (non-degenerate by the as-
sumptions onΓ andV ). By Slutsky’s theorem and the defi-
nition of convergence in distribution,

Pr(dm
D (Aku(S1), Aku(S2)) ≤ 1.1dm

D (Aks(S1), Aks(S2)))

(24)

= Pr(‖vku
‖∗ ≤ 1.1‖vks

‖∗) + o(1).

The combination of Lemma 5 and Lemma 6 allows us to
upper bound the probability that‖vku

‖∗ is smaller than its
expectation by a factorǫ < 1, and upper bound the probabil-
ity that ‖vks

‖∗ is larger than its expectation by some factor
M > 1, provided thatǫ,M satisfy the conditions specified
in Lemma 6.

By a union bound argument, if we chooseM and ǫ so
that1.1M/ǫ ≤ R, whereR is as defined in the lemma, we
get thatPr(‖vku

‖∗ ≤ 1.1‖vks
‖∗) is upper bounded by

θ1

(
1 − θ1
θ1

)((1+M)bθ1
)/2

+ erf(erf−1(θ2)aθ2
ǫ), (25)

for anyθ1, θ2 ∈ (1/2, 1). Choosing different values for them
(as well as the choice of appropriateM, ǫ) leads to differ-
ent bounds, with a trade off between the tightness of the
constants, and minimality requirements onR (which stem
from the requirements onM, ǫ by Lemma 6). Choosing
θ1 = 0.9, θ2 = 0.8, M = 2 log(R)/(bθ1

log(θ1/(1 − θ1))),
ǫ = 1.1M/R, and using the fact that erf(x) ≤ (2/

√
π)x

for any x ≥ 0, we get that Eq. (25) is upper bounded by
(0.3 + 3 log(R))/R for anyR > 3, and therefore Eq. (24) is
upper bounded by(0.3 + 3 log(R))/R+ o(1).

Assume the event

dm
D (Aku(S1), Aku(S2)) > 1.1dm

D (Aks(S1), Aks(S2)), (26)

occurs. Recall that the quantities in Eq. (26) depend on the
unknown underlying distributionD, and therefore cannot be
calculated directly. Instead, we empirically estimate these
quantities (divided by

√
m to be exact), as defined in the

theorem statement, to get the stability estimatorsθ̂ku,4m and
θ̂ks,4m. Thus, even if Eq. (26) occurs, it is still possible that
θ̂ku,4m ≤ θ̂ks,4m. Luckily, by Thm. 2 in [15], the probability
for this, conditioned on the event in Eq. (26) iso(1) (namely,
converges to0 asm → ∞). Therefore, the probability that
Eq. (26) does not occur, or that it does occur but the empirical
comparison of these quantities fail, is(0.3 + 3 log(R))/R+
o(1) as required.

4.3 Proof of Thm. 3

To prove the theorem, we will borrow a setting discussed in
[10] for a different purpose.

Let ∆ be some small positive constant (say∆ < 0.1).
Consider the parameterized family of distributions{Dǫ}
(whereǫ ∈ (0, 1/4)) on the real line, which assigns probabil-
ity mass(1−ǫ)/4 tox = −1 andx = −1−∆, and(1+ǫ)/4
to x = 1 andx = 1 + ∆. Any such distribution satisfies
the requirements of Thm. 1, except continuity. However, as
mentioned in Sec. 2, the theorem only requires continuity in
some region around the boundary points, so we may ignore
this difficulty. Alternatively, we may introduce continuity by
convolution with a small local smoothing operator. For any
ǫ, it is easily seen thatdm

Dǫ
(Ak(S1), Ak(S2)) converges to0 in

probability, since the boundary points between the optimal
clusters have zero density.

Let A1
m,ǫ denote the event where for a sample of size

m drawn i.i.d fromDǫ, there are more instances on{−1 −
∆,−1} than on{1, 1 + ∆}. Also, letA2

m,ǫ denote the event
that for a sample of sizem drawn i.i.d fromDǫ, there are
more instances on{1, 1 + ∆} than on{−1 − ∆,−1}. Fi-
nally, letBm,ǫ denote the event that every point in{−1 −
∆,−1, 1, 1+∆} is hit by at least one instance from the sam-
ple. Clearly, ifA1

m,ǫ ∩Bm,ǫ occurs, then the optimal cluster
centers for the sample are{−1 − ∆,−1, 1 + ∆′} for some
∆′ ∈ [0,∆], and ifA2

m,ǫ ∩ Bm,ǫ occurs, then the optimal



cluster centers for the sample are{−1 − ∆′, 1, 1 + ∆} for
some∆′ ∈ [0,∆].

By Thm. 2.1 in [16], for any Bernoulli random variable
X such thatE[X] = p ≤ 1/2, and any whole numbera such
thata/m ≤ 1 − p, if X1, . . . ,Xm arem i.i.d copies ofX,
then

Pr

(
1

m

m∑

i=1

Xi ≥
a

m

)
≥ 1−Φ

(√
m

p(1 − p)

( a
m

− p
))

,

whereΦ(·) is the cumulative normal distribution func-
tion. The probability of the eventA1

m,ǫ is equal to the prob-
ability of a success rate of more than half inm Bernoulli
trials, whose probability of success is(1 − ǫ)/2. Using the
theorem above, we get after a few straightforward algebraic
manipulations and relaxations that

Pr(A1
m,ǫ) ≥ 1 − Φ

(
4√
m

+ 2ǫ
√
m

)
. (27)

The probability of the eventA2
m,ǫ is equal to the proba-

bility of a success rate of less than half inm Bernoulli trials,
whose probability of success is(1−ǫ)/2. By a standard nor-
mal approximation argument, we have that for large enough
values ofm, and for anyǫ ∈ (0, 1/4), it holds that

Pr(A2
m,ǫ) ≥ 1/2. (28)

Finally, it is straightforward to show thatPr(Bm,ǫ) is ar-
bitrarily close to1 uniformly for anyǫ, if m is large enough.
Combining this with Eq. (27), Eq. (28) and the easily proven
formulaPr(A ∩ B) ≥ Pr(A) − Pr(B∁) for any two events
A,B, we get that by choosing a large enough sample size
m > m0, and an appropriate valueǫ, it holds that

Pr(A1
m,ǫ ∩Bm,ǫ),Pr(A2

m,ǫ ∩Bm,ǫ) ≥ 1/2 − ν

for an arbitrarily smallν > 0. For that choice ofm, ǫ, if we
draw and cluster two independent samplesS1, S2 of sizem
fromDǫ, then the probability that eventA1

m,ǫ′ ∩Bm,ǫ occurs
for one sample, andA2

m′,ǫ∩Bm,ǫ occurs for the second sam-
ple, is at least2(1/2−ν)2, or at least1/3 for a small enough
ν. Note that in this case, we get the two different clusterings
discussed above, and

dm
Dǫ

(A3(S1), A3(S2)) =

√
m(1 + ǫ2)

4
>

√
m

4
.

So with a probability of at least1/3 over drawing and
clustering two independent samples, the distance between
the clusterings is more than

√
m/4, as required.

5 Conclusions and Future Work

In this paper, we analyzed the behavior of clustering sta-
bility in the k-means framework. We were able to explic-
itly characterize its asymptotic behavior, concluded thatit
does not ’break down’ in the large sample regime, and made
some preliminary observations about the factors influencing
it. These factors appear to be reasonable requirements from
a ’correct’ model, and accords with clustering stability work-
ing successfully in many situations. However, they also im-
ply that clustering stability might sometimes behave unex-
pectedly, for example in hierarchical clustering situations, as
illustrated in subsection 3.3.

There are several directions for future research. The most
obvious perhaps is to extend our results and observations
from the asymptotic domain to the finite sample size domain.
Showing that clustering stability does not ’break down’ in
the large sample regime has theoretical and practical rele-
vance, but leaves open the question of why clustering sta-
bility can work well for small finite samples. One route to
achieve this might be through finite sample guarantees, but as
demonstrated in Thm. 3, additional assumptions are needed
for such results. Also, it would be interesting to perform a
similar analysis for other clustering methods beyond thek-
means framework.

Acknowledgements: The authors wish to thank Gideon
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