The Isotron Algorithm: High-Dimensional Isotonic Regression

Adam Tauman Kalai*
Microsoft Research
One Memorial Drive
Cambridge, MA

Abstract

The Perceptron algorithm elegantly solves binary
classification problems that have a margin between
positive and negative examples. Isotonic regres-
sion (fitting an arbitrary increasing function in one
dimension) is also a natural problem with a simple
solution. By combining the two, we get a new but
very simple algorithm with strong guarantees. Our
ISOTRON algorithm provably learns Single Index
Models (SIM), a generalization of linear and logis-
tic regression, generalized linear models, as well
as binary classification by linear threshold func-
tions. In particular, it provably learns SIMs with
unknown mean functions that are nondecreasing
and Lipschitz-continuous, thereby generalizing lin-
ear and logistic regression and linear-threshold func-
tions (with a margin). Like the Perceptron, it is
straightforward to implement and kernelize. Hence,
the ISOTRON provides a very simple yet flexible
and principled approach to regression.

1 Introduction

As a motivating example, imagine learning to predict whether
a person has diabetes from n real-valued measurements, based
on a batch of training data <($“yl)>21 € R™ x {0,1}.

In binary classification, one would like an accurate predic-
tor h : R” — {0,1} where h(x) = 1 indicates that that
someone with attributes x is more likely to have diabetes.
More useful would be the regression problem of predicting
the probability Pry = 1|x] (more generally the conditional
mean function E[y|z]) based on their attributes . We con-
sider three problems of increasing difficulty:

1. Perceptron problem. The input is m labeled examples
that are guaranteed to be separable by a linear thresh-
old function (with a margin), and our goal is to find a
(nearly) accurate linear separator.

2. Idealized SIM problem. The input is labeled examples
<($i, y1)>zl € R™ x R that are guaranteed to satisfy:

*Part of this research was done while the author was at the
Georgia Institute of Technology, supported in part by NSF SES-
0734780, an NSF CAREER award, and a SLOAN fellowship.

Ravi Sastry
College of Computing
Georgia Tech
Atlanta, GA

y; = u(w - z;) for some w € R™ and nondecreasing
(Lipschitz continuous) u : R — R. The goal is to find
a (nearly) accurate such u, w.

3. SIM problem. The input is now independent examples
<(;1:7;, yi)>;11 € R™ x R drawn independently from a
distribution D, whose conditional mean function is of
the form B,) plz|y] = u(w - x) for some w € R"
and nondecreasing (Lipschitz continuous) v : R — R.
The goal is to find a (nearly) accurate such w, w.

The most interesting problem for the Isotron is the SIM prob-
lem, as Perceptron already addresses the first, and the ide-
alized SIM problem has fewer applications. However, we
present the first two settings for clarity. Our algorithm and
analysis are very much Perceptron-like. A key difference
between the SIM problem and that of a Generalized Linear
Model (GLM), is that in a GLM, w is known, e.g. u =
in case of logisitic regression.

We call w the direction and v the mean function. In
all three problems, approximating the “true” direction (and
mean function) is not possible in general — there may be
multiple consistent such w and/or u. Instead, we focus on
accuracy as measured by squared error (equivalent to classi-
fication error in the Perceptron problem).

We give a simple algorithm that is proven to solve the
SIM problem in polynomial time analogous to how batch
Perceptron algorithm [10] solves the Perceptron problem.
Put another way, we learn SIMS in the probabilistic concept
model of Kearns and Schapire [6]. Moreover, the algorithm
is a simple combination of the Perceptron algorithm and Iso-
tonic regression — its updates run in time O(m log m) instead
of O(m) for the Perceptron. It is easy to Kernelize and our
bounds do not depend on the dimension of the space.

Related work. A large literature of related work ex-
ists for GLMs (see, e.g., [7]) which assume prior knowledge
of u. For the SIM problem, there is also a body of work
in Statistics (see, e.g. [4, 3]) whose aim is to identify the
“correct” u,w. Several additional restrictions must be im-
posed on the model to ensure that this can be uniquely iden-
tified. (Following Kearns and Schapire’s p-concept model
[6], our goal is to find any u,w that accurately predict the
true regression function in polynomial time.) Kalai [5] gives
a polynomial-time algorithm for learning SIMs. However
his (improper learner) outputs a branching program and the
bounds depend heavily on the dimension of the problem. In

_ 1
14e—=

Machine Learning, the following approach is common: first
a linear separator algorithm (e.g., SVM) is run to get a direc-
tion w, followed by a post-fitting of u using Isotonic regres-
sion or Platt calibration [8].

1.1 Formal results

For the analysis, all labeled examples will be assumed to lie
in (z,y) € B, x [0,1], where B,, = {x € R" | ||| < 1}
is the unit ball in n dimensions. In practice, the algorithm
makes sense on any data set and is uniform scale-invariant.

In the idealized SIM problem, we assume that y; =
u(w - x;) for some w € By, and w : [—1,1] — [0,1] that
is nondecreasing and G-Lipschitz, i.e.,

0 <wu(b) —u(a) <G(b—a)forall0 <a<b<1.

For differentiable u, this is equivalent to v/(z) € [0, G] for
z € [—1,1]. We will require that the mean functions be
nondecreasing and G-Lipschitz for some G > 0.

In the Perceptron problem, we impose a margin as-
sumption for a (linearly separable) data set. Let (z;, y;)™, €
B, x {0,1} be a data set. We say that the data has margin
v > Oindirectionw € B,, ifw-x; > «foreachi withy; = 1
and w - x; < — for each ¢ with y; = 0. The Lipschitz-SIM
is a natural generalization of the margin assumption, as de-
picted in Figure 1(a).

Observation 1 The Perceptron problem with a ~v-margin is

a special case of the idealized SIM problem for a G = (2y)~!-

Lipschitz continuous function.

1 z >
Proof: Take u(z) = { & + £ ze[-1]. m
0 z< =y

Error in these two problems is measured empirically. For
h:R™ — R, define,

(h(z:) —vi)°.

NE

- 1
err(h) = -
i=1

1.1.1 SIM theorem

Our main theorem is in fact for the SIM problem. In this set-
ting, we have a distribution D over B,, x [0, 1]. The condi-
tional mean function' is f(x) = E(,)~ p[y|z]. We measure
error of another classifier i : B,, — R in terms of expected
squared error and e-error:

err(h) = Eq y)~p [(A(z) — 9)?]
e(h) = E()~ [(f(z) — h(z))?].

Note that expected squared error has a nice decomposition,

err(h) = e(h) + Egy~p [(f(a:) - 9)2]

Also note that since the last term above does not depend on
h, minimizing err(h) and e(h) are equivalent.

Our main theorem is a statement that the class of of G-
Lipschitz SIMs is efficiently learnable in the probabilistic
concept model of Kearns and Schapire [6], which requires
accurately learning the conditional mean function by a poly-
nomial time function.

Theorem 2 Suppose ((x;, yl)>z1 € B, x[0,1] satisfy y; =
u(w - ;) for monotonic G-Lipschitz v and ||w|| < 1. There
is a poly(1/e,log(1/6),n) time algorithm that, given any
0, € > 0, with probability > 1 — 6, it outputs h(x) = a(w - x)
with

e(h) = err(h) —err(f) <e.

1.2 Algorithms

Consider first the case of n = 1 dimension and w = 1. In
this case, a simple choice would be,

PAV((ZE1, y1), ceey (xmaym)) =

m

arg min 1 Z(u(xl) - yi)z.

nondecreasing w:R—R 7

This is essentially the problem of Isofonic Regression [9].
Let §; = u(z;). While the §;’s are uniquely determined,
the rest of w is not uniquely determined. The Pool Adja-
cent Violator (PAV) algorithm computes such a u in time

This matches the fraction of mistakes in the case where y;, h(z;) € O(mlogm). The algorithm sorts the data so that 71 <

{0,1}.
Our first theorem is about the empirical error of [SOTRON
on idealized SIM problems.

Theorem 1 Suppose (x;,y;) € B, %[0, 1] satisfy y; = u(w-
x;) for monotonic G-Lipschitz v and ||w|| < 1. Then for
ht(z) = u*(w' -) computed by ISOTRON,

> em(n') < G

t=1

In other words, the fotal of the errors after running for any
number of rounds is at most G2. Therefore, for any € > 0,
there must be some ¢t < [G?/¢] that has ért(h!) < e. In
practice, the algorithm will be executed for finitely many it-
erations and the h! with minimal empirical error could be
chosen. Our analysis follows the classic analysis of the Per-
ceptron, which is completely analogous though much easier
(see Theorem 3).

Zo ... < x,, and then computes 41 < ¥s ... < ¥, to min-
imize the above displayed quantity, which can be done in
O(m) time. One simple property of Isotonic regression is
the following calibration property.

Observation 2 Forany z € R, 37, . _ (y; —2) =0.

The intuition behind this statement is simple. Consider the
pool of examples that have ; = z. If z is not the average of
the y;’s, then we could decrease the squared error by moving
it some finite ¢ > 0 towards the average, which we can do
without violating monotonicity. With this calibration prop-
erty in hand, it is relatively easy to derive the PAV algorithm.
The data are partitioned into pools, depicted here by solid red
lines, where the prediction assigned to each example is the
average of the y’s in its pool. Initially, each example is in its

'"The notation E, ,).p[y|z] can also be interpreted as
E[Y|X = z] for random variables (X, Y") jointly distributed ac-
cording to D.

(b)

Figure 1: (a) The mean function corresponding to a linear separator with a margin. (b) An example of Isotonic regression.

own pool. Pools are then merged (in an arbitrary order) until
the resulting function is nondecreasing. In between pools,
one can perform linear interpolation. Figure 1(b) illustrates
an example.

The rest of of u is chosen by, say, linear interpolation:

gl if ¢ <
w(x) =M + (1 =N gir1 ifx=Az; + (1 — N -
Um ifzx >z,

The n-dimensional PERCEPTRON and ISOTRON algorithms
are described below.

PERCEPTRON

Input: ((25,9:)),-, € R™ x {0,1}
L:=0

Fort:=1,2,...:

=t + — Z

— u(w xl))xi,

1 ifz>0
h = .
where u(z) {O <0
ISOTRON
Input: {(z;,5:)),, € R" xR
Letw! :=0
Fort:=1,2,...:

1 m
L= Uﬂf"‘a;(yi_ k xz))xm

) (xm : wta ym))

where u! := PAV((JS1 “wh Y1),

Note that these algorithms are anytime algorithms — they
are intended to be interrupted at any point at which point
a classifier h'(z) = u'(w' - x) may be output. Note also
that for efficiency, the ISOTRON may perform interpolation
only once at the end. For an actual implementation, one only
maintains §! = u(w’ - x!) on each iteration, which is all the
PAv algorithm normally computes.

Kernelizing the ISOTRON is described in Section 3.

2 Analysis

We first briefly review the (batch) PERCEPTRON analysis.

Theorem 3 Suppose ((x;,y:))™, € B, x {0,1} is linearly
separatable with margin 1/G. Then for the h' computed by
the Perceptron algorithm, Y- | ért(h') < G2

The similarity to Theorem 1 should be clear. The elegant
proof breaks into the following two elementary lemmas.

Lemma 1 Suppose ((z;,v;))", € B, x {0,1} is linearly
separated by w with margin 1/G. Then for allt > 1, for the
w?, ht computed by PERCEPTRON ,

wtw —w'-w > et (h)/G.

Proof: By definition of w'*?, (w' ™ —w')-w = L 37" (y;—
9!)(z; - w). For each error on which y; # 9!, we have

(yi — 98) (i - w) > & because |z; - w| > & and by as-
sumption y; — §¢ = sgn(z; -

w). This gives the lemma. W

Lemma 2 For all t > 1, for the wt, ht computed PERCEP-
TRON,

[l H? = Jlw’|* < e (n").

Proof:By definition of w!*!

1 m
412 t2

lw P = [l ||* = E;(y —i)wiw +< g

We next observe that Y .~ | (y; — §)z; - w' < 0 because for
each i on which ¢! = 0, z; - w' < 0, and for each i on which
9! = 1, z; - w' > 0. Finally, by the triangle inequality, we
have,

2

2
1 .
< (= -1

= (em(h)” < em(n").

L Z(yi — ;)@

With these in hand, it is easy to prove Theorem 3.
Proof:[Theorem 3] By telescoping sums, Lemma 1 implies:

T
Ze/r\r(ht) <G (W w) <Gl (D

Similarly, Lemma 2 implies || w”+1||> < 327 &t (ht). Com-
bining this with (1) gives,

> _eri(h) <Gy er(ht))

This directly implies Theorem 3.]

2.1 Idealized SIM analysis

In this section, we consider the simplified case where y; =
f(x;). While this case is of less practical interest and is eas-
ily solved by other means (finding such a consistent w can
be formulated as a linear program), the analysis here conveys
the main intuition for the full analysis but has fewer compli-
cations. The goal of this section is to prove Theorem 1. The
proof is quite similar to the Perceptron analysis. Indeed, the
statements of Lemmas 3 and 4 are nearly identical to Lem-
mas 1 and 2, but their proofs are significantly more involved.
For ease of notation, we let §! = u®(w' - z;) throughout the
analysis.

Lemma 3 Suppose ((z;,v;))1", € B, X [0,1] satisfies y; =
u(w - x;) for monotonic G-Lipschitz u and ||w| < 1. Then
forallt > 1, for the w', h! computed by ISOTRON,

1 __
ww —wh - w > Eerr(ht).

Proof:[Lemma 3] It will be helpful to consider the inverse
of u, as seen later in eq. (4). Let u([—1,1]) be the range
of w on inputs in [—1,1], and let v : u([-1,1]) — [-1,1]
be an inverse of u. Since there may be many inverses, for
concreteness, we define:

v(y) = inf{z € [-1,1] [u(z) =y}

By continuity of u, this exists and u(v(y)) = y forall y €
u([—1,1]). Now, the remainder of the argument follows
from the following (in)equalities, which are justified below:

(wt—i-l

(yi — 90) (- w) 3)

3=

N
Il
o

_wt).w:

(i — 5§) (i - w —0(G7)) (4

I
3

=1
1 “ N Yi — yz
zag(yi =g (5)
_ @)
== (6)

Eq. (3) follows from the definition of w!*!. For (4), we first
need to verify that v(g}) is well-defined. To see this, notice
that ! is always an average of some y;’s because of the cal-
ibration property of the PAV algorithm (see Observation 2).
Hence 9! is in the set u([—1,1]), which is an interval. Sec-
ond, we need to verify that the difference between (3) and
4)is 0, i.e.,

> (i = 5)v(G) = 0.

i=1
To see this, we again use the calibration property of PAv.
Consider the above sum over a single ’pool” of examples. It
must be that this sum is 0, > (y; — 9¢)v(g!) = 0, because
v(gt) is constant across the pool and > (y; — 9¢) = 0 by
the calibration property. Hence, we have established (4). For
(5), first consider the case that y; > Qf Because u is nonde-
creasing and G-Lipschitz,

0<y —u(v(gf)) gG(aslww

— (@)

— gt = ules - w)

Hence (y; — §!) (@i - w —v(g})) > (yi — Qf)% Similarly

for the case of y; < gjf hence (5). Finally (6) follows by
definition of empirical error.]

Lemma 4 Forallt > 1, for the w', ht computed by ISOTRON,
[w™H[* = lw[|* < err(h’).

Proof:[Lemma 4] By definition of wtt!

1 — 1 &
12,02 — T -
I = S st (30
We next argue that
> i — g - w' <0. (7)
=1

To see this, we first claim that for any § > 0,

Z '_yz

i=1

yl—&-&(xl)—yi)2 <0.

This is true because g} + d(z; - w') is also nondecreasing
in (z; - w') but §! minimizes the sum of squared difference
with respect to y; over all such sequences. Rewriting this as
a difference of squares gives,

Zé (x4 -
Z(xi)@~ vt (e wt) 20

In the above, we have divided by 20 > 0. But the above
holds for every § > 0, hence it must hold for § = 0 by
continuity, which is exactly (7).

Finally, by the triangle inequality

(Z\yz yz\lwzH)
(s

By Holder s inequality, the last quantity is less than or equal
to o o (yi — 95)? = (). u

Proof:[Theorem 1] Since Lemmas 3 and 4 match Lemmas 1
and 2, Theorem 1 follows exactly as Theorem 3 from equa-
tions (1) and (2). |

(295 = 2yi + 0(x; - w')) 2 0

2.2 General analysis (sketch)

The algorithm and analysis in this section are not meant to
be optimal but rather to demonstrate that a variant of the
ISOTRON algorithm, which we call ISOTRON II has theo-
retical guarantees for the SIM problem. We would expect
that ISOTRON would work better in practice. Our modifica-
tion uses fresh data in each iteration, hence it requires 7'm
examples.

ISOTRON II

Input: T > 1, <(x11,y21)>211, . <(xZT,sz)>n;1 ER*"xR
Letw! :=0
Fort:=1,2,...,T:

wtl = w4 — Z(yz —uf(w' - ab))at,
m
i=1
where u := Pav((2} - w',y}),..., (2%, - w', yl)))

Recall that our goal is to find h with low e(h) = err(h)—
err(f). As in the previous analysis, let ht(z) = u!(w® - x)
and let ! = h'(z!). The following theorem says that, in
expectation, the average € over 1 iterations is low.

Theorem 4 Let G > 1,T > 1,m > (6T log(eT)/G)?, and
distribution D be over B, x [0, 1] with conditional mean
Sunction f(x) = u(w - x) for nondecreasing G-Lipschitz u
[-1,1] — [0,1] and w € B,,. Then for h' of the ISOTRON
I,

T
Bt yb)...aluf)~DTm [Zg(ht)l <8G”.

t=1

Note that the above quantity is an expected err, i.e., an ex-
pectation over expectations. The proof of this theorem is
rather involved and is in the appendix. The main idea is that
the behavior of the algorithm will be statistically similar to
as if it were in the idealized setting. This is combined with
a generalization bound. In Theorem 2, we claimed a simi-
lar high-probability bound. The following standard trick can
be used to convert low expected error to a high-probability
bound.

Proof:[Theorem 2] We repeat the following r = [lg(2/9)]
times. We run the Isotron II with T > 16G? /e and m >
(6T log(eT)/G)? on fresh data. Hence, the number of sam-
ples required is 7 1'm. For each iteration, we take a random

hypothesis k! for ¢ chosen uniformly random from {1,2,...,T}.

This gives us a collection of r hypotheses, each with ex-
pected e-error at most €/4. By Markov’s inequality, with
probability 1/2, each one of these hypotheses has e-error
< €/2. Hence, with probability at most 27" < §/2, none
of the hypotheses have ¢ at most €/2. Otherwise, with prob-
ability > 1 — 6/2, let us consider the case that at least one
hypotheses has e at most €/2.

Now, we draw a new set of M = log(2r/§)/e? samples.
Among these r hypotheses, we output one that has minimal
empirical error on this new set. By our choice of M, by
Chernoff-Hoeffding bounds, with probability < §/2r, each
hypothesis has empirical error on this held-out set within €/4
of its true error. Assuming that this happens, we will there-
fore pick a hypothesis with ¢ < €/2 + 2¢/4 = €. The total
data requirements are mr71" + M and the algorithm runs in
poly(n,1/¢,log(1/4)) time. |

3 Kernelization

The Kernelized version of the ISOTRON is quite simple and is
given below. There is no regularization parameter. Instead, a

held-out test set would be used in determining when to stop,
to avoid overfitting.

Kernelized ISOTRON

Input: <(xz,y1)>111 € X x[0,1], Kernel K : X x X — R
at:=(0,0,...,0) € R™

Fort:=1,2,...:

Fori=1,2,...,m:

aﬁ"’l = ozﬁ + Y — u (z;‘)

where 2! = Z;ﬂ:l a; K (z;,2;) and

ut = PAV((ZLyl)a AR (Zinaym))

In the algorithm above, the hypothesis on iteration ¢ is
ht(z) = ut (Z:n:l (x;-K(x,xj)).
larization, a held-out test set may be used to determine how
many iterations to run, to avoid overfitting. Alternatively, we
use the Kernelization approach of Blum, Balcan, and Vem-
pala [2] which requires fewer support vectors. In this ap-
proach, we divide the training data into a set of B candi-
date support vectors x1,22,...,2xp, and the rest. We then
treat the problem as a standard problem in R with a linear
Kernel, where each example (training and test) is mapped to
®(z) = (K(z,21), K(z,22),...,K(z,25)). If one takes
B to be significantly less than 1/2 of the training data, then
we cannot overfit too much because we would have more
than B examples for a model with B degrees of freedom.

Since there is no regu-

4 Conclusions and future work

We have introduced a new method for learning SIMs that is
simple and has appealing theoretical guarantees. The method
inherits the properties of the Perceptron algorithm but is more
general. From a theoretical point of view, it provides an in-
teresting perspective on the properties of the Perceptron al-
gorithm and Isotonic regression. Unfortunately, our analysis
is batch, unlike the classic online analysis of the PERCEP-
TRON. It would be very interesting to be able to analyze
an online variant of the ISOTRON. Also, thorough empirical
work remains to compare the method to others in practice.

References

[1] Alon, N., and Spencer, J. (1992) The probabilistic
method. New York: Wiley.

[2] Balcan, M., Blum, A., & Vempala, S. (2006). Ker-
nels as Features: On Kernels, Margins, and Low-
dimensional Mappings. Machine Learning 65, 79-94.

[3] Horowitz, J., & Hirdle, W. (1996). Direct semipara-
metric estimation of single-index models with discrete
covariates. em J. Amer. Statist. Assoc. 91, 1632-1640.

[4] Ichimura, H. (1993). Semiparametric least squares
(SLS) and weighted SLS estimation of single-index
models, Journal of Econometrics 58(1-2), 71-120.

[5] Kalai, A. (2004). Learning Monotonic Linear Func-
tions. In Proceedings of 17th Annual Conference on
Learning Theory, 487-501.

[6] Kearns, M., & Schapire, R. (1990). Efficient
Distribution-free Learning of Probabilistic Concepts.
Journal of Computer and System Sciences 48(3), 464-
497.

[7] McCullagh, P., & Nelder, J. (1989) Generalised Linear
Models. London: Chapman& Hall/CRC.

[8] Platt, J. (1999). Probabilistic outputs for support vec-
tor machines and comparison to regularized likelihood
methods. Advances in Large Margin Classiffiers, 61-
74.

[9] Robertson, T., Wright, F., & Dykstra, R. (1988). Order
restricted statistical inference. New York: John Wiley
and Sons.

[10] Rosenblatt, F. (1958). The Perceptron: A Probabilistic
Model for Information Storage and Organization in the
Brain. Psychological Review 65(6), 386-408.

[11] Vapnik, V. & Chervonenkis, A. (1971) On the uniform
convergence of relative frequencies of events to their
probabilities. Theory of Probability and its Applica-
tions, 16(2):264-280.

A Proof of Theorem 4.

We now define an empirical version of €,

m

& =3 (fah) - gb)°.

i=1
We now give an analog of Lemma 3.

Lemma5 Let G > 1,t > 1, and distribution D be over
B,, x [0, 1] with conditional mean function f(x) = u(w - x)

for nondecreasing G-Lipschitz u : [—1,1] — [0,1] and w €
B,,. Then for w® of ISOTRON II,

1 2
E [wt! w—wt - w] > ZE[] — 44/ =.
[w w—w w}_G [€°] -

In the above, expectations are over all data (ajg, yf), for 1 <

i<m,1<j<t
Proof: By definition of w!*?

m
(le_wt).w:%Z(y,;_m) "

=1

%i at - w+

=

—

m

)] = | L 37 (st @f)xaw] ®

m <
=1

E[(thrl

For the last equality above, we have used the fact that

E[(y! — f(al))zt] = 0, which follows from the definition
of f. We now follow the approach of the proof of Lemma 3.
In particular, we would like to consider the inverse of u on
values §!. Note that §! € [0, 1]. There are two problems with
this. First, the range of v is an interval [a, b] C [0, 1], but may

not include yjf To address this, we define a new function,

U : [-2,2] — [0,1]. The three properties of U that we
require are: (1) U(t) = u(t) forall ¢t € [-1,1], (2) U is G-
Lipschitz and nondecreasing, and (3) U(—2) = 0,U(2) =
1, i.e., the range of U is the entire interval [0,1]. It is not
hard to see that, for the domain [—2, 2], we have chosen, it is
always possible to extend u (e.g., linearly) to such a function.
The second problem, as in the proof of Lemma 3, is that
the inverse of U (or u) is not necessarily unique at a point
z € [0, 1]. As before, we consider the following inverse:
v:[0,1] — [-2,2],v(z) = inf{z € [-2,2] | U(z) = =}.
Since U is continuous, we have that U(v(z)) = z for all
z € [0,1].
Now, by monotonicity and Lipschitz continuity,

Nt (u(w - z}) — §1)°
(u(w -2t = 51) (o w = 0(gh)) = I

(Flat) —) at o > L0002 20

(3

(u(w - 27) = g;) v(@)-
Taking expectations and combining with (8), gives

E[(w”l—wt)%u >E +

The first term in the RHS above is é'/G. For the second
term, note that the sequence f(z!) — y! is an iid mean-0 se-
quence, while v(g!) is a bounded nondecreasing sequence.
Even if the adversary chose the latter after seeing the former,
the two will probably not be very correlated. This is quan-
tified precisely by Lemma 6, below, which implies a bound
of,

Lemma 6 For any integer m > 1 and reals a < b let

X1, Xo, ..., X, be independent random variables, with
E[X;] = 0, each in the bounded range [—1,1]. Let Ay, ..., Ay,
be a sequence of random variables such that a < A; <
Ay < ... < A, <b. Note that the A; sequence need not be
independent, and may depend on the X;’s as well. Then,

E|:A1X1+-~~+A771Xm:| S(b*a) /z.
m

m
Proof: First consider the random variables A, = % €

[0, 1]. Then, by linearity of expectation,
E [Ale +...+Ame} B

m

|:AIIX1+...+A;”X

(b—a)E ’”} +aE

|:X1—‘r

+Xm
m .

m

By the above and the fact that E [£1t=4Xm] = 0, it suffices
to prove the lemma fora = 0,6 = 1. So WLOG a = 0,0 =

1. We next claim that ;" | A; X; < maxo<;j<m 21:1
To see this, note that:

A X+ ... +ALX, =
A(Xh+Xo+ ... X))+
Ap(Xo+ X3+ ...+ X)) +
+ A Xm + A0
where A1 = A1, A0 = Ay — Ay,..., A, = Apy — A1,
Apy1 =1— A, Since A; > 0, Zm+1 A; = 1, we have

that >~ A; X, is a convex combination of >] X;, over j =
0,1,...,m. Hence, it is no larger than the maximum. By
Lemma 7 below, E[maxo<j<m > 7, Xi] < v2m, we get
the lemma.]

Lemma 7 Let m > 1 be any integer and X1, Xo,..., X,
be independent random variables, with E[X;] = 0, each in
the bounded range [—1,1]. Then,

<V2m.

E max

Xi+Xo+...+X
i€{0,1,...,m}

Proof: Let Y be the random variable Y = max{0, X1, X1+
Xo, ..., X1+ Xo+...+X,, }. Next, we claim that, Pr[Y? >
t] < e~t/(2m) forall t > 0. Since, Y > 0, this is equivalent
to Pr[Y > V1] < e~t/(2m) Ty see this, fix ¢ and consider
the martingale 21, Zo, . .., Z,,, where Zy = 0 and,

7 — Zi—l le 1>\[
ol Zis+ X

otherwise
Since E[X;] = 0, the Z;’s form a martingale. with bounded
difference 1. Hence, Azuma’s inequality [1] implies that
Pr[Z,, > V1] < e~*/(?") Moreover, note that if Y > /%,
then Z,, > +/t. Hence, we have shown that Pr[Y? > ¢] <

et/ (27"), for all ¢ > 0. Now, for any nonnegative random
variable R > 0, we have E[R] = [, Pr[R > t]dt. Hence,

fori=1,2,. m— 1.

E[Y?] :/ Pr[Y? > {]dt < / e—t/Cm) gt — o,
0 0

Finally, using the fact that E[Y]* < E [Y?] for any random
variable (non-negativity of variance), implies the lemma. W

We now give the analog of Lemma 4.

Lemma8 Let G > 1,t > 1, and distribution D be over
B,, x [0, 1] with conditional mean function f(x) = u(w - x)
Sor nondecreasing u : [—1,1] — [0,1] and w € B,,. Then
for wt of the ISOTRON 11,

3
E wt+127wt2 <Eét -

42 - 7] <E[£] + =
In the above, expectations are over all data (m;, yi), for1 <
i<m,1<j<t

Proof: By expansion,

2m
12 _
(w™)" = EE yi — 91w

2
1 & o~ t

Now, just as in the proof of Lemma 8, we have that,

> (i = gaw' < 0.

Hence it remains to show that, (= > (yf — gf)x)2 <

3//m. Next,

where

By the triangle mequahty,

Jal* < (;z 76 - 4 ||xz-||>
i=1
< (mXireh-a) -

By Holder’s inequality, the last quantity is at most
9t)%, so a® < &t. For b,

V= % > = FED)) — f@h)a -]

1<z’,j<m

- Z 2lat

The cross terms above are 0 in expectation by independence.
Since (y! — f(zf))? < 1 and ||zf||> < 1, we have that
E[p?] < 1/m and E[|b]] < 1/y/m. Finally, since a* < &' <
1, we have,

L3 (f(at

2 1
E[(a+b)%] <E[a®+2[b| +b*] <E [gt v m}
This is at most E [¢!] + \/%
]
What remains to prove Theorem 4 is now only a generaliza-
tion bound for monotonic functions.

Lemma 9 Let class C be the set of nondecreasing continu-
ous functions ¢ : R — [0,1]. Let D be an arbitrary distri-
bution on (z,y) € R x [0,1] and (x1,y1),- - -, (Tm, Ym) be
independent samples from D. Then

log(2m)

E(:cl,yl)}.‘.,(mm,ym)NDm [A] S 9 m

where
m 2
A=sup | E. -~
cEg((y)D[(;)

Proof: For any fixed (x1,y1),- - -, (Tm, Ym) We have,

m N .02
sup (E (efa) =) =Y (C(””)y)) <

ceC m

(E[yz] - ;sz) :

In the above we have used the fact that sup, F'(a) + G(a) +
z < sup, F(a)+sup, G(a) + z, for any functions F, G and
any z € R. Now, E[y? — L 3. 42] = 0 regardless of c,
hence it suffices to show,

E(z,,y:)

®

ceC

E(z;,y:) |ﬁ‘up (nll Zc(xz)yz - E[C(x)y]) <3 log(TQm)

(10)
To this end, it will be helpful to consider the set of one-
dimensional threshold functions,

IT={f(z)=1Iz>0]|0€R}
Now, by standard VC-dimension bounds [11], since the VC-
dimension of Z is 1, we have that for any § > 0:

i i) 1+ log 8m
Pr supE,[¢ Z (i) 85 <94
Tisesm | €T i—1 m m
Hence, for § = m~1/2, we have that
()
Eui oz, [SUDEy] <
e
1+ log &m
S8
m
log(2
5,/ los(2m)
m
To establish (9), we use the fact that for any real z € [0, 1],

z > 60]df. Thus,

sup
ceC

Z—fo
Zc xz>:

1 — 2 | log(Qm)
— E i < 34/ =2
Sgp (m 4 ¢ x) m

S/O sup E[I[c3(x) > 0] — deg

ceC i—1 m
— sup E, [1(x)] ij a:) (11
LET i—1 m
<3 log(2m)
m

To see (11), note that I[c?(-) > 6] is a function in Z, for any
nondecreasing continuous c. This establishes (9).

For (10), we are going to consider a new distribution D’
over (z,y) € RU{—o00} x {0,1}. From D, we construct
D’ as follows. To get a sample from D’, we take (x, y) from
D and choose (2, y') as follows:

roonN (x’l)
) ={"0)

with probability y
with probaility (1 —y)
It is not difficult to see that, for any ¢ € C, if we extend c to
say that ¢(—o0) = 0,
E(a:’,y’)ND’ [C(Jj/)] = E(aj7y)~D [C(x)y] .

Next, we can imagine drawing a data set from D’ by first
drawing (21,91),. .., (@m,Ym) from D and then later the
corresponding sample (2}, 4}), ..., (Zm,y,,) from D’. For
any (1,Y1),-- -, (Tm, ym) and ¢ € C, we have

o~ cl@)
E(@i v, ~pm [Z m

i=1

(i,)it] -

(o gy~ [e(2')]

c(xi)yi
m

- IE(‘7c,y)~D [C(l‘)y} .

i=1

This holds for any ¢ that is chosen based only on (z;,y;),
independent of (x},y.) since E[c(z))|(zi,v:)] = c(x:)ys.
Hence, if we take supremums over ¢ € C of both sides of
the above displayed equation, the left can only be larger. It
remains to show that,

log(2m)
Bt y),en)~ D (A), ()] S 3\ —
where
Ay) (el yl,) = SUD i220(30")—1%3/ H~ple(@)]] -
10Y1)\ Ty Y, el m - 2 Y

This follows in exactly the same manner as the chain of in-
equalities in (11). The main difference is that we need to
consider intervals over R U {—oc} such that ((—o0) = 0. B

The above lemma states that, for nondecreasing one-dimensional
functions, the maximum expected difference between true
and empirical errors is not large.

Proof:[Theorem 4] We first establish the following:

T
E > &
t=1

< 4G? (12)

To do this, leta = E [ZtT:l é*]. By our choice of m, T'/y/m <
G /6. By Lemma 5, we have,

1 2
E[wT“-w]ZEa—4T1/E2%—G.

By Lemma 8, we have,
3T G
Eflo”™)" < B[P S0+ T <o+ 5

Using these two facts in combination with the fact that w
w < w1 |w]| < [JwT*1|, we have:

a G
R < —
o G—\/a+2

If the left hand side above is negative, then we immediately
have (12). Otherwise, squaring both sides and simplifying

gives

a 3G\?_ G 967

—) < 24T <3G

(G 2) T

This implies that a/G < 3G/2 4+ G/3 which impies (12).
This is what we need to establish (12). Finally, by Lemma

9, we have that, foreach t < T, E[e(h?)—£!] < 94/log(2m)/m.

Therefore, we have,
4G? log(2
_e QW a3
T m

1
72 ()
t=1
Now, log(2m)/m is decreasing in m for m > 2. (If m < 2,
then G?/(3672) > 1/2 and the theorem is trivial.) Other-
wise, because m > 972 log2 (eT)/G?, we have,

T+1,

E

7 \/ log(72T2log?(eT)/G2) < 4%.

log(2m) < 3G
m — 2Tlog(e

In the above we have used the facts that G > 1 and

9

\/log(72T2 log®(eT)) < 2.5log(eT)

for all T' > 1. The theorem follows from the above, eq. (13)
and the fact that G > 1 and G < G2. []

