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Abstract

We consider the problem of regression learning for
deterministic design and independent random er-
rors. We start by proving a sharp PAC-Bayesian
type bound for the exponentially weighted aggre-
gate (EWA) under the expected squared empirical
loss. For a broad class of noise distributions the
presented bound is valid whenever the temperature
parametegs of the EWA is larger than or equal to
402, whereo? is the noise variance. A remarkable
feature of this result is that it is valid even for un-
bounded regression functions and the choice of the
temperature parameter depends exclusively on the
noise level.

Next, we apply this general bound to the problem
of aggregating the elements of a finite-dimensional
linear space spanned by a dictionary of functions
d1,...,¢0p. We allowM to be much larger than
the sample size but we assume that the true re-
gression function can be well approximated by a
sparse linear combination of functiogs. Under
this sparsity scenario, we propose an EWA with
a heavy tailed prior and we show that it satisfies
a sparsity oracle inequality with leading constant
one.

Finally, we propose several Langevin Monte-Carlo
algorithms to approximately compute such an EWA
when the numben/ of aggregated functions can
be large. We discuss in some detail the conver-
gence of these algorithms and present numerical
experiments that confirm our theoretical findings.
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A popular model in this context is linear regression. We
observen pairs(X1,Y1),...,(X,,Y,), where eachX; —
called the predictor — belongs B andY; — called the re-
sponse — is scalar and satisfiés— X,-T)\O + &; with some
zero-mean noisg;. The goal is to develop inference on the
unknown vectoi\, € RM .

In many applications of linear regression the dimension
of X ; is much larger than the sample size, id.;> n. Itis
well-known that in this case classical procedures, suchas t
least squares estimator, do not work. One of the most com-
pelling ways for dealing with the situation wheié¢ > n
is to suppose that the sparsity assumption is fulfilled, i.e.
that Ay has only few coordinates different fro This as-
sumption is helpful at least for two reasons: The model be-
comes easier to interpret and the consistent estimatiog of
becomes possible if the number of non-zero coordinates is
small enough.

During the last decade several learning methods exploit-
ing the sparsity assumption have been discussed in the liter
ature. Thel;-penalized least squares (Lasso) is by far the
most studied one and its statistical properties are now well
understood (cf., e.g., [BRT08, BTW06, BTW07a, BTWO07b,
MBO06, vdG08, ZH08] and the references cited therein). The
Lasso is particularly attractive by its low computationaét
For instance, one can use the LARS algorithm [EHJTO04],
which is quite popular. Other procedures based on closely
related ideas include the Elastic Net [ZHO05], the Dantzig se
lector [CTO7] and the least squares with entropy penatizati
[Kol08]. However, one important limitation of these proce-
dures is that they are provably consistent under ratheicest
tive assumptions on the Gram matrix associated to the pre-
dictors, such as the mutual coherence assumption [DETO06],
the uniform uncertainty principle [CTO06], the irrepresanie
[Z2Y06] or the restricted eigenvalue [BRT08] conditions.i§h
is somewhat unsatisfactory, since it is known that, at least

In recent years a great deal of attention has been devoted tan theory, there exist estimators attaining optimal accyra
learning in high-dimensional models under the sparsity sce of prediction under almost no assumption on the Gram ma-

nario. This typically assumes that, in addition to the sanpl

trix. This is, in particular, the case for tlig-penalized least

we have a finite dictionary of very large cardinality suchttha squares estimator [BTWOQ07a, Thm. 3.1]. However, the com-
a small set of its elements provides a nearly complete de-putation of this estimator is an NP-hard problem. We finally
scription of the underlying model. Here, the words “large” mention the paper [WRO07], which brings to attention the fact
and “small” are understood in comparison with the sample that the empirical Bayes estimator in Gaussian regression
size. Sparse learning methods have been successfully apwith Gaussian prior can effectively recover the sparsity pa
plied in bioinformatics, financial engineering, image pro- tern. This method is realized in [WRO07] via the EM alorithm.
cessing, etc. (see, e.g., the survey in [Yu07]).

However, its theoretical properties are not explored, aigd i



not clear what are the limits of application of the method be-
yond the considered set of numerical examples.

In[DTO7, DTO8] we proposed another approach to learn-
ing under the sparsity scenario, which consists in using an
exponentially weighted aggregate (EWA) with a properly-cho
sen sparsity-favoring prior. There exists an extensive lit
erature on EWA. Some recent results focusing on the sta-
tistical properties can be found in [Alg08, Aud08, Cat07,
JRTO08, LB06, Yan04]. Procedures with exponential weight-
ing received much attention in the literature on the on-line
learning, see [CBCG04, HKW98, Vov90], the monograph
[CBLO6] and the references cited therein.

The main message of [DT07, DT08] is that the EWA with
a properly chosen prior is able to deal with the sparsitydssu
In particular, [DTO7, DTO8] prove that such an EWA satis-
fies a sparsity oracle inequality (SOI), which is more power-
ful than the best known SOI for other common procedures
of sparse recovery. An important point is that almost no
assumption on the Gram matrix is required. In the present
work we extend this analysis in two directions. First, we

on this probability space such that
i) ¢ has the same distribution as the regression eg;ors
i) ¢+ ¢ has the same distribution 4% + )¢ and the
conditional expectatioE[¢|¢] = 0,

i) there exist a real numbef € (0,00] and a bounded
Borel functionv : R — R such that,

log E[e"[¢ = d
t2yv(a)

wheresupp(€) is the support of the distribution gf

lim sup =1,

7—0 (t,a)€[—to,to] xsupp(§)

Assume that we are given a collectiffiy : A € A} of
functionsf, : Z — R that will serve as building blocks for
the learning procedure.The sktis assumed to be equipped
with ao-algebra and the mappings— f\(z) are assumed
to be measurable with respect to thisalgebra for allz €
Z. Letw be a probability measure ah, called the prior,
and lets be a positive real number, called the temperature

prove a sharp PAC-Bayesian bound for a large class of noiseparameter. We define the EWA by

distributions, which is valid for the temperature paramete
depending only on the noise distribution. We impose no re-
striction on the values of the regression function. Thisiites

is presented in Section 2. The consequences in the context

of linear regression under sparsity assumption are disduss
in Section 3.

The second problem that we analyze here is the com-
putation of EWA with the sparsity prior. Since we want to
deal with large dimension®/, computation of integrals over
RM in the definition of this estimator can be a hard problem.

Fue) = [ 50 Rl
whereT,, 5 is the (posterior) probability distribution

Tn,8(dN) ocexp { = BHY — fll3} w(dN).
We assume that the s&tsatisfies
AX) e = max|fi(Z)— fv(Z)I <L (2)

Therefore, we suggest an approximation based on Langevin

Monte-Carlo (LMC). This is described in detail in Section 4.
Section 5 contains numerical experiments that confirm fast

for someL € [0,00]. In the sequel, we use the convention
+2 = 0 and we denote bjjv|, the L. (R)-norm of func-

convergence properties of the LMC and demonstrate a nicetion v.

performance of the resulting estimators.

2 PAC-Bayesian type oracleinequality

Theorem 1 Let Assumption N be satisfied with some func-
tion v and let (2) hold. Then for any priat, any probability
measure on A and anys > max(4||v| ., 2L/to) we have

Throughout this section, as well as in Section 3, we assume

that we are given the dat&;,Y;), i = 1,...,n, generated
by the non-parametric regression model
}/Z:f(ZL)+€Z7 z:l,,n, (1)

with deterministic desigi¥, .. ., Z,, and random errors;.
We use the vector notatiod = f + £. Thus, in what fol-
lows, the functionf(-) is identified with the vectorf =
(f(Z1),...,f(Z,))". The spaceZ containing the design
points Z; can be arbitrary ang is a mapping fromZ to
R. For each functiorh : Z — R, we denote by|A]|,, the
empirical norm(1 Y~ | h(ZZ-)Q)l/Q. Along with these no-
tation, we will denote byjv||,, the ¢,-norm of a vecton =
(v1,...,0,) € R, thatis|v[|p = 77" Jui[P, 1 < p < o0,
|lv||ce = max; |v;] and||v]|o is the number of nonzero en-
tries ofv. With this notation|| f||2 = n|| f]|2.

The noise vecto¢ = (&1,...,&,) " is assumed to have
zero mean and independent identically distributed (iidreo
dinates. We introduce the following assumption on the dis-
tribution of noise.

Assumption N. For anyy > 0 small enough, there exist a
probability space and two random variabfeand( defined

BIIF, - 2] < [ 1 - Al ptay + 222,

n
wherelC(-, -) stands for the Kullback-Leibler divergence.

Proof: It suffices to prove the theorem fprsuch that

/A 1 — 12 p(d) < oo

andp < 7 (implying K(p,7) < o0), since otherwise the
result is trivial.

We first assume that > 4||v||- and thatL < oco. Let
~v > 0 be a small number. Let no:,¢),. .., (&n, Gn)
be a sequence of iid pairs of random variables defined on
a common probability space such th@t, ¢;) satisfy con-
ditions i)-iii) of Assumption N for anyi. The existence of
these random variables is ensured by Assumption N. We use
here the same notatigp as in model (1), since it causes no
ambiguity.

Sethy = fa—f,h=fa—f, ¢ = (C,eesa)T,
U(h,h') = ||h|j3 + 2h" A andAU (h,h',h") = (||h||3 —



|h'||3) +2(h — h')TR" for any pairh,h’, h”
this notation we have

E[

|fu — fII2] = E[|R)2

€ R™. With

| = E[JI2 + —h'c].

ThereforeE[||f, — f||2] = S + S1, where

S = f%E[log/Aexp(f

AU (h
Sy = ﬁE[log/ exp( YAU(R,
nwy A

Tn,p(dN) =

YU (hy, ’Y_IC))
ﬁ

B

and therefore

S:

By partii) of Assumption N and the independence of vectors
(&, ¢;) for different values of, the probability distribution of
the vector(€+¢)/(1+7) coincides with that of. Therefore,

(& + ¢)/(1 + ) may be replaced by inside the second

p / 1
—E{log exp{— 3
nwy A { b

f%E[log/Aexp{

U(ha,)}m(dN)]

Fra(d)].

h,y~ C))ﬂnﬁ(dA)]

We first bound the tern§. To this end, note that

exp{—3"'U(hx,§)}

T (B 10 (R, €) () ")

LU (ha, $£2) }e(an)|.

A 14

expectation. Now, using the Holder inequality, we get

Next, by a convex duality argument [Cat04, p. 160], we find

Let us now bound the terns;.

_n(l +7)

s< [ Imlzs

ﬂ’C(p, )
n(l+9)

p E[log/ e—(1+’v)ﬁ’1U(hx,£)7T(d)\)]
A

According to part iii) of

Assumption N, there existg > 0 such that'y < o,

[t|<to

In what follows we assume that < ~y. Since for every
237 L < tg, using Jensen’s

i |26~

log E[e" ¢ = q]
12

X

H(ha(Zi) - W(Z))] <

inequality we get

B ny 2 12
< — - — —
Sl X TL’)/E|:10g/ exp{ (”hAHn Hth)}eA

AZi) = B(Z))Gf[€) w(dN)]

N

For v small enough4 <

LA
ny

xE(eXp{Z 2671 (h

=1

62

expressiorE [ log [, exp ( —

V(ha, h)

BRI = IR13)+

< v(a)(1 4 0,(1)),

VaeR.

[[hx—

[0z [ exp { = Z(mali = 1BI2)}

4 %
coxp{ Al

BIE(L+ 0, (1) f (dA)]

o), this entails that up to a pos-
itive multiplicative constant, the terrfi; is bounded by the

W)H”(dm , where
(8 + 4fvlc)
2

hl5-

Using [DTO7, Lemma 3] and Jensen’s inequality we obtain
S1 < 0foranyy < (8 — 4||v||ec)/4nL. Thus, we proved

that BK(p.7)
b,
BRI < [ Il p (@) +
n(l+7)
foranyy < 40 A (8 — 4||v]|~)/4n L. Letting~y tend to zero,

we obtain
BRI < [ IbalEp@n + 2 IR 7)

for any 3 > max(4[|v||«0, 2L /to). Fatou’s lemma allows us
to extend this inequality to the cage= max(4||v||0, 2L/t0)-

To cover the casd. = +oo,tg = +o0o, we fix some
Lo € (0,00) and apply the obtained inequality to the trun-
cated priorr™’ (d\) « 1a,,(\)7(d)\), whereL’ € (Lg, )
andAr = {\ € A : max; |f»(Z;)] < L'}. We obtain that
for any measurg < « supported by\,,

P,
E[|A"[I7] < / Ihall7 P Belp.xt)
n

g/A|hA|ip<dA>+—(n’ 5

One easily checks that:’ tends a.s. té and that the random
variablesup;,- ;. |k |2 1(max; |&| < C) is integrable for
any fixedC. Therefore by Lebesgue’s dominated conver-
gence theorem we get

B[ []3 1(max |&:] < / NG (p’ PP, )

Letting C tend to infinity and using Lebesgue’s monotone
convergence theorem we obtain the desired inequality for
any probability measure which is absolutely continuous
w.r.t.w and is supported b, for someLg > 0. If p(Ar,) <

1 for any Ly > 0, one can replacg by its truncated version

p~" and use Lebesgue’s monotone convergence theorem to
get the desired result. |

An important point is that many symmetric distributions
encountered in applications satisfy Assumption N with)
being identically equal to the variance of the noise. This
follows from the next remarks and their combinations.

Remark 1 (Gaussian noise) If &; is drawn according to the
Gaussian distributiooV'(0, o%), then for anyy > 0 one can
choose( independently of according to the Gaussian dis-
tribution A(0, (2y + v2)o?). This results inv(a) = % and,
as a consequence, Theorem 1 holds for Any 402. Note
that this reduces to the Leung and Barron’s [LBO6] result if
the prior « is discrete.

Remark 2 (Rademacher noise) If &; is drawn according to
the Rademacher distribution, i.B.(§; = +o0) = 1/2, then
for any~ > 0 one can defin€ as follows:

¢=1+7)osgn[o "¢ —(1+y)U] ¢,

whereU is distributed uniformly if—1, 1] and is indepen-
dent of¢. This results inv(a) = o2 and, as a consequence,
Theorem 1 holds for an§ > 402 = 4E[¢}].



Remark 3 (Stability by convolution) Assume tha; and¢; We allow M to be large, possibly much larger than the

are two independent random variables. &if and ¢ sat- sample sizen. If M > n, we have in mind that the spar-
isfy Assumption N witlly = oo and with functionsv(a) sity assumption holds, i.e., there exiatsc R such thatf
and v’(a), then any linear combination; + o'¢ satis- in (1) is close tofx- for someX having only a small num-
fies Assumption N withy = oo and thev-functiona?v(a) + ber of non-zero entries. We handle this situation via a suit-
(a")%'(a). able choice of priorr. Namely, we use a modification of the

_ o i i sparsity prior proposed in [DTO7]. It should be emphasized
Remark 4 (Uniform distribution) The claim of preceding  right away that we will take advantage of sparsity for the
remark can be generalized to linear combinations of a count- yyrpose of prediction and not for data compression. In fact,
able set of random variables, provided that the series con- eyen if the underlying model is sparse, we do not claim that

verges in the mean squared sense. In particulag,ifis  our estimator is sparse as well, but we claim that it is quite
drawn according to the symmetric uniform distribution with  accurate under very mild assumptions. On the other hand,
variance o?, then Assumption N is fulfilled withy = oo some simulations demonstrate the sparsity of our estimator
andv(a) = o*. This can be proved using the fact gt and the fact that it recovers correctly the true sparsitepat
has the same d|str|but|on_ as,”, 2 "n;, wheren; are iid i examples where the (restrictive) assumptions mentioned
Rademacher random variables. Thus, in this case the in-jj the Introduction are satisfied (cf. Section 5). However,
equality of Theorem 1 is true for amy> 40 our theoretical results do not deal with this property.

To specify the sparsity priar we need the Huber func-

Remark 5 (Laplacenoise) If & is drawn according to the tiona : R — R defined by

Laplace distribution with variance?, then for anyy > 0

one can choosé independently of according to the distri- 12 if 6] < 1
. . . . . —. t — b ~ )
bution associated to the characteristic function w(t) {2|t| —1, otherwise.
1 29+~ . . .
t) = (1 + ) This function behaves very much like the absolute value of
o(t) (1+7)? 14+ (1+7)2(at)2/2 y

t, but has the advantage of being differentiable at everytpoin
One can observe that the distributionis a mixture ofthe ¢ € R. Letr and« be positive numbers. We define the
Dirac distribution at zero and the Laplace distribution tvit ~ sparsity prior

variance(1 +~)%a2. This results iny(a) = 202 /(2 — 0%t3) o )
and, as a consequence, by taking= 1/0%, we get that T e
Theorem 1 holds for ang > max(802,2Lo). m(dA) = { II

7 UL < Ryax, (3)

Remark 6 (Bounded symmetric noise) Assume thatthe er-
rors &; are symmetric and thaP(|¢;| < B) = 1 for some
B € (0,00). LetU ~ U([—1, 1]) be arandom variable inde-
pendentof. Then{ = (147)|{|sgn[sgn(§) — (1+7)U]—¢
satisfies Assumption N with{a) = a?. Since||v| - < B2,
we obtain that Theorem 1 is valid for apy> 452.

whereC, - r is the normalizing constant.

Since the sparsity prior (3) looks somewhat complicated,
an heuristical explanation is in order. Let us assume Ehat
is large ando is small so that the functions “(®%) and

I(Aln < R) are approximately equal to one. With this
in $|_nd we can notice that is close to the distribution
: ; of v27Y, whereY is a random vector having iid coordi-
3 Sparsity prior and SOI nates drawn from Student’s t-distribution with three degre
In this section we introduce the sparsity prior and present a of freedom. In the examples below we choose a very small
sparsity oracle inequality (SOI) derived from Theorem 1. smaller thanl /n. Therefore, most of the coordinatesof

In what follows we assume that ¢ R for some posi-  are very close to zero. On the other hand, since Student’s
tive integerM . We will use boldface letters to denote vectors t-distribution has heavy tails, a few coordinatesrof are
and, in particular, the elements &f For any square matrix ~ quite far from zero.

A, letTr(A) denote the trace (sum of diagonal entriespof These heuristics are illustrated by Figure 1 presenting the
Furthermore, we focus on the particular case wiExés a boxplots of one realization of a random vector&i®-2%°
convex subset of the vector space spanned by a finite numbewith iid coordinates drawn from the scaled Gaussian, Laplac
of measurable functlon$q§J} _,__a More specifically, (double exponential) and Studef) distributions. The scal-
we assume that for sonfe e (0 J;é’o] ing factor is such that the probability densities of the simu
lated distributions are equal 190 at the origin. The boxplot
_ _ s M gaticfi < } which is most likely to represent a sparse vector correspond
Fa {f)‘ Z;A]@ ‘ A€ RY satisliesAlls < R, to Student's(3) distribution.

) ) The relevance of heavy tailed priors for dealing with spar-
where|[A[l1 = 37, || stands for the/;-norm. If, in addi-  sjty has been emphasized by several authors (see [See08,
tion, f € Fa, then model (1) reduces to that of linear regres- Section 2.1] and references therein). However, most of this
sion defined in the Introduction. Indeed, it suffices to take  work focused on logarithmically concave priors, such as the

= (61(Z) ¢M(Z_))T i=1 . r_nultivariate Laplace distribution_. Also in wavelet _estim_a

! B R tion on classes of “sparse” functions [JS05] and [Riv06] in-
This notation will be used in the rest of the paper along with voke quasi-Cauchy and Pareto priors. Bayes estimators with
the assumption thaX; are normalized so that all the diago- heavy-tailed priors in sparse Gaussian shift models are dis
nal entries of matri% S XZ-X,L-T are equal to one. cussed in [AGPO7].
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Figure 1: The boxplots of a sample of siz@* drawn from
the scaled Gaussian (left panel), Laplace (central pandl) a
Student(3) (right panel) distributions. In all three cases the
location parameter i§ and the scale parameterlig 2.

Laplace

The next theorem provides a SOI for the EWA with the
sparsity prior (3).

Theorem 2 Let Assumption N be satisfied with some func-
tion v and let (2) hold. Take the prior defined in (3) and

8 > max(4||v]|e,2L/to). Assume thal®? > 2Mr7 and

a < 1/(4MT). Then for allX such that| X||; < R—2Mr

we have

. 48 & A\
Blf — FI2 < I = S5+ == > log (14 5)
j=1

22X+ 1)

+4em® M. (4)

Proof: Let us define the probability measyigby

d dm
%(A) x <ﬁ()‘ )\*)) Lo, oarm (A= X). (5)

Since|| X||; < R—2Mr, the condition\ — X< € By (2M )
implies that\ € B;(R) and, thereforey, is absolutely con-
tinuous w.r.t. the sparsity priar. In view of Thm. 1, we
have

f, K
BIIF,— 121 < [ I 112 mlan) + 22T

The facts thatfx(Z;) = XiTA and the diagonal entries of
the matrix% Do XZ-X,L-T are equal to one, together with the
symmetry ofpp w.r.t. X* yield

/A | Fx— 7112 po(dA) = || fx-— 112+ / IAA*[2 po(dA).

RM

To complete the proof, we use the following technical result

Lemma 3 For every integetM larger thanl, we have:
/ ()\1 o AT)2PO(d}\) < 4,7_2641\/10477
R

M

M
K(po, ™) < 2(af X1 + 1) +4) log(1+ |N]/7).

j=1

The proof of this lemma is omitted.

Inequality (4) follows from Lemma 3, sincé, ., [|A —
X3 po(dX) = M [ (M — A})? po(dX) and, under the
assumptions of the theoreat™ < e. [ |

Theorem 2 can be used to choose the tuning parameters
7,a, R when M > n. The idea is to choose them such
that both terms in the second line of (4) were of the order
O(1/n). This can be achieved, for example, by takirtg~
(Mn)~* andR = O(Mr). Thenthe tern#2 5" log(1+
|Af]/7) becomes dominating. It is important that the num-
ber of nonzero summands in this terii,*, is equal to the
number of nonzero coordinates &f. Therefore, for sparse
vectors X, this term is rather small, namely of the order
M*(log M)/n, which is the optimal rate for problems of
sparse recovery, cf. [BTW06, CT07, BTWO07a, BRT08]. An
important difference compared with these and other papers
on /;-based sparse recovery is that in Theorem 2, we have
no assumption on the dictionafy, ..., ¢}

4 Computation of the EW-aggregate by the
Langevin Monte-Carlo

In this section we suggest Langevin Monte-Carlo (LMC)
procedures to approximately compute the EWA with the spar-
sity prior whenM > n.

4.1 Langevin Diffusion in continuoustime

We start by describing a continuous-time Markov process,
called the Langevin diffusion, that will play the key role in
this section. LeV : RM — R be a smooth function, which

in what follows will be referred to as potential. We will as-
sume that the gradient &f is locally Lipschitz and is at most

of linear growth. This ensures that the stochastic difféatn
equation (SDE)

dL; = VV (L) dt +V2dW,, Ly=Xo, t =0  (6)

has a unique strong solution, called the Langevin diffusion
In the last displayW stands for an\/-dimensional Brown-

ian motion and\ is an arbitrary deterministic vector from
RM . Itis well known that the procesgL; }+>o is @ homo-
geneous Markov process and a semimartingale, cf. [RwW87,
Thm. 12.1].

As a Markov procesd, may be transient, null recurrent
or positively recurrent. The latter case, which is the most
important for us, corresponds to the process satisfying the
law of large numbers and implies the existence of a station-
ary distribution. In other terms, it is positively recurrent,
there exists a probability distributioR,, on RM such that
the procesd. is stationary provided that the initial condition
Ao is drawn at random according,. A remarkable prop-
erty of the Langevin diffusion—making it very attractive fo
computing high-dimensional integrals—is that its staign
distribution, if exists, has the density

pv(A) o eV,

w.r.t. the Lebesgue measure [Ken78, Thm. 10.1]. Further-
more, there exist directly verifiable conditions on the pete
tial V' yielding the positive recurrence di. The following
proposition contains an example of such a condition.

AeRM



Proposition 1 ([RS02], Thm 2.1) Assume that the function
V' is bounded from above. If there is a twice continuously
differentiable functionD : RM — [1, 00) and three positive
constants:, b andr such that

VVA)TVDA) + ADA) < —aD(A) + b1(|[A]l2 < 7),
(7)
for everyA € RM, then the Langevin diffusioh defined by

(6) is D-geometrically ergodic, that is
E[h(L:)|Lo = Xo] — / h(X) pv (dA)| < RvD(Xo)py
RJ\/I

for every functiom, satisfying||h/D||. < 1 and for some
constantsRy > 0 andpy € (0,1).

The functionD satisfying condition (7) is often referred
to as Lyapunov function and condition (7) is called drift eon
dition towards the sefX : |Alj2 < r}. If satisfied, the drift
condition ensures geometrical mixing. Specifically, fozmrgy
functionh such that|h?/D||», < 1 and for everyt, s > 0,

| < RvD(Ao)pl?!.

Combining this with the result of Proposition 1 it is not hard
to check that if|h2/D||.. < 1, then

EAO[(% / (Lot / Mh(A)pv<dA>)2] Z®

whereC' is some positive constant depending only 6n
Note also that, in view of Proposition 1, the squared bias
term in the bias-variance decomposition of the left hand sid
of (8) is of orderO(7'—2). Thus, the main error term comes
from the stochastic part.

|Covx, [h(L:), h(L

4.2 Langevin diffusion associated to EWA
We assume that we are givéX,,Y;), i = 1,...,n, with
X,; € RM andY; € R. We wish to compute the expression

Jaar )\exp{ - B7YY - X)\H%}?T(d)\)

A= )
fR]W eXp { - ﬁ_IHY - XAH%}W(CZ)‘)
whereX = (X1,...,X,)". Inwhat follows, we deal with
the prior

70.1(04/\

+)\2

d)\oc]:[

assuming thal? = +oo. As proved in Sections 2 and 3,

this choice leads to a sharp oracle inequality for a number

of noise distributions. An equivalent form for writing (9)
iSA = [ou Apv(A) dA, py(A) oc eV with V(X) being
equal to

M

-3 {210g(72 +22) + w(aAj)}. (10)

j=1

Y = X3
B

Simple computations show thd@(\) = e}z is a
function for which the drift condition (7) is fulfilled. A nie
property of this Lyapunov function is the inequaljtk||2, <
a~tD(M). It guarantees that (8) is satisfied for the functions
h(A) = A;. So, let us define the Langevin diffusidiy as

solution of (6) with the potentidl” given in (10) and the ini-
tial conditionLy = 0. In what follows we will consider only
this particular diffusion process. We define the averageeval

Ly =

1 T
— [ L&, T>o0.
7

According to (8) this average value converge§as: co to

the vector that we want to compute. Clearly, it is much
easier to computd thanX. Indeed X involves integrals

in M dimensions, whereab; is a one-dimensional integral
over a finite interval. Of course, to compute such an integral
one needs to discretize the Langevin diffusion. This is done
in the next subsection.

4.3 Discretization

Since the sample paths of a diffusion process are Holder con
tinuous, it is easy to show that the Riemann sum approxima-

tion

Z Ly, (

1=0
with0 =Ty < Ty < ... < Ty = T converges ta.r in
mean square when the sampling is sufficiently dense, that is
whenmax; |T;4+1 — T;| is small. However, when simulat-
ing the diffusion sample path in practice, it is impossilde t
follow exactly the dynamics determined by (6). Usually one
needs to discretize the SDE to make the computation of its
solution possible.

A natural discretization for the SDE (6) is proposed by

the Euler scheme with a constant step of discretizaiion
0, defined as

z+1 )

Ly =L +hVV(LY)+V2hWy, LY =0, (11)
fork =0,1,...,[T/h] — 1, whereW, W, ... are i.i.d.

standard Gaussian random vector®iH and[z] stands for

the integer part of € R. Obviously, the sequendd.; k >

0} defines a discrete-time Markov process. Furthermore, one
can show that this Markov process can be extrapolated to a
continuous-time diffusion-type process which converges i
distribution to the Langevin diffusion as— 0. Here extrap-
olation means the construction of a procggg’; ¢ € [0, T}
satisfyingL¥, = L{ for everyk = 0,...,[T/h]. Such a
processL” can be defined as a solution of the SDE

[T/h]—-1

dL® = > iy (t/B)VV(LY) dt + V2dW,, £ >0
k=0

This amounts to connecting the successive values of the Mar-
kov chain by independent Brownian bridges. The Girsanov
formula implies that the Kullback-Leibler divergence oéth
distribution of the proces§L,;¢ € [0,T]} from the distri-
bution of {LF;t € [0, 7]} tends to zero ah tends to zero.
Therefore, it makes sense to approximbteby

A

- F E

Ly, =—— L.

T,h [T/h] kzzo k

This discretization algorithm is easily implementable and
for small values of, Eih is very close to the integral =



J Apv(X)dX of interest. However, for some values fof

the advantage of being simple for implementation, but it has

which may eventually be small but not enough, the Markov the drawback of being not scale invariant. A better strategy

process{ LY k > 0} is transient and therefore, the sum in
the definition ofi,ih explodes. To circumvent this prob-

lem, one can either modify the Markov chaIrf by incor-
porating a Metropolis-Hastings correction, or take a semall

for choosindI" is to continue the procedure until the conver-
gence is observed.

5.1.2 Choiceof h
We choose the step of discretization in the form:

h and restart the computations. The former approach has

the advantage of guaranteeing the convergence to thedesire

distribution. However, it considerably slows down the algo
rithm because of a significant probability of rejection attea

step of discretization. Of course, the second approachrevhe

we just take a smalle, also slows down the algorithm but
at least we keep some control on its time of execution.

5 Implementation and experimental results

h=B/(Mn) = 3/Tr(X"X).
More details on the choice df andT" will be given in a
future work.
5.1.3 Choiceof 8,7 and o
In our simulations we use the parameter values

a=0, f=402, 71=40/(Tr(XTX))V2.

In this section we give more details on the implementation These values of and+ are derived from the theory devel-
of the LMC for computing the EW-aggregate in the linear oped above. However, we take here= 0 and nota > 0

regression model.

5.1 Implementation

as suggested in Section 3. We introduced there 0 for
theoretical convenience, in order to guarantee the geomet-
ric mixing of the Langevin diffusion. Numerous simulations

The input of the algorithm we are going to describe is the show that mixing properties of the Langevin diffusion are

triplet (Y, X, o) and the tuning paramete(s, 3,7, h, T,
where

Y is then-vector of values of the response variable,
Xis then x M matrix of predictor variables,

o is the noise level,

0 is the temperature parameter of the EW-aggregate,
« andr are the parameters of the sparsity prior,

h andT are the parameters of the LMC algorithm.

The output of the proposed algorithm is a vector RM
such that, for every: € RM™, =™ X provides a prediction for

the unobservable value of the response variable correspon

ing to x. The pseudo-code of the algorithm is given below.

Input: ObservationgY, X, o) and parameters
(a7 ﬁ7 7—7 h> T)
Output: The vectork
Set
[n,M]=size(X);
L=zeros(M,1);
lambda=zeros(M,1);
H=0;
Calculate
XX=X"* X;
Xy=X"+y;
while His less tharil do
nablav=(2/ ) * (Xy-XX *L)- a*&'(al);
nablavV=nablaV-4 *L./( 7°2+L72);
L=L+h*nablaV+sqrt(2  *h) *randn(M,1);
H=H+h;
lambda=lambda+h *L/T;
end
return lambda

5.1.1 Choiceof T
Since the convergence rate bf to \ is of the order’~1/2

preserved withv = 0 as well.

5.2 Numerical experiments

We present below two examples of application of the EWA
with LMC for simulated data sets. In both examples we give
also the results obtained by the Lasso procedure (rather as
a benchmark, than for comparing the two procedures). The
main goal of this section is to illustrate the predictiveliypi

of the EWA and to show that it can be easily computed for
relatively large dimensions of the problem. In all examples
the Lasso estimators are computed with the tuning parameter

gedual too/8log M /n (cf. [BRTO8]).
521 Examplel

Consider the modeY = X\* + o¢, whereXisaM x n
matrix with independent entries, such that each entry is a
Rademacher random variable. Such matrices are particu-
larly well suited for applications in compressed sensinge T
noise¢ € R” is a vector of independent standard Gaussian
random variables. The vector* is chosen to beS-sparse,
wheresS is much smaller than/. W. 1. 0. g. we consider vec-
tors A* such that only firstS coordinates are different from

0; more preciselyp; = 1(j < S). Following [CT07], we
chooser? = S/9. We run our procedure for several values
of S andM. The results of 500 replications are summarized
in Table 1. A typical scatterplot of estimated coefficiers f

M = 500,n = 200 andS = 20 is presented in Fig. 2.

An interesting observation is that the EWA selects the
set of nonzero coordinates af even better than the Lasso
does. In fact, the approximate sparsity of the EWA is not
very surprising, since in the noise-free linear models with
orthogonal matrixX, the symmetry of the prior implies that
the EWA estimates the zero coordinates without error.

5.2.2 Example2
Consider model (1) wherg; are independent random vari-

and the best rate of convergence an estimator can achievebles uniformly distributed in the unit squdte 1]? and¢;

is n=1/2 it is natural to sef” = n. This choice ofl’ has

are iid V(0,0?) random variables. For an integer> 0,
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Figure 2: A typical result of the EWA (top panel) and the
Lasso (bottom panel) in the setup of Example 1 with=

200, M = 500 andS = 20. For better visibility, only 60
first coefficients are plotted.

EWA Lasso Ideal LG

c=2,n=100| 0210 0759  0.330
T=1 (0.072) (0.562) (0.145)
c=4,n=100| 0420 2323 0038
T=1 (0.222) (1.257) (0.631)
c=2,n=200] 0187 0661 0203
T=1 (0.048) (0.503)  (0.086)

o =4,n=200] 0278 2230 0571
T=1 (0.132) (1.137) (0.324)

Table 2: Average losfy . (>, oy —\5)¢; (ac))2 dx of the
the EWA, the Lasso and the ideal LG procedures in Example
2. The standard deviation is given in parentheses.

smoothing parameter,/8 log M /n is not much worse than
the ideal Lasso-Gauss (LG) estimator. We call the LG es-
timator the ordinary least squares estimator in the reduced
model where only the predictor variables selected at a pre-
liminary Lasso step are kept. Of course, the performance of
the LG procedure depends on the initial choice of the tun-
ing parameter for the Lasso step. In our simulations, we use
its ideal (oracle) value minimizing the prediction errodan
therefore, we call the resulting procedure the ideal LG esti
mator.

As expected, the EWA has a smaller predictive risk than
the Lasso estimator. A very good news is the supremacy of
the EWA with respect to the ideal LG. Of course, the LG pro-
cedure is faster. However, even from this point of view the

M =200 M =500 EWA is rather attractive, since it takes less than two sesond
EWA Lasso EWA Lasso to compute it in the present example.
n = 200 0.022 0.657 0.019 0.746
S=5 | (0.013) (0.155) (0.012) (0.157)
n = 200 0.109 2.790 0.117 3.299
S=10 | (0.052) (0.617) (0.051) (0.730)
n = 200 1.790 11.70 3.045 12.990
S=20 | (1.467) (1.672) (2.015) (1.607)
Table 1: Average losA — A*||2 of the estimators obtained

by the EW-aggregate and the Lasso in Example 1. The stan-

dard deviation is given in parentheses. Original image Estimated image

c=0.5

Estimated image Estimated image
oc=1 o=2
Figure 3: The original image (left panel) and the EWA esti-
mated image from noisy observations with= 0.5, 0 = 1
ando = 2, respectively. In all cases = 200 andk = 15.

we consider the indicator functions of rectangles with side
parallel to the axes and having as left-bottom vertex the ori
gin and as right-top vertex a point of the forfiyk, j/k),
(i,7) € N2, Formally, we define; by

Gli—1)k+5 () = Tjo,i1x (0,57 (kx), Ve [0,1]*

The underlying imagef we are trying to recover is taken
as a superposition of a small number of rectangles of this

form, thatisf(z) = Zf; A ¢e(z), forall z € [0, 1]% with
someX* having a smally-norm. We sek = 15, || X|o0 =
3, Ao = Moo = Asgo = 1. Thus, the cardinality of the
dictionary isM = k* = 225.

In this example the functiong; are strongly correlated
and therefore the assumptions like restricted isometrgwor |
coherence are not fulfilled. Nevertheless, the Lasso sdecee This paper contains two contributions: New oracle inequal-
in providing an accurate prediction (cf. Table 2). Further- ities for EWA, and the LMC method for approximate com-
more, the Lasso with the theoretically justified choice @& th putation of the EWA. The first oracle inequality presented

6 Conclusion and outlook



in this work is in the line of the PAC-Bayesian bounds ini-
tiated by McAllester [McAOQ3]. It is valid for any prior dis-

ing, volume 56. IMS Lecture Notes Monograph
Series, December 03 2007.

tribution and gives a bound on the risk of the EWA with an [CBCGO04] N. Cesa-Bianchi, A. Conconi, and C. Gentile.

arbitrary family of functions. Next, we derive another in-
equality, which is adapted to the sparsity scenario anedall
the sparsity oracle inequality (SOI). In order to obtaimig
propose a prior distribution favoring sparse represemati
The resulting EWA is shown to behave almost as well as the
best possible linear combination within a residual term pro
portional toM*(log M) /n, whereM is the true dimension,
M* is the number of atoms entering in the best linear combi-
nation and. is the sample size. A remarkable fact is that this
inequality is obtained under no condition on the relatigmsh
between different atoms.

Sparsity oracle inequalities similar to that of Theorem 2
are valid for the penalized empirical risk minimizers (ERM)
with a £y-penalty (proportional to the number of atoms in-
volved in the representation). It is also well known that the
problem of computing thé)-penalized ERM is NP-hard. In
contrast with this, we have shown that the numerical eval-
uation of the suggested EWA is a computationally tractable [DT07]
problem. We demonstrated that it can be efficiently solved
by the LMC algorithm. Numerous simulations we did (some
of which are included in this work) confirm our theoretical
findings and, furthermore, suggest that the EWA is able to
efficiently select the sparsity pattern. Theoretical ficsti
tion of this fact, as well as more thorough investigation of
the choice of parameters involved in the LMC algorithm, are
interesting topics for future research.
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