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Abstract

We consider the problem of regression learning for
deterministic design and independent random er-
rors. We start by proving a sharp PAC-Bayesian
type bound for the exponentially weighted aggre-
gate (EWA) under the expected squared empirical
loss. For a broad class of noise distributions the
presented bound is valid whenever the temperature
parameterβ of the EWA is larger than or equal to
4σ2, whereσ2 is the noise variance. A remarkable
feature of this result is that it is valid even for un-
bounded regression functions and the choice of the
temperature parameter depends exclusively on the
noise level.

Next, we apply this general bound to the problem
of aggregating the elements of a finite-dimensional
linear space spanned by a dictionary of functions
φ1, . . . , φM . We allowM to be much larger than
the sample sizen but we assume that the true re-
gression function can be well approximated by a
sparse linear combination of functionsφj . Under
this sparsity scenario, we propose an EWA with
a heavy tailed prior and we show that it satisfies
a sparsity oracle inequality with leading constant
one.

Finally, we propose several Langevin Monte-Carlo
algorithms to approximately compute such an EWA
when the numberM of aggregated functions can
be large. We discuss in some detail the conver-
gence of these algorithms and present numerical
experiments that confirm our theoretical findings.

1 Introduction

In recent years a great deal of attention has been devoted to
learning in high-dimensional models under the sparsity sce-
nario. This typically assumes that, in addition to the sample,
we have a finite dictionary of very large cardinality such that
a small set of its elements provides a nearly complete de-
scription of the underlying model. Here, the words “large”
and “small” are understood in comparison with the sample
size. Sparse learning methods have been successfully ap-
plied in bioinformatics, financial engineering, image pro-
cessing, etc. (see, e.g., the survey in [Yu07]).

A popular model in this context is linear regression. We
observen pairs(X1, Y1), . . . , (Xn, Yn), where eachXi –
called the predictor – belongs toRM andYi – called the re-
sponse – is scalar and satisfiesYi = X⊤

i λ0 + ξi with some
zero-mean noiseξi. The goal is to develop inference on the
unknown vectorλ0 ∈ R

M .

In many applications of linear regression the dimension
of Xi is much larger than the sample size, i.e.,M ≫ n. It is
well-known that in this case classical procedures, such as the
least squares estimator, do not work. One of the most com-
pelling ways for dealing with the situation whereM ≫ n
is to suppose that the sparsity assumption is fulfilled, i.e.,
thatλ0 has only few coordinates different from0. This as-
sumption is helpful at least for two reasons: The model be-
comes easier to interpret and the consistent estimation ofλ0

becomes possible if the number of non-zero coordinates is
small enough.

During the last decade several learning methods exploit-
ing the sparsity assumption have been discussed in the liter-
ature. Theℓ1-penalized least squares (Lasso) is by far the
most studied one and its statistical properties are now well
understood (cf., e.g., [BRT08, BTW06, BTW07a, BTW07b,
MB06, vdG08, ZH08] and the references cited therein). The
Lasso is particularly attractive by its low computational cost.
For instance, one can use the LARS algorithm [EHJT04],
which is quite popular. Other procedures based on closely
related ideas include the Elastic Net [ZH05], the Dantzig se-
lector [CT07] and the least squares with entropy penalization
[Kol08]. However, one important limitation of these proce-
dures is that they are provably consistent under rather restric-
tive assumptions on the Gram matrix associated to the pre-
dictors, such as the mutual coherence assumption [DET06],
the uniform uncertainty principle [CT06], the irrepresentable
[ZY06] or the restricted eigenvalue [BRT08] conditions. This
is somewhat unsatisfactory, since it is known that, at least
in theory, there exist estimators attaining optimal accuracy
of prediction under almost no assumption on the Gram ma-
trix. This is, in particular, the case for theℓ0-penalized least
squares estimator [BTW07a, Thm. 3.1]. However, the com-
putation of this estimator is an NP-hard problem. We finally
mention the paper [WR07], which brings to attention the fact
that the empirical Bayes estimator in Gaussian regression
with Gaussian prior can effectively recover the sparsity pat-
tern. This method is realized in [WR07] via the EM alorithm.
However, its theoretical properties are not explored, and it is



not clear what are the limits of application of the method be-
yond the considered set of numerical examples.

In [DT07, DT08] we proposed another approach to learn-
ing under the sparsity scenario, which consists in using an
exponentially weighted aggregate (EWA) with a properly cho-
sen sparsity-favoring prior. There exists an extensive lit-
erature on EWA. Some recent results focusing on the sta-
tistical properties can be found in [Alq08, Aud08, Cat07,
JRT08, LB06, Yan04]. Procedures with exponential weight-
ing received much attention in the literature on the on-line
learning, see [CBCG04, HKW98, Vov90], the monograph
[CBL06] and the references cited therein.

The main message of [DT07, DT08] is that the EWA with
a properly chosen prior is able to deal with the sparsity issue.
In particular, [DT07, DT08] prove that such an EWA satis-
fies a sparsity oracle inequality (SOI), which is more power-
ful than the best known SOI for other common procedures
of sparse recovery. An important point is that almost no
assumption on the Gram matrix is required. In the present
work we extend this analysis in two directions. First, we
prove a sharp PAC-Bayesian bound for a large class of noise
distributions, which is valid for the temperature parameter
depending only on the noise distribution. We impose no re-
striction on the values of the regression function. This result
is presented in Section 2. The consequences in the context
of linear regression under sparsity assumption are discussed
in Section 3.

The second problem that we analyze here is the com-
putation of EWA with the sparsity prior. Since we want to
deal with large dimensionsM , computation of integrals over
R

M in the definition of this estimator can be a hard problem.
Therefore, we suggest an approximation based on Langevin
Monte-Carlo (LMC). This is described in detail in Section 4.
Section 5 contains numerical experiments that confirm fast
convergence properties of the LMC and demonstrate a nice
performance of the resulting estimators.

2 PAC-Bayesian type oracle inequality
Throughout this section, as well as in Section 3, we assume
that we are given the data(Zi, Yi), i = 1, . . . , n, generated
by the non-parametric regression model

Yi = f(Zi) + ξi, i = 1, . . . , n, (1)
with deterministic designZ1, . . . , Zn and random errorsξi.
We use the vector notationY = f + ξ. Thus, in what fol-
lows, the functionf(·) is identified with the vectorf =
(f(Z1), . . . , f(Zn))⊤. The spaceZ containing the design
pointsZi can be arbitrary andf is a mapping fromZ to
R. For each functionh : Z → R, we denote by‖h‖n the

empirical norm
(

1
n

∑n
i=1 h(Zi)

2
)1/2

. Along with these no-
tation, we will denote by‖v‖p theℓp-norm of a vectorv =
(v1, . . . , vn) ∈ R

n, that is‖v‖p
p =

∑n
i=1 |vi|p, 1 6 p < ∞,

‖v‖∞ = maxi |vi| and‖v‖0 is the number of nonzero en-
tries ofv. With this notation,‖f‖2

2 = n‖f‖2
n.

The noise vectorξ = (ξ1, . . . , ξn)⊤ is assumed to have
zero mean and independent identically distributed (iid) coor-
dinates. We introduce the following assumption on the dis-
tribution of noise.

Assumption N. For anyγ > 0 small enough, there exist a
probability space and two random variablesξ andζ defined

on this probability space such that

i) ξ has the same distribution as the regression errorsξi,

ii) ξ + ζ has the same distribution as(1 + γ)ξ and the
conditional expectationE[ζ|ξ] = 0,

iii) there exist a real numbert0 ∈ (0,∞] and a bounded
Borel functionv : R → R+ such that,

lim
γ→0

sup
(t,a)∈[−t0,t0]×supp(ξ)

logE[etζ|ξ = a]

t2γv(a)
= 1,

wheresupp(ξ) is the support of the distribution ofξ.

Assume that we are given a collection{fλ : λ ∈ Λ} of
functionsfλ : Z → R that will serve as building blocks for
the learning procedure.The setΛ is assumed to be equipped
with a σ-algebra and the mappingsλ 7→ fλ(z) are assumed
to be measurable with respect to thisσ-algebra for allz ∈
Z. Let π be a probability measure onΛ, called the prior,
and letβ be a positive real number, called the temperature
parameter. We define the EWA by

f̂n(z) =

∫

Λ

fλ(z) π̂n,β(dλ),

whereπ̂n,β is the (posterior) probability distribution

π̂n,β(dλ) ∝ exp
{
− β−1‖Y − fλ‖2

2

}
π(dλ).

We assume that the setΛ satisfies

(λ, λ′) ∈ Λ2 =⇒ max
i

|fλ(Zi) − fλ′(Zi)| 6 L (2)

for someL ∈ [0,∞]. In the sequel, we use the convention
+∞
+∞ = 0 and we denote by‖v‖∞ theL∞(R)-norm of func-
tion v.

Theorem 1 Let Assumption N be satisfied with some func-
tion v and let (2) hold. Then for any priorπ, any probability
measurep onΛ and anyβ > max(4‖v‖∞, 2L/t0) we have

E[‖f̂n − f‖2
n] 6

∫

Λ

‖f − fλ‖2
n p(dλ) +

βK(p, π)

n
,

whereK(· , ·) stands for the Kullback-Leibler divergence.

Proof: It suffices to prove the theorem forp such that
∫

Λ

‖fλ − f‖2
n p(dλ) < ∞

andp ≪ π (implying K(p, π) < ∞), since otherwise the
result is trivial.

We first assume thatβ > 4‖v‖∞ and thatL < ∞. Let
γ > 0 be a small number. Let now(ξ1, ζ1), . . . , (ξn, ζn)
be a sequence of iid pairs of random variables defined on
a common probability space such that(ξi, ζi) satisfy con-
ditions i)-iii) of Assumption N for anyi. The existence of
these random variables is ensured by Assumption N. We use
here the same notationξi as in model (1), since it causes no
ambiguity.

Sethλ = fλ − f , ĥ = f̂n − f , ζ = (ζ1, . . . , ζn)⊤,
U(h, h′) = ‖h‖2

2 + 2h⊤h′ and∆U(h, h′, h′′) = (‖h‖2
2 −



‖h′‖2
2) + 2(h − h′)⊤h′′ for any pairh, h′, h′′ ∈ R

n. With
this notation we have

E[‖f̂n − f‖2
n] = E[‖ĥ‖2

n] = E

[
‖ĥ‖2

n +
2

nγ
ĥ
⊤
ζ
]
.

Therefore,E[‖f̂n − f‖2
n] = S + S1, where

S = − β

nγ
E

[
log

∫

Λ

exp
(
− γU(hλ, γ−1ζ)

β

)
π̂n,β(dλ)

]
,

S1 =
β

nγ
E

[
log

∫

Λ

exp
(
− γ∆U(hλ, ĥ, γ−1ζ)

β

)
π̂n,β(dλ)

]
.

We first bound the termS. To this end, note that

π̂n,β(dλ) =
exp{−β−1U(hλ, ξ)}∫

Λ
exp{−β−1U(hw, ξ)}π(dw)

π(dλ)

and therefore

S =
β

nγ
E

[
log

∫

Λ

exp
{
− 1

β U(hλ, ξ)
}
π(dλ)

]

− β

nγ
E

[
log

∫

Λ

exp
{
− 1+γ

β U
(
hλ, ξ+ζ

1+γ

)}
π(dλ)

]
.

By part ii) of Assumption N and the independence of vectors
(ξi, ζi) for different values ofi, the probability distribution of
the vector(ξ+ζ)/(1+γ) coincides with that ofξ. Therefore,
(ξ + ζ)/(1 + γ) may be replaced byξ inside the second
expectation. Now, using the Hölder inequality, we get

S 6 − β

n(1 + γ)
E

[
log

∫

Λ

e−(1+γ)β−1U(hλ,ξ)π(dλ)
]
.

Next, by a convex duality argument [Cat04, p. 160], we find

S 6

∫

Λ

‖hλ‖2
n p(dλ) +

βK(p, π)

n(1 + γ)
.

Let us now bound the termS1. According to part iii) of
Assumption N, there existsγ0 > 0 such that∀γ 6 γ0,

sup
|t|6t0

logE[etζ |ξ = a]

t2γ
6 v(a)(1 + oγ(1)), ∀ a ∈ R.

In what follows we assume thatγ 6 γ0. Since for every
i, |2β−1(hλ(Zi) − ĥ(Zi))| 6 2β−1L 6 t0, using Jensen’s
inequality we get

S1 6
β

nγ
E

[
log

∫

Λ

exp
{
− nγ

β
(‖hλ‖2

n − ‖ĥ‖2
n)

}
θλ

×E

(
exp

{ n∑

i=1

2β−1(hλ(Zi) − ĥ(Zi))ζi

}∣∣ξ
)
π(dλ)

]

6
β

nγ
E

[
log

∫

Λ

exp
{
− nγ

β
(‖hλ‖2

n − ‖ĥ‖2
n)

}
θλ

× exp
{4n‖v‖∞γ

β2
‖hλ − ĥ‖2

n(1+ oγ(1))
}

π(dλ)
]
.

For γ small enough (γ 6 γ̃0), this entails that up to a pos-
itive multiplicative constant, the termS1 is bounded by the

expressionE
[
log

∫
Λ

exp
(
− nγV (hλ,ĥ)

β2

)
θλπ(dλ)

]
, where

V (hλ, ĥ)= β(‖hλ‖2
n − ‖ĥ‖2

n)+
(β + 4‖v‖∞)

2
‖hλ− ĥ‖2

n.

Using [DT07, Lemma 3] and Jensen’s inequality we obtain
S1 6 0 for anyγ 6 (β − 4‖v‖∞)/4nL. Thus, we proved
that

E[‖ĥ‖2
n] 6

∫

Λ

‖hλ‖2
n p (dλ) +

β K(p, π)

n(1 + γ)

for anyγ 6 γ̃0 ∧ (β − 4‖v‖∞)/4nL. Lettingγ tend to zero,
we obtain

E[‖ĥ‖2
n] 6

∫

Λ

‖hλ‖2
np(dλ) +

β K(p, π)

n

for anyβ > max(4‖v‖∞, 2L/t0). Fatou’s lemma allows us
to extend this inequality to the caseβ = max(4‖v‖∞, 2L/t0).

To cover the caseL = +∞, t0 = +∞, we fix some
L0 ∈ (0,∞) and apply the obtained inequality to the trun-
cated priorπL′

(dλ) ∝ 1lΛL′
(λ)π(dλ), whereL′ ∈ (L0,∞)

andΛL′ = {λ ∈ Λ : maxi |fλ(Zi)| 6 L′}. We obtain that
for any measurep ≪ π supported byΛL0

,

E[‖ĥL′‖2
n] 6

∫

Λ

‖hλ‖2
n p(dλ) +

βK(p, πL′

)

n

6

∫

Λ

‖hλ‖2
n p(dλ) +

βK(p, π)

n
.

One easily checks thatĥL′

tends a.s. tôh and that the random
variablesupL′>L0

‖ĥL′‖2
n1l(maxi |ξi| 6 C) is integrable for

any fixedC. Therefore, by Lebesgue’s dominated conver-
gence theorem we get

E[‖ĥ‖2
n1l(max

i
|ξi| 6 C)] 6

∫

Λ

‖hλ‖2
n p(dλ) +

βK(p, π)

n
.

Letting C tend to infinity and using Lebesgue’s monotone
convergence theorem we obtain the desired inequality for
any probability measurep which is absolutely continuous
w.r.t.π and is supported byΛL0

for someL0 > 0. If p(ΛL0
) <

1 for anyL0 > 0, one can replacep by its truncated version
pL′

and use Lebesgue’s monotone convergence theorem to
get the desired result.

An important point is that many symmetric distributions
encountered in applications satisfy Assumption N withv(a)
being identically equal to the variance of the noise. This
follows from the next remarks and their combinations.

Remark 1 (Gaussian noise) If ξ1 is drawn according to the
Gaussian distributionN (0, σ2), then for anyγ > 0 one can
chooseζ independently ofξ according to the Gaussian dis-
tributionN (0, (2γ + γ2)σ2). This results inv(a) ≡ σ2 and,
as a consequence, Theorem 1 holds for anyβ > 4σ2. Note
that this reduces to the Leung and Barron’s [LB06] result if
the priorπ is discrete.

Remark 2 (Rademacher noise) If ξ1 is drawn according to
the Rademacher distribution, i.e.P(ξ1 = ±σ) = 1/2, then
for anyγ > 0 one can defineζ as follows:

ζ = (1 + γ)σ sgn[σ−1ξ − (1 + γ)U ] − ξ,

whereU is distributed uniformly in[−1, 1] and is indepen-
dent ofξ. This results inv(a) ≡ σ2 and, as a consequence,
Theorem 1 holds for anyβ > 4σ2 = 4E[ξ2

1 ].



Remark 3 (Stability by convolution) Assume thatξ1 andξ′1
are two independent random variables. Ifξ1 and ξ′1 sat-
isfy Assumption N witht0 = ∞ and with functionsv(a)
and v′(a), then any linear combinationαξ1 + α′ξ′1 satis-
fies Assumption N witht0 = ∞ and thev-functionα2v(a)+
(α′)2v′(a).

Remark 4 (Uniform distribution) The claim of preceding
remark can be generalized to linear combinations of a count-
able set of random variables, provided that the series con-
verges in the mean squared sense. In particular, ifξ1 is
drawn according to the symmetric uniform distribution with
varianceσ2, then Assumption N is fulfilled witht0 = ∞
and v(a) ≡ σ2. This can be proved using the fact thatξ1

has the same distribution as
∑∞

i=1 2−iηi, whereηi are iid
Rademacher random variables. Thus, in this case the in-
equality of Theorem 1 is true for anyβ > 4σ2.

Remark 5 (Laplace noise) If ξ1 is drawn according to the
Laplace distribution with varianceσ2, then for anyγ > 0
one can chooseζ independently ofξ according to the distri-
bution associated to the characteristic function

ϕ(t) =
1

(1 + γ)2

(
1 +

2γ + γ2

1 + (1 + γ)2(σt)2/2

)
.

One can observe that the distribution ofζ is a mixture of the
Dirac distribution at zero and the Laplace distribution with
variance(1 + γ)2σ2. This results inv(a) ≡ 2σ2/(2− σ2t20)
and, as a consequence, by takingt0 = 1/σ2, we get that
Theorem 1 holds for anyβ > max(8σ2, 2Lσ).

Remark 6 (Bounded symmetric noise) Assume that the er-
rors ξi are symmetric and thatP (|ξi| 6 B) = 1 for some
B ∈ (0,∞). LetU ∼ U([−1, 1]) be a random variable inde-
pendent ofξ. Then,ζ = (1+γ)|ξ| sgn[sgn(ξ)−(1+γ)U ]−ξ
satisfies Assumption N withv(a) = a2. Since‖v‖∞ 6 B2,
we obtain that Theorem 1 is valid for anyβ > 4B2.

3 Sparsity prior and SOI

In this section we introduce the sparsity prior and present a
sparsity oracle inequality (SOI) derived from Theorem 1.

In what follows we assume thatΛ ⊂ R
M for some posi-

tive integerM . We will use boldface letters to denote vectors
and, in particular, the elements ofΛ. For any square matrix
A, let Tr(A) denote the trace (sum of diagonal entries) ofA.
Furthermore, we focus on the particular case whereFΛ is a
convex subset of the vector space spanned by a finite number
of measurable functions

{
φj

}
j=1,...,M

. More specifically,
we assume that, for someR ∈ (0, +∞],

FΛ =
{

fλ =

M∑

j=1

λjφj

∣∣∣ λ ∈ R
M satisfies‖λ‖1 6 R

}
,

where‖λ‖1 =
∑

j |λj | stands for theℓ1-norm. If, in addi-
tion,f ∈ FΛ, then model (1) reduces to that of linear regres-
sion defined in the Introduction. Indeed, it suffices to take

Xi = (φ1(Zi), . . . , φM (Zi))
⊤, i = 1, . . . , n.

This notation will be used in the rest of the paper along with
the assumption thatX i are normalized so that all the diago-
nal entries of matrix1n

∑n
i=1 XiX

⊤
i are equal to one.

We allowM to be large, possibly much larger than the
sample sizen. If M ≫ n, we have in mind that the spar-
sity assumption holds, i.e., there existsλ∗ ∈ R

M such thatf
in (1) is close tofλ∗ for someλ∗ having only a small num-
ber of non-zero entries. We handle this situation via a suit-
able choice of priorπ. Namely, we use a modification of the
sparsity prior proposed in [DT07]. It should be emphasized
right away that we will take advantage of sparsity for the
purpose of prediction and not for data compression. In fact,
even if the underlying model is sparse, we do not claim that
our estimator is sparse as well, but we claim that it is quite
accurate under very mild assumptions. On the other hand,
some simulations demonstrate the sparsity of our estimator
and the fact that it recovers correctly the true sparsity pattern
in examples where the (restrictive) assumptions mentioned
in the Introduction are satisfied (cf. Section 5). However,
our theoretical results do not deal with this property.

To specify the sparsity priorπ we need the Huber func-
tion ω̄ : R → R defined by

ω̄(t) =

{
t2, if |t| 6 1

2|t| − 1, otherwise.

This function behaves very much like the absolute value of
t, but has the advantage of being differentiable at every point
t ∈ R. Let τ andα be positive numbers. We define the
sparsity prior

π(dλ) =
τ2M

Cα,τ,R

{ M∏

j=1

e−ω̄(αλj)

(τ2 + λ2
j )2

}
1l(‖λ‖1 6 R) dλ, (3)

whereCα,τ,R is the normalizing constant.
Since the sparsity prior (3) looks somewhat complicated,

an heuristical explanation is in order. Let us assume thatR
is large andα is small so that the functionse−ω̄(αλj) and
1l(‖λ‖1 6 R) are approximately equal to one. With this
in mind, we can notice thatπ is close to the distribution
of

√
2τY, whereY is a random vector having iid coordi-

nates drawn from Student’s t-distribution with three degrees
of freedom. In the examples below we choose a very smallτ ,
smaller than1/n. Therefore, most of the coordinates ofτY
are very close to zero. On the other hand, since Student’s
t-distribution has heavy tails, a few coordinates ofτY are
quite far from zero.

These heuristics are illustrated by Figure 1 presenting the
boxplots of one realization of a random vector inR

10.000

with iid coordinates drawn from the scaled Gaussian, Laplace
(double exponential) and Studentt(3) distributions. The scal-
ing factor is such that the probability densities of the simu-
lated distributions are equal to100 at the origin. The boxplot
which is most likely to represent a sparse vector corresponds
to Student’st(3) distribution.

The relevance of heavy tailed priors for dealing with spar-
sity has been emphasized by several authors (see [See08,
Section 2.1] and references therein). However, most of this
work focused on logarithmically concave priors, such as the
multivariate Laplace distribution. Also in wavelet estima-
tion on classes of “sparse” functions [JS05] and [Riv06] in-
voke quasi-Cauchy and Pareto priors. Bayes estimators with
heavy-tailed priors in sparse Gaussian shift models are dis-
cussed in [AGP07].
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Figure 1: The boxplots of a sample of size104 drawn from
the scaled Gaussian (left panel), Laplace (central panel) and
Studentt(3) (right panel) distributions. In all three cases the
location parameter is0 and the scale parameter is10−2.

The next theorem provides a SOI for the EWA with the
sparsity prior (3).

Theorem 2 Let Assumption N be satisfied with some func-
tion v and let (2) hold. Take the priorπ defined in (3) and
β > max(4‖v‖∞, 2L/t0). Assume thatR > 2Mτ and
α 6 1/(4Mτ). Then for allλ∗ such that‖λ∗‖1 6 R−2Mτ
we have

E[‖f̂n − f‖2
n] 6 ‖fλ∗ − f‖2

n +
4β

n

M∑

j=1

log
(
1 +

|λ∗

j |

τ

)

+
2β(α‖λ∗‖1 + 1)

n
+ 4eτ2M. (4)

Proof: Let us define the probability measurep0 by

dp0

dλ
(λ) ∝

(
dπ

dλ
(λ − λ∗)

)
1lB1(2Mτ)(λ − λ∗). (5)

Since‖λ∗‖1 6 R−2Mτ , the conditionλ−λ∗ ∈ B1(2Mτ)
implies thatλ ∈ B1(R) and, therefore,p0 is absolutely con-
tinuous w.r.t. the sparsity priorπ. In view of Thm. 1, we
have

E[‖f̂n − f‖2
n] 6

∫

Λ

‖fλ − f‖2
n p0(dλ) +

βK(p0, π)

n
.

The facts thatfλ(Zi) = X⊤
i λ and the diagonal entries of

the matrix 1
n

∑
i XiX

⊤
i are equal to one, together with the

symmetry ofp0 w.r.t.λ∗ yield
∫

Λ

‖fλ−f‖2
n p0(dλ) = ‖fλ∗−f‖2

n+

∫

RM

‖λ−λ∗‖2
2 p0(dλ).

To complete the proof, we use the following technical result.

Lemma 3 For every integerM larger than1, we have:∫

RM

(λ1 − λ∗
1)

2p0(dλ) 6 4τ2e4Mατ ,

K(p0, π) 6 2(α‖λ∗‖1 + 1) + 4

M∑

j=1

log(1 + |λ∗
j |/τ).

The proof of this lemma is omitted.

Inequality (4) follows from Lemma 3, since
∫

RM ‖λ −
λ∗‖2

2 p0(dλ) = M
∫

RM (λ1 − λ∗
1)

2 p0(dλ) and, under the
assumptions of the theorem,e4Mατ 6 e.

Theorem 2 can be used to choose the tuning parameters
τ, α, R when M ≫ n. The idea is to choose them such
that both terms in the second line of (4) were of the order
O(1/n). This can be achieved, for example, by takingτ2 ∼
(Mn)−1 andR = O(Mτ). Then the term4β

n

∑M
j=1 log(1+

|λ∗
j |/τ) becomes dominating. It is important that the num-

ber of nonzero summands in this term,M∗, is equal to the
number of nonzero coordinates ofλ∗. Therefore, for sparse
vectorsλ∗, this term is rather small, namely of the order
M∗(log M)/n, which is the optimal rate for problems of
sparse recovery, cf. [BTW06, CT07, BTW07a, BRT08]. An
important difference compared with these and other papers
on ℓ1-based sparse recovery is that in Theorem 2, we have
no assumption on the dictionary{φ1, . . . , φM}.

4 Computation of the EW-aggregate by the
Langevin Monte-Carlo

In this section we suggest Langevin Monte-Carlo (LMC)
procedures to approximately compute the EWA with the spar-
sity prior whenM ≫ n.

4.1 Langevin Diffusion in continuous time

We start by describing a continuous-time Markov process,
called the Langevin diffusion, that will play the key role in
this section. LetV : R

M → R be a smooth function, which
in what follows will be referred to as potential. We will as-
sume that the gradient ofV is locally Lipschitz and is at most
of linear growth. This ensures that the stochastic differential
equation (SDE)

dLt = ∇V (Lt) dt +
√

2 dW t, L0 = λ0, t > 0 (6)

has a unique strong solution, called the Langevin diffusion.
In the last display,W stands for anM -dimensional Brown-
ian motion andλ0 is an arbitrary deterministic vector from
R

M . It is well known that the process{Lt}t>0 is a homo-
geneous Markov process and a semimartingale, cf. [RW87,
Thm. 12.1].

As a Markov process,L may be transient, null recurrent
or positively recurrent. The latter case, which is the most
important for us, corresponds to the process satisfying the
law of large numbers and implies the existence of a station-
ary distribution. In other terms, ifL is positively recurrent,
there exists a probability distributionPV on R

M such that
the processL is stationary provided that the initial condition
λ0 is drawn at random accordingPV . A remarkable prop-
erty of the Langevin diffusion—making it very attractive for
computing high-dimensional integrals—is that its stationary
distribution, if exists, has the density

pV (λ) ∝ eV (λ), λ ∈ R
M ,

w.r.t. the Lebesgue measure [Ken78, Thm. 10.1]. Further-
more, there exist directly verifiable conditions on the poten-
tial V yielding the positive recurrence ofL. The following
proposition contains an example of such a condition.



Proposition 1 ([RS02], Thm 2.1) Assume that the function
V is bounded from above. If there is a twice continuously
differentiable functionD : R

M → [1,∞) and three positive
constantsa, b andr such that

∇V (λ)⊤∇D(λ) + ∆D(λ) 6 −aD(λ) + b1l(‖λ‖2 6 r),
(7)

for everyλ ∈ R
M , then the Langevin diffusionL defined by

(6) isD-geometrically ergodic, that is
∣∣∣E[h(Lt)|L0 = λ0] −

∫

RM

h(λ) pV (dλ)
∣∣∣ 6 RV D(λ0)ρ

t
V

for every functionh satisfying‖h/D‖∞ 6 1 and for some
constantsRV > 0 andρV ∈ (0, 1).

The functionD satisfying condition (7) is often referred
to as Lyapunov function and condition (7) is called drift con-
dition towards the set{λ : ‖λ‖2 6 r}. If satisfied, the drift
condition ensures geometrical mixing. Specifically, for every
functionh such that‖h2/D‖∞ 6 1 and for everyt, s > 0,

∣∣Covλ0
[h(Lt), h(Ls)]

∣∣ 6 RV D(λ0)ρ
|t−s|
V .

Combining this with the result of Proposition 1 it is not hard
to check that if‖h2/D‖∞ 6 1, then

Eλ0

[( 1

T

∫ T

0

h(Lt)dt −
∫

RM

h(λ)pV (dλ)
)2

]
6

C

T
, (8)

whereC is some positive constant depending only onV .
Note also that, in view of Proposition 1, the squared bias
term in the bias-variance decomposition of the left hand side
of (8) is of orderO(T−2). Thus, the main error term comes
from the stochastic part.

4.2 Langevin diffusion associated to EWA

We assume that we are given(Xi, Yi), i = 1, . . . , n, with
Xi ∈ R

M andYi ∈ R. We wish to compute the expression

λ̂ =

∫
RM λ exp

{
− β−1‖Y − Xλ‖2

2

}
π(dλ)

∫
RM exp

{
− β−1‖Y − Xλ‖2

2

}
π(dλ)

, (9)

whereX = (X1, . . . , Xn)⊤. In what follows, we deal with
the prior

π(dλ) ∝
M∏

j=1

e−ω̄(αλj)

(τ2 + λ2
j )

2

assuming thatR = +∞. As proved in Sections 2 and 3,
this choice leads to a sharp oracle inequality for a number
of noise distributions. An equivalent form for writing (9)
is λ̂ =

∫
RM λpV (λ) dλ, pV (λ) ∝ eV (λ) with V (λ) being

equal to

−‖Y − Xλ‖2
2

β
−

M∑

j=1

{
2 log(τ2 + λ2

j) + ω̄(αλj)
}
. (10)

Simple computations show thatD(λ) = eα‖λ‖2 is a
function for which the drift condition (7) is fulfilled. A nice
property of this Lyapunov function is the inequality‖λ‖2

∞ 6

α−1D(λ). It guarantees that (8) is satisfied for the functions
h(λ) = λi. So, let us define the Langevin diffusionLt as

solution of (6) with the potentialV given in (10) and the ini-
tial conditionL0 = 0. In what follows we will consider only
this particular diffusion process. We define the average value

L̄T =
1

T

∫ T

0

Lt dt, T > 0.

According to (8) this average value converges asT → ∞ to
the vectorλ̂ that we want to compute. Clearly, it is much
easier to computēLT thanλ̂. Indeed,λ̂ involves integrals
in M dimensions, whereas̄LT is a one-dimensional integral
over a finite interval. Of course, to compute such an integral
one needs to discretize the Langevin diffusion. This is done
in the next subsection.

4.3 Discretization

Since the sample paths of a diffusion process are Hölder con-
tinuous, it is easy to show that the Riemann sum approxima-
tion

L̄
R
T =

1

T

N−1∑

i=0

LTi
(Ti+1 − Ti),

with 0 = T0 < T1 < . . . < TN = T converges tōLT in
mean square when the sampling is sufficiently dense, that is
whenmaxi |Ti+1 − Ti| is small. However, when simulat-
ing the diffusion sample path in practice, it is impossible to
follow exactly the dynamics determined by (6). Usually one
needs to discretize the SDE to make the computation of its
solution possible.

A natural discretization for the SDE (6) is proposed by
the Euler scheme with a constant step of discretizationh >
0, defined as

LE
k+1 = LE

k + h∇V (LE
k ) +

√
2hW k, LE

0 = 0, (11)

for k = 0, 1, . . . , [T/h] − 1, whereW 1, W 2, . . . are i.i.d.
standard Gaussian random vectors inR

M and[x] stands for
the integer part ofx ∈ R. Obviously, the sequence{Lk; k >

0} defines a discrete-time Markov process. Furthermore, one
can show that this Markov process can be extrapolated to a
continuous-time diffusion-type process which converges in
distribution to the Langevin diffusion ash → 0. Here extrap-
olation means the construction of a process{L̃E

t ; t ∈ [0, T ]}
satisfyingL̃E

kh = LE
k for everyk = 0, . . . , [T/h]. Such a

process̃LE can be defined as a solution of the SDE

dL̃E =

[T/h]−1∑

k=0

1l[k,k+1)(t/h)∇V (LE
k ) dt +

√
2 dW t, t > 0.

This amounts to connecting the successive values of the Mar-
kov chain by independent Brownian bridges. The Girsanov
formula implies that the Kullback-Leibler divergence of the
distribution of the process{Lt; t ∈ [0, T ]} from the distri-
bution of{L̃t

E ; t ∈ [0, T ]} tends to zero ash tends to zero.
Therefore, it makes sense to approximateL̄T by

L̄
E
T,h =

1

[T/h]

[T/h]−1∑

k=0

LE
k .

This discretization algorithm is easily implementable and,
for small values ofh, L̄

E
T,h is very close to the integral̂λ =



∫
λ pV (λ) dλ of interest. However, for some values ofh,

which may eventually be small but not enough, the Markov
process{LE

k ; k > 0} is transient and therefore, the sum in

the definition ofL̄
E
T,h explodes. To circumvent this prob-

lem, one can either modify the Markov chainLE
k by incor-

porating a Metropolis-Hastings correction, or take a smaller
h and restart the computations. The former approach has
the advantage of guaranteeing the convergence to the desired
distribution. However, it considerably slows down the algo-
rithm because of a significant probability of rejection at each
step of discretization. Of course, the second approach, where
we just take a smallerh, also slows down the algorithm but
at least we keep some control on its time of execution.

5 Implementation and experimental results

In this section we give more details on the implementation
of the LMC for computing the EW-aggregate in the linear
regression model.

5.1 Implementation

The input of the algorithm we are going to describe is the
triplet (Y, X, σ) and the tuning parameters(α, β, τ, h, T ),
where

- Y is then-vector of values of the response variable,
- X is then × M matrix of predictor variables,
- σ is the noise level,
- β is the temperature parameter of the EW-aggregate,
- α andτ are the parameters of the sparsity prior,
- h andT are the parameters of the LMC algorithm.

The output of the proposed algorithm is a vectorλ̂ ∈ R
M

such that, for everyx ∈ R
M , x⊤λ̂ provides a prediction for

the unobservable value of the response variable correspond-
ing tox. The pseudo-code of the algorithm is given below.

Input: Observations(Y, X, σ) and parameters
(α, β, τ, h, T )

Output: The vector̂λ
Set

[n,M]=size(X);
L=zeros(M,1);
lambda=zeros(M,1);
H=0;

Calculate
XX=X’ * X;
Xy=X’ * y;

while H is less thanT do
nablaV=(2/ β) * (Xy-XX * L)- α* ω̄′(αL);
nablaV=nablaV-4 * L./( τ ˆ2+L.̂ 2);
L=L+h * nablaV+sqrt(2 * h) * randn(M,1);
H=H+h;
lambda=lambda+h * L/T;

end
return lambda

5.1.1 Choice of T

Since the convergence rate ofL̄T to λ̂ is of the orderT−1/2

and the best rate of convergence an estimator can achieve
is n−1/2, it is natural to setT = n. This choice ofT has

the advantage of being simple for implementation, but it has
the drawback of being not scale invariant. A better strategy
for choosingT is to continue the procedure until the conver-
gence is observed.

5.1.2 Choice of h

We choose the step of discretization in the form:

h = β/(Mn) = β/Tr(X⊤
X).

More details on the choice ofh and T will be given in a
future work.

5.1.3 Choice of β, τ and α

In our simulations we use the parameter values

α = 0, β = 4σ2, τ = 4σ/(Tr(X⊤
X))1/2 .

These values ofβ andτ are derived from the theory devel-
oped above. However, we take hereα = 0 and notα > 0
as suggested in Section 3. We introduced thereα > 0 for
theoretical convenience, in order to guarantee the geomet-
ric mixing of the Langevin diffusion. Numerous simulations
show that mixing properties of the Langevin diffusion are
preserved withα = 0 as well.

5.2 Numerical experiments

We present below two examples of application of the EWA
with LMC for simulated data sets. In both examples we give
also the results obtained by the Lasso procedure (rather as
a benchmark, than for comparing the two procedures). The
main goal of this section is to illustrate the predictive ability
of the EWA and to show that it can be easily computed for
relatively large dimensions of the problem. In all examples,
the Lasso estimators are computed with the tuning parameter
equal toσ

√
8 log M/n (cf. [BRT08]).

5.2.1 Example 1
Consider the modelY = Xλ∗ + σξ, whereX is aM × n
matrix with independent entries, such that each entry is a
Rademacher random variable. Such matrices are particu-
larly well suited for applications in compressed sensing. The
noiseξ ∈ R

n is a vector of independent standard Gaussian
random variables. The vectorλ∗ is chosen to beS-sparse,
whereS is much smaller thanM . W. l. o. g. we consider vec-
torsλ∗ such that only firstS coordinates are different from
0; more precisely,λ∗

j = 1l(j 6 S). Following [CT07], we
chooseσ2 = S/9. We run our procedure for several values
of S andM . The results of 500 replications are summarized
in Table 1. A typical scatterplot of estimated coefficients for
M = 500, n = 200 andS = 20 is presented in Fig. 2.

An interesting observation is that the EWA selects the
set of nonzero coordinates ofλ∗ even better than the Lasso
does. In fact, the approximate sparsity of the EWA is not
very surprising, since in the noise-free linear models with
orthogonal matrixX, the symmetry of the prior implies that
the EWA estimates the zero coordinates without error.

5.2.2 Example 2
Consider model (1) whereZi are independent random vari-
ables uniformly distributed in the unit square[0, 1]2 andξi

are iidN (0, σ2) random variables. For an integerk > 0,
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Figure 2: A typical result of the EWA (top panel) and the
Lasso (bottom panel) in the setup of Example 1 withn =
200, M = 500 andS = 20. For better visibility, only 60
first coefficients are plotted.

M = 200 M = 500
EWA Lasso EWA Lasso

n = 200 0.022 0.657 0.019 0.746
S = 5 (0.013) (0.155) (0.012) (0.157)

n = 200 0.109 2.790 0.117 3.299
S = 10 (0.052) (0.617) (0.051) (0.730)
n = 200 1.790 11.70 3.045 12.990
S = 20 (1.467) (1.672) (2.015) (1.607)

Table 1: Average loss‖λ̂ − λ∗‖2 of the estimators obtained
by the EW-aggregate and the Lasso in Example 1. The stan-
dard deviation is given in parentheses.

we consider the indicator functions of rectangles with sides
parallel to the axes and having as left-bottom vertex the ori-
gin and as right-top vertex a point of the form(i/k, j/k),
(i, j) ∈ N

2. Formally, we defineφj by

φ(i−1)k+j(x) = 1l[0,i]×[0,j](kx), ∀x ∈ [0, 1]2.

The underlying imagef we are trying to recover is taken
as a superposition of a small number of rectangles of this

form, that isf(x) =
∑k2

ℓ=1 λ∗
ℓφℓ(x), for all x ∈ [0, 1]2 with

someλ∗ having a smallℓ0-norm. We setk = 15, ‖λ∗‖0 =
3, λ∗

10 = λ∗
100 = λ∗

200 = 1. Thus, the cardinality of the
dictionary isM = k2 = 225.

In this example the functionsφj are strongly correlated
and therefore the assumptions like restricted isometry or low
coherence are not fulfilled. Nevertheless, the Lasso succeeds
in providing an accurate prediction (cf. Table 2). Further-
more, the Lasso with the theoretically justified choice of the

EWA Lasso Ideal LG
σ = 2, n = 100 0.210 0.759 0.330

T = 1 (0.072) (0.562) (0.145)
σ = 4, n = 100 0.420 2.323 0.938

T = 1 (0.222) (1.257) (0.631)
σ = 2, n = 200 0.187 0.661 0.203

T = 1 (0.048) (0.503) (0.086)
σ = 4, n = 200 0.278 2.230 0.571

T = 1 (0.132) (1.137) (0.324)

Table 2: Average loss
∫
[0,1]2

( ∑
j(λ̂j−λ∗

j )φj(x)
)2

dx of the
the EWA, the Lasso and the ideal LG procedures in Example
2. The standard deviation is given in parentheses.

smoothing parameterσ
√

8 logM/n is not much worse than
the ideal Lasso-Gauss (LG) estimator. We call the LG es-
timator the ordinary least squares estimator in the reduced
model where only the predictor variables selected at a pre-
liminary Lasso step are kept. Of course, the performance of
the LG procedure depends on the initial choice of the tun-
ing parameter for the Lasso step. In our simulations, we use
its ideal (oracle) value minimizing the prediction error and,
therefore, we call the resulting procedure the ideal LG esti-
mator.

As expected, the EWA has a smaller predictive risk than
the Lasso estimator. A very good news is the supremacy of
the EWA with respect to the ideal LG. Of course, the LG pro-
cedure is faster. However, even from this point of view the
EWA is rather attractive, since it takes less than two seconds
to compute it in the present example.

Original image Estimated image
σ = 0.5

Estimated image Estimated image
σ = 1 σ = 2

Figure 3: The original image (left panel) and the EWA esti-
mated image from noisy observations withσ = 0.5, σ = 1
andσ = 2, respectively. In all casesn = 200 andk = 15.

6 Conclusion and outlook

This paper contains two contributions: New oracle inequal-
ities for EWA, and the LMC method for approximate com-
putation of the EWA. The first oracle inequality presented



in this work is in the line of the PAC-Bayesian bounds ini-
tiated by McAllester [McA03]. It is valid for any prior dis-
tribution and gives a bound on the risk of the EWA with an
arbitrary family of functions. Next, we derive another in-
equality, which is adapted to the sparsity scenario and called
the sparsity oracle inequality (SOI). In order to obtain it,we
propose a prior distribution favoring sparse representations.
The resulting EWA is shown to behave almost as well as the
best possible linear combination within a residual term pro-
portional toM∗(log M)/n, whereM is the true dimension,
M∗ is the number of atoms entering in the best linear combi-
nation andn is the sample size. A remarkable fact is that this
inequality is obtained under no condition on the relationship
between different atoms.

Sparsity oracle inequalities similar to that of Theorem 2
are valid for the penalized empirical risk minimizers (ERM)
with a ℓ0-penalty (proportional to the number of atoms in-
volved in the representation). It is also well known that the
problem of computing theℓ0-penalized ERM is NP-hard. In
contrast with this, we have shown that the numerical eval-
uation of the suggested EWA is a computationally tractable
problem. We demonstrated that it can be efficiently solved
by the LMC algorithm. Numerous simulations we did (some
of which are included in this work) confirm our theoretical
findings and, furthermore, suggest that the EWA is able to
efficiently select the sparsity pattern. Theoretical justifica-
tion of this fact, as well as more thorough investigation of
the choice of parameters involved in the LMC algorithm, are
interesting topics for future research.
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dimensional graphs and variable selection with
the Lasso.Ann. Statist., 34(3):1436–1462,2006.

[McA03] D. McAllester. Pac-Bayesian stochastic model
selection.Machine Learning, 51(1):5–21, 2003.

[Riv06] V. Rivoirard. Non linear estimation over
weak Besov spaces and minimax Bayes method.
Bernoulli, 12(4):609–632, 2006.

[RS02] G. Roberts and O. Stramer. Langevin diffusions
and Metropolis-Hastings algorithms.Methodol.



Comput. Appl. Probab., 4(4):337–357, 2002.
[RW87] L. Rogers and D. Williams.Diffusions, Markov

processes, and martingales. Vol. 2. Probability
and Mathematical Statistics. John Wiley & Sons
Inc., New York, 1987.

[See08] M. W. Seeger. Bayesian inference and optimal
design for the sparse linear model.J. Mach.
Learn. Res., 9:759–813, 2008.

[vdG08] S. van de Geer. High-dimensional generalized
linear models and the Lasso.Ann. Statist.,
36(2):614–645, 2008.

[Vov90] V. Vovk. Aggregating strategies. InCOLT:
Proceedings of the Workshop on Computational
Learning Theory, Morgan Kaufmann Publish-
ers, pages 371–386, 1990.

[WR07] David P. Wipf and Bhaskar D. Rao. An empiri-
cal Bayesian strategy for solving the simultane-
ous sparse approximation problem.IEEE Trans.
Signal Process., 55(7, part 2):3704–3716, 2007.

[Yan04] Y. Yang. Aggregating regression procedures to
improve performance.Bernoulli, 10(1):25–47,
2004.

[Yu07] B. Yu. Embracing statistical challenges in the
information technology age. Technometrics,
49(3):237–248, 2007.

[ZH05] H. Zou and T. Hastie. Regularization and vari-
able selection via the elastic net.J. R. Stat. Soc.
Ser. B, 67(2):301–320, 2005.

[ZH08] C.H. Zhang and J. Huang. The sparsity and biais
of the Lasso selection in high-dimensional linear
regression.Ann. Statist., 36:1567–1594, 2008.

[ZY06] P. Zhao and B. Yu. On model selection consis-
tency of Lasso.J. Mach. Learn. Res., 7:2541–
2563, 2006.


