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Abstract

We establish a new oracle inequality for kernel-
based, regularized least squares regression meth-
ods, which uses the eigenvalues of the associated
integral operator as a complexity measure. We
then use this oracle inequality to derive learning
rates for these methods. Here, it turns out that
these rates are independent of the exponent of the
regularization term. Finally, we show that our
learning rates are asymptotically optimal when-
ever, e.g., the kernel is continuous and the input
space is a compact metric space.

1 Introduction
Given a training set ((x1, y1), . . . , (xn, yn)) sampled from
some unknown distribution P on X × [−M,M ], the goal of
non-parametric least squares regression is to find a function
f : X → R, whose risk

RL,P (f) :=
∫
X×Y

L
(
y, f(x)

)
dP (x, y) ,

where L is the least squares loss, i.e. L(y, t) = (y − t)2, is
close to the optimal risk

R∗L,P := inf
{
RL,P (f)

∣∣ f : X → R
}
.

It is well known that the regression function f∗P , that is, the
conditional expectation x 7→ EP (Y |x), is the PX -almost
surely minimizer of RL,P , where PX denotes the marginal
distribution of P . In other words, we have RL,P (f∗P ) =
R∗L,P , and another well known result further shows

RL,P (f)−R∗L,P =
∫
X

|f − f∗P |2 dPX = ‖f − f∗P ‖2L2(PX)

for all f : X → R.
There exists a huge number of methods for solving the

non-parametric least squares regression problem, many of
which are thoroughly treated in [12]. In this work, we fo-
cus on kernel-based methods, i.e., on methods that find an

fD,λ ∈ arg min
f∈H

(
λ‖f‖qH +RL,D(f)

)
. (1)

Here, H is a reproducing kernel Hilbert space (RKHS) of
a bounded kernel k, q ≥ 1 is some constant, λ > 0 is a

regularization parameter, and RL,D(f) is the empirical risk
of f , that is

RL,D(f) =
1
n

n∑
i=1

L
(
yi, f(xi)

)
.

Note that by a straightforward modification of [19, Lemma
5.1 & Theorem 5.2], see Lemma 12 for details, we find that
there always exists exactly one fD,λ satisfying (1). Further-
more, by a general form of the representer theorem, see [16],
it is known that this solution is of the form

fD,λ =
n∑
i=1

αik(xi, · ) ,

where α1, . . . , αn ∈ R are suitable coefficients. Recall that,
for q = 2, we recover the usual least squares support vector
machine (SVM) without bias, which is also known as regu-
larization network, see [15]. To the best of our knowledge,
this value of q is also the only value for which efficient algo-
rithms for finding fD,λ have been developed. On the other
hand, the recent work [13] suggests that q = 2 may not be
the optimal choice from a statistical point of view, that is,
that least squares support vector machines may have a design
flaw. Fortunately, we will see in this work that the exponent q
has no influence on the learning rates and thus its value may
be chosen on algorithmic considerations, only. In particular,
there is no reason not to use q = 2.

The learning method (1), in particular in the SVM case,
has recently attracted a lot of theoretical considerations, see,
e.g., [8, 10, 18, 6, 13] and the references therein. In particu-
lar, optimal rates have been established in [6], if f∗P ∈ H and
the eigenvalue behavior of the integral operator associated to
H , see (5), is known. However, for distributions, for which
the former assumption is not satisfied, i.e. f∗P 6∈ H , the sit-
uation is substantially less understood. Indeed, the sharpest
known result for this case was recently established in [13]
for a learning method that, modulo some logarithmic terms,
equals (1) in the case q = 2p

1+p , where p ∈ (0, 1) is an expo-
nent describing the eigenvalue behavior of the integral oper-
ator.

As discussed in [13], the reason for this lack of under-
standing may be the fact that, for f∗P 6∈ H , one has to deal
with localized function classes whose ‖ · ‖∞-bounds are no
longer bounded for λ → 0. To address this difficulty, [13]
assumes that the eigenfunctions of the integral operator are



uniformly bounded. This is then used to show that

‖f‖∞ ≤ C ‖f‖pH ‖f‖
1−p
L2(PX) (2)

for all f ∈ H , where C > 0 is some constant. Compared
to the classical estimate ‖f‖∞ ≤ ‖k‖∞‖f‖H , Inequality
(2) obviously gives a sharper ‖ · ‖∞-bound on those ele-
ments of H , for which we have a non-trivial bound on their
L2(PX)-norm. [13] then shows that localization gives such
non-trivial L2(PX)-bounds, which in turn results in the best
known learning rates. Unfortunately, however, even without
the extra logarithmic terms, it is unclear how to solve (1) al-
gorithmically if q 6= 2. In addition, knowing the value of p
that best describes the eigenvalue behavior seems to be rather
unrealistic in many cases.

The goal of this work is to address these shortcomings
by establishing an oracle inequality that holds for all q ∈
[1,∞). From this oracle inequality we then derive learn-
ing rates which a) equal those of [13], and b) turn out to be
independent of q. Using an intimate relationship between
eigenvalues and entropy numbers we further show that these
learning rates are optimal in a minmax sense. From a sta-
tistical point of view, the SVM case q = 2 has therefore no
advantages or disadvantages compared to other values of q.
From an algorithmic point of view however, q = 2 is cur-
rently the only feasible case, which in turn makes SVMs the
method of choice.

To achieve this new oracle inequality, we merge the idea of
using (2) with another idea to improve certain ‖·‖∞-bounds.
To explain the latter, recall that for some loss functions it was
observed in [2, 22, 20, 19] that ‖ · ‖∞-bounds can be made
smaller by clipping the decision function. Let us describe
this clipping idea for the least squares loss. To this end, we
first observe that for all t ∈ R and y ∈ [−M,M ] we have

L(y,at ) ≤ L(y, t) , (3)

where at denotes the clipped value of t at ±M , that is

at :=


−M if t < −M
t if t ∈ [−M,M ]
M if t > M .

(4)

In other words, we never obtain a worse loss if we restrict our
predictions to the interval from which the labels are drawn.
Now note that (3) obviously implies that, for every function
f : X → R, we have

RL,P (
a
f ) ≤ RL,P (f) ,

where the clipping
a
f of f is meant to be a pointwise clip-

ping at M . In other words, the clipping operation potentially
reduces the risk. Now, given a decision function fD of some
learning method A, the key idea of the clipping technique

is to bound the risk RL,P (
a
fD) of the clipped decision func-

tion rather than the riskRL,P (fD) of the unclipped function.
From a practical point of view, this approach means that the
training algorithm for A remains unchanged and only the
evaluation of the resulting decision functions needs to be
slightly changed.

In the following section, we will present our main re-
sults, discuss the assumption (2) in more detail, and consider

Sobolev spaces as a special case of our general results. Sec-
tion 3 contains the proofs of the oracle inequality and the
resulting learning rates, while in Section 4 we establish the
corresponding lower bounds.

2 Results
In the following, L always denotes the least squares loss, and
X denotes some arbitrary measurable space. Moreover, P is
a probability measure on X × [−M,M ], where M > 0 is
some constant.

We also have to introduce some notions related to ker-
nels, see [19, Chapter 4] for more details. To this end, let
k : X × X → R be a measurable kernel and H its as-
sociated reproducing kernel Hilbert space (RKHS). In the
following, we always assume that k is bounded, that is,
‖k‖∞ := supx∈X k(x, x) < ∞. To avoid superfluous nota-
tions, we further assume ‖k‖∞ = 1, where we note that this
can always be achieved by properly scaling the kernel. Re-
call that in this case the RKHS contains bounded measurable
functions, and we have ‖f‖∞ ≤ ‖f‖H for all f ∈ H . Given
a measurable kernel and a distribution ν on X we further
define the integral operator Tk : L2(ν)→ L2(ν) by

Tkf(x) :=
∫
X

k(x′, x)f(x′) dν(x′) , (5)

where the definition is meant to be for ν-almost all x ∈
X . In the following, we usually assume ν = PX . It is
well-known, see e.g. [19, Theorem 4.27], that this opera-
tor is compact, positive, and self-adjoint. In particular, it
has at most countably many non-zero eigenvalues, and all
of these eigenvalues are non-negative. Let us order these
eigenvalues (with geometric multiplicities), and extend the
corresponding sequence by zeros if there are only finitely
many non-zero eigenvalues. Then the resulting sequence
(µi(Tk))i≥1, which we call the extended sequence of eigen-
values, is summable, that is,

∑∞
i=1 µi(Tk) < ∞. Again,

we refer to [19, Theorem 4.27] for a precise statement. Ob-
viously, this summability implies µi(Tk) ≤ a i−1 for some
constant a and all i ≥ 1. In our analysis, we will assume
that this sequence converges even faster to zero, which, as
we will briefly discuss later, is known for many kernels.

Moreover, we need the q-approximation error function
Aq : [0,∞)→ [0,∞), which is defined by

Aq(λ) := inf
f∈H

(
λ‖f‖qH +RL,P (f)−R∗L,P

)
.

Note that for q = 2 this approximation error function was
extensively studied in [19, Chapter 5.4]. In particular, its
relation to the standard approximation error was described.
Furthermore, [17] and [9, Chapter 4] relate the behavior of
A2 to both interpolation spaces and certain powers of the in-
tegral operator Tk. We will come back to these results after
presenting the following main theorem of this work, which
establishes an oracle inequality of the learning methods de-
scribed by (1).

Theorem 1 Let k be a bounded measurable kernel on X
with ‖k‖∞ = 1 and separable RKHS H . Moreover, let P
be a distribution on X × [−M,M ], where M > 0 is some



constant. For ν = PX assume that the extended sequence of
eigenvalues of the integral operator (5) satisfies

µi(Tk) ≤ a i−
1
p , i ≥ 1, (6)

where a ≥ 16M4 and p ∈ (0, 1) are some constants. More-
over, assume that there exist constants C ≥ 1 and s ∈ (0, 1]
such that

‖f‖∞ ≤ C ‖f‖sH · ‖f‖1−sL2(PX) (7)

for all f ∈ H . Then, for all q ≥ 1, there exists a constant
cp,q only depending on p and q such that, for all λ ∈ (0, 1],
τ > 0, and n ≥ 1, the learning method described by (1)
satisfies

RL,P (
a
fD,λ)−R∗L,P

≤ 9Aq(λ) + cp,q

(
apqM2q

λ2pnq

) 1
q−2p+pq

+
120C2M2−2sτ

n

(Aq(λ)
λ

) 2s
q

+
3516M2τ

n

with probability Pn not less than 1− 3e−τ .

Recall that the eigenvalue assumption (6) was first used in
[5] to establish an oracle inequality for SVMs using the hinge
loss, while [6] considers (6) for SVMs using the least squares
loss and f∗P ∈ H . Moreover, [13] recently established an
oracle inequality for a learning method that, besides some
logarithmic terms, equals (1) in the case q = 2p

1+p . In general,
the eigenvalue assumption (6) is a tighter measure for the
complexity of the RKHS than more classical covering, or
entropy number assumptions. To recall the latter, let E be
Banach space and A ⊂ E be a bounded subset. Then, for
i ≥ 1, the ith entropy number ei(A,E) of A is the infimum
over all ε > 0 for which there exist x1, . . . , x2i−1 ∈ A with

A ⊂
2i−1⋃
j=1

(xj + εBE) ,

where BE denotes the closed unit ball of E. Moreover, the
ith entropy number of a bounded linear operator T : E → F
is ei(T ) := ei(TBE , F ). Now one can show, see Theorem
15, that (6) is equivalent to

ei(id : H → L2(PX)) ≤
√
ai−

1
2p , (8)

modulo a constant only depending on p. If `∞(X) denotes
the space of all bounded functions on X , the latter is clearly
satisfied if the more classical, distribution-free entropy num-
ber assumption

ei(id : H → `∞(X)) ≤
√
ai−

1
2p (9)

is satisfied. However, the converse is, in general, not true.
For example, [19, Theorem 7.34] establishes a bound of the
form (8) for Gaussian RBF kernels and certain distributions
PX having unbounded support, while a similar bound for
the `∞(X)-entropy numbers is impossible since id : H →
`∞(X) is not even compact for unbounded X . Finally, for
m-times differentiable kernels on Euclidean balls of Rd, it
is known that (9) holds for p := d

2m . We refer to e.g. [19,
Theorem 6.26] for a precise statement.

Analogously, if X is a Euclidean ball in Rd, m > d/2 is
some integer, and PX is the uniform distribution on X , then
the Sobolev space H := Wm(X) is an RKHS that satisfies
(6) for p := d

2m , and this estimate is also asymptotically
sharp. This can be checked by Theorem 15 and a well-known
result by Birman and Solomyak [4] on the entropy numbers
of the embedding id : Wm(X)→ L2(PX). We refer to [11]
for a thorough treatment of such estimates and [19, Appendix
A.5.6] for some explanation of the latter. Moreover, by this
translation it is also easy to see that it suffices to assume that
PX has a density with respect to the uniform distribution that
is bounded away from 0 and∞.

Assumption (7) is always satisfied for C = s = 1, but
obviously the more interesting case is s < 1, which was
recently considered by [13]. In particular, they showed in
their Lemma 5.1 essentially the following result:

Theorem 2 LetX be a compact metric space, k be a contin-
uous kernel onX , and PX be a distribution onX whose sup-
port satisfies supp PX = X . If (6) holds for some p ∈ (0, 1)
and the corresponding eigenfunctions (ei)i≥1 are uniformly
bounded, that is

sup
i≥1
‖ei‖∞ <∞ , (10)

then (7) holds for s = p.

Theorem 2 shows that, in the case of uniformly bounded
eigenfunctions, Condition (7) is automatically satisfied for
s = p. However, recall from [23] that even for C∞-kernels
(10) is not always satisfied.

On the other hand, (7) has a clear meaning in terms of real
interpolation of spaces. To be more precise, let us briefly
recall the definition of these spaces. To this end, given two
Banach spaces E and F such that F ⊂ E and id : F → E
is continuous, we define the K-functional of x ∈ E by

K(x, t) := inf
y∈F

(
‖x− y‖E + t‖y‖F

)
, t > 0.

Then, following [3, Definition 1.7 on page 299], the real in-
terpolation space [E,F ]θ,r, where 0 < θ < 1 and 1 ≤ r ≤
∞, is the Banach space that consists of those x ∈ E with
finite norm

‖x‖θ,r :=


(∞∫

0

(t−θK(x, t))rt−1dt

)1/r

if r <∞

supt>0(t−θK(x, t) if r =∞ .

Moreover, the limiting cases are defined by [E,F ]0,∞ := E
and [E,F ]1,∞ := F . It it well-known, see e.g. [3, Propo-
sition 1.10 on page 301] that, for all 0 < θ < 1 and
1 ≤ r ≤ r′ ≤ ∞, the space [E,F ]θ,r is continuously em-
bedded in [E,F ]θ,r′ , i.e.

id : [E,F ]θ,r → [E,F ]θ,r′ (11)

is well-defined and continuous. Moreover, the assumption
that F is continuously embedded in E can be used to show
by elementary means that

id : [E,F ]θ′,∞ → [E,F ]θ,1 (12)

is well-defined and continuous for all 0 < θ < θ′ ≤ 1.



Now [3, Proposition 2.10 on page 316] shows that (7) is
satisfied if and only if [L2(PX), H]s,1, is continuously em-
bedded in `∞(X). If H = Wm(X) and PX is the uniform
distribution onX , we further know by the discussion on page
230 of [1] that[

L2(PX),Wm(X)
]
s,1

= Bsm2,1 (X) ,

where Bsm2,1 (X) denotes a Besov space, see [1]. Moreover,
for s = d

2m , this Besov space is continuously embedded in
`∞(X) by [1, Theorem 7.34]. In this case, (7) thus holds for
s = p = d

2m , and it is obvious that this remains true, if we
only assume that the marginal PX has a density with respect
to the uniform distribution that is bounded away from 0 and
∞. Finally, recall that the RKHSs of the Gaussian kernels
are continuously embedded in all Sobolev spaces, and there-
fore they satisfy (7) for all s ∈ (0, 1], though in this case
the appearing known constant C depends on both the kernel
width and the used m.

As seen above, the case s = p seems to be somewhat
common, and in practice, the choice q = 2 is natural, since
algorithmic solutions exist. Let us therefore restate Theorem
1 for these choices in a slightly simplified form:

Corollary 3 Let k be a bounded measurable kernel on X
with ‖k‖∞ = 1 and separable RKHS H . Moreover, let P
be a distribution on X × [−M,M ], where M > 0 is some
constant. For ν = PX assume that the extended sequence of
eigenvalues of the integral operator (5) satisfies

µi(Tk) ≤ a i−
1
p , i ≥ 1, (13)

where a ≥ 16M4 and p ∈ (0, 1) are some constants. More-
over, assume that there exists a constants C ≥ 1 such that

‖f‖∞ ≤ C ‖f‖pH · ‖f‖
1−p
L2(PX) (14)

for all f ∈ H . Then, there exists a constant c only depending
on p and C such that, for all λ ∈ (0, 1], τ > 0, and n ≥ 1,
the least squares SVM described by (1) for q = 2 satisfies

RL,P (
a
fD,λ)−R∗L,P ≤ 9A2(λ) + c

apM2τ

λpn

with probability Pn not less than 1− 3e−τ .

Our next goal is to investigate the influence of the reg-
ularization exponent q on the learning rates resulting from
Theorem 1. To this end, we need the following result that
translates the behavior of Ap into a behavior of Aq .

Lemma 4 Let H be a separable RKHS over X that has a
bounded measurable kernel, P be a distribution on X ×
[−M,M ], and p, q ≥ 1. Then for all λ > 0 and γ ≥ Ap(λ)
we have

Aq
(
λq/pγ1−q/p) ≤ 2γ .

In particular, if there exist constants c > 0 and α > 0 such
that Ap(λ) ≤ cλα, then for all λ > 0 we have

Aq(λ) ≤ 2 c
q

q+α(p−q) λ
αp

q+α(p−q) .

Let us illustrate the lemma above by assuming that the 2-
approximation error function satisfies

A2(λ) ≤ c λβ , λ > 0, (15)

where c > 0 and β > 0 are some constants.1 Then Lemma
4 implies

Aq(λ) ≤ 2 c
q

2β+q(1−β)λ
2β

2β+q(1−β) (16)

for all λ > 0. Conversely, if (16) holds without the factor
2, then Lemma 4 yields A2(λ) ≤ 2cλβ for all λ > 0. In
other words, if A2 has a polynomial behavior in λ, then this
behavior completely determines the behavior of all Aq . In
the following, it thus suffices to assume that the standard 2-
approximation error function satisfies (15). Now, (15) also
has a tight connection to interpolation spaces. Namely, [17],
together with [19, Corollary 5.18] for the case β = 1, essen-
tially showed the following result:

Theorem 5 Let H be a separable RKHS over X that has
a bounded measurable kernel, P be a distribution on X ×
[−M,M ]. Then (15) holds for some β ∈ (0, 1] if and only if

f∗P ∈
[
L2(PX), H

]
β,∞ .

With these preparations we can now establish learning
rates for the learning method (1).

Corollary 6 Consider Theorem 1 in the case s = p, and
additionally assume that (15) holds. Define a sequence of
regularization parameters (λn) by

λn := n−
2β+q(1−β)

2β+2p . (17)

Then there exists a constantK ≥ 1 only depending on a, M ,
c, p, and q such that for all τ ≥ 1 and n ≥ 1 the learning
method described by (1) satisfies

RL,P (
a
fD,λn)−R∗L,P ≤ Kτn−

β
β+p

with probability Pn not less than 1− 3e−τn
βp
β+p .

An interesting observation from Corollary 6 is that the ob-
tained learning rate is not affected by the choice of q. To
understand the latter, recall that the regularization path, that
is image of the function λ 7→ fD,λ, is also independent of q,
see [19, Chapter 5.4] for a related discussion. In other words,
for a given training setD, all learning methods considered in
(1) produce the same decision function if we adjust λ = λ(q)
in a suitable way. From this perspective it is not surprising
that the resulting learning rates are independent of q. How-
ever, note that the equality of the regularization path only
suggests equal learning rates but it does not prove that the
optimal learning rates are equal, since, in general, λ(q) does
depend on D.

The choice of λn in Corollary 6 ensures that the right hand
side of the oracle inequality in Theorem 1 is asymptotically
minimized. It thus yields the fastest rate we can expect from

1As shown in [19, Lemma 5.15] we may additionally assume
β ≤ 1 since the case β > 1 implies RL,P (0) = R∗

L,P , which is a
rather uninteresting case for learning.



Theorem 1. Unfortunately, this choice of λn requires know-
ing p, and in most cases also β, which is unrealistic in almost
all situations. However, [19, Chapter 7.4] shows that the best
learning rates coming from oracle inequalities of our type
can also be achieved without knowing p and β, if one splits
D into a training and a validation set, and uses the valida-
tion set to identify a good value for λ from a suitable grid of
candidates. To be more precise, let us recall the following
definition from [19, Chapter 6.5] for the case q = 2:

Definition 7 Let H be an RKHS over X and Λ := (Λn)
be a sequence of finite subsets Λn ⊂ (0, 1]. Given a D :=
((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n, we define

D1 := ((x1, y1), . . . , (xm, ym)) ,
D2 := ((xm+1, ym+1), . . . , (xn, yn)) ,

wherem := bn/2c+1 and n ≥ 3. Then useD1 as a training
set by computing the SVM decision functions
fD1,λ := arg min

f∈H
λ‖f‖2H +RL,D1(f) , λ ∈ Λn,

and use D2 to determine λ by choosing a λD2 ∈ Λn such
that

RL,D2(
a
fD1,λD2

) = min
λ∈Λn

RL,D2(
a
fD1,λ) .

Every learning method that produces the resulting decision
functions

a
fD1,λD2

is called a training validation SVM with
respect to Λ.

One can show that training validation SVMs are adap-
tive to p and β if the sets Λn are chosen in a specific way.
Namely, a simple combination of the techniques used in the
proof of [19, Theorem 7.24] and the oracle inequality estab-
lished in Theorem 1 yields:

Theorem 8 Consider Theorem 1 in the case s = p and
q = 2 and assume that (15) is satisfied for some β ∈ (0, 1].
Moreover, assume that Λn ⊂ (0, 1] is an n−2-net of (0, 1]
for all n ≥ 1, and assume further that the cardinality |Λn|
grows polynomially in n. Then the training validation SVM
with respect to Λ := (Λn) learns with rate n−

β
β+p .

Theorem 8 shows that the training/validation approach is
adaptive in the sense that it yields the same rates as Corollary
6 does without knowing p or β. In this respect, it is interest-
ing to note that, for q := 2p

1+p , the definition (17) is actu-
ally independent of β, i.e.,the training validation approach
for this particular regularization exponent is superfluous as
long as p is known. Modulo some extra logarithmic factors
in the regularization term, this has already been observed by
[13].

Our last goal in this work is to show that the learning rates
obtained in Corollary 6 are asymptotically optimal. Since
we need fractional powers of the operator Tk for the formu-
lation of a corresponding result, we now briefly recall the
latter. To this end, let µ := (µi)i∈I be the ordered (with ge-
ometric multiplicities) sequence of non-zero eigenvalues of
the integral operator Tk defined by (5) and (ei) ⊂ L2(ν) be
an orthonormal system (ONS) of corresponding eigenfunc-
tions. For β ∈ [0, 1], we then define T βk : L2(ν) → L2(ν)
by

T βk f :=
∑
i∈I

µβi 〈f, ei〉ei , (18)

where 〈f, ei〉 := 〈f, ei〉L2(ν) is the inner product in L2(ν).
It is known that these fractional powers of Tk are closely
related to the 2-approximation error function. Indeed, for
continuous kernels k on compact metric spaces X and ν =
PX , Smale and Zhou showed in [17] that

f∗P ∈ T
β/2
k

(
L2(PX)

)
(19)

implies (15). Moreover, they further showed that the con-
verse implication is true up to arbitrary small ε > 0 if
supp PX = X . In other words, for continuous kernels
on compact metric spaces, the fractional powers of Tk pro-
vide an accurate mean to describe the behavior of the 2-
approximation error function.

In the following theorem and its proof we write ai ∼ bi
for two sequences (ai) and (bi) of positive real numbers, if
there exist constants c1, c2 > 0 such that c1ai ≤ bi ≤ c2ai
for all i ≥ 1. With these preparations we can now formulate
the lower bounds:

Theorem 9 Let ν be a distribution on X , and k be a
bounded measurable kernel on X with ‖k‖∞ = 1 and sep-
arable RKHS H . Assume that there exists a p ∈ (0, 1) such
that the extended series of eigenvalues of the integral opera-
tor defined by (5) satisfies

µi(Tk) ∼ i−
1
p . (20)

Let β ∈ (0, 1] and assume that there exists a constant c > 0
such that

‖T β/2k f‖∞ ≤ c ‖f‖L2(ν) , f ∈ L2(ν). (21)

Then, for allM > 0, there exist constants δ0 > 0, c1, c2 > 0,
and C > 0 such that for all learning algorithms A there
exists a distribution P on X × [−M,M ] with PX = ν and

f∗P ∈
M

4c
T
β/2
k

(
BL2(ν)

)
such that for all τ > 0 and n ≥ 1 we have

Pn
(
D : RL,P (fD)−R∗L,P ≥ Cτn

− β
β+p

)
≥

{
δ0 if τ < 1

c1e
−c2τn

p
β+p if τ ≥ 1 ,

where fD is the decision function produced by A for a given
training set D.

For α > 0 and τn := τn−α, Theorem 9 shows that the
probability Pn of

RL,P (fD)−R∗L,P ≤ Cτn−
β
β+p−α

does not exceed 1 − δ0 if n > τ1/α. In this sense, Theorem
9 shows that the rates obtained in Corollary 6 are asymp-
totically optimal for continuous kernels on compact metric
spaces.

To illustrate the assumption (21), we assume again that k
is a continuous kernel on a compact metric space X . Then
the proof of [9, Theorem 4.1] shows that the image of T β/2k
is continuously embedded into the real interpolation space
[L2(ν), H]β,∞, and hence (21) is satisfied if [L2(ν), H]β,∞



is continuously embedded in `∞(X). Note that in view of
(11) and (11) this is slightly more than assuming (7) for s =
β. To be more precise, let us assume that we have a 0 <
p < 1 such that [L2(ν), H]p,1 is continuously embedded in
`∞(X), and that (20) is satisfied. As mentioned earlier, the
first assumption then implies (7), while the second clearly
implies (6), and hence Corollary 6 yields the learning rate

n−
β
β+p

whenever (19) is satisfied for some β ∈ (0, 1]. Moreover,
(12) together with the assumption that [L2(ν), H]p,1 is con-
tinuously embedded in `∞(X) implies that [L2(ν), H]β,∞ is
continuously embedded in `∞(X) whenever β ∈ (p, 1], and
hence Theorem 9 shows that the learning rate obtained from
Corollary 6 is asymptotically optimal for such β.

An interesting observation from this discussion is that the
learning methods defined by (1) achieve the asymptotically
optimal rates for all choices of regularization exponents q. In
other words, the choice of q has no influence on the learning
rates, which in turn means that q can be solely chosen on the
basis of algorithmic considerations. Here we emphasize that
these conclusions can, of course, only be made because we
showed that the obtained learning rates are optimal.

To give a little more concrete example, let us now consider
the case H = Wm(X) for some m > d/2. In addition, we
assume that PX = ν has a Lebesgue density that is bounded
away from 0 and∞, and hence we have

Bβm2,∞(X) =
[
L2(PX),Wm(X)

]
β,∞ .

Therefore, Corollary 6 yields the learning rate n−
2s

2s+d ,
whenever f∗P ∈ Bs2,∞(X), where s := βm ∈ (0,m]. Con-
versely, [1, Theorem 7.34] guarantees that Bs2,∞(X) is con-
tinuously embedded into `∞(X) for all s > d/2, and hence
Theorem 9 shows that this rate is asymptotically optimal for
such s. In other words, using H = Wm(X), the learning
methods defined by (1) can estimate all regression functions
in the Besov scale Bs2,∞(X), s ∈ (d/2,m], with asymp-
totically optimal rate, which, in addition, is always faster
than n−1/2. Moreover, by using a validation set to deter-
mine the regularization parameter, these methods are adap-
tive, i.e., they do not need to know s. Finally, the covered
scale Bs2,∞(X), s ∈ (d/2,m], can be arbitrarily large by
choosing m large enough, that is, by choosing a sufficiently
smooth kernel.

In interesting observation from this discussion is that it
is safe to over-specify the smoothness of the target function.
Namely, if we are confident that the regression satisfies f∗P ∈
Bs2,∞(X) for some s > d/2, then we can learn this function
with the optimal rate whenever we pick an m > s. In other
words, from an asymptotic point of view we only need to
know a crude upper bound m on the assumed smoothness
s, and if we have such a bound, it it not necessary to fine
tune the choice of m. In this sense, the “learning the kernel
problem” is somewhat implicitly solved by the SVM.

Finally, we like to emphasize that, for β < 1, the ob-
tained results implicitly assume that the used RKHS is in-
finite dimensional. To be more precise, let us assume that
we have a finite dimensional RKHS H . Then we have either
f∗P ∈ H or f∗P 6∈ H . However, in the first case, we find

A2(λ) ≤ ‖f∗P ‖2Hλ for all λ > 0 by [19, Corollary 5.18], and
hence β < 1 actually corresponds to the situation f∗P 6∈ H .
However, since H is finite dimensional, it is a closed sub-
space of L2(PX), and hence we conclude

inf
f∈H
RL,P (f)−R∗L,P = inf

f∈H
‖f − f∗P ‖2L2(PX) > 0 .

Consequently, A2(λ) does not converge to 0 for λ→ 0, and
therefore (15) cannot be satisfied for β > 0. In other words,
for finite dimensional RKHSs we either have β = 1 or β =
0, and hence the interesting part of our results, namely the
case 0 < β < 1, never occurs. In particular, this is true if we
use e.g. linear or polynomial kernels.

3 Proofs of the Upper Bounds
Since the proof of Theorem 1 is based [19, Theorem 7.20]
we need to recall some notations related to the latter theorem.
Let us begin by writing

r∗ := inf
f∈H

λ‖f‖qH +RL,P (
a
f )−R∗L,P . (22)

Moreover, for r > r∗, we write Fr,λ for the set

{f ∈ H : λ‖f‖qH +RL,P (
a
f )−R∗L,P ≤ r} .

Finally, we need the set

Hr,λ := {L ◦
a
f − L ◦ f∗P : f ∈ Fr,λ} ,

where L ◦ g denotes the function (x, y) 7→ L(y, g(x)). Fur-
thermore, we obviously have

L(y, t) ≤ 4M2 , y, t ∈ [−M,M ] , (23)

and a well known variance bound for the least squares loss,
see e.g. [19, Example 7.3], shows

EP
(
L ◦

a
f − L ◦ f∗P

)2≤ 16M2EP (L ◦
a
f − L ◦ f∗P )

for all functions f : X → R. Last but not least, it is a
simple exercise to show that the least squares loss restricted
to [−M,M ] is Lipschitz continuous, that is∣∣L(y, t)− L(y, t′)

∣∣ ≤ 4M |t− t′| (24)

for all y ∈ [−M,M ] and t, t′ ∈ [−M,M ].
Let us further recall the concept of empirical Rademacher

averages. To this end, (Θ, C, ν) be a probability space, and
ε1, . . . , εn be a be a Rademacher sequence, that is, a se-
quence of independent random variables εi : Θ → {−1, 1}
with ν(εi = 1) = ν(εi = −1) = 1/2 for all i = 1, . . . , n.
For a non-empty setH consisting of functions that map from
a measurable space Z to R andD := (z1, . . . , zn) ∈ Zn, the
n-th empirical Rademacher average ofH is then defined by

RadD(H, n) := Eν sup
h∈H

∣∣∣∣ 1n
n∑
i=1

εih(zi)
∣∣∣∣ .

Besides Rademacher averages we also need the following
peeling argument:



Theorem 10 Let (Z,A, P ) be a probability space, (T, d) be
a separable metric space, h : T → [0,∞) be a continuous
function, and (gt)t∈T be a family of measurable functions
gt : Z → R such that t 7→ gt(z) is continuous for all z ∈ Z.
We define r∗ := inf{h(t) : t ∈ T}. Moreover, let α ∈ (0, 1)
be a constant and ϕ : (r∗,∞) → [0,∞) be a function such
that ϕ(2r) ≤ 2αϕ(r) and

Ez∼P sup
t∈T
h(t)≤r

|gt(z)| ≤ ϕ(r)

for all r > r∗. Then, for all r > r∗, we have

Ez∼P sup
t∈T

gt(z)
h(t) + r

≤ 2 + 2α

2− 2α
· ϕ(r)

r
.

Proof: This theorem can be proven by an almost literal rep-
etition of [19, Theorem 7.7].

With these preparations, [19, Theorem 7.20] then be-
comes:

Theorem 11 For fixed q ∈ [1,∞) we consider the learning
method (1). Assume that for fixed n ≥ 1 there exists a con-
stant α ∈ (0, 1) and a function ϕn,λ : [0,∞)→ [0,∞) such
that ϕn,λ(2r) ≤ 2αϕn,λ(r) and

ED∼PnRadD(Hr,λ, n) ≤ ϕn,λ(r) (25)

for all r > r∗. Moreover, fix an f0 ∈ H and a B0 ≥ 4M2

such that ‖L ◦ f0‖∞ ≤ B0. Then, for all fixed τ > 0 and
r > r∗ satisfying

r > max
{
c(α) · ϕn,λ(r),

1152M2τ

n
,

5B0τ

n

}
,

where c(α) := 8 · 2+2α

2−2α , we have with probability Pn not
less than 1− 3e−τ that

λ‖fD,λ‖qH +RL,P (
a
fD,λ)−R∗L,P

≤ 6
(
λ‖f0‖qH +RL,P (f0)−R∗L,P

)
+ 3r .

Proof: As noted in (4), the least squares loss L : [−M,M ]×
R → [0,∞) can be clipped at M in the sense of [19, Defi-
nition 2.22]. In addition, the learning method defined by (1)
is a clipped regularized empirical risk minimizer in the sense
of [19, Definition 7.18]. Moreover, the supremum bound
(7.35) and the variance bound (7.36) in [19] are satisfied for
B := 4M2 and ϑ = 1, V = 16M2, respectively. Replac-
ing the peeling step in the proof of [19, Theorem 7.20] in the
middle of page 262 by the refined peeling result of Theorem
10, we then obtain the assertion by the otherwise unmodified
proof of [19, Theorem 7.20].

Before we can prove Theorem 1 we finally need the fol-
lowing simple lemma, which ensures the existence of unique
solutions of the “infinite-sample version” of (1).

Lemma 12 Let P be a distribution on X × [−M,M ] and k
be a bounded measurable kernel onX with separable RKHS
H . Then, for all q ≥ 1 and λ > 0, there exists a unique
function fP,λ ∈ H that minimizes

f 7→ λ‖f‖qH +RL,P (f) .

Proof: Since the function f 7→ ‖f‖qH is convex and the
function f 7→ RL,P (f) is strictly convex, the uniqueness
follows. The existence can be shown by repeating the proof
of [19, Theorem 5.2] for q 6= 2.

Proof of Theorem 1: For f ∈ Fr,λ, a simple calculation
shows

λ‖f‖qH ≤ λ‖f‖qH +RL,P (
a
f )−R∗L,P ≤ r ,

and hence we conclude that ‖f‖H ≤ (r/λ)1/q . In other
words, we have Fr,λ ⊂ (r/λ)1/qBH . By [19, Corollary
7.31], the second line on page 276 of [19], and Carl’s in-
equality [7, Theorem 3.1.1], see also the proof of Theorem
15 for this argument, we further see that the eigenvalue as-
sumption (6) implies

EDX∼PnXei(id : H→L2(DX)) ≤ cp
√
a i−

1
2p ,

where cp ≥ 1 is a constant only depending on p. Here, the
entropy numbers ei(id : H → L2(DX)) are defined with
respect to the space L2(DX), where DX denotes the em-
pirical measure with respect to DX = (x1, . . . , xn) sampled
from Pn. The Lipschitz continuity (24) of the restricted least
squares loss thus yields

ED∼Pnei(Hr,λ, L2(D)) ≤ 8cpM
( r
λ

)1/q√
a i−

1
2p .

Moreover, for f ∈ Fr,λ, we have

EP (L ◦
a
f − L ◦ f∗L,P )2 ≤ 16M2r ,

and consequently [19, Theorem 7.16] applied to H := Hr,λ
shows that (25) is satisfied for

ϕn,λ(r) := max
{
C1(p)C

( r
λ

) p
q

(16M2r)
1−p
2 n−

1
2 ,

C2(p)C
2

1+p

( r
λ

) 2p
(1+p)q

(4M2)
1−p
1+p n−

1
1+p

}
,

where C1(p) and C2(p) are the constants appearing in [19,
Theorem 7.16] and C := 8pcppM

pap/2. Moreover, 0 < p <

1 and q ≥ 1 imply q ≥ 2p
1+p , and since 2p

(1+p)q −
p
q = p(1−p)

(1+p)q ,
we conclude that

α :=
p

q
+

1− p
2
≥ 2p

(1 + p)q
.

In turn, this inequality can be used to show that ϕn,λ(2r) ≤
2αϕn,λ(r) for all r > r∗, and since 0 < p < 1 and q ≥ 1
further imply α ∈ (0, 1), we see that ϕn,λ satisfies the as-
sumptions of Theorem 11. Furthermore, a simple yet tedious
calculation shows that there exists a constant cp,q only de-
pending on p and q such that r ≥ 8 · 2+2α

2−2αϕn,λ(r) is satisfied
if

r ≥ cp,q
(
apqM2q

λ2pnq

) 1
q−2p+pq

.

Let us now fix f0 := fP,λ, where fP,λ is the function con-
sidered in Lemma 12. To find a B0, we first observe that



‖L ◦ f0‖∞ = ‖L ◦ fP,λ‖∞ ≤ 2M2 + 2‖fP,λ‖2∞. Moreover,
we have ∫

|fP,λ(x)|2 dPX(x)

≤
∫

2|fP,λ(x)− y|2 + 2|y|2 dP (x, y)

≤ 2RL,P (fP,λ) + 2M2

≤ 4M2 ,

where in the last step we used RL,P (fP,λ) ≤ RL,P (0) ≤
M2. Consequently, our assumption (7) yields

‖fP,λ‖∞ ≤ 21−sM1−sC ‖fP,λ‖sH ,

and from this we conclude

‖L ◦ fP,λ‖∞ ≤ 4M2 + 8C2M2−2s
(Aq(λ)

λ

) 2s
q

,

where we also used the estimate λ‖fP,λ‖qH ≤ Aq(λ). Using
Theorem 11 now yields the assertion.

Proof of Lemma 4: By Lemma 12 there exists a function
fP,λ ∈ H that satisfies

λ‖fP,λ‖p +RL,P (fP,λ)−R∗L,P = Ap(λ) ≤ γ ,

and since RL,P (fP,λ)−R∗L,P ≥ 0, we find λ‖fP,λ‖p ≤ γ.
For κ := λq/pγ1−q/p we hence obtain

Aq(κ) ≤ κ‖fP,λ‖q +RL,P (fP,λ)−R∗L,P
≤ λq/pγ1−q/p · γq/pλ−q/p + γ

= 2γ ,

i.e., we have shown the first assertion. The second assertion
now follows from some simple algebraic transformations.

Proof of Corollary 6: Since Assumption (15) implies (16)
we find

Aq(λn) ≤ 2 c
q

2β+q(1−β) n−
β
β+p .

Moreover, we have

λ2p
n n

q = n
β(q−2p+pq)

β+p ,

and from this it is easy to conclude that the second term in
the oracle inequality of Theorem 1 reduces to

cp,q
(
apqM2q

) 1
q−2p+pq n−

β
β+p .

In addition, our first estimate shows

Aq(λn)
λn

≤ 2 c
q

2β+q(1−β) n
q(1−β)
2β+2p ,

and hence the third term of Theorem 1 can be estimated by

120C2M2−2pτ

n

(Aq(λ)
λ

) 2p
q

≤ 480 c
2p

2β+q(1−β) C2M2−2pτn−
β(1+p)
β+p .

By considering τn := τn
βp
β+p in Theorem 1, the assertion

now follows.

4 Proof of the Lower Bound
The core of the proof of Theorem 9 is based on the following
reformulation of [21, Theorem 2.2]:

Theorem 13 Let ν be a distribution on X and Θ ⊂ L2(ν)
be a subset such that ‖f‖∞ ≤M/4 for all f ∈ Θ and some
M > 0. In addition, assume that there exists an r ∈ (0, 1)
such that

ei(Θ, L2(PX)) ∼ i−1/r .

Then there exist constants δ0 > 0, c1, c2 > 0 and a sequence
(εn) with

εn ∼ n−
2

2+r

such that for all learning methods A there exists a distribu-
tion P on X × [−M,M ] satisfying PX = ν and f∗P ∈ Θ
such that for all ε > 0 and n ≥ 1 we have

Pn
(
D : RL,P (fD)−R∗L,P ≥ ε

)
≥

{
δ0 if ε < εn
c1e
−c2εn if ε ≥ εn ,

where fD is the decision function produced by A for a given
training set D.

Proof: The proof of [21, Theorem 2.2] identifies the “bad”
distribution P with the help of [21, Theorem 2.1]. Since the
latter result provides a distribution P for which the lower
bound on Pn(D : RL,P (fD) − R∗L,P ≥ ε) holds for all
ε > 0 and n ≥ 1, the same is true in [21, Theorem 2.2].
Analogously, we check that the compactness assumption on
Θ made in [21, Theorem 2.2] is superfluous.

Our next goal is to apply Theorem 13. To this end, we
need to translate the eigenvalue assumption (20) into an as-
sumption on the behavior of entropy numbers of a suitable
set Θ. The key step in this direction is Lemma 14 below,
which relates the fractional powers of the integral operator
Tk to some spaces of functions. For its formulation, we need
to introduce a weighted sequence space. More precisely,
given a set of integers I ⊂ N and a decreasing sequence
µ := (µi)i∈I of strictly positive numbers, we define

‖b‖2`2(µ−1) :=
∑
i∈I

b2i
µi

for all b := (bi)i∈I ⊂ R. Then it is easy to see that ‖·‖`2(µ−1)

is a Hilbert space norm on the set

`2(µ−1) :=
{

(bi)i∈I : ‖(bi)‖`2(µ−1) <∞
}
.

Moreover, µi ≤ µ1 for all i ∈ I implies

‖b‖`2(I) ≤ µ1‖b‖`2(µ−1)

for all b ∈ `2(µ−1).
With these preparations we can now investigate the frac-

tional powers T βk .

Lemma 14 Let X be a measurable space, ν be a distribu-
tion on X , and k be a bounded measurable kernel on X
that has a separable RKHS H . Let µ := (µi)i∈I be the
ordered (with geometric multiplicities) sequence of non-zero
eigenvalues of the integral operator Tk defined by (5) and



(ei) ⊂ L2(ν) be an ONS of corresponding eigenfunctions.
For β ∈ [0, 1] we define T βk : L2(ν)→ L2(ν) by

T βk f :=
∑
i∈I

µβi 〈f, ei〉ei , f ∈ L2(ν),

where 〈f, ei〉 := 〈f, ei〉L2(ν) is the inner product in L2(ν).
Moreover, we define

Hβ :=
{∑
i∈I

biei : (bi) ∈ `2(µ−β)
}

and equip this space with the Hilbert space norm

‖
∑
i∈I

biei‖Hβ := ‖(bi)‖`2(µ−β) .

Then we have Hβ ⊂ L2(ν), and T βk f ∈ Hβ with

‖T βk f‖`2(µ−β) ≤ µ
β/2
1 ‖f‖L2(ν)

for all f ∈ L2(ν). Moreover, the bounded linear operator
Sβ : L2(ν) → Hβ defined by Sβf := T βk f satisfies S∗β =
id : Hβ → L2(ν), and hence we have

L2(ν) L2(ν)

Hβ

-

@
@
@
@R �

�
�
��

T βk

Sβ S∗β

Furthermore, f 7→ T
β/2
k f defines an isometric isomor-

phism between the closed supspace H0 = span{ei : i ∈ I}
of L2(ν) and Hβ . Finally, if H is dense in L2(ν) and
id : H → L2(ν) is injective, then H0 = L2(ν).

Proof: The definition of T βk is the standard way to define
fractional powers of operators and is known to be indepen-
dent of the choice of the ONS of eigenfunctions. Moreover,
Hβ is clearly a Hilbert space since the definition ensures
that it is isometrically isomorphic to `2(µ−β). From this
it is easy to see that the inclusion `2(µ−1) ⊂ `2 implies
Hβ ⊂ L2(ν). Let us now fix an f ∈ L2(ν). Then we
have ‖(〈f, ei〉)‖2`2(I) ≤ ‖f‖

2
L2(ν) by Bessel’s inequality, and

hence we obtain

‖T βk f‖
2
Hβ

=
∑
i∈I

µ2β
i |〈f, ei〉|2

µβi
≤ µβ1‖f‖2L2(ν).

Let us now show that S∗β = id : Hβ → L2(ν). To this end,
we fix an f ∈ L2(ν) and an h ∈ Hβ with h =

∑
i∈I biei.

Then the definition of the norm ‖·‖Hβ and the corresponding
inner product yields

〈h, Sβf〉Hβ =
∑
i∈I

biµ
β
i 〈f, ei〉L2(ν)

µβi

=
∑
i∈I

bi〈f, ei〉L2(ν)

= 〈h, f〉L2(ν) ,

i.e., we have shown S∗β = id : Hβ → L2(ν). From this the
diagram easily follows. Let us show the claimed isometric
isomorphism. To this end, we observe that (ei) is an or-
thonormal basis (ONB) of H0, and hence Parseval’s identity
yields

‖T β/2k f‖2Hβ =
∑
i∈I

µβi |〈f, ei〉|2

µβi
= ‖f‖2H0

,

i.e., f 7→ T
β/2
k f is an isometric injection fromH0 toHβ . To

show the surjectivity, we fix an h ∈ Hβ with h =
∑
i∈I biei.

For ai := µ
−β/2
i bi we then have∑

i∈I
a2
i =

∑
i∈I

µ−βi b2i <∞ ,

and hence we can define f :=
∑
i∈I aiei ∈ H0. An easy

calculation then shows

T
β/2
k f =

∑
i∈I

µ
β/2
i aiei =

∑
i∈I

biei = h ,

i.e., we have shown the surjectivity. By [19, Theorem 4.26]
and the denseness ofH in L2(ν) we finally see that the oper-
ator S : L2(ν)→ H defined by Sf := Tkf is injective, and
hence so is Tk by the assumed injectivity of id : H → L2(ν).
Consequently, (ei) is an ONB of L2(ν).

With the help of the lemma above we can now describe the
relationsship between the eigenvalues of Tk and the entropy
numbers of id : Hβ → L2(ν).

Theorem 15 Let X be a measurable space, ν be a distribu-
tion on X , and k be a bounded measurable kernel on X that
has a separable RKHS H . Then for all q > 0 there exists a
constant cq > 0 only depending on q such that for all m ≥ 1
and β ∈ (0, 1] we have

sup
i≤m

i1/qei(id : Hβ → L2(ν))

≤ cq sup
i≤m

i1/qµ
β/2
i (Tk : L2(ν)→ L2(ν))

and

µβ/2m (Tk : L2(ν)→ L2(ν)) ≤ 2em(id : Hβ → L2(ν)) .

Moreover, given a fixed p ∈ (0, 1), we have

ei(id : Hβ → L2(ν)) ∼ i−
β
2p

if and only if µi(Tk) ∼ i−
1
2p .

Proof: The complete proof would require introducing some
heavy machinery from functional analysis, in particular from
the theory of so-called s-numbers, see [14]. Since this is
clearly out of the scope of this paper, we refer [19, Appendix
5.2] for a brief summary of these techniques. Let us now
show the inequalities. To this end, we first observe that

µβi (Tk) = µi(T
β
k )

by construction. Furthermore, from the last two pages of [19,
Appendix 5.2] we conclude that

µi(T
β
k ) = si(T

β
k ) = s2

i (S
∗
β) = a2

i (S
∗
β)



where si(·) and ai(·) denote the ith singular and the ith ap-
proximation number defined in [19, (A.25)] and [19, (A.29)],
respectively. From Carl’s inequality, see [7, Theorem 3.1.1],
we then obtain the first inequality. The second inequality
follows from the relation

am(R : H1 → H2) ≤ 2em(R : H1 → H2)

that holds for all bounded linear operatorsR between Hilbert
spaces H1 and H2, see [7, p. 120].

Let us now assume that µi(Tk) ∼ i−
1
p . Then the upper

bound on the entropy numbers easily follows from the first
inequality for q := p/β, while the lower bound on the en-
tropy numbers is a trivial consequence of the second inequal-
ity. Conversely, if we assume

ei(id : Hβ → L2(ν)) ∼ i−
β
2p ,

then the second inequality immediately gives the desired up-
per bound on the eigenvalues. To establish the lower bound,
let j,m ≥ 1 be integers, where m will be specified later. For
suitable constants c1, c2, c3 > 0, we then have

(m · j)
β
2p ≤ c1(m · j)

β
p em·j(id : Hβ → L2(ν))

≤ c2 sup
i≤m·j

i
β
p µ

β/2
i (Tk)

≤ c2 sup
i≤j

i
β
p µ

β/2
i (Tk) + c2 sup

j≤i≤m·j
i
β
p µ

β/2
i (Tk)

≤ c3 j
β
2p + c2(m · j)

β
p µ

β/2
j (Tk) ,

where in the last step we used the already established up-
per bound on the eigenvalues. If we now fix an m such that
m

β
2p ≥ 1 + c3, we obtain the desired lower bound by some

simple algebraic transformations.

Proof of Theorem 9: Let us write

Θ :=
M

4c
S∗β(BHβ ) =

M

4c
T
β/2
k

(
BL2(ν)

)
.

Then we have ‖f‖∞ ≤ M/4 for all f ∈ Θ by our assump-
tion on T β/2k . Moreover, the assumption on the eigenvalues
together with Theorem 15 implies

ei(id : Hβ → L2(PX)) ∼ i−
β
2p ,

and hence Θ satisfies the assumptions of Theorem 13 for
r := 2p

β . Consequently the assertion follows by consider-
ing ε := τεn in Theorem 13.
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