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Link Prediction Heuristics” (joint with Deepayan Chakrabarti and Andrew Moore). The local organizers were
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The conference was unanimously hailed a great success.
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Convex Games in Banach Spaces

Karthik Sridharan
TTI-Chicago

karthik@ttic.edu

Ambuj Tewari
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tewari@ttic.edu

Abstract

We study the regret of an online learner playing a multi-round game in a Banach space
B against an adversary that plays a convex function at each round. We characterize the
minimax regret when the adversary plays linear functions in terms of the Martingale type
of the dual of B. The cases when the adversary plays bounded and uniformly convex
functions respectively are also considered. Our results connect online convex learning to
the study of the geometry of Banach spaces. We also show that appropriate modifications
of the Mirror Descent algorithm from convex optimization can be used to achieve our regret
upper bounds. Finally, we provide a version of Mirror Descent that adapts to the changing
exponent of uniform convexity of the adversary’s functions. This adaptive mirror descent
strategy provides new algorithms even for the more familiar Hilbert space case where the
loss functions on each round have varying exponents of uniform convexity (curvature).

1 Introduction

Online convex optimization [1, 2, 3] has emerged as an abstraction that allows a unified treatment of a
variety of online learning problems where the underlying loss function is convex. In this abstraction,
a T -round game is played between the learner (or the player) and an adversary. At each round
t ∈ {1, . . . , T}, the player makes a move wt in some set W. In the learning context, the set W will
represent some hypothesis space. Once the player has made his choice, the adversary then picks a
convex function `t from some set F and the player suffers “loss” `t(wt). In the learning context,
the adversary’s move `t encodes the data seen at time t and the loss function used to measure the
performance of wt on that data. As with any abstraction, on one hand, we lose contact with the
concrete details of the problem at hand, but on the other hand, we gain the ability to study related
problems from a unified point of view. An added benefit of this abstraction is that it connects online
learning with geometry of convex sets, theory of optimization and game theory.

An important notion in the online setting is that of the cumulative regret incurred by the player
which is the difference between the cumulative loss of the player and the cumulative loss for the best
fixed move in hindsight. The goal of regret minimizing algorithms is to control the growth rate of
the regret as a function of T . There has been a huge amount of work characterizing the best regret
rates possible under a variety of assumptions on the player’s and adversary’s sets W and F . With
a few exceptions that we mention later, most of the work has been in the setting where these sets
live in some Euclidean space Rd. Whenever the results do not explicitly involve the dimensionality
d, they are also usually applicable in any Hilbert space H. There also has been a lot of work dealing
with `p spaces for p ∈ [1, 2]. But here, the fact exploited is that a strongly convex function, (with
dimension-independent constant of strong convexity) is available in these Banach spaces. There has
been less work dealing with arbitrary Banach spaces (where strongly convex functions might not
exist). Our focus in this paper is to extend the study of optimal regret rates to the case when the
set W lives in a general Banach space B.

Before we explain what our specific contributions are, let us briefly mention two examples to
show why one might want to move beyond Hilbert spaces and consider general Banach spaces. A
first family of examples is `p spaces with p ≥ 2. As p grows, the `p balls become larger and thus
have better approximation properties. On the other hand, as we show below, the cumulative regret
rate when competing against a fixed size ball in `p is O(T 1/p). So, there is a trade-off here between
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approximation properties and the regret rate (or the estimation error in a stochastic setting). In
high-dimensions, one can easily construct examples where the approximation property dominates
the trade-off and it is advantageous to use p > 2 even though the estimation error suffers (see
appendix for a worked out example). Another example is prediction with squared loss where the
learner is trying to predict a signal yt given input xt. At each step, the learner chooses a function ft
and suffers the loss (yt − ft(xt))2. Here, the viewpoint of considering ft as a “point” in a function
space is very fruitful and it very natural to assume that the space of functions that the learner can
use is a Banach space of functions. For more details, see [4].

In the Hilbert space setting, it is known that the “degree of convexity” or “curvature” of the
functions `t played by the adversary has a significant impact on the achievable regret rates. For
example, if the adversary can play arbitrary convex and Lipschitz functions, the best regret possible
is O(

√
T ). However, if the adversary is constrained to play strongly convex and Lipschitz functions,

the regret can be brought down to O(log T ). Further, it is also known, via minimax lower bounds [5],
that these are the best possible rates in these situations. In a general Banach space, strongly convex
functions might not even exist. We will, therefore, need a generalization of strong convexity called
q-uniform convexity (strong convexity is 2-uniform convexity). There will, in general, be a number
q? ∈ [2,∞) such that q?-uniformly convex functions are the “most curved” functions available on B.
There are, again, two extremes: the adversary can play either arbitrary convex-Lipschitz functions
or q?-uniformly convex functions. We show that the minimax optimal rates in these two situations
are of the order Θ?(T 1/p?) and Θ?(T 2−q?) respectively1 where p? is the Martingale type of the dual
B? of B. A Hilbert space has p? = q? = 2. We also give upper and lower bounds for the intermediate
case when the adversary playes q-uniformly convex functions for q > q?. This case, as far as we
know, has not been analyzed even in the Hilbert space setting.

Another natural game that we have not seen analyzed before is the convex-bounded game: here
the adversary plays convex and bounded functions. Of course, being Lipschitz on a bounded domain
implies boundedness but the reverse implication is false: a bounded function can have arbitrarily
bad Lipschitz constant. For the convex-bounded game, we do not have a tight characterization but
we can give non-trivial upper bounds. However, these upper bounds suffice to prove, for example,
that the following three properties of B are equivalent: (1) the convex-bounded game when the
player plays in the unit ball of B has non-trivial (i.e. o(T )) minimax regret; (2) the corresponding
convex-Lipschitz game has non-trivial minimax regret; and (3) the Banach space B is super-reflexive.

We further describe player strategies that achieve the optimal rates for these convex games. These
strategies are all based on the Mirror Descent algorithm that originated in the convex optimization
literature [6]. Usually Mirror Descent is run with a strongly convex function but it turns out that
it can also be analyzed in our Banach space setting if it is run with a q-uniformly convex function
Ψ. Moreover, with the correct choice of Ψ, it achieves all the upper bounds presented in this paper.
Thus, part of our contribution is also to show the remarkable properties of the Mirror Descent
algorithm.

Our final contribution is an adaptive algorithm, building on previous work, that adapts to the
exponent of uniform convexity in the adversary’s functions. Our results have novel implications even
in a Hilbert space. For example, [7] showed how to adapt to an adversary that mixes linear and
strong convex functions in its moves. We can now allow this mix to also consist of functions with
intermediate degrees of uniform convexity.

Related work The idea of exploiting minimax-maximin duality to analyze optimal regret rates
also appears in the recent work of Abernethy et al. [8]. The earliest papers we know of that explore
the connection of the type of a Banach space to learning theory are those of Donahue et al. [9]
and Gurvits [10]. Mendelson and Schechtman [11] gave estimates of the fat-shattering dimension
of linear functionals on a Banach space in terms of its type. In the context of online regression
with squared loss, Vovk [4] also gives rates worse than O(

√
T ) when the class of functions one is

competing against is not in a Hilbert space, but in some Banach space. He also mentions “Banach
Learning” as an open problem in his online prediction wiki2. For recent work exploring Banach
spaces for learning applications, see [12, 13, 14]. These papers also give more reasons for considering
general Banach spaces in Learning Theory.

Outline The rest of the paper is organized as follows. In Section 2, we formally define the minimax
and maximin values of the game between a player and an adversary. We also introduce the notions
of Martingale type and uniform convexity from functional analysis. Section 3 considers convex-
Lipschitz and linear games. A key result in that section is Theorem 4 which gives a characterization

1Our informal Θ?(·) notation hides factors that are o(T ε) for every ε > 0.
2http://onlineprediction.net/?n=Open.BanachLearning
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of the minimax regret of these games in terms of the type. Convex-bounded games are treated in
Section 4 and the equivalence of super-reflexivity of the space to the existence of player strategies
achieving non-trivial regret guarantees is established (Corollary 6). We next consider the case when
the adversary plays “curved” functions in Section 5. Here the regret depends on the exponent of
uniform convexity of the functions played by the adversary (Theorem 8). In Section 6, we describe
player strategies based on the Mirror Descent algorithm that achieve the upper bounds presented
in Section 3 and Section 4. In Section 7, using the techniques of Bartlett et al. [7], we give a player
strategy that adapts to the exponent of uniform convexity of the functions being played by the
adversary. We conclude in Section 8 by exploring directions for future work including a discussion
on how the ideas in this paper might lead to practical algorithms. All proofs omitted from the main
body of the paper can be found in the appendix.

2 Preliminaries

2.1 Regret and Minimax Value
Our primary objects of study are certain T -round games where the player P makes moves in convex
setW contained in some (real) separable Banach space B. The adveraryA plays bounded continuous
convex functions on W chosen from a fixed function class F . The game proceeds as follows.

For t = 1 to T
• P plays wt ∈ W,
• A plays `t ∈ F ,
• P suffers `t(wt).

For given sequences w1:T , `1:T , we define the regret of P as,

Reg(w1:T , `1:T ) :=
T∑
t=1

`t(wt)− inf
w∈W

T∑
t=1

`t(w) .

Given the tuple (T,B,W,F), we can define the minimax value of the above game as follows.

Definition 1. Given T ≥ 1 and B,W,F satisfying the conditions above, define the minimax value,

VT,B (W,F) := inf
w1∈W

sup
`1∈F

· · · inf
wT∈W

sup
`T∈F

Reg(w1:T , `1:T ) .

When T and B are clear from context, we will simply denote the minimax value by V (W,F). A
player strategy (or P-strategy) W is a sequence (W1, . . . ,WT ) of functions such that Wt : F t−1 →W.
For a strategy W , we define the regret as,

Reg(W, `1:T ) :=
T∑
t=1

`t(Wt(`1:t−1))− inf
w∈W

T∑
t=1

`t(w) .

In terms of player strategies, the minimax value takes a simpler form,

VT,B (W,F) = inf
W

sup
`1:T

Reg(W, `1:T ) ,

where the supremum is over all sequences `1:T ∈ FT . Let Q denote distributions over FT . We can
define the maximin value,

UT,B (W,F) := sup
Q

inf
W

E`1:T∼Q [Reg(W, `1:T )] .

One has that
VT,B (W,F) ≥ UT,B (W,F) . (1)

This inequality will be the starting point for our subsequent analysis. For more about the minimax
and maximin values refer, [15, p. 31].

2.2 Martingale type and Uniform Convexity
One of the goals of this paper is to characterize the minimax value in terms of the geometric
properties of the space B and “degree of convexity” inherent in the functions in F . Among the
geometric characteristics of a Banach space B, the most useful for us is the notion of Martingale
type (or M-type) of B. A Banach space B has M-type p if there is some constant C such that for
any T ≥ 1 and martingale difference sequence d1, . . . ,dT with values in B,

E

[∥∥∥∥∥
T∑
t=1

dt

∥∥∥∥∥
]
≤ C

(
T∑
t=1

E [‖dt‖p]

)1/p

. (2)
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We also define the best M-type possible for a Banach space,

p?(B) := sup {p : B has M-type p} . (3)

A Banach space B has M-cotype q if there is some constant C such that for any T ≥ 1 and martingale
difference sequence d1, . . . ,dT with values in B,(

T∑
t=1

E [‖dt‖q]

)1/q

≤ C E

[∥∥∥∥∥
T∑
t=1

dt

∥∥∥∥∥
]
. (4)

A closely related notion in Banach space theory is that of super-reflexivity. Refer [16] for more
details.

Definition 2. A Banach space B is super-reflexive if no non-reflexive space is finitely representable
in B.

A result of Pisier [16] shows that a Banach space B has non-trivial M-type (p? > 1) (or equivalently
non-trivial Martingale co-type) if and only if it is super-reflexive.

To measure the “degree of convexity” of the functions played by the adversary, we need the
notion of uniform convexity. Let ‖ · ‖ be the norm associated with a Banach space B. A function
` : B→ R is said to be (C, q)-uniformly convex on B if there is some constant C > 0 such that, for
any v1,v2 ∈ B and any θ ∈ [0, 1],

`(θv1 + (1− θ)v2) ≤ θ`(v1) + (1− θ)`(v2)− Cθ(1− θ)
q

‖v1 − v2‖q .

If C ≥ 1 we simply say that the function ` is q-uniformly convex.

The following remarkable theorem of Pisier [17] shows that the concept of M-types and existence
of uniformly convex functions in the Banach space are intimately connected.

Theorem (Pisier). A Banach space B has M-cotype q iff there exists a q-uniformly convex function
on B.

Now consider some p ∈ [1, p?M (B?)). Then, by definition, B? has M-type p. It is a fact that B?

has M-type p iff B has M-cotype p
p−1 [16, Chapter 6]. Thus, B has M-cotype p

p−1 . Now, Pisier’s
theorem guarantees the existence of a p

p−1 -uniformly convex function on B.
For a convex function ` : B→ R, its subdifferential at a point v is defined as,

∂`(v) = {λ ∈ B? : ∀v′, `(v′) ≥ `(v) + λ(v′ − v)} ,

where B? denotes the dual space of B. This consists of all continuous linear functions on B with
norm defined as ‖`‖? := supw:‖w‖≤1 `(w). If ∂`(v) is a singleton then we say ` is differentiable at v
and denote the unique member of ∂`(v) by ∇`(v). If ` is differentiable at v1, define the Bregman
divergence associated with ` as,

∆` (v1,v2) = `(v1)− `(v2)−∇`(v2)(v1 − v2) .

Recall that a function ` : B → R is L-Lipschitz on some set W ∈ B if for any v1,v2 ∈ W, we
have `(v1) − `(v2) ≤ L ‖v1 − v2‖. Given a set W in a Banach space B, we define the following
natural sets of convex functions on W,

lin(W) := {` : ` is linear and 1-Lipschitz on W} ,
cvx(W) := {` : ` is convex and 1-Lipschitz on W} ,
bdd(W) := {` : ` is convex and bounded by 1 on W} ,

cvxq,L(W) = {` : ` is q-uniformly convex and L-Lipschitz on W} .

In the following sections, we will analyze the minimax value V (W,F) when the adversary’s set of
moves is one these 4 sets defined above. For readability, we will drop the dependence of these sets on
W when it is clear from context. For example, we will refer to V (W, cvx(W)) simply as V (W, cvx).
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3 Convex-Lipschitz and Linear Games

Given a Banach space B with a norm ‖ · ‖, denote its unit ball by U (B) := {v ∈ B : ‖v‖ ≤ 1}.
Consider the case when the P’s set W is the unit ball U (B) for some B. This setting is not as
restrictive as it sounds since any bounded symmetric convex set K in a vector space V gives a
Banach space B = (V, ‖ · ‖K), where we equip V with the norm,

‖v‖K := inf {α > 0 : v ∈ αK} . (5)

Moreover, (the closure of) K is the unit ball of this Banach space.
So, fix B and consider the case W = U (B), F = cvx(W). Theorem 14 given in [5] gives us

V (W, cvx) = V (W, lin). We are therefore led to consider the case W = U (B), F = lin(W).
Note that lin(W) is simply the unit ball U (B?). The theorem below relates the minimax value
V (U (B), lin) to the behaviour of martingale difference sequences in B∗.

Theorem 3. The minimax value V (U (B), lin) of the linear game is bounded as,

V (U (B), lin) ≥ sup
M

E

[∥∥∥∥∥
T∑
t=1

`t

∥∥∥∥∥
?

]
.

where the supremum is over distributions M of martingale difference (`t)Tt=1 such that each `t ∈
U (B?).

Proof. Recall that we denote a general distribution over A’s sequences by Q and P-strategies by W .
Equation (1) gives us,

V (W,F) ≥ sup
Q

inf
W

E`1:T∼Q [Reg(W, `1:T )] .

If we define VQ := infW E`1:T∼Q [Reg(W, `1:T )] we can succinctly write, V (W,F) = supQ VQ.
Now, let us fix a distribution Q and denote the conditional expectation w.r.t. `1:t by Et [·] and

the full expectation w.r.t. `1:T by E [·]. Substituting the definition of regret and noting that the
infimum in its definition does not depend on the strategy W , we get

VQ ≥ inf
W

(
E

[
T∑
t=1

`t(Wt(`1:t−1))

])
− E

[
inf

w∈W

T∑
t=1

`t(w)

]
. (6)

Let us simplify the infimum over P-strategies as follows,

inf
W

E

[
T∑
t=1

`t(Wt(`1:t−1))

]
= inf

W

T∑
t=1

E [Et−1 [`t(Wt(`1:t−1))]] =
T∑
t=1

inf
Wt

E [Et−1 [`t(Wt(`1:t−1))]]

=
T∑
t=1

E
[

inf
wt∈W

Et−1 [`t(wt)]
]
.

Substituting this into (6), we get,

VQ ≥
T∑
t=1

E
[

inf
wt∈W

Et−1 [`t(wt)]
]
− E

[
inf

w∈W

T∑
t=1

`t(w)

]

= E

[
sup
w∈W

T∑
t=1

−`t(w)

]
−

T∑
t=1

E
[

sup
wt∈W

Et−1 [−`t(wt)]
]
. (7)

Since the losses `t are linear and W is the unit ball, we can re-write the above as

VQ ≥ E

[∥∥∥∥∥
T∑
t=1

−`t(w)

∥∥∥∥∥
]
−

T∑
t=1

E [‖Et−1 [−`t(wt)]‖]

If we restrict ourselves to only distribution Q such that (`1, . . . , `T ) are martingale difference se-
quences then clearly Et−1 [−`t(wt)] = 0 and so

sup
Q
VQ ≥ sup

M
E

[∥∥∥∥∥
T∑
t=1

−`t(w)

∥∥∥∥∥
]

and so we get the lower bound.
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Given the above result, we can now characterize the minimax value V (U (B), lin) in terms of
the p?(B?) where B? is the dual space of B.

Theorem 4. For all p, p′ such that p < p?(B?) < p′, there exists a constant C such that,

Ω
(
T 1/p′

)
= V (U (B), lin) = V (U (B), cvx) ≤ CT 1/p . (8)

If the supremum in (3) is achieved, the upper bound also holds for p = p?(B?).

Proof. To prove the lower bound, note that for any finite dimensional Banach space has p?(B?) = 2
with a possibly dimension dependent constant. In this case, the lower bound of

√
T for the linear

game game is easy: pick some non-zero vector, say ` ∈ U (B?), and use ` or −` at random in
Theorem 3 and the lower bound follows. Therefore, assume B is infinite dimensional. The lower
bound in this case is proved using Lemma 12 which in turn is proved using ideas from [16]. Lemma
12 shows that for any p′ > p?(B?),

supM E
[∥∥∥∑T

t=1 dt
∥∥∥]

T 1/p′
−→∞

However we have from Theorem 3 that

V (U (B), lin) ≥ sup
M

E

[∥∥∥∥∥
T∑
t=1

dt

∥∥∥∥∥
]

Hence we can conclude that for any p′ > p? asymptotically T 1/p′ is dominated by V (U (B), lin) and
hence the lower bound.

As for the upper bounds, if p?(B?) = 1 then the upper bound is trivial. On the other hand, when
M-type is non-trivial, then M-type p implies M-cotype q = p

p−1 . Therefore, for each p ∈ (1, p?(B?)),
B is of M-cotype q. By Theorem (Pisier) , there exists a q-uniformly convex function on B. Using
this function in the Mirror Descent algorithm, Proposition 9 yields the required upper bound.

Although we have stated the above theorem for the special case when W = U (B) and F =
lin(U (B)), it actually gives us regret rates when P plays in r U (B) and A plays L-Lipschitz linear
functions via the following equality which is easy to prove from first principles,

V (r U (B), L lin(U (B))) = r · L · V (U (B), lin(U (B))) . (9)

For the special case when (B,B?) = (`q, `p) for 1/p+ 1/q = 1, the rates given by the theorem above
become Θ(T 1/p) and Θ(T 1/2) when p ∈ (1, 2] and p ∈ [2,∞) respectively.

4 Convex-Bounded Games

Another natural game we consider is one in which P plays from some convex set W and A plays
some convex function bounded by 1. In the following theorem, we bound the value of such a game.

Theorem 5. For all p, p′ such that p < p?(B?) < p′, there is a constant C such that,

Ω
(
T 1/p′

)
≤ V (U (B),bdd) ≤ CT 1/p+1/2q . (10)

where q = p
p−1 . If the supremum in (3) is achieved, the upper bound also holds for p = p?(B?).

Proof of Theorem 5. Let us actually consider the case W = r U (B) and F = bdd(r U (B)). The
bounds will turn out to be independent of r. Note that we have the inclusion, bdd(r U (B)) ⊇
1
r lin(U (B)) which implies

V (r U (B),bdd(r U (B))) ≥ V
(
r U (B),

1
r

lin(U (B))
)
.

The lower bound is now immediate due to lower bound on linear game on unit ball (Theorem 4)
and property (9).

For the upper bound, note that any convex function bounded by 1 on the scaled ball r U (B) is
2
εr Lipschitz on the ball of radius (1− ε)r [18]. Hence, by upper bound in Theorem 4 and property
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(9), we see that there exists a strategy say W whose regret on the ball of radius r(1− ε) is bounded
by C

ε T
1
p for any p ∈ [1, p?(B?). That is

T∑
t=1

`t(Wt)− argmin
w∈r(1−ε)U(B)

T∑
t=1

`t(w) ≤ C

ε
T 1/p, ∀p ∈ [1, p?(B?)) (11)

Let w? = argmin
w∈r U(B)

∑T
t=1 `t(w). Now we consider two cases, first when w? ∈ (1− ε)r U (B) In this

case the regret of the strategy on the unit ball is bounded by C
ε T

1/p for all p ∈ [1, p?(B?)). On the
other hand if w? /∈ (1 − ε)r U (B), then define w?

ε = r(1−ε)w?

‖w?‖ . Note that w?
ε ∈ r(1 − ε)U (B). In

this case by convexity of
∑T
t=1 `t(w), we have that

T∑
t=1

`t(w?
ε ) ≤

r(1− ε)
‖w?‖

T∑
t=1

`t(w?) +
(

1− r(1− ε)
‖w?‖

) T∑
t=1

`t(0)

Hence, we have that

T∑
t=1

`t(w?
ε )−

T∑
t=1

`t(w?) ≤
(
r(1− ε)
‖w?‖

− 1
) T∑
t=1

`t(w?) +
(

1− r(1− ε)
‖w?‖

)
T ≤ 2

(
1− r(1− ε)

‖w?‖

)
T

However, since ‖w?‖ ≤ r we see that
∑T
t=1 `t(w

?
ε ) −

∑T
t=1 `t(w

?) ≤ 2εT Combining with (11) we

see that for any p ∈ [1, p?(B?)),
∑T
t=1 `t(wt) −

∑T
t=1 `t(w

?) ≤ C
ε T

1/p + 2εT Choosing ε =
√

C
2T 1/q

we get the required upper bound.

Although we have stated the above result for the unit ball, the proof given above shows that the
bounds are independent of the radius of the ball in which the player is playing.

Theorems 4 and 5 imply the following interesting corollary.

Corollary 6. The following statements are equivalent :

1. V (U (B),bdd) = o(T ). 3. B? has non-trivial M-type
2. V (U (B), cvx) = o(T ). 4. Both B and B? are super-reflexive.

Proof of Corollary 6. The implications 3 ⇒ 1 and 3 ⇒ 2 follow from the upper bounds in Theo-
rems 4 and 5. The reverse implications 1⇒ 3 and 2⇒ 3, in turn, follow from the lower bounds in
those theorems. The equivalence of 3 and 4 is due to deep results of Pisier [19].

The convex-Lipschitz games (and q-uniformly convex-Lipschitz games considered below) depend,
by definition, not only on the player’s set W but also on the norm ‖ · ‖ of the underlying Banach
space B. This is because A’s functions are required to be Lipschitz w.r.t. ‖ · ‖. However, note
that the convex-bounded game can be defined only in terms of the player set W. Hence, one would
expect the value of the game to be characterized solely by properties of set W. This is what the
following corollary confirms.

Corollary 7. Let W be any symmetric bounded convex subset of a vector space V. The value of the
bounded convex game on W is non-trivial (i.e. o(T )) iff the Banach space (V, ‖ · ‖W) (where ‖ · ‖W
is defined as in (5)) is super-reflexive.

5 Uniformly Convex-Lipschitz Games

For any Hilbert space H, it is known that V (U (H), cvx2,L) is much smaller than V (U (H), lin), i.e.
the game is much easier for P ifA plays 2-uniformly convex (also called strongly convex) functions. In
fact, it is known that V (U (H), cvx2,L) = Θ(L2 log T ) while V (U (H), lin) = Θ(

√
T ). This suggests

that we should get a rate between log(T ) and
√
T if A plays q-uniformly convex functions in a

Hilbert space H for some q > 2. As far as we know, there is no characterization of the achievable
rates for these intermediate situations even for Hilbert spaces. Our next result provides upper and
lower bounds for V (U (B), cvxq,L) in a Banach space, when the exponent of A’s uniform convexity
lies in an intermediate range between its minimum possible value q? and its maximum value ∞. It
is easy to see that the minimum possible value q? is p?(B?)/(p?(B?)− 1).
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Theorem 8. Let q? = p?(B?)
p?(B?)−1 and q ∈ (q?,∞). Let p = q/(q−1) be the dual exponent of q. Then,

as long as cvxq,L is non-empty, there exists K that depends on L such that for all p′ > p?(B?),

Ω
((

1− 1
L

)
1
p
T

1−p+ p
p′

)
≤ V (U (B), cvxq,L) ≤ KTmin{2−p,1/p?(B?)} . (12)

Proof. We start by proving the lower bound. To this end note that if cvxq,L is non-empty, then
the adversary plays L-Lipschitz, q-uniformly convex loss functions. Note that given such a function,
there exists a norm |·| such that |·| ≤ ‖·‖ ≤ L |·| (ie. an equivalent norm) and 1

q |·|
q is a q-uniformly

convex function [20]. Given this we consider a game where adversary plays only functions from

lincvxq,L(W) := {`(w) = 〈w,x〉+
1
q
|w|q : |x|? ≤ L− 1}

Note that since the above is L-Lipschitz w.r.t. |·|, it is automatically L-Lipchitz w.r.t. ‖·‖. Hence
lincvxq,L ⊆ cvxq,L, and so we have that V (U (B), lincvxq,L) ≤ V (U (B), cvxq,L) However note that

V (U (B), lincvxq,L) ≥ inf
W

sup
P

E`1:T∼P Reg(W, `1:T ) (13)

Also note that

Reg(W, `1:T ) =
T∑
t=1

(
〈xt,wt〉+

|wt|q

q

)
− inf

w∈U(B)

T∑
t=1

(
〈xt,w〉+

|w|q

q

)

=
T∑
t=1

(
〈xt,wt〉+

|wt|q

q

)
+ T sup

w∈U(B)

(〈
− 1
T

T∑
t=1

xt,w

〉
− |w|

q

q

)

≥
T∑
t=1

(
〈xt,wt〉+

‖wt‖q

Lq

)
+ T sup

w∈U(B)

(〈
− 1
T

T∑
t=1

xt,w

〉
− ‖w‖

q

q

)

=
T∑
t=1

(
〈xt,wt〉+

‖wt‖q

Lq

)
+
T
∥∥∥− 1

T

∑T
t=1 xt

∥∥∥p
?

p

Where the last step is by definition of convex dual of ‖·‖
q

q . Now note that since we have a supremum
over distribution in (13), and so we can lower bound the value by picking distribution such that
d1, . . . ,dT are martingale difference sequences and dt ∈ L−1

L U (B?). Thus we see that

V (U (B), lincvxq,L) ≥ sup
M

inf
W

E

 T∑
t=1

(
〈dt,wt〉+

‖wt‖q

Lq

)
+
T 1−p

∥∥∥−∑T
t=1 dt

∥∥∥p
?

p




= sup
M

inf
W

E

[
T∑
t=1

‖wt‖q

Lq

]
+
T 1−pE

[∥∥∥−∑T
t=1 dt

∥∥∥p
?

]
p


= sup

M


T 1−pE

[∥∥∥−∑T
t=1 dt

∥∥∥p
?

]
p

 ≥
T 1−p

(
supM E

[∥∥∥−∑T
t=1 dt

∥∥∥
?

])p
p

(14)

where the first equality is because wt is only dependent on the history and so the conditional
expectations over dt are 0 and the last step is due to Jensen’s inequality. Now note that using
Lemma 12 we see that for any p′ > p? we have that

V (U (B), lincvxq,L) = Ω
((

1− 1
L

)
T

1−p+ p
p′

p

)
(15)

(the 1 − 1/L term above comes from the fact that the martingale differences come from ball of
radius 1−1/L while Lemma 12 is over unit ball). Note that the above lower bound becomes 0 when
L = 1 but however in that case it means that the adversary is forced to play 1-Lipschitz, q-uniformly
convex function. However since from each q-uniformly convex L-Lipschitz convex function we can
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build an equivalent norm with distortion 1/L, this means that the function the adversary plays can
be used to construct the original norm itself. From the construction in [20] it becomes clear that
the functions the adversary can play can be merely the norm plus some constant and so the lower
bound of 0 is real.

Now we turn to proving the upper bound. Consider the regret of the mirror descent algorithm
when we run it using a q?-uniformly convex function Ψ that is C-Lipschitz on the unit ball. Here,
for simplicity, we assume that the supremum is achieved in (3) (otherwise we can pick a Ψ that is
q′-uniformly convex for q′ = p′/(p′ − 1) where p′ = p?(B?) − 1/ log T and pay a constant factor).
Note that in the case when q > q? + 1, we have that each σ?t = 0 and so by Theorem 10,

Reg(w1:T , `1:T ) ≤ 2 min
λ1,...,λT

TX
t=1

(L+ C)p
∗“P

j≤t λj
”p∗−1

+ 2

TX
t=1

λtC ≤ 2 min
λ

(L+ C)p
∗
T 2−p∗

λp∗−1
+ 2TλC

Using λ = L+C
T 1/q? (2C)1/p?

we see that Reg(w1:T , `1:T ) ≤ 8(2C)1/q?(L + C)T 1/p? On the other hand
when q ≤ q? + 1, using the upper bound in the theorem with λt = 0 for all t we see that since all
qt = q and all σ?t = 1 and Lt = L we find that the regret of the adaptive algorithm is bounded as

Reg(w1:T , `1:T ) ≤
TX
t=1

 
2(L+ C)p

tp−1
+

2(L+ C)p
?

tp?−1

!
≤

TX
t=1

4(L+ C)p

tp−1
≤ 4(L+ C)p

Z T

1

1

tp−1
dt

Hence we see that for p < p?(B?) ≤ 2, Reg(w1:T , `1:T ) ≤ 4(L+C)p

2−p T 2−p. Since the re-
gret of the adaptive algorithm bounds the value of the game, we see that by picking constant
K = max{ 4(L+C)p

2−p , 8(2C)1/q?(L+ C)} we get the required upper bound.

The upper and lower bounds do not match in general and it is an interesting open problem to
remove this gap. Note that the upper and lower bounds do match for the two extreme cases q → q?

and q → ∞. When q → q?, then both lower and upper bound exponents tend to 2 − p?(B?). On
the other hand, when q →∞, both exponents tend to 1/p?(B?).

6 Strategy for the Player

In this section, we provide a strategy known as Mirror Descent and is given as Algorithm 1 below
which uses uniformly convex function Ψ as internal regularizer and is guaranteed to achieve low
regret.

Algorithm 1 Mirror Descent (Parameters : η > 0, Ψ : B→ R which is uniformly convex)
for t = 1 to T do

Play wt and receive `t
w′t+1 ← ∇Ψ? (∇Ψ(wt)− ηλt) where λt ∈ ∂`t(wt)
Update wt+1 ← argmin

w∈W
∆Ψ

(
w,w′t+1

)
end for

Example : As a more concrete example for the above strategy, if we consider the case where the
player plays from the unit ball of a d dimensional `q space. In this case Ψ(w) = 1

q′ ‖w‖
q′

q where
q′ = q whenever q > 2 and q′ = 2 otherwise. The corresponding dual then is Ψ?(x) = 1

p′ ‖x‖
p′

p where
p′ = p if q > 2 and p′ = 2 otherwise. Correspondingly we get

∇Ψ(w) = ‖w‖q
′−q (signw1)|w1|q−1, . . . , sign(wd)|wd|q−1

)
and

∇Ψ?(x) = ‖x‖q
′−q (sign(x1)|x1|q−1, . . . , sign(xd)|xd|q−1

)
We can use this to update w′t+1 and get a concrete algorithm from the above strategy.

The following proposition gives a regret bound for Mirror Descent.

Proposition 9. Suppose W ⊆ B is such that ‖w‖ ≤ B. Let MD denote the P-strategy obtained by
running Mirror Descent with a function Ψ that is q-uniformly convex on B and C-Lipschitz on W,
and the learning rate η = (BC/T )1/p · (1/L). Here, p = q/(q − 1) is the dual exponent of q. Then,
for all sequences `1:T such that `t is L-Lipschitz on W, we have,

Reg(MD, `1:T ) = O
(

(BC)1/q · L · T 1/p
)
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Proof. For λ ∈ B?,w ∈ B we denote the pairing λ(w) by 〈λ,w〉 where 〈·, ·〉 : B? ×B → R. This
pairing is bilinear but not symmetric. We will first show that, for any w ∈ W,

η 〈λt,wt −w〉 ≤ ∆Ψ (w,wt)−∆Ψ (w,wt+1) +
ηp

p
‖λt‖p? , (16)

where p = q/(q − 1). We have,

η 〈λt,wt −w〉 = 〈ηλt,wt −wt+1 + wt+1 −w〉
= 〈ηλt,wt −wt+1〉︸ ︷︷ ︸

s1

+ 〈ηλt +∇Ψ(wt+1)−∇Ψ(wt),wt+1 −w〉︸ ︷︷ ︸
s2

+ 〈∇Ψ(wt)−∇Ψ(wt+1),wt+1 −w〉︸ ︷︷ ︸
s3

(17)

Now, by definition of the dual norm and the fact that ab ≤ ap

p + bq

q for any a, b ≥ 0, we get

s1 ≤ ‖(wt −wt+1)‖ · ‖ηλ‖? ≤
1
q
‖wt −wt+1‖q +

1
p
‖ηλt‖p∗ .

By the definition of the update, wt+1 minimizes 〈ηλt −∇Ψ(wt),w〉+Ψ(w) over w ∈ W. Therefore,
s2 ≤ 0. Using simple algebraic manipulations, we get

s3 = ∆Ψ (w,wt)−∆Ψ (w,wt+1)−∆Ψ (wt+1,wt) .

Plugging this into (17), we get

η 〈λt,wt −w〉 ≤ ∆Ψ (w,wt)−∆Ψ (w,wt+1) +
ηp

p
‖λt‖2? +

1
q
‖wt −wt+1‖q −∆Ψ (wt+1,wt)︸ ︷︷ ︸

s4

Using that Ψ is q-uniformly convex on B implies that s4 ≤ 0. So, we get (16).
We can now bound the regret as follows. For any w ∈ W, since λt ∈ ∂`t(wt), we have,

`t(wt)− `t(w) ≤ 〈λt,wt −w〉 . Combining this with (16) and summing over t gives,

T∑
t=1

(`t(wt)− `t(w)) ≤ ∆Ψ (w,w1)−∆Ψ (w,wT+1)
η

+
ηp−1

p

T∑
t=1

‖λt‖p? .

Now, ∆Ψ (w,wT+1) ≥ 0 and ∆Ψ (w,w1) ≤ 2BC. Further ‖λt‖? ≤ L since `t is L-Lipschitz.
Plugging these above and optimizing over η gives the required upper bound.

Note that all the above algorithm needed to achieve low regret was a uniformly convex function
Ψ. Theorem (Pisier) [16] gives us exactly this, it guarantees existence of a p

p−1 -uniformly convex
function on a given Banach space for any p ∈ [1, p?(B?)) thus making sure that the above mirror
descent algorithm with this choice of Ψ gives us the optimal rate for convex lipschitz games.

7 Adaptive Player Strategy

A natural extension of the q-uniformly convex lipschitz game is a game where at round t, A plays
qt uniformly convex functions. In this section, we give an adaptive player strategy for such games
that achieves the upper bound in Theorem 8 whenever the adversary plays only q-uniformly convex
functions on all rounds and in general gets intermediate rates when the modulus of convexity on
each round is different.

Now for the sake of readability, we assume that the supremum in (3) is achieved. The following
theorem states that the same adaptive algorithm achieves the upper bound suggested in Theorem 8
for various q-uniformly convex games. Further the algorithm adjusts itself to the scenario when A
plays a different (σt, qt)-uniformly convex function at each round t. To see this let, σ?j = σj 11{qj<q∗+1}.
In the above algorithm we set at each round λt that satisfies,

2Cλt =
X
i≤t

σ?i

M
qi
t P

j≤t

"
σ?
j

M
qj
t

+
λj

M
q?

t

#!pi + 1 P
j≤t

"
σ?
j

M
qj
t

+
λj

M
q?

t

#!p∗−1 , (18)

where Mt = Lt+C. The following theorem which upper bounds the regret of the adaptive algorithm.
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Algorithm 2 Adaptive Mirror Descent (Parameters : Ψ : B→ R which is q?-uniformly convex)
C ← Lipschitz constant of Ψ on U (B), w1 ← 0, Φ1 ← 0
for t = 1 to T do

Play wt and receive `t which is Lt-Lipschitz and (σt, qt)-uniformly convex
Pick λt that satisfies (18)
Φt+1 ← Φt + `t + λtΨ
w′t+1 ← ∇Φ?t+1 (∇Φt(wt))
Update wt+1 ← argmin

w∈W
∆Φt+1

(
w,w′t+1

)
end for

Theorem 10. Let W = U (B). Let AMD denote the P-strategy obtained by running Adaptive
Mirror Descent with a Ψ which is q? = p?(B?)

p?(B?)−1 uniformly convex. Then, for all sequences `1:T

such that `t is Lt-Lipschitz and (σt, qt)-uniformly convex, we have,

Reg(AMD, `1:T ) ≤ min
λ1:T

TX
t=1

8><>:
0B@X
i≤t

2σ?i
M
qi
t P

j≤t

"
σ?
j

M
qj
t

+
λj

M
q?

t

#!pi
1CA+ 2 P

j≤t

"
σ?
j

M
qj
t

+
λj

M
q?

t

#!p∗−1 + 2λtC

9>=>;
Proof. Note that ft = `t+λtΨ, Ψ is q?-uniformly convex and `t is (σt, qt)-uniformly convex. Hence,

∆ft

(
w′t+1,wt

)
≥ σ∗t

qt
‖w′t+1 −wt‖qt + λt

q? ‖w
′
t+1 −wt‖q

?

Where σ?t = σt 11{qt<q?+1}. Now since Φt+1 =
∑
i≤t ft, we see that

∆Φt+1

`
wt,w

′
t+1

´
=
˙
∇Φt+1(wt)−∇Φt+1(w′t+1),wt −w′t+1

¸
−∆Φt+1

`
w′t+1,wt

´
=
˙
∇ft(wt),wt −w′t+1

¸
−∆Φt+1

`
w′t+1,wt

´
≤
˙
∇ft(wt),wt −w′t+1

¸
−

tX
i=1

σ∗i
qi
‖w′i+1 −wi‖qi −

tX
i=1

λi
q?
‖w′i+1 −wi‖q

?

Now consider any arbitrary sequence β1, ..., β2t of non-negative numbers such that
∑2t
i=1 βi = 1. In

this case note that by Fenchel-Young inequality,

∆Φt+1

`
wt,w

′
t+1

´
≤

2tX
i=1

˙
βi∇ft(wt),wt −w′t+1

¸
−

tX
i=1

σ∗i
qi
‖w′i+1 −wi‖qi −

tX
i=1

λi
q?
‖w′i+1 −wi‖q

?

≤
tX
i=1

 
βpii ‖∇ft(wt)‖pi?
pi(σ∗i )pi/qi

+
βp

?

i+t ‖∇ft(wt)‖p
?

?

p?λ
p?/q?

i

!
≤

tX
i=1

 
βpii (Lt + C)pi

pi(σ∗i )pi/qi
+
βp

?

i+t(Lt + C)p
?

p?λ
p?/q?

i

!
In the above we used the fact that since `t is Lt-Lipschitz and Ψ is C-Lipschitz so that, ‖∇ft(wt)‖? ≤
(Lt +C) (we were able to get rid of the λt because we use λt ≤ 1 and so Lt + λtC ≤ Lt +C). Now
choosing ∀i ≤ t, βi ∝ σ∗i

(Lt+C)qi and ∀t < i ≤ 2t, βi ∝ λi
(Lt+C)q?

we see that

∆Φt+1

`
wt,w

′
t+1

´
≤

tX
i=1

0B@ σ∗i
(Lt+C)qi

pi
“Pt

j=1

“
σ∗j

(Lt+C)
qj +

λj

(Lt+C)q
?

””pi +

λi
(Lt+C)q

?

p?
“Pt

j=1

“
σ∗j

(Lt+C)
qj +

λj

(Lt+C)q
?

””p?
1CA

≤
tX
i=1

0B@ σ∗i
(Lt+C)qi“Pt

j=1

“
σ∗j

(Lt+C)
qj +

λj

(Lt+C)q
?

””pi +

λi
(Lt+C)q

? +
σ∗i

(Lt+C)qi“Pt
j=1

“
σ∗j

(Lt+C)
qj +

λj

(Lt+C)q
?

””p?
1CA

=

0@ tX
i=1

σ∗i
(Lt+C)qi“Pt

j=1

“
σ∗j

(Lt+C)
qj +

λj

(Lt+C)q
?

””pi
1A+

1“Pt
j=1

“
σ∗j

(Lt+C)
qj +

λj

(Lt+C)q
?

””p?−1

where in the first step we used the fact that p?, pi ≥ 1 to remove them from the denominator. Thus
using Lemma 13 we conclude that

Reg(w1:T , `1:T ) ≤
TX
t=1

0B@ tX
i=1

σ∗i
(Lt+C)qi“Pt

j=1

“
σ∗j

(Lt+C)
qj +

λj

(Lt+C)q
?

””pi +
1“Pt

j=1

“
σ∗j

(Lt+C)
qj +

λj

(Lt+C)q
?

””p?−1
+ 2Cλt

1CA
Since we choose λt’s that satisfy Equation 18, using Lemma 14 we get the required statement.
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Using the above regret bound we get the following corollary showing that the Adaptive Mirror
Descent algorithm can be used to achieve all upper bounds on the regret presented in the paper.

Corollary 11. There exists a Ψ which is q?-uniformly convex function, and using this function with
the Adaptive Mirror Descent (AMD) algorithm, we have the following.
1. Regret of AMD for convex-Lipschitz game matches upper bound in (8).
2. Regret of AMD for q-uniformly convex game matches upper bound in (12).
3. For the bounded convex game, there exists a C > 0 such that using AMD on 1 − CT−

1
2q? ball

achieves the upper bound in (10) for the game played on the unit ball.

Proof. Claim 2 is shown in the constructive proof of the upper bound of Theorem 8. As for claim 1,
note that this is the case of linear functions and so it is the same as adversary picking each σt = 0.
Regret in this case again can be found in the proof of the upper bound of Theorem 8 and so claim
1 also holds. As for the last claim, given claim 1, it is evident from proof of Theorem 5.

When q1, ..., qT = 2, AMD enjoys the same guarantee as Algorithm 4 in [7] (see Theorem 4.2).

8 Discussion

In future work, we also plan to convert the player strategies given here into implementable algo-
rithms. Online learning algorithms can be implemented in infinite dimensional reproducing kernel
Hilbert spaces [21] by exploiting the representer theorem and duality. We can, therefore, hope to
implement online learning algorithms in infinite dimensional Banach spaces where some analogue of
the representer theorem is available. Der and Lee [12] have made progress in this direction using
the notion of semi-inner products. For Lq(Ω, µ) spaces with q even, they showed how the problem of
finding a maximum margin linear classifier can be reduced to a finite dimensional convex program
using “moment functions”. The types (and their associated constants) of Lq spaces are well known
from classical Banach space theory. So, we can use their ideas to get online algorithms in these
spaces with provable regret guarantees. Vovk [4] also defines “Banach kernels” for certain Banach
spaces of real valued functions and gives an implementable algorithm assuming the Banach kernel
is efficiently computable. His interest is in prediction with the squared loss. It will be interesting to
explore the connection of his ideas with the setting of this paper.

Using online-to-batch conversions, our results also imply error bounds for the estimation error
in the batch setting. If p?(B?) < 2 then we get a rate worse than O(T−1/2). However, we get the
ability to work with richer function classes. This can decrease the approximation error. The study
of this trade-off can be helpful.

We would also like to improve our lower and/or upper bounds where they do not match. In this
regard, we should mention that the upper bound for the convex-bounded game given in Theorem 5
is not tight for a Hilbert space. Our upper bound is O(T 3/4) but it can be shown that using the
self-concordant barrier log(1− ‖w‖2) for the unit ball, we get an upper bound of O(T 2/3).

Acknowledgments We thank the Colt 2010 reviewers for their helpful comments. We would also
like to thank Maxim Raginsky for pointing out certain subtle issues in our earlier version.
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Appendix

Lemma 12. For any Banach space B? and any p′ > p?(B?) we have that

supM E
[∥∥∥∑T

t=1 dt
∥∥∥]

T 1/p′
−→∞

as T → ∞, where M refers to distributions over martingale difference sequences (dt)Tt=1 such that
each dt ∈ U (B?)

Lemma 13. For the Adaptive Mirror Descent Algorithm we have that

Reg(w1:T , `1:T ) ≤
T∑
t=1

(
∆Φt+1

(
wt,w′t+1

)
+ 2λtC

)
Lemma 14. Define for any sequence λ1, ..., λS of any size S,

OS(λ1, ..., λS) =
S∑
t=1

 t∑
i=1

 σ∗i
(Lt+C)qi(∑t

j=1

(
σ∗j

(Lt+C)qj
+ λj

(Lt+C)q?

))pi
+

1(∑t
j=1

(
σ∗j

(Lt+C)qj
+ λj

(Lt+C)q?

))p?−1 + 2Cλt


Then as long as we pick λt that satisfies Equation 18, we have that for any T

OT (λ1, ..., λT ) ≤ 2 min
λ1,...,λT

O{λ1, ..., λT }

For proofs of the above three lemma’s refer to a longer version of this paper at [22].
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Abstract

We present a new method for regularized convex optimization and analyze it under both
online and stochastic optimization settings. In addition to unifying previously known first-
order algorithms, such as the projected gradient method, mirror descent, and forward-
backward splitting, our method yields new analysis and algorithms. We also derive specific
instantiations of our method for commonly used regularization functions, such as ℓ1, mixed
norm, and trace-norm.

1 Introduction and Problem Statement

Regularized loss minimization is a common learning paradigm in which one jointly minimizes an
empirical loss over a training set plus a regularization term. The paradigm yields an optimization
problem of the form

min
w∈Ω

1

n

n∑

t=1

ft(w) + r(w) , (1)

where Ω ⊂ R
d is the domain (a closed convex set), ft : Ω → R is a (convex) loss function associated

with a single example in a training set, and r : Ω → R is a (convex) regularization function. A
few examples of famous learning problems that fall into this framework are least squares, ridge
regression, support vector machines, support vector regression, lasso, and logistic regression.

In this paper, we describe and analyze a general framework for solving Eq. (1). The method we
propose is a first-order approach, meaning that we access the functions ft only by receiving subgra-
dients. Recent work has shown that from the perspective of achieving good statistical performance
on unseen data, first order methods are preferable to higher order approaches, especially when the
number of training examples n is very large (Bottou and Bousquet, 2008; Shalev-Shwartz and Sre-
bro, 2008). Furthermore, in large scale problems it is often prohibitively expensive to compute the
gradient of the entire objective function (thus accessing all the examples in the training set), and
randomly choosing a subset of the training set and computing the gradient over the subset (perhaps
only a single example) can be significantly more efficient. This approach is very closely related to
online learning. Our general framework handles both cases with ease—it applies to accessing a single
example (or subset of the examples) at each iteration or accessing the entire training set at each
iteration.

The method we describe is an adaptation of the Mirror Descent (MD) algorithm (Nemirovski
and Yudin, 1983; Beck and Teboulle, 2003), an iterative method for minimizing a convex function
φ : Ω → R. If the dimension d is large enough, MD is optimal among first-order methods, and it
has a close connection to online learning since it is possible to bound the regret

T∑

t=1

φt(wt)− inf
w∈Ω

T∑

t=1

φt(w) ,

where {wt} is the sequence generated by mirror descent and the φt are convex functions. In fact, one
can view popular online learning algorithms, such as weighted majority (Littlestone and Warmuth,
1994) and online gradient descent (Zinkevich, 2003) as special cases of mirror descent. A guarantee
on the online regret can be translated directly to a guarantee on the convergence rate of the algorithm
to the optimum of Eq. (1), as we will show later.
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Following Beck and Teboulle’s exposition, a Mirror Descent update in the online setting can be
written as

wt+1 = argmin
w∈Ω

Bψ(w,wt) + η 〈φ′t(wt),w −wt〉 , (2)

where Bψ is a Bregman divergence and φ′t denotes an arbitrary subgradient of φt. Intuitively, MD
minimizes a first-order approximation of the function φt at the current iterate wt while forcing the
next iterate wt+1 to lie close to wt. The step-size η controls the trade-off between these two.

Our focus in this paper is to generalize mirror descent to the case when the functions φt are
composite, that is, they consist of two parts: φt = ft + r. Here the ft change over time but the
function r remains constant. Of course, one can ignore the composite structure of the φt and use
MD. However, doing so can result in undesirable effects. For example, when r(w) = ‖w‖1, applying
MD directly does not lead to sparse updates. Since the sparsity inducing property of the ℓ1-norm is
a major reason for its use. The modification of mirror descent that we propose is simple:

wt+1 , argmin
w∈Ω

η 〈f ′t(wt),w〉+Bψ(w,wt) + ηr(w). (3)

This is almost the same as the mirror descent update with an important difference: we do not
linearize r. We call this algorithm Composite Objective MIrror Descent, or Comid. One of our
contributions is to show that, in a variety of cases, the Comid update is no costlier than the usual
mirror descent update. In these situations, each Comid update is efficient and benefits from the
presence of the regularizer r(w).

We now outline the remainder of the paper. We begin by reviewing related work, of which
there is a copious amount, though we try to do some justice to prior research. We then give a
general O(

√
T ) regret bound for Comid in the online optimization setting, after which we give

several extensions. We show O(log T ) regret bounds for Comid when the composite functions ft+ r
are strongly convex, after which we show convergence rates and concentration results for stochastic
optimization using Comid. The second focus of the paper is in the derived algorithms, where we
outline step rules for several choices of Bregman function ψ and regularizer r, including ℓ1, ℓ∞, and
mixed-norm regularization, as well as presenting new results on efficient matrix optimization with
Schatten p-norms.

2 Related Work

Since the idea underlying Comid is simple, it is not surprising that similar algorithms have been
proposed. One of our main contributions is to show that Comid generalizes much prior work and
to give a clean unifying analysis. We do not have the space to thoroughly review the literature,
though we try to do some small justice to what is known. We begin by reviewing work that we
will show is a special case of Comid. Forward-backward splitting is a long-studied framework for
minimizing composite objective functions (Lions and Mercier, 1979), though it has only recently been
analyzed for the online and stochastic case (Duchi and Singer, 2009). Specializations of forward-
backward splitting to the case where r(w) = ‖w‖1 include iterative shrinkage and thresholding from
the signal processing literature (Daubechies et al., 2004), and from machine learning, Truncated
Gradient (Langford et al., 2009) and SMIDAS (Shalev-Shwartz and Tewari, 2009) are both special
cases of Comid.

In the optimization community there has there has been significant recent interest—both applied
and theoretical—on minimization of composite objective functions such as that in Eq. (1). Some
notable examples include Wright et al. (2009); Nesterov (2007); Tseng (2009). These papers all
assume that the objective f + r to be minimized is fixed and that f is smooth, i.e. that it has
Lipschitz continuous derivatives. The most related of these to Comid is probably Tseng (2009,
see his Sec. 3.1 and the references therein), which proposes the same update as ours, but gives a
Nesterov-like optimal method for the fixed f case. We do not have restrictions on f , though by going
to stochastic, nondifferentiable f we naturally suffer in convergence rate. Nonetheless, we do answer
in the affirmative a question posed by Tseng (2009), which is whether stochastic or incremental
subgradient methods work for composite objectives.

Two recent papers for online and stochastic composite objective minimization are Xiao (2009)
and Duchi and Singer (2009). The former extends Nesterov’s 2009 analysis of primal-dual subgra-
dient methods to the composite case, giving an algorithm which is similar to ours; however, our
algorithms are different and the analysis for each is completely different. Duchi and Singer (2009)
is simply a specialization of Comid to the case where the Euclidean Bregman divergence is used.

As a consequence of our general setting, we are able to give elegant new algorithms for min-
imization of functions on matrices, which include efficient and simple algorithms for trace-norm
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minimization. Trace norm minimization has recently found strong applicability in matrix rank min-
imization (Recht et al., 2007), which has been shown to be very useful, for example, in collaborative
filtering (Srebro et al., 2004). A special case of Comid has recently been developed for this task,
which is very similar in spirit to fixed point and shrinkage methods from signal processing for ℓ1-
minimization (Ma et al., 2009). The authors of this paper note that the method is extremely efficient
for rank-minimization problems but do not give rates of convergence, which we give as a corollary
to our main convergence theorems.

3 Notation and Setting

Before continuing, we establish notation and our problem setting formally. Vectors are lower case
bold italic letters, such as x ∈ R

d, and scalars are lower case italics such as x ∈ R. We denote a
sequence of vectors by subscripts, i.e. wt,wt+1, . . ., and entries in a vector by non-bold subscripts
as in wj . Matrices are upper case bold italic letters, such as W ∈ R

d×d. The subdifferential set of a
function f evaluated at w is denoted ∂f(w) and a particular subgradient by f ′(w) ∈ ∂f(w). When
a function is differentiable, we write ∇f(w).

We focus mostly on the problem of regularized online learning, in which the goal is to achieve
low regret w.r.t. a static predictor w∗ ∈ Ω on a sequence of functions φt(w) , ft(w) + r(w). Here,
ft and r ≥ 0 are convex functions, and Ω is some convex set (which could be Rd). Formally, at every
round of the algorithm we make a prediction wt ∈ R

d and then receive the function ft. We seek
bounds on the regularized regret with respect to w

∗, defined as

Rφ(T,w
∗) ,

T∑

t=1

[
ft(wt) + r(wt)− ft(w

∗)− r(w∗)
]
. (4)

In batch optimization we set ft = f for all t, while in stochastic optimization we choose ft to be the
average of some random subset of {f1, . . . , fn}. As mentioned previously and as we will show, it is
not difficult to transform regret bounds for Eq. (4) into convergence rates in expectation and with
high probability for Eq. (1), which we do using techniques similar to Cesa-Bianchi et al. (2004).

Throughout, ψ designates a continuously differentiable function that is α-strongly convex w.r.t.
a norm ‖ · ‖ on the set Ω. Recall that this means that the Bregman divergence associated with ψ,

Bψ(w,v) = ψ(w)− ψ(v)− 〈∇ψ(v),w − v〉 ,
satisfies Bψ(w,v) ≥ α

2 ‖w − v‖2 for some α > 0.

4 Composite Objective MIrror Descent

We use proof techniques similar to those in Beck and Teboulle (2003) to derive “progress” bounds
on each step of the algorithm. We then use the bounds to straightforwardly prove convergence
results for online and batch learning. We begin by bounding the progress made by each step of the
algorithm in either an online or a batch setting. This lemma is the key to our later analysis, so we
prove it in full here.

Lemma 1 Let the sequence {wt} be defined by the update in Eq. (3). Assume that Bψ(·, ·) is

α-strongly convex with respect to a norm ‖·‖, that is, Bψ(w,v) ≥ α
2 ‖w − v‖2. For any w

∗ ∈ Ω,

η (ft(wt)− ft(w
∗)) + η (r(wt+1)− r(w∗)) ≤ Bψ(w

∗,wt)−Bψ(w
∗,wt+1) +

η2

2α
‖f ′t(wt)‖2∗ .

Proof: The optimality of wt+1 for Eq. (3) implies for all w ∈ Ω and r′(wt+1) ∈ ∂r(wt+1),

〈w −wt+1, ηf
′(wt) +∇ψ(wt+1)−∇ψ(wt) + ηr′(wt+1)〉 ≥ 0. (5)

In particular, this obtains for w = w
∗. From the subgradient inequality for convex functions, we

have ft(w
∗) ≥ ft(wt)+ 〈f ′t(wt),w

∗ −wt〉, or ft(wt)−ft(w∗) ≤ 〈f ′t(wt),wt −w
∗〉, and likewise for

r(wt+1). We thus have

η [ft(wt) + r(wt+1)− ft(w
∗)− r(w∗)]

≤ η 〈wt −w
∗, f ′t(wt)〉+ η 〈wt+1 −w

∗, r′(wt+1)〉
= η 〈wt+1 −w

∗, f ′t(wt)〉+ η 〈wt+1 −w
∗, r′(wt+1)〉+ η 〈wt −wt+1, f

′
t(wt)〉

= 〈w∗ −wt+1,∇ψ(wt)−∇ψ(wt+1)− ηf ′t(wt)− ηr′(wt+1)〉+ 〈w∗ −wt+1,∇ψ(wt+1)−∇ψ(wt)〉
+ η 〈wt −wt+1, f

′
t(wt)〉 .
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Now, by Eq. (5), the first term in the last equation is non-positive. Thus we have that

η [ft(wt) + r(wt+1)− ft(w
∗)− r(w∗)]

≤ 〈w∗ −wt+1,∇ψ(wt+1)−∇ψ(wt)〉+ η 〈wt −wt+1, f
′
t(wt)〉

= Bψ(w
∗,wt)−Bψ(wt+1,wt)−Bψ(w

∗,wt+1) + η 〈wt −wt+1, f
′
t(wt)〉 (6)

= Bψ(w
∗,wt)−Bψ(wt+1,wt)−Bψ(w

∗,wt+1) + η

〈√
α

η
(wt −wt+1),

√
η

α
f ′t(wt)

〉

≤ Bψ(w
∗,wt)−Bψ(wt+1,wt)−Bψ(w

∗,wt+1) +
α

2
‖wt −wt+1‖2 +

η2

2α
‖f ′t(wt)‖2∗

≤ Bψ(w
∗,wt)−Bψ(w

∗,wt+1) +
η2

2α
‖f ′t(wt)‖2∗ .

In the above, the first equality follows from simple algebra of Bψ, that is, 〈∇ψ(b)−∇ψ(a), c− a〉 =
Bψ(c,a) + Bψ(a, b) − Bψ(c, b) and setting c = w

∗, a = wt+1, and b = wt. The second to last in-

equality follows from the Fenchel-Young inequality applied to the conjugate pair 1
2 ‖·‖

2
, 1
2 ‖·‖

2
∗ (Boyd

and Vandenberghe, 2004, Example 3.27). The last inequality follows from the strong convexity of
Bψ with respect to the norm ‖·‖.
The following theorem uses Lemma 1 to establish a general regret bound for the Comid framework.

Theorem 2 Let the sequence {wt} be defined by the update in Eq. (3). Then for any w
∗ ∈ Ω,

Rφ(T,w
∗) ≤ 1

η
Bψ(w

∗,w1) + r(w1) +
η

2α

T∑

t=1

‖f ′t(wt)‖2∗ .

Proof: By Lemma 1,

η
T∑

t=1

[ft(wt)− ft(w
∗) + r(wt+1)− r(w∗)] ≤

T∑

t=1

Bψ(w
∗,wt)−Bψ(w

∗,wt+1) +
η2

2α

T∑

t=1

‖f ′t(wt)‖2∗

= Bψ(w
∗,w1)−Bψ(w

∗,wT+1) +
η2

2α

T∑

t=1

‖f ′t(wt)‖2∗ .

Noting that Bregman divergences are always non-negative, recall our assumption that r(w) ≥ 0.
Adding ηr(w1) to both sides of the above equation and dropping the r(wt+1) term gives

η
T∑

t=1

[ft(wt)− ft(w
∗) + r(wt)− r(w∗)] ≤ Bψ(w

∗,w1) + ηr(w1) +
η2

2α

T∑

t=1

‖f ′t(wt)‖2∗ .

Dividing each side by η gives the result.

A few corollaries are immediate from the above result. First, suppose that the functions ft are
Lipschitz continuous. Then there is some G∗ such that ‖f ′t(wt)‖∗ ≤ G∗. In this case, we have

Corollary 3 Let {wt} be generated by the update Eq. (3) and assume that the functions ft are
Lipschitz with dual Lipschitz constant G∗. Then

Rφ(T ) ≤
1

η
Bψ(w

∗,w1) + r(w1) +
Tη

2α
G2

∗.

If we take η ∝ 1/
√
T , then we have a regret which is O(

√
T ) when the functions ft are Lipschitz. If

Ω is compact, the ft are guaranteed to be Lipschitz continuous (Rockafellar, 1970).

Corollary 4 Suppose that either Ω is compact or the functions ft are Lipschitz so ‖f ′t‖∗ ≤ G∗. Also

assume r(w1) = 0. Then setting η =
√

2αBψ(w∗,w1)/(G∗
√
T ),

Rφ(T ) ≤
√
2TBψ(w∗,w1)G∗/

√
α.

It is straightforward to prove results under the slightly different restriction that ‖f ′t(w)‖2∗ ≤
ρft(w), which is similar to assuming a Lipschitz condition on the gradient of ft. A common example
in which this holds is linear regression, where fi(w) = 1

2 (〈w,xi〉−yi)2, so ∇fi(w) = (〈w,xi〉−yi)xi
and ρ = 1

2 ‖xi‖
2
. The proof essentially amounts to dividing out constants dependent on η and ρ

from both sides of the regret.
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Corollary 5 Let ‖f ′t(w)‖2∗ ≤ ρft(w), r ≥ 0, and assume r(w1) = 0. Setting η ∝ 1/
√
T gives

Rφ(T ) = O(ρ
√
TBψ(w

∗,w1)/α) .

Proof: From Theorem 2, the non-negativity of r, and that r(w1) = 0 we immediately have

T∑

t=1

(
1− ρη

2α

)
[ft(wt) + r(wt)] ≤

T∑

t=1

(
1− ρη

2α

)
ft(wt) + r(wt) ≤

1

η
Bψ(w

∗,w1) +

T∑

t=1

ft(w
∗) + r(w∗)

Setting η = 2α/(ρ
√
T ) gives 1− ρη/(2α) = (

√
T − 1)/

√
T so that

T∑

t=1

ft(wt) + r(wt) ≤
ρT

2α(
√
T − 1)

Bψ(w
∗,w1) +

√
T√

T − 1

T∑

t=1

ft(w
∗) + r(w∗).

5 Logarithmic Regret for Strongly Convex Functions

Following the vein of research begun in Hazan et al. (2006) and Shalev-Shwartz and Singer (2007), we
show that Comid can get stronger regret guarantees when we assume curvature of the loss functions
ft or r. Similar to Shalev-Shwartz and Singer, we now assume that for all t, ft + r is λ-strongly
convex with respect to a differentiable function ψ, that is, for any w,v ∈ Ω,

ft(v) + r(v) ≥ ft(w) + r(w) + 〈f ′t(w) + r′(w),v −w〉+ λBψ(v,w). (7)

For example, when ψ(w) = 1
2 ‖w‖22, we recover the usual definition of strong convexity. For simplic-

ity, we assume that we push all the strong convexity into the function r so that the ft are simply

convex (clearly, this is possible by redefining f̂t(w) = ft(w)−λψ(w) if the ft are λ-strongly convex).
In this case, a straightforward corollary to Lemma 1 follows.

Corollary 6 Let the sequence {wt} be defined by the update in Eq. (3) with step sizes ηt. Assume
that Bψ(·, ·) is α-strongly convex with respect to a norm ‖·‖ and that r is λ-strongly convex with
respect to ψ. Then for any w

∗ ∈ Ω

ηt (ft(wt)− ft(w
∗)) + ηt (r(wt+1)− r(w∗))

≤ Bψ(w
∗,wt)−Bψ(w

∗,wt+1) +
η2t
2α

‖f ′t(wt)‖2∗ − ληtBψ(w
∗,wt+1).

Proof: The proof is effectively identical to that of Lemma 1. We simply note that r(wt+1)−r(w∗) ≤
〈r′(wt+1),wt+1 −w

∗〉 − λBψ(w
∗,wt+1) so that

ηt [ft(wt) + r(wt+1)− ft(w
∗)− r(w∗)]

≤ ηt 〈wt −w
∗, f ′t(wt)〉+ ηt 〈wt+1 −w

∗, r′(wt+1)〉 − ληtBψ(w
∗,wt+1).

Now we simply proceed as in the proof of Lemma 1 following Eq. (5).

The above corollary almost immediately gives a logarithmic regret bound.

Theorem 7 Let r be λ-strongly convex with respect to a differentiable function ψ and suppose ψ is
α-strongly convex with respect to a norm ‖·‖. Assume that r(w1) = 0. If ‖f ′t(wt)‖∗ ≤ G∗ for all t,

Rφ(T ) ≤ λBψ(w
∗,w1) +

G2
∗

λα
(log T + 1) = O

(
G2

∗
λα

log T

)
.

Proof: Rearranging Corollary 6, we have

T∑

t=1

ft(wt) + r(wt+1)− ft(w
∗)− r(w∗)

≤
T∑

t=1

[
1

ηt
Bψ(w

∗,wt)−
1

ηt
Bψ(w

∗,wt+1)− λBψ(w
∗,wt+1)

]
+

T∑

t=1

ηt
2α

‖f ′t(wt)‖2∗ .

=
1

η1
Bψ(w

∗,w1)−
1

ηT
Bψ(w

∗,wt+1) +

T−1∑

t=1

[
Bψ(w

∗,wt+1)

(
1

ηt+1
− 1

ηt

)
− λBψ(w

∗,wt+1)

]

+

T∑

t=1

ηt
2α

‖f ′t(wt)‖2∗
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If we set ηt =
1
λt , then the first summation above is zero and

T∑

t=1

ft(wt) + r(wt+1)− ft(w
∗)− r(w∗) ≤ λBψ(w

∗,w1) +
1

λα

T∑

t=1

1

t
‖f ′t(wt)‖2∗ .

Noting that
∑T
t=1

1
t ≤ log T + 1 completes the proof of the theorem.

An interesting point regarding the above theorem is that we do not require Bψ(w
∗,wt) to be

bounded or the set Ω to be compact, which previous work assumed. When the functions ft are
Lipschitz, then whenever r is strongly convex Comid still attains logarithmic regret.

Two notable examples attain the logarithmic bounds in the above theorem. It is clear that if
r defines a valid Bregman divergence then that r is strongly convex with respect to itself in the
sense of Eq. (7). First, consider optimization over the simplex with entropic regularization, that is,
we set r(w) = λ

∑
i wi logwi and Ω = {w : w � 0,1⊤

w = 1}. In this case it is straightforward
to see that r(w) =

∑
j wi logwi is λ-strongly convex with respect to ψ(w) = r(w), which in turn

is strongly convex with respect to the ℓ1-norm ‖·‖1 over Ω (see Shalev-Shwartz and Singer, 2007,
Definition 2 and Example 2). Since the dual of the ℓ1-norm is the ℓ∞ norm, we have Rφ(T ) =

O
(

log T
λ maxt ‖f ′t(wt)‖∞

)
. We can also use r(w) = λ

2 ‖w‖22, in which case we recover the same

bounds as those in Hazan et al. (2006).

6 Stochastic Convergence Results

In this section, we examine the application of Comid to solving stochastic optimization problems.
The techniques we use have a long history in online algorithms and make connections between the
regret of the algorithm and generalization performance using martingale concentration results (Lit-
tlestone, 1989). We build on known techniques for data-driven generalization bounds (Cesa-Bianchi
et al., 2004) to give concentration results for Comid in the stochastic optimization setting. Further
work on this subject for the strongly convex case can be found in Kakade and Tewari (2008), though
we focus on the case when ft + r is weakly convex.

We let f(w) = Ef(w;Z) =
∫
f(w; z)dP (z), and at every step t the algorithm receives an

independent random variable Zt ∼ P that gives an unbiased estimate ft(wt) = f(wt;Zt) of the
function f evaluated at wt and an unbiased estimate f ′t(wt) = f ′(wt;Zt) of an arbitrary subgradient
f ′(wt) ∈ ∂f(wt). We assume that Bψ(w

∗,wt) ≤ D2 for all t and for simplicity that ‖f ′t(wt)‖∗ ≤ G∗
for all t, which are satisified when Ω is compact. We also assume without loss of generality that
r(w1) = 0. For example, our original problem in which f(w) = 1

n

∑n
i=1 fi(w), where we randomly

sample one fi at each iteration, falls into this setup, resolving the question posed by Tseng (2009)
on the existence of stochastic composite incremental subgradient methods.

Theorem 8 Given the assumptions on f and Ω in the above paragraph, let {wt} be the sequence

generated by Eq. (3). In addition, let w̄T = 1
T

∑T
t=1 wt and ηt =

D
G∗

√
αt
. Then

P

(
f(w̄T ) + r(w̄T ) ≥ f(w∗) + r(w∗) +

DG∗√
αT

+ ε

)
≤ exp

(
− Tαε2

16D2G2
∗

)
.

Alternatively, with probability at least 1− δ

f(w̄T ) + r(w̄T ) ≤ f(w∗) + r(w∗) +
DG∗√
αT

(
1 + 4

√
log

1

δ

)
.

Proof: We begin our derivation by recalling Lemma 1. Convexity of f and r imply

ηt [f(wt) + r(wt+1)− f(w∗)− r(w∗)]

≤ ηt 〈wt −w
∗, f ′(wt)〉+ ηt 〈wt+1 −w

∗, r′(wt+1)〉
= ηt 〈wt −w

∗, f ′t(wt)〉+ ηt 〈wt+1 −w
∗, r′(wt+1)〉+ ηt 〈wt −w

∗, f ′(wt)− f ′t(wt)〉
We now follow the same derivation as Lemma 1, leaving ηt 〈wt −w

∗, f ′(wt)− f ′t(wt)〉 intact, thus
ηt [f(wt) + r(wt+1)− f(w∗)− r(w∗)]

≤ Bψ(w
∗,wt)−Bψ(w

∗,wt+1) +
η2t
2α

‖f ′t(wt)‖2∗ + ηt 〈wt −w
∗, f ′(wt)− f ′t(wt)〉 . (8)

19



Now we subtract r(wT+1) ≥ 0 from both sides, use the assumption that r(w1) = 0, and sum to get

T∑

t=1

[f(wt) + r(wt)− f(w∗)− r(w∗)]

≤
T∑

t=1

1

ηt
[Bψ(w

∗,wt)−Bψ(w
∗,wt+1)] +

1

2α

T∑

t=1

ηt ‖f ′t(wt)‖2∗ +
T∑

t=1

〈wt −w
∗, f ′(wt)− f ′t(wt)〉

≤ 1

η1
Bψ(w

∗,w1) +
T∑

t=2

Bψ(w
∗,wt)

[
1

ηt
− 1

ηt−1

]
+
G2

∗
2α

T∑

t=1

ηt +
T∑

t=1

〈wt −w
∗, f ′(wt)− f ′t(wt)〉 .

(9)

Let Ft be a filtration with Zτ ∈ Ft for τ ≤ t. Since wt ∈ Ft−1,

E [〈wt −w
∗, f ′(wt)− f ′(wt;Zt)〉 | Ft−1] = 〈wt −w

∗, f ′(wt)− E[f ′(wt;Zt) | Ft−1]〉 = 0 ,

and thus the last sum in Eq. (9) is a martingale difference sequence. We next use our assumptions

that Bψ(w
∗,wt) ≤ D2 and α

2 ‖w∗ −wt‖2 ≤ Bψ(w
∗,wt), therefore ‖w∗ −wt‖ ≤

√
2/αD. Then

〈wt −w
∗, f ′(wt)− f ′t(wt)〉 ≤ ‖wt −w

∗‖ ‖f ′(wt)− f ′t(wt)‖∗ ≤ 2
√

2/αDG∗ .

Thus Eq. (9) consists of a bounded difference martingale, and we can use standard concentration
techniques to get strong convergence guarantees. Applying Azuma’s inequality,

P

(
T∑

t=1

〈wt −w
∗, f ′(wt)− f ′t(wt)〉 ≥ ε

)
≤ exp

(
− αε2

16TD2G2
∗

)
. (10)

Define γT =
∑T
t=1 〈wt −w

∗, f ′t(wt)− f ′(wt)〉 and recall that Bψ(w
∗,wt) ≤ D2. The convexity

of f and r give T [f(w̄T ) + r(w̄T )] ≤
∑T
t=1 f(wt) + r(wt), so that

T [f(w̄T ) + r(w̄T )] ≤ T [f(w∗) + r(w∗)] +D2

[
1

η1
+

T∑

t=1

(
1

ηt
− 1

ηt−1

)]
+
G2

∗
2α

T∑

t=1

ηt + γT

= T [f(w∗) + r(w∗)] +
D2

ηT
+
G2

∗
2α

T∑

t=1

ηt + γT .

Setting ηt =
D
√
α

G∗

√
t
we have f(w̄T ) + r(w̄T ) ≤ f(w∗) + r(w∗) + DG2

∗
√
T/

√
α + 1

T γT , and we can

immediately apply Azuma’s inequality from Eq. (10) to complete the theorem.

7 Special Cases and Derived Algorithms

In this section, we show specific instantiations of our framework for different regularization functions
r, and we also show that some previously developed algorithms are special cases of the framework
for optimization presented here. We also give results on learning matrices with Schatten p-norm
divergences that generalize some recent interesting work on trace norm regularization.

7.1 Fobos

The recently proposed Fobos algorithm of Duchi and Singer (2009) is comprised, at each iteration,
of the following two steps:

w̃t+1 = wt − ηf ′t(wt) and wt+1 = argmin
w

1

2
‖w − w̃t+1‖2 + ηr(w) .

It is straightforward to verify that the update

wt+1 = argmin
w

1

2
‖w −wt‖22 + η 〈f ′t(wt),w −wt〉+ ηr(w)

is equivalent to the two step update above. Thus, Comid reduces to Fobos when we take ψ(w) =
1
2 ‖w‖22 and Ω = R

d (with constant learning rate η). This also shows that we can run Fobos by

restricting to a convex set Ω 6= R
d. Further, our results give tighter convergence guarantees than

Fobos, in particular, they do not depend in any negative way on the regularization function r.
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It is also not difficult to show in general that the two step process of setting

w̃t+1 = argmin
w

Bψ(w,wt) + η 〈f ′t(wt),w〉 and wt+1 = argmin
w

Bψ(w, w̃t) + ηr(w)

is equivalent to the original Comid update of Eq. (3) when Ω = R
d. Indeed, the optimal solution

to the first step satisfies

∇ψ(w̃t+1)−∇ψ(wt) + ηf ′t(wt) = 0 so that w̃t+1 = ∇ψ−1(∇ψ(wt)− ηf ′t(wt)).

Then looking at the optimal solution for the second step, for some r′(wt+1) ∈ ∂r(wt+1) we have

∇ψ(wt+1)−∇ψ(w̃t+1) + ηr′(wt+1) = 0 i.e. ∇ψ(wt+1)−∇ψ(wt) + ηf ′t(wt) + ηr′(wt+1) = 0.

This is clearly the solution to the one-step update of Eq. (3).

7.2 p-norm divergences

Now we consider divergence functions ψ which are the ℓp-norms squared. 1
2 ‖w‖2p is (p− 1)-strongly

convex over Rd with respect to the ℓp-norm for any p ∈ (1, 2] (Ball et al., 1994). We see that if we

choose ψ(w) = 1
2 ‖w‖2p to be the divergence function, we have a corollary to Theorem 2.

Corollary 9 Suppose that r(0) = 0 and that w1 = 0. Let p = 1 + 1/ log d and use the Bregman

function ψ(w) = 1
2 ‖w‖2p. Further suppose that either Ω is compact or the ft are Lipschitz so that

for q = log d+ 1, maxt ‖f ′t(wt)‖q ≤ Gq. Setting η =
‖w∗‖

p

Gq

√
1

T log d , the regret of Comid satisfies

Rφ(T ) ≤ ‖w∗‖pGq
√
T log d ≍ ‖w∗‖1G∞

√
T log d .

Proof: Recall that the dual norm for an ℓp-norm is an ℓq-norm, where q = p/(p−1). From Thm. 2,

we immediately have that when w1 = 0 and ψ(w) = 1
2 ‖w‖2p

R(T ) ≤ 1

2η
‖w∗‖2p +

η

2(p− 1)

T∑

t=1

‖f ′t(wt)‖2q .

Now use the assumption that maxt ‖f ′t(wt)‖q ≤ Gq, replace p with 1 + 1/ log d (so q = log d + 1),

and set η = c
√

1
T log d , which results in

R(T ) ≤
√
T log d

2c
‖w∗‖2p + c

√
T log d

2
G2
q.

Setting c = ‖w∗‖p /Gq gives us our desired result.

From the above, we see that Comid is a good candidate for (dense) problems in high dimensions,
especially when we use ℓ1-regularization. For high dimensions whenw ∈ R

d, taking p = 1+1/ log d ≈
1 means our bounds depend roughly on the ℓ1-norm of the optimal predictor and the infinity norm
of the function gradients ft. Shalev-Shwartz and Tewari (2009) recently proposed the “Stochastic
Mirror Descent made Sparse” algorithm (SMIDAS) using this intuition. We recover SMIDAS by

taking the divergence in Comid to be ψ(w) = 1
2 ‖w‖2p and r(w) = λ ‖w‖1. The Comid update is

∇ψ(w̃t+1) = ∇ψ(wt)− ηf ′t(wt), wt+1 = argmin
w

Bψ(w, w̃t+1) + ηλ‖w‖1 .

The SMIDAS update, on the other hand, is

∇ψ(w̃t+1) = ∇ψ(w)− ηf ′t(wt), ∇ψ(wt+1) = Sηλ (∇ψ(w̃t+1)) ,

where Sτ is the shrinkage/thresholding operator defined by

[Sτ (x)]j = sign(xj) [|xj | − τ ]+ . (11)

The following lemma proves that the two updates are identical in cases including p-norm divergences.

Lemma 10 Suppose ψ is strongly convex and its gradient satisfies

sign([∇ψ(w)]j) = sign(wj) . (12)

Then the unique solution v of v = argminw {Bψ(w,u) + τ ‖w‖1} is given by

∇ψ(v) = Sτ (∇ψ(u)) . (13)
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Proof: Since ψ is strongly convex, the solution is unique. We will show that if v satisfies Eq. (13)
then it is a solution to the problem. Therefore, suppose Eq. (13) holds. The proof proceeds by
considering three cases.

Case I: [∇ψ(u)]j > τ . In this case, [∇ψ(v)]j = [∇ψ(u)]j − τ > 0 and by Eq. (12), vj > 0. Thus

[∇ψ(v)]j − [∇ψ(u)]j + τ sign(vj) = 0 .

Case II: [∇ψ(u)]j < −τ . In this case, [∇ψ(v)]j = [∇ψ(u)]j + τ < 0 and Eq. (12) implies vj < 0. So

[∇ψ(v)]j − [∇ψ(u)]j + τ sign(vj) = 0 .

Case III: [∇ψ(u)]j ∈ [−τ, τ ]. Here, we can take vj = 0 and Eq. (12) will give [∇ψ(v)]j = 0. Thus

0 ∈ [∇ψ(v)]j − [∇ψ(u)]j + τ [−1, 1] .

Combining the three cases, v satisfies 0 ∈ ∇ψ(v) − ∇ψ(u) + τ∂ ‖v‖1, which is the optimality
condition for v ∈ argminw{Bψ(w,u) + τ ‖w‖1}. We thus have ∇ψ(v) = Sτ (∇ψ(u)) as desired.

Rewriting the above lemma slightly gives the following result. The solution to

wt+1 = argmin
w

{Bψ(w,wt) + η 〈f ′t(wt),w −wt〉+ ηr(w)}

when ψ satisfies the gradient condition of Eq. (12) is

wt+1 = (∇ψ)−1 [sign (∇ψ(wt)− ηf ′t(wt))⊙max {|∇ψ(wt)− ηf ′t(wt)| − ηλ, 0}]
= (∇ψ)−1 [Sηλ(∇ψ(wt)− ηf ′t(wt))] . (14)

Note that when ψ(·) = ‖·‖2p we recover Shalev-Shwartz and Tewari’s SMIDAS, while with p = 2

we get Langford et al.’s 2009 truncated gradient method. See Shalev-Shwartz and Tewari (2009)
or Gentile and Littlestone (1999) for the simple formulae to compute (∇ψ)−1 ≡ ∇ψ∗.

ℓ∞-regularization Let us now consider the problem of setting r(w) to be a general ℓp-norm (we
will specialize this to ℓ∞ shortly). We describe the dual function and then use it to derive a few
particular updates, mentioning an open problem. First, let p1 > 1 be the norm associated with the
Bregman function ψ and p2 be the norm for r(w) = ‖w‖p2 . Let qi = pi/(pi − 1) be the associated

dual norm. Then, ignoring constants, the minimization problem from Eq. (3) becomes

min
w

〈v,w〉+ 1

2
‖w‖2p1 + λ ‖w‖p2 .

We introduce a variable z = w and get the equivalent problem minw=z 〈v,w〉+ 1
2 ‖w‖2p1 + λ ‖z‖p2 .

To derive the dual of the problem, we introduce Lagrange multiplier θ and find the Lagrangian

L(w, z,θ) = 〈v − θ,w〉+ 1

2
‖w‖2p1 + λ ‖z‖p2 + 〈θ, z〉 .

Taking the infimum over w and z in the Lagrangian, since the conjugate of 1
2 ‖·‖

2
p is 1

2 ‖·‖
2
q when

1/p+ 1/q = 1 (Boyd and Vandenberghe, 2004, Example 3.27) we have

inf
w

[
〈v − θ,w〉+ 1

2 ‖w‖2p1
]
= −1

2
‖v − θ‖2q1 inf

z

[
λ ‖z‖p2 + 〈θ, z〉

]
=

{
0 if ‖θ‖q2 ≤ λ

−∞ otherwise.

Thus, our dual is the non-Euclidean projection problem

min
θ

1

2
‖v − θ‖q1 s.t. ‖θ‖q2 ≤ λ.

The Lagrangian earlier is differentiable with respect to w, so we can recover the optimal w from θ

by noting that when ψ(w) = 1
2 ‖w‖2p1 , ∇ψ(w)+v−θ = 0 at optimum or w = (∇ψ)−1(θ−v). When

p2 = 1, we easily recover Eq. (14) as our update. However, the case p2 = ∞ is more interesting, as
it can be a building block for group-sparsity (Obozinski et al., 2007). In this case our problem is

min
θ

1

2
‖v − θ‖q s.t. ‖θ‖1 ≤ λ.

It is clear by symmetry in the above that we can assume v � 0 with no loss of generality. We can
raise the ℓq-norm to a power greater than 1 and maintain convexity, so our equivalent problem is

min
θ

1

q
‖v − θ‖qq s.t. 〈1,θ〉 ≤ λ,θ � 0. (15)
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Let θ̂ be the solution of Eq. (15). Clearly, at optimum we will have θ̂i ≤ vi, though we use
this only for clarity in the derivation and omit constraints as they do not affect the optimization
problem. Introducing Lagrange multipliers ν and α � 0 we get the Lagrangian

L(θ, ν,α) =
1

q

d∑

i=1

(vi − θi)
q + ν(〈1,θ〉 − λ)− 〈α,θ〉

Taking the derivative of the above, we have

−(vi − θi)
q−1 + ν − αi = 0 ⇒ θi = vi − (ν − αi)

1/(q−1)

Now suppose we knew the optimal ν. If an index i satisfies ν ≥ vq−1
i , then we will have θ̂i = 0. To

see this, suppose for the sake of contradiction that θ̂i > 0. The KKT conditions for optimality of
Eq. (15) (Boyd and Vandenberghe, 2004) imply that for such i we have

θ̂i = vi − (ν − αi)
1/(q−1) = vi − ν1/(q−1) ≤ 0,

a contradiction. Similarly, if ν < vq−1
i and αi ≥ 0, then θ̂i > 0. Ineed, since αi ≥ 0,

θ̂i = vi − (ν − αi)
1/(q−1) > vi − (vq−1

i − αi)
1/(q−1) ≥ vi − vi = 0,

so that θ̂i > 0 and the KKT conditions imply αi = 0. Had we known ν, the optimal θ̂i would have

been easy to attain as θ̂i(ν) = vi− (min{ν, vq−1
i })1/(q−1) (note that this satisfies 0 ≤ θ̂i ≤ vi). Since

we know that the structure of the optimal θ̂ must obey the above equation, we can boil our problem
down to finding ν ≥ 0 so that

d∑

i=1

θ̂i(ν) =

d∑

i=1

vi −min{ν, vq−1
i }1/(q−1) = λ. (16)

Interestingly, this reduces to exactly the same root-finding problem as that for solving Euclidean
projection to an ℓ1-ball (Duchi et al., 2008). As shown by Duchi et al., it is straightforward to find
the optimal ν in time linear in the dimension d.

An open problem is to find an efficient algorithm for solving the generalized projections above
when using the 2 rather than ∞ norm.

Mixed-norm regularization Now we consider the problem of mixed-norm regularization, in
which we wish to minimize functions ft(W ) + r(W ) of a matrix W ∈ R

d×k. In particular, we

define wi ∈ R
k to be the ith row of W , and we set r(W ) = λ

∑d
i=1 ‖wi‖p2 . We also use the p-norm

Bregman functions as above with ψ(W ) = 1
2 ‖W ‖2p = 1

2

(∑
i,j W

p
ij

)1/p
, which are (p− 1)-strongly

convex with respect to the ℓp-norm squared. As earlier, our minimization problem becomes

min
W

〈V ,W 〉+ 1

2
‖W ‖2p1 + λ ‖W ‖ℓ1/ℓp2 ,

whose dual problem is
min
Θ

‖V −Θ‖q1 s.t.
∥∥θi
∥∥
q2

≤ λ

Raising the first norm to the q1-power, we see that the problem is separable, and we can solve it
using the techniques in the prequel.

7.3 Matrix Composite Mirror Descent

We now consider a setting that generalizes the previous discussions in which our variables W t are
matrices W t ∈ Ω = R

d1×d2 . We use Bregman functions based on Schatten p-norms (e.g. Horn
and Johnson, 1985, Section 7.4). Schatten p-norms are the family of unitarily invariant matrix
norms arising out of applying p-norms to the singular values of the matrix W . That is, letting
σ(W ) denote the vector of singular values of W , we set |||W |||p = ‖σ(W )‖p. We use Bregman

functions ψ(W ) = 1
2 |||W |||2p, which, similar to the p-norm on vectors, are (p − 1)-strongly convex

over Ω = R
d1×d2 with respect to the norm |||·|||p (Ball et al., 1994).

As in the previous subsection, we mainly consider two values for p, p = 2 and a value very near
1, namely p = 1 + 1/ log d. For p = 2, ψ is 1-strongly convex with respect to |||·|||2 = |||·|||Fr, the
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Frobenius norm. For the second value, ψ is 1/ log d-strongly convex with respect to |||·|||1+1/ log d, or,

with a bit more work, ψ is 1/(3 log d)-strongly convex w.r.t. |||·|||1, the trace or nuclear norm.
We focus on the specific setting of trace-norm regularization, or r(W ) = λ |||W |||1. This norm,

similar to the ℓ1-norm on vectors, gives sparsity in the singular value spectrum of W and hence is
useful for rank-minimization (Recht et al., 2007). The generic Comid update with the above choice
of ψ gives a “Schatten p-norm” Comid algorithm for matrix applications:

W t+1 = argmin
W∈Ω

η 〈f ′t(W t),W 〉+Bψ(W ,W t) + ηλ |||W |||1 . (17)

The update is well defined since ψ is strongly convex as per the above discussion. We also have
defined 〈W ,V 〉 = tr(W⊤

V ) as the usual matrix inner product. The generic Comid convergence
result in Thm. 2 immediately yields the following two corollaries.

Corollary 11 Let the sequence {W t} be defined by the update in Eq. (17) with p = 2. If each ft
satisfies |||f ′t(W t)|||2 ≤ G2, then there is a stepsize η for which the regret against W ∗ ∈ Ω is

Rφ(T ) ≤ G2 |||W ∗|||2
√
T

Corollary 12 Let p = 1+ 1/ log d in the Schatten Comid update of Eq. (17). Let q = 1+ log d. If
each ft satisfies |||f ′t(W t)|||q ≤ Gq then

Rφ(T ) ≤ Gq |||W ∗|||p
√
T log d ≍ G∞ |||W ∗|||1

√
T log d

where G∞ = maxt |||f ′t(W t)|||∞ = maxt σmax(f
′
t(W t)).

Let us consider the actual implementation of the Comid update. Similar convergence rates (with
worse constants and a negative dependence on the spectrum of r) to those above can be achieved
via simple mirror descent, i.e. by linearizing r(W ). The advantage of Comid is that it achieves
sparsity in the spectrum, as the following proposition demonstrates.

Proposition 13 Let Ψ(w) = 1
2 ‖w‖2p and Sτ (v) = sign(v) [|v| − τ ]+ as in the prequel. For p ∈ (1, 2],

the update in Eq. (17) can be implemented as follows.

Compute SVD: W t = U t diag(σ(W t))V
⊤
t (18a)

Gradient step: Θt = U t diag(∇Ψ(σ(W t)))V
⊤
t − ηf ′t(W t)

Compute SVD: Θt = Ũ t diag(σ(Θt))Ṽ
⊤
t

Splitting update: W t+1 = Ũ t diag
(
(∇Ψ)−1(Sηλ(σ(Θt)))

)
Ṽ

⊤
t (18b)

Note that the first SVD, Eq. (18a), is used for notational convenience only and need not be computed
at each iteration, since it is maintained at the end of iteration t−1 via Eq. (18b). The computational
requirements for Comid are thus the same as standard mirror descent, which also requires an SVD
computation on each step to compute ∂ |||W |||1. The last step of the update, Eq. (18b) applies the
shrinkage/thresholding operator Sηλ to the spectrum of Θt, which introduces sparsity. Furthermore,
due to the sign (and hence sparsity) preserving nature of the map (∇Ψ)−1, the sparsity in the
spectrum is maintained in W t+1. Lastly, the special case for p = 2, the standard Frobenius norm
update, was derived (but without rates or allowing stochastic gradients) by Ma et al. (2009), who
report good empirical results for their algorithm. In trace-norm applications, we expect |||W ∗|||1 to
be small. Therefore, in such applications, our new Schatten-p COMID algorithm with p ≈ 1 should
give strong performance since G∞ can be much smaller than G2.
Proof of Proposition 13: We know from the prequel that the Comid step is equivalent to

∇ψ(W̃ t) = ∇ψ(W t)− ηf ′t(W t) and W t+1 = argmin
W

{
Bψ(W , W̃ t) + ηr(W̃ t)

}
.

Since W t has singular value decomposition U t diag(σ(W ))V t and ψ(W ) = Ψ(σ(W )) is unitarily
invariant, ∇ψ(W t) = U t diag(∇Ψ(σ(W t)))V t (Lewis, 1995, Corollary 2.5). This means that the

Θt computed in step 2 above is simply ∇ψ(W̃ t). The proof essentially amounts to a reduction to
the vector case, since the norms are unitarily invariant, and will be complete if we prove that

V = argmin
W

{
Bψ(W , W̃ t) + τ |||W |||1

}
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has the unique solution

V = Ũ t diag
(
(∇Ψ)−1(Sτ (σ(∇ψ(W̃ t))))︸ ︷︷ ︸

w̃

)
Ṽ t , (19)

where Ũ t diag(σ(W̃ t))Ṽ
⊤
t is the SVD of W̃ t. By subgradient optimality conditions, it is sufficient

that the proposed solution V satisfy

0d1×d2 ∈ ∇ψ(V )−∇ψ(W̃ t) + τ∂ |||V |||1 .

Applying Lewis’s Corollary 2.5, we can continue to use the orthonormal matrices Ũ t and Ṽ t, and
we see that the proposed V in Eq. (19) satisfies

∇ψ(V ) = Ũ t diag(∇Ψ(w̃)))Ṽ
⊤
t and ∂ |||V |||1 = Ũ t diag(∂ ‖w̃‖1)Ṽ

⊤
t .

We have thus reduced the problem to showing that 0d ∈ ∇Ψ(w̃)+∇Ψ(σ(W̃ t))+ τ∂ ‖w̃‖1, since we
chose the matrices to have the same singular vectors by construction. From Lemma 10 presented

earlier, we already know that w̃ satisfies this equation if and only if ∇Ψ(w̃) = Sτ (∇Ψ(σ(W̃ t))),

which is indeed the case by definition of w̃ (noting of course that σ(∇ψ(W̃ t)) = ∇Ψ(σ(W̃ t))).
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Voting Paradoxes

Noga Alon, Tel Aviv University and Microsoft, Israel

Abstract

The early work of Condorcet in the 18th century, and that of Arrow and others

in the 20th century, revealed the complex and interesting mathematical problems

that arise in the theory of Social Choice, showing that the simple process of voting

leads to strikingly counter-intuitive paradoxes. I will describe some of these, focusing

on several recent intriguing examples whose analysis combines combinatorial and

probabilistic ideas with techniques from the theory of the VC dimension of range

spaces.
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Abstract

Bandit convex optimization is a special case of online convex optimization with partial
information. In this setting, a player attempts to minimize a sequence of adversarially
generated convex loss functions, while only observing the value of each function at a single
point. In some cases, the minimax regret of these problems is known to be strictly worse
than the minimax regret in the corresponding full information setting. We introduce the
multi-point bandit setting, in which the player can query each loss function at multiple
points. When the player is allowed to query each function at two points, we prove regret
bounds that closely resemble bounds for the full information case. This suggests that
knowing the value of each loss function at two points is almost as useful as knowing the
value of each function everywhere. When the player is allowed to query each function at
d+ 1 points (d being the dimension of the space), we prove regret bounds that are exactly
equivalent to full information bounds for smooth functions.

1 Introduction

Online convex optimization is best understood as a repeated game between a player and an adversary.
On round t of the game, the player begins by choosing a point xt from a fixed and known convex set
K ⊆ Rd. We adopt the game-theoretic terminology and say that xt is the player’s move on round t.
The adversary observes xt and chooses a convex loss function `t : K → R. Then, the loss function `t
is revealed to the player, who incurs the loss `t(xt). The goal of the player is to minimize his regret,
defined as

T∑
t=1

`t(xt) − min
x∈K

T∑
t=1

`t(x) .

Regret measures the difference between the cumulative loss of the player’s strategy and the loss of
the best constant point chosen in hindsight. Although the adversary has the advantage of playing
second on each round, there exist strategies for which we can prove non-trivial upper-bounds on
regret. Zinkevich (2003) presents a strategy based on gradient descent that guarantees a regret
of O(

√
T ) when the set K is compact and the loss functions are Lipschitz continuous. If the loss

functions are strongly convex (defined below), Hazan et al. (2007) analyze a similar gradient descent
strategy with a regret bound of O(log(T )). They also prove a similar regret bound for the larger class
of exp-concave loss functions using an online Newton-step algorithm. The O(

√
T ) and O(log(T ))

regret bounds, for convex and strongly convex loss functions respectively, are known to be minimax
optimal (see eg. Abernethy et al. (2009); Cesa-Bianchi and Lugosi (2006) and references therein).

The online convex optimization problem becomes more challenging when the player only receives
partial feedback on the choices of the adversary. One particularly interesting type of feedback is
bandit feedback, where the adversary only reveals the value of the loss function at xt, instead of
revealing the entire function `t. Specifically, the player does not know the gradient of `t at xt and
a simple gradient descent algorithm is inapplicable.

In the bandit setting, the player does not stand a chance against the completely adaptive adversary
described above, who chooses `t after observing the player’s move. Specifically, a regret bound for

∗This research was conducted while AA was a research intern in Microsoft Research at Redmond. AA
gratefully acknowledges the support of the NSF through grants 0707060 and 0830410 for travel expenses
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Algorithm 1 Template for k-point bandit algorithm
for t = 1, . . . , T do

Adversary (secretly) chooses convex loss function `t.
Player chooses and reveals yt,1,. . . ,yt,k ∈ K.
Adversary reveals `t(yt,1), . . . , `t(yt,k).
Player incurs the loss (1/k)

∑k
i=1 `t(yt,i).

end for

any strategy in this setting is necessarily Ω(T ). To see this, let K be the interval [0, 1] and define
the following two completely adaptive adversaries: the first chooses `t(z) = z − xt while the second
chooses `′t(z) = xt − z. In both cases, the player observes the loss value `t(xt) = `′t(xt) = 0 on
every round, and has no way of knowing which of the two adversaries he is facing. Therefore, the
player will play the same sequence of moves against both adversaries. If at least half of the player’s
moves lie in the interval

[
1
2 , 0
]

then the player’s regret against the first adversary is at least T/4.
Otherwise, the player’s regret against the second adversary is at least T/4. Overall, any strategy
will suffer at least a linear regret against one of these adversaries.

The example above indicates that we need to level the playing field by slightly limiting the power
of the adversary. Therefore, an adaptive adversary in the bandit setting is allowed to choose `t based
only on the player’s past moves x1, . . . , xt−1, and not on his current move xt. Put another way, the
adversary chooses `t at the beginning of round t, before the player makes his move. Then, the player
chooses xt without knowing `t and reveals his move to the adversary. Finally, the adversary notifies
the player of his loss `t(xt). We note in passing that an even weaker adversary is the oblivious
adversary, who chooses `t without knowing any of the player’s moves. However, in practice, an
analysis for the oblivious case is often an intermediate step towards an analysis for the adaptive
case.

In the special case where the loss functions are linear, Abernethy and Rakhlin (2009) present a
randomized algorithm with an Õ(

√
T ) regret-bound that holds with high-probability against adap-

tive adversaries. This algorithm relies on a non-trivial application of self-concordant barrier regu-
larization, and differs significantly from the typical algorithms that are used in the full information
case. This Õ(

√
T ) regret bound is optimal due to an information-theoretic argument from Auer et al.

(2003). For general convex loss functions, Flaxman et al. (2005) present a simple modification of
the full information gradient descent algorithm, where the gradient is replaced by a randomized es-
timate. The expected regret of this algorithm is shown to be O(T 3/4) against oblivious adversaries.
Flaxman et al. also sketch a high probability extension of their bound to adaptive adversaries.
For smooth and strongly convex loss functions, the regret bound of Flaxman et al. (2005) can be
strengthened to O(T 2/3), and furthermore, if K is a linear vector space (namely, the optimization is
unconstrained) then the bound can be improved to O(

√
T ) 1. Finding an optimal algorithm for the

general bandit convex optimization setting remains an open problem. However, a lower bound due
to Dani et al. (2008) implies that the regret of this optimal algorithm will be Ω(

√
T ), even when

the functions are strongly convex. This is to be contrasted with the full-information case where
O(log(T )) regret is achieved by online gradient descent when the loss functions are strongly convex.

Overall, we observe significant gaps between the optimal regret bounds for the full information
and bandit settings, as well as gaps in the complexity of the algorithms that attain these bounds.
This leads to the natural question of whether we can study a continuum of problems ranging between
these two extremes. Through such an inquiry, we can hope to find the point along this continuum
where the regret bounds for the full information case deteriorate to become the inferior bounds in the
bandit setting. We can also hope to find the point on this continuum where simple gradient descent
approaches stop giving optimal bounds, and the need for specialized algorithms arises. Answering
these questions is the focus of our paper.

To this end, we extend the bandit setting and introduce the multi-point bandit setting, where the
player queries each loss function at k randomized points, rather than at a single point. The template
for a k-point bandit algorithm is given in Algorithm 1. In this setting, we define the expected regret,

E
1
k

T∑
t=1

k∑
i=1

`t(yt,i)−min
x∈K

E
T∑
t=1

`t(x),

where expectation is taken over the randomness of the player. When k = 1, the multi-point bandit
1Both of these results are novel but their proof is omitted due to space constraints.

29



setting reduces to the bandit case discussed above.
For k = 2, we show that a variant of the randomized gradient descent algorithm proposed by

Flaxman et al. (2005) performs optimally. We prove a high-probability regret bound of Õ(
√
T )

for convex Lipschitz-continuous loss functions chosen by an adaptive adversary. We also prove
an expected regret bound of O(log(T )) for strongly convex loss functions chosen by an adaptive
adversary. Thus, by allowing the player to query only two points on each round, we can already
obtain bounds that closely resemble the optimal bounds for the full-information setting. In the
strongly convex case, we see a sharp phase transition of the minimax regret from Ω(

√
T ) to O(log(T ))

when moving from k = 1 to k = 2. For general convex loss functions, optimal bounds for the k = 1
setting achievable in a computationally efficient manner are not yet known, but it seems evident that
optimal algorithms and bounds will rely on techniques that are significantly different from those used
in the full information-case. In contrast, for k = 2 we can rely on algorithms and analysis techniques
that are quite similar to those used in the full information case. Overall, we conclude that having the
ability to evaluate the loss function at two points on each round is almost as powerful as observing
the entire loss function.

When k = d+ 1, where d is the dimension of the space, we show that a deterministic algorithm
can obtain a regret of O(

√
T ) against convex Lipschitz and smooth loss functions, and a regret

of O(log(T )) against strongly convex and smooth loss functions. Moreover, both of these bounds
hold for the case of completely adaptive adversaries, precisely as in the full information case. This
algorithm uses gradient descent based on a deterministic approximation of the gradient. Applying
a similar approximation to the online Newton-step algorithm (Hazan et al., 2007) also gives an
O(log(T )) regret for exp-concave and smooth loss functions. We conclude that having the ability
to evaluate the loss function at d + 1 points on each round is as powerful as observing the entire
function when the functions are smooth.

The algorithms we propose are efficient, with the computational complexities being no greater
than their full information counterparts.

Similar schemes for constructing gradient estimators using multiple function evaluations have
also been analyzed in the framework of stochastic optimization (Polyak & Tsypkin, 1973; Spall,
2003) and derivative-free optimization (Conn et al., 2009). However, there seem to be relatively few
relevant results concerning the rate of convergence.

Notation and Assumptions: Before proceeding, we define our notation and state assumptions
that will appear in various parts of the analysis. Let ‖ · ‖ denote the Euclidean norm in Rd, and let
B = {x ∈ Rd : ‖x‖ ≤ 1} be the unit ball centered at the origin. We assume that the convex set K
is compact and has a nonempty interior. If not, we can always map K to a lower dimensional space.
More specifically, we assume that there exist r,D > 0 such that

rB ⊆ K ⊆ DB. (1)

We assume w.l.o.g. that the set contains 0, as we can always translate K. We assume that each loss
function `t is Lipschitz continuous, i.e., there exists a constant G such that

|`t(x)− `t(y)| ≤ G‖x− y‖, ∀x, y ∈ K, ∀ t. (2)

For σ ≥ 0, the function ` is called σ-strongly convex on the set K if

`(x) ≥ `(y) +∇`(y)>(x− y) +
σ

2
‖x− y‖2, ∀x, y ∈ K. (3)

The case σ = 0 merely implies convexity of `. We call a function L-smooth on K if it is differentiable
on an open set containing K and its gradient is Lipschitz continuous with a constant L, i.e.,

‖∇`(x)−∇`(y)‖ ≤ L‖x− y‖, ∀x, y ∈ K. (4)

We use the notation Et to denote the conditional expectation conditioned on all randomness in the
first t− 1 rounds.

2 Expected gradient descent using two queries per round

In this section, we present optimal algorithms (up to logarithmic factors) that query the loss function
at two points on each round. We assume that the adversary’s choice of `t can depend on all of the
information available up to round t−1, but does not depend on the player’s random moves on round
t. In the full information case, the player can follow the online gradient descent strategy (Zinkevich,
2003) and make the move

xt+1 = ΠK (xt − ηt∇`t(xt)) , (5)
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Algorithm 2 Expected Gradient Descent with two queries per round
Input: Learning rates ηt, exploration parameter δ and shrinkage coefficient ξ.
Set x1 = 0
for t = 1, . . . , T do

Pick a unit vector ut uniformly at random.
Observe `t(xt + δut) and `t(xt − δut).
Set g̃t = d

2δ (`t(xt + δut)− `t(xt − δut))ut.
Update xt+1 = Π(1−ξ)K(xt − ηtg̃t).

end for

where ΠK(x) denotes the Euclidean projection of x onto the set K, and ηt is the step size or learning
rate. In our partial information setting, we follow Flaxman et al. (2005) and replace ∇`t(xt) with
an estimate g̃t, obtained by evaluating the loss function at two random points around xt. The player
makes the move

xt+1 = Π(1−ξ)K (xt − ηtg̃t) , (6)

where ξ ∈ (0, 1) and (1− ξ)K is shorthand for {(1− ξ)x : x ∈ K}. The projection is made onto the
shrunk set (1− ξ)K to ensure that the random query points around xt+1 belong to K. In particular,
for any x ∈ (1− ξ)K and any unit vector u it holds that (x+ δu) ∈ K for any δ in [0, ξr] (Flaxman
et al., 2005, Observation 2). Algorithm 2 gives a complete description of the Expected Gradient
Descent method with two queries per round. The intuition behind this method is that any random
realization of g̃t is a good proxy for the directional derivative ∇`t(xt)>ut. Hence taking expectation
over a random choice of ut gives us a good estimator for ∇`t(xt).

The difference between Algorithm 2 and the algorithm proposed by Flaxman et al. (2005) is
that the latter relies on a single function evaluation on each round. The single value `t(xt + δut) is
used to construct the gradient estimator

gt =
d

δ
`t(xt + δut)ut. (7)

Let v be a uniform random vector in the unit ball B, and define the smoothed loss function

ˆ̀
t(x) = Ev`t(x+ δv).

Note that ˆ̀
t is Lipschitz continuous with the same constant G, and ˆ̀

t is always differentiable even
if `t is not. Through a clever use of Stokes’ theorem, Flaxman et al. (2005) showed that gt in (7) is
a conditionally unbiased estimator of ∇ˆ̀

t(xt), i.e.,

Et[gt] = ∇ˆ̀
t(xt). (8)

Their analysis uses the facts that the update of Equation (6) performs expected gradient descent on
the functions ˆ̀

t and that ˆ̀
t(xt) and `t(xt) are close when δ is small. However, the resulting bounds

on expected regret are much worse than bounds for gradient descent in the full information case.
This is partly due to the large norm of the gradient estimator in (7) when δ is small.

The key insight in this section is that, for the entire class of Lipschitz continuous functions, one
can use two function evaluations to construct gradient estimators that have a bounded norm, which
leads to much improved regret bounds. First, we note that the gradient estimator in Algorithm 2,

g̃t =
d

2δ
(
`t(xt + δut)− `t(xt − δut)

)
ut, (9)

also satisfies the unbiasedness condition (8) as the distribution of ut is symmetric. To show that it
has bounded norm, we have

‖g̃t‖ =
d

2δ
‖(`t(xt + δut)− `t(xt − δut))ut‖

=
d

2δ
|`t(xt + δut)− `t(xt − δut)|

≤ dG

2δ
‖2δut‖ = Gd,

where in the inequality above we use the Lipschitz property (2).
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In order to analyze the regret of Algorithm 2, we also define the functions

ht(x) = ˆ̀
t(x) + (g̃t −∇ˆ̀

t(xt))>x, ∀ t.
It is easily seen that ∇ht(xt) = g̃t, and therefore ‖∇ht(xt)‖ ≤ Gd for all t. Also Etht(x) = ˆ̀

t(x) for
any x that is independent of ut. Moreover, for any fixed x, y ∈ K,

|ht(x)− ht(y)| ≤
∣∣ˆ̀
t(x)− ˆ̀

t(y)
∣∣+
∣∣(g̃t −∇ˆ̀

t(xt))>(x− y)
∣∣

≤ G‖x− y‖+
(
‖g̃t‖+ ‖∇ˆ̀

t(xt)‖
)
‖x− y‖

≤ G(d+ 2)‖x− y‖ ≤ 3Gd‖x− y‖ since ˆ̀
t is G Lipschitz.

Therefore the Lipschitz constant of ht is bounded by 3Gd. In addition, the convexity of ht follows
from that of `t. With this definition, Algorithm 2 amounts to performing deterministic gradient
descent on the convex functions ht, with projections on the shrunk convex set (1 − ξ)K. In the
analysis below, we first state a regret bound for deterministic gradient descent on the functions ht
due to Bartlett et al. (2008b), then use it to prove the desired regret bound on the functions `t.

We assume that `t is σt-strongly convex (3) for some σt ≥ 0. It follows that the functions ˆ̀
t

and ht are also σt-strongly convex. Assume, without loss of generality, that σ1 > 0. As we see later,
this can always be done by adding a strongly convex regularization term, and it does not affect the
overall regret bound. We use the shorthand σs:t to denote

∑t
τ=s στ . Then σ1:t is always positive if

σ1 > 0.
We begin our analysis by stating a general upper bound on the regret of Online Gradient Descent,

due to Bartlett et al. (2008b).

Lemma 1 (Bartlett et al. (2008b)) If the Online Gradient Descent algorithm (5) is performed
over a convex set S on σt-strongly convex functions ht with ηt = 1/σ1:t, then for any x ∈ S,

T∑
t=1

ht(xt)−
T∑
t=1

ht(x) ≤ d2G2

2

T∑
t=1

1
σ1:t

.

We will also require the following lemma, which relates the desired regret on the losses `t with the
moves yt,1 = xt + δut and yt,2 = xt − δut, to the regret on the losses ˆ̀

t with the move xt.

Lemma 2 For any point x ∈ K,
T∑
t=1

1
2

(`t(yt,1) + `t(yt,2))−
T∑
t=1

`t(x) ≤
T∑
t=1

ˆ̀
t(xt)−

T∑
t=1

ˆ̀
t((1− ξ)x) + 3TGδ + TGDξ.

Proof: By the Lipschitz property (2),
`t(yt,1) = `t(xt + δut) ≤ `t(xt) +Gδ‖ut‖ and `t(yt,2) = `t(xt − δut) ≤ `t(xt) +Gδ‖ut‖.

Since ‖ut‖ = 1 for all t, we get
1
2

(`t(yt,1) + `t(yt,2)) ≤ `t(xt) +Gδ. (10)

The Lipschitz property and the assumption ‖x‖ ≤ D also imply that, for all x ∈ K,
`t((1− ξ)x) ≤ `t(x) +GDξ. (11)

We can also relate `t(xt) and ˆ̀
t(xt) using the Lipschitz property:

|`t(xt)− ˆ̀
t(xt)| = |`t(xt)− Et`t(xt + δv)| ≤ Et|`t(xt)− `t(xt + δv)| ≤ EtGδ‖v‖,

where we use the fact that the random vector v in the definition of ˆ̀
t(xt) is independent of xt and `t.

Using the fact ‖v‖ ≤ 1 gives

`t(xt) ≤ ˆ̀
t(xt) +Gδ and ˆ̀

t((1− ξ)x) ≤ `t((1− ξ)x) +Gδ ∀x ∈ K. (12)
Combining the inequalities (10), (11) and (12), we have

1
2

(`t(yt,1) + `t(yt,2)) + ˆ̀
t((1− ξ)x) ≤ ˆ̀

t(xt) + `t(x) + 3Gδ +GDξ.

Finally, summing both sides of the above inequality for all t from 1 to T and rearranging terms gives
the desired statement.

With the above lemma, it suffices to bound regret on the losses ˆ̀
t for the sequence xt against

the set K(1− ξ). We can now state a bound on the expected regret of Algorithm 2.
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Theorem 3 Let assumptions (1) and (2) hold, and `t be σt-strongly convex where σ1 > 0. If
Algorithm 2 is run with ηt = 1

σ1:t
, δ = log T

T and ξ = δ
r , then for any x ∈ K,

E
T∑
t=1

1
2

(`t(yt,1) + `t(yt,2))− E
T∑
t=1

`t(x) ≤ d2G2

2

T∑
t=1

1
σ1:t

+G log(T )
(

3 +
D

r

)
.

Proof: As pointed out earlier, since ∇ht(xt) = g̃t, Algorithm 2 is actually performing gradient
descent (as if with full information) on the functions ht restricted to the convex set (1− ξ)K. Using
Lemma 1, we have that

T∑
t=1

ht(xt)−
T∑
t=1

ht((1− ξ)x) ≤ d2G2

2

T∑
t=1

1
σ1:t

.

Taking expectations, and using Equation (8), we conclude that

E
T∑
t=1

ˆ̀
t(xt)− E

T∑
t=1

ˆ̀
t((1− ξ)x) ≤ d2G2

2

T∑
t=1

1
σ1:t

.

Using Lemma 2, we get that

E
T∑
t=1

1
2

(`t(yt,1) + `t(yt,2))− E
T∑
t=1

`t(x) ≤ d2G2

2

T∑
t=1

1
σ1:t

+ 3TGδ + TGDξ.

Plugging in the stated values of δ and ξ completes the proof.

We can take δ arbitrarily close to 0, but that doesn’t improve the bound beyond constant factors.
With Theorem 3 handy, we are all set to prove the following corollaries.

Corollary 4 If assumptions (1) and (2) hold and Algorithm 2 is run with ηt = 1√
T

, δ = log T
T and

ξ = δ
r , then

E
T∑
t=1

1
2

(`t(yt,1) + `t(yt,2))−min
x∈K

E
T∑
t=1

`t(x) ≤ (d2G2 +D2)
√
T +G log(T )

(
3 +

D

r

)
.

Proof: Since we do not assume that the loss functions `t, for t ≥ 1, are strongly convex, we add a
fictitious round in the beginning with `0(x) =

√
T
2 ‖x‖

2, which has σ0 =
√
T . Setting σt = 0 for t ≥ 1

leads to σ0:t =
√
T for all t ≥ 0. Plugging this in the result of Theorem 3, we have for all x ∈ K,

E
T∑
t=0

1
2

(`t(yt,1) + `t(yt,2))− E
T∑
t=0

`t(x) ≤ d2G2

2

T∑
t=0

1√
T

+G log(T )
(

3 +
D

r

)
. (13)

For the regret in the initial fictitious round, we have

1
2

(`0(yt,1) + `0(yt,2))− `0(x) =
1
2

(√
T

2
‖y0,1‖2 +

√
T

2
‖y0,2‖2

)
−
√
T

2
‖x‖2 ≥ −

√
T

2
D2.

Rearranging the inequality (13) gives

E
T∑
t=1

1
2

(`(yt,1) + `(yt,2))− E
T∑
t=1

`t(x) ≤ d2G2

2
T + 1√
T

+
√
T

2
D2 +G log(T )

(
3 +

D

r

)
≤ (d2G2 +D2)

√
T +G log(T )

(
3 +

D

r

)
.

Since this holds for all x ∈ K, it is certainly true for arg minx∈K E
∑T
t=1 `t(x).

Corollary 5 Suppose that assumptions (1) and (2) hold, and each loss function `t is σ-strongly
convex for some σ > 0. If Algorithm 2 is run with ηt = 1

σt , δ = log T
T and ξ = δ

r , then

E
T∑
t=1

1
2

(`t(yt,1) + `t(yt,2))−min
x∈K

E
T∑
t=1

`t(x) ≤ G log(T )
(
d2G

σ
+ 3 +

D

r

)
.
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Proof: In this case, σt = σ > 0 and therefore σ1:t = σt. Hence we can directly plug these values
into Theorem 3 to conclude

E
T∑
t=1

1
2

(`t(yt,1) + `t(yt,2))−min
x∈K

E
T∑
t=1

`t(x) ≤ d2G2

2

T∑
t=1

1
σt

+G log(T )
(

3 +
D

r

)
≤ d2G2

2σ
(1 + log(T )) +G log(T )

(
3 +

D

r

)
.

≤ d2G2

σ
log(T ) +G log(T )

(
3 +

D

r

)
for T ≥ 3.

While expected regret bounds are interesting, the regret may still have a high variance. In order
to argue that Algorithm 2 often enjoys a small regret, we need to prove a bound that holds with
high probability. For that, we turn to concentration inequalities for martingales. For any point
x ∈ (1− ξ)K, define

Zt = ˆ̀
t(xt)− ˆ̀

t(x)− ht(xt) + ht(x).

Since Etht(x) = ˆ̀
t(x) for any x that is independent of ut, we have EtZt = 0. In addition,

|Zt| ≤
∣∣ˆ̀
t(xt)− ˆ̀

t(x)
∣∣+
∣∣ht(xt)− ht(x)

∣∣ ≤ G‖xt − x‖+ 3Gd‖xt − x‖ ≤ 8GdD.

Thus the sequence Zt is a bounded martingale difference sequence. Hence, we can use the Hoeffding-
Azuma inequality to derive a high probability guarantee for the case of convex, Lipschitz functions.

Theorem 6 Suppose assumptions (1) and (2) hold. If Algorithm 2 is run with ηt = 1√
T

, δ = log T
T

and ξ = δ
r . Then for any fixed x ∈ K and any δ1 > 0, with probability at least 1− δ1,

T∑
t=1

1
2

(`t(yt,1) + `t(yt,2))−
T∑
t=1

`t(x) ≤ (d2G2 +D2)
√
T +G log(T )

(
3 +

D

r

)
+ 8dGD

√
2T log(1/δ1).

Proof: Using the Hoeffding-Azuma inequality, we conclude that

P

(
T∑
t=1

Zt > ε

)
≤ exp

(
− ε2

2TB2

)
,

where B = 8GdD as shown before. Let δ1 = exp
(
− ε2

2TB2

)
. Then ε = B

√
2T log(1/δ1). Hence we

know that with probability at least 1− δ1
T∑
t=1

ˆ̀
t(xt)− ˆ̀

t(x(1− ξ)) ≤
T∑
t=1

ht(xt)− ht(x(1− ξ)) +B
√

2T log(1/δ1) .

Now using Lemma 2,

T∑
t=1

1
2

(`t(yt,1) + `t(yt,2))−
T∑
t=1

`t(x) ≤
T∑
t=1

ht(xt)− ht(x(1− ξ)) +B
√

2T log(1/δ1) + 3TGδ+ TGDξ.

To bound the regret
∑T
t=1 ht(xt) − ht(x(1 − ξ)), we use Lemma 1 on the regularized loss sequence

exactly like in the proof of Corollary 4. Plugging in the stated values of ηt and δ proves the theorem.

When the adversary is adaptive, however, the loss sequence depends on the player’s moves. As
a result, the best comparator, which minimizes

∑T
t=1 `t(x), depends on the player’s moves too. The

high probability result stated above doesn’t allow us to compete with such a comparator, as the
comparator x in the theorem statement is fixed ahead of time and is not allowed to depend on
the random xt’s. To obtain a regret bound against minx∈K

∑T
t=1 `t(x), we need to take the high

probability bound for a fixed x ∈ K described above, and combine it with an appropriate union
bound over the entire set to account for all possible minimizers of the cumulative loss sequence.
This union bound can be taken either over a barycentric spanner, or over a cover of size at most
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(4dT )d/2. This step is the same as the one described in Bartlett et al. (2008a) or Dani and Hayes
(2006), and is not repeated here.

While this result provides nearly tight (up to log factors and constants) guarantees on high
probability regret for general convex functions, it falls short for the case of strongly convex functions.
We note that in applying Hoeffding-Azuma’s concentration inequality, we incur an additional term
of Õ(

√
T ). Showing an O(log T ) regret bound for strongly convex functions that holds with high

probability remains an open question. We would like to mention that the techniques of Kakade
and Tewari (2009), which provide such a result in the online to batch conversion setting, are not
applicable to our case. This is because in stochastic optimization of strongly convex functions, the
sequence xt converges rapidly to the optimal point. This rapid concentration doesn’t occur in an
adversarial bandit optimization setting; the sequence xt might actually track the oscillations of the
losses `t and give a much lower regret than any constant point. Such cases present a novel difficulty
and resolving this difficulty is an interesting question for future research.

3 A general class of gradient estimators for smooth functions

In the previous section, we focused on a gradient estimator based on two function evaluations along
a random direction uniformly distributed on the unit sphere centered at xt. It is natural to ask if
one can obtain similar regret bounds for other estimators based on random sampling with different
probability distributions. It turns out that with an additional smoothness assumption on the loss
functions, we can indeed show similar regret bounds with more general gradient estimators.

The additional smoothness assumption is that each loss function `t is L-smooth, i.e., they satisfy
the condition (4). We recall that a direct consequence of (4) is the following second-order property

`t(x) ≤ `t(y) + 〈∇`t(y), x− y〉+
L

2
‖x− y‖2, ∀x, y ∈ K. (14)

If the loss functions are L-smooth, then we can show that the expectation of the gradient estimator
in Equation (9) is close to the true gradient. We start with a useful fact from linear algebra.

Lemma 7 For any fixed v ∈ Rd and for u ∈ Rd chosen randomly with ‖u‖ = 1, it holds that
v = dE 〈v, u〉u.

Proof: The lemma is based on the observation that Euu> = 1
dI, where u is a random unit vector

and I is the d × d identity matrix. To see this, recall that symmetry implies Euiuj = 0 for any
two coordinates i, j. Also u is a unit vector so E

∑
i u

2
i = 1. Again by symmetry, this implies that

Eu2
i = 1

d for all i. Therefore, Iv = (dEuu>)v, which equals dE 〈v, u〉u.

The above lemma allows us to conclude

‖Etg̃t −∇`t(xt)‖ = ‖Etg̃t − dEt 〈∇`t(xt), ut〉ut‖ ≤ Et‖g̃t − d 〈∇`t(xt), ut〉ut‖

≤ dEt
∣∣∣∣ 1
2δ

(`t(xt + δut)− `t(xt − δut))− 〈∇`t(xt), ut〉
∣∣∣∣ since ‖ut‖ = 1.

By the smoothness assumption, more specifically (14), we have

`t(xt + δut) ≤ `t(xt) + δ 〈∇`t(xt), ut〉+
Lδ2

2
.

Also by convexity of `t, `t(xt − δut) ≥ `t(xt) − δ 〈∇`t(xt), ut〉 . Combining the two inequalities
above, we get

1
2δ
(
`t(xt + δut)− `t(xt − δut)

)
− 〈∇`t(xt), ut〉 ≤

Lδ

4
.

Similarly by using (14) on `t(xt − δut) and the convexity inequality on `t(xt + δut), we can lower
bound the left-hand side of the above inequality by −Lδ4 . This allows us to obtain

‖Etg̃t −∇`t(xt)‖ ≤
dLδ

4
.

It turns out that the boundedness of the gradient estimator g̃t along with the closeness of its
expectation to the true gradient is sufficient to reproduce the regret bounds of the previous section.
In particular, we do not need to rely on random vectors uniformly distributed on the unit sphere
centered at xt and we do not need to use the function ˆ̀

t(x). To illustrate this point, we only show
how a corresponding version of Theorem 3 is proved in this general case. The corresponding versions
of other results follow in a similar fashion.
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Theorem 8 Assume that (1) and (2) hold, each function `t is σt-strongly convex, and σ1 > 0.
Suppose that on round t the player issues k random queries yt,1, . . . , yt,k, constructs a gradient
estimator g̃t, and uses the algorithm xt+1 = ΠK(1−ξ)(xt − ηtg̃t) with ηt = 1

σ1:t
, δ = log T

T and ξ = δ
r .

If the gradient estimator satisfies the following conditions for all t ≥ 1:

(i) ‖xt − yt,i‖ ≤ δ for i = 1, . . . , k.
(ii) ‖g̃t‖ ≤ G1 for some constant G1.

(iii) ‖Etg̃t −∇`t(xt)‖ ≤ cδ for some constant c.

Then for any fixed x ∈ K we have

E
T∑
t=1

1
k

k∑
i=1

`t(yt,i)− E
T∑
t=1

`t(x) ≤ G2
1

2

T∑
t=1

1
σ1:t

+G log(T )
(

1 + 2c+
D

r

)
.

Proof: We start by defining ht(x) = `t(x) + (g̃t −∇`t(x))>x. Then it is clear that ht has the same
convexity properties as `t and ∇ht(xt) = g̃t. So Lemma 1 still holds, with a gradient bound of G1

instead of dG, and we get
T∑
t=1

ht(xt)− ht(x) ≤ G2
1

2

T∑
t=1

1
σ1:t

.

Then we can take expectations to conclude

E
T∑
t=1

[`t(xt)− `t(x)] = E
T∑
t=1

[ht(xt)− ht(x)] + E
T∑
t=1

[`t(xt)− ht(xt)− `t(x) + ht(x)]

≤ G2
1

2

T∑
t=1

1
σ1:t

+ E
T∑
t=1

(Etg̃t −∇`t(xt))>(xt − x)

≤ G2
1

2

T∑
t=1

1
σ1:t

+ 2cδDT.

In the first inequality above, we used convexity of `t and ht. We can now use arguments similar to
the proof of Lemma 2 to conclude

E
T∑
t=1

1
k

k∑
i=1

`t(yt,i)− E
T∑
t=1

`t(x) ≤ G2
1

2

T∑
t=1

1
σ1:t

+ 2cDδT +GTδ +GDTξ.

Plugging in the values of δ and ξ proves the theorem.

As shown in the beginning of this section, the assumptions of Theorem 8 are satisfied with the
gradient estimator (9) if the loss functions `t are L-smooth. In that case, we have G1 = dG and
c = dL/4, and k = 2 queries per round suffice.

Theorem 8 also generalizes the special case of optimizing with noisy gradients, which has been
previously studied in the optimization community. Suppose that for each query point xt, the player
only has access to a noisy version of the gradient g̃t. In this case, we have k = 1 and yt,1 = xt, and it
is not even necessary to assume the smoothness condition. If the approximate gradient satisfies the
conditions (ii) and (iii) in Theorem 8, then we have the stated regret bound in expectation. If the
approximate gradient has a deterministic bound, i.e., ‖g̃t −∇`t(xt)‖ ≤ cδ for all t, then the regret
bound becomes deterministic.

As a more interesting application of this general result, we demonstrate another estimator g̃t
that meets the conditions of Theorem 8. On each round t, the player picks an integer it from the set
{1, . . . , d} uniformly at random, queries the function values at two points along the corresponding
coordinate axes eit ; yt,1 − xt + δeit , yt,2 = xt − δeit . Then it constructs the estimator

g̃t =
d

2δ
(`t(yt,1)− `t(yt,2))eit .

It is clear that ‖xt − yt,i‖ ≤ δ. As in the previous section, this gradient estimator has a bounded
norm with G1 = dG. Moreover,

Etg̃t =
1
2δ

d∑
i=1

(`t(xt + δei)− `t(xt − δei))ei.
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Algorithm 3 Gradient descent with deterministic estimator based on d+ 1 points
Input: Learning rates ηt, exploration parameter δ and shrinkage coefficient ξ.
Set x1 = 0
for t = 1, . . . , T do

Observe `t(xt), `t(xt + δei) for i = 1, . . . , d.
Set g̃t = 1

δ

∑d
i=1

(
`t(xt + δei)− `t(xt)

)
ei.

Update xt+1 = Π(1−ξ)K(xt − ηtg̃t).
end for

Then

‖Etg̃t −∇`t(xt)‖ =
√∑d

i=1

∣∣ 1
2δ (`t(xt + δei)− `t(xt − δei))− 〈∇`t(xt), ei〉

∣∣2
≤
√
dLδ

4
.

Thus Theorem 8 applies to this estimator with G1 = dG and c =
√
dL/4. This means that a

coordinate descent style algorithm that uses only 1-dimensional gradient estimators will also exhibit
a low regret for optimizing smooth convex Lipschitz functions.

Since the gradient estimator is 1-dimensional along a coordinate axis, gradient updates become
computationally more efficient. We also note that this improvement in per-iteration cost comes at
no worsening of the regret bound when compared to using a random direction on the unit sphere. In
the full information case, stochastic coordinate descent approaches usually have a convergence rate
slower by a factor of d compared to gradient descent, which offsets the computational gains (Shalev-
Shwartz & Tewari, 2009; Tseng & Yun, 2009). In this case, however, both the gradient descent
method and coordinate descent have to rely on an estimator with the same amount of variance,
which leads to similar regret guarantees in the two cases and gives the coordinate descent approach
a clear computational edge. This example is just a hint of the strength of Theorem 8.

4 Deterministic algorithms for completely adaptive adversaries

In the previous sections, we considered adversaries that know the player’s past moves, but do not
know the player’s current random move. This seems reasonable for a randomized algorithm, because
if the adversary can see the player’s random bits, then randomization is futile. However, in some
cases, the online interaction mandates an adversarial response dependent not only on the player’s
previous moves, but also on the current move. That is, after the player plays a point xt, the loss
function `t is chosen with the knowledge of xt. While such a scenario is readily tackled in the
full information setting with standard gradient based algorithms, it is impossible to adapt to such
feedback in the bandit setting, as explained in Section 1. This prompts the question if there is any
partial feedback setting where we might be able to effectively compete against such an adversary.
In this section, we show one special partial feedback scenario where it is possible to compete against
such a completely adaptive adversary.

We assume that the player is allowed to query each loss function at up to d + 1 points. In this
case, the player can play the points xt, xt + δei for i = 1, . . . , d, where ei are the standard unit basis
vectors, and then construct a deterministic gradient approximation

g̃t =
1
δ

d∑
i=1

(
`t(xt + δei)− `t(xt)

)
ei. (15)

The details of the player’s moves are described in Algorithm 3.
We assume that each loss function `t is L-smooth and σt-strongly convex on K. Such functions

are always Lipschitz continuous, and we can derive a bound on the Lipschitz constant based on L
and D. However, for convenience, we simply assume (2) holds with the constant G. We can derive
just as in previous sections that

‖g̃t‖ ≤ dG, ‖g̃t −∇`t(xt)‖ ≤
√
dLδ

2
. (16)

These properties of g̃t are the deterministic version of the properties discussed in the previous section
for randomized algorithms. They immediately give us partial feedback algorithms based on using
approximate gradients in the corresponding full information analogues. For instance, we can show
the same regret guarantee against a stronger class of adversaries.
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Theorem 9 Let {`t}Tt=1 be convex functions chosen by a completely adaptive adversary. Suppose
the conditions (1) and (2) hold. In addition, let each `t be σt strongly convex and L-smooth. If
Algorithm 3 is run with ηt = 1

σ1:t
, δ = log T

T and ξ = δ
r , then

T∑
t=1

1
d+ 1

(
`t(xt) +

d∑
i=1

`t(xt + δei)

)
−min
x∈K

T∑
t=1

`t(x) ≤ d2G2

2

T∑
t=1

1
σ1:t

+G log(T )

(
1 +

√
dLδ

2
+
D

r

)
.

Proof: The proof essentially mimics that of Theorem 8. We define ht(x) = `t(x)+(g̃t−∇`t(xt))>x.
Then ‖∇ht(xt)‖ = ‖g̃t‖ ≤ dG. So we obtain from Lemma 1 for any x ∈ (1− ξ)K,

T∑
t=1

ht(xt)− ht(x) ≤ d2G2

2

T∑
t=1

1
σ1:t

.

Proceeding as in the proof of Theorem 8 and using ‖g̃t −∇`t(xt)‖ ≤
√
dLδ
2 gives the result.

It turns out that we can say more about this deterministic gradient estimator. More specifically,
we can use it to develop quasi-Newton type methods that can achieve a sharper regret bound for
the class of exp-concave functions. Recall that a loss function `t is α-exp-concave if exp(−α`t(x)) is
a concave function. For example, if a function has a Lipschitz constant G and is σ-strongly convex,
then the exp-concave property holds with α = G2/σ. However, the exp-concave condition is weaker
than assuming the bounds G and σ. These functions arise in applications like portfolio optimization,
squared-error regression etc.

All the algorithms discussed until now are gradient-descent based. Gradient-descent methods
are often insufficient to obtain the optimal regret for the general class of exp-concave functions.
Hazan et al. (2007) developed an online Newton-step algorithm that achieves an optimal O(log T )
regret on these functions. In order to implement approximate second-order methods using gradient
estimators, we also need to control error in second order gradient terms. To demonstrate good
second-order properties of the gradient estimator (15), we use the following fact from linear algebra.

Lemma 10 Let u and v be two vectors in Rd such that ‖u− v‖ ≤ θ. Then for any x

x>(uu> − vv>)x ≤ ‖x‖2θ
(
2‖v‖+ θ

)
.

Proof: We have

x>(uu> − vv>)x = (x>u)2 − (x>v)2 = x>(u+ v)x>(u− v)

≤ ‖x‖2‖u+ v‖‖u− v‖ ≤ ‖x‖2θ
(
2‖v‖+ θ

)
,

where in the last inequality we used ‖u+ v‖ = ‖2v + (u− v)‖ ≤ 2‖v‖+ ‖u− v‖ ≤ 2‖v‖+ θ.

We apply this lemma with u = g̃t and v = ∇`t(xt) to conclude that for any vector x

x>(g̃>t g̃t −∇`t(xt)>∇`t(xt))x ≤ ‖x‖2
√
dLδ

2

(
2G+

√
dLδ

2

)
. (17)

With this second-order approximation bound in mind, we present the Bandit Online Newton-Step
algorithm (BONES). This algorithm is a bandit version of the Online Newton Step algorithm,
presented in Hazan et al. (2007).

We begin the analysis of the BONES algorithm by first proving the following lemma.

Lemma 11 Let g̃t and β be as defined in Algorithm 4. Then for any x ∈ (1− ξ)K,

T∑
t=1

g̃>t (xt − x)− β

2
(x− xt)>g̃tg̃>t (x− xt) ≤

d

2β
log
(
TG2d4β2 + 1

)
+

1
2β
.

Proof: This result is based on the observation that the updates of BONES are equivalent to
performing online Newton-step algorithm of Hazan et al. (2007) on the functions

g̃>t (x− xt)−
β

2
(x− xt)>At(x− xt).
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Algorithm 4 Bandit Online NEwton Step (BONES) algorithm

Set x1 = 0, A0 = εId, β = 1
2 min

{
1

4GD , α
}

.
for t = 1, . . . T do

Observe `t(xt), `t(xt + δei) for i = 1, . . . , d.
g̃t = 1

δ

∑d
i=1 (`t(xt + δei)− `t(xt)) ei.

At = At−1 + g̃tg̃
>
t .

xt+1 = ΠAt

(1−ξ)K

(
xt − 1

βA
−1
t g̃t

)
, where ΠAt

S (y) = arg minx∈S(y − x)>At(y − x).
end for

Following the proof of Theorem 2 in (Hazan et al., 2007), we conclude that for any x ∈ (1− ξ)K,
T∑
t=1

g̃>t (x− xt)−
β

2
(x− xt)>At(x− xt) ≤

1
2β

T∑
t=1

g̃>t A
−1
t g̃t +

1
2β
.

Further following their analysis, we note that the first summand on the right-hand side can be
bounded by controlling the eigenvalues of the matrices At. Together with ‖g̃t‖ ≤ Gd, this gives

T∑
t=1

g̃>t (x− xt)−
β

2
(x− xt)>At(x− xt) ≤

d

2β
log
(

(Gd)2T
ε

+ 1
)

+
1

2β
.

Finally setting ε = 1
β2d2 gives the result.

This lemma now allows us to prove a bound on the regret incurred by the BONES algorithm
against completely adaptive adversaries.

Theorem 12 Let {`t}Tt=1 be chosen by a completely adaptive adversary. Suppose the conditions (1)
and (2) hold. In addition, let each `t be α-exp-concave and L-smooth. If the BONES Algorithm is
run with δ = log T

T and ξ = δ
r , then

T∑
t=1

1
d+ 1

(
`t(xt) +

d∑
i=1

`t(xt + δei)

)
−min
x∈K

T∑
t=1

`t(x) ≤ 4d
(
GD +

1
α

)
log
(

1 +
Td4D2
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)

+ log(T )

(
DL
√
d

2
+

2GD
r

)
+ o(log(T )).

Proof: We will only outline the main steps in the proof. The omitted details can be found in (Hazan
et al., 2007). We start by recalling a second-order property of exp-concave functions (Hazan et al.,
2007, Lemma 3):

`t(x) ≥ `t(xt) +∇`t(xt)>(x− xt) +
β

2
(x− xt)>∇`t(xt)∇`t(xt)>(x− xt).

In particular, this observation allows us to relate regret on the function `t with that of a local
quadratic approximation.
T∑
t=1

`t(xt)− `t(x) ≤
T∑
t=1

∇`t(xt)>(xt − x)− β

2
(x− xt)>∇`t(xt)∇`t(xt)>(x− xt)

≤
T∑
t=1

g̃t(xt)>(xt − x)− β

2
(x− xt)>g̃tg̃>t (x− xt)

+
T∑
t=1

‖g̃t −∇`t(xt)‖‖xt − x‖+
T∑
t=1

β

2
(xt − x)

(
g̃tg̃
>
t −∇`t(xt)∇`t(xt)>

)
(x− xt)

Now the first two terms on the right-hand side are bounded in Lemma 11. For the remaining terms,
we use the equations (16) and (17). As before, we also need to relate this regret to the average regret
on the yt,i’s against a point in K rather than K(1 − ξ). These can be done as before by appealing
to Lemma 2. Plugging in all the constants gives the result.
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5 Discussion

This paper introduces the multi-point bandit feedback setting for online convex optimization under
partial information. While this setting is just a slight generalization of the bandit setting, we are
able to show certain sharp phase transitions based on the number of queries per round, both in the
nature of the bounds and in the nature of the adversaries against which these bounds hold. We
provide optimal algorithms at several points along this continuum.

For future research, it will be interesting to investigate more general partial feedback models, for
instance allowing an adaptive choice of the number of queries at every round. Proving an O(log(T ))
regret bound with high probability for the case of strongly convex functions also remains an open
question for k = 2 queries.
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Abstract

We consider the problem of finding the best arm in a stochastic multi-armed bandit game. The
regret of a forecaster is here defined by the gap between the mean reward of the optimal arm
and the mean reward of the ultimately chosen arm. We propose a highly exploring UCB policy
and a new algorithm based on successive rejects. We show that these algorithms are essentially
optimal since their regret decreases exponentially at a rate which is, up to a logarithmic factor, the
best possible. However, while the UCB policy needs the tuning of a parameter depending on the
unobservable hardness of the task, the successive rejects policy benefits from being parameter-free,
and also independent of the scaling of the rewards. As a by-product of our analysis, we show
that identifying the best arm (when it is unique) requires a number of samples of order (up to a
log(K) factor)

∑
i 1/∆2

i , where the sum is on the suboptimal arms and ∆i represents the difference
between the mean reward of the best arm and the one of arm i. This generalizes the well-known
fact that one needs of order of 1/∆2 samples to differentiate the means of two distributions with
gap ∆.

1 Introduction
In the multi-armed bandit problem, at each stage, an agent (or forecaster) chooses one action (or arm), and
receives a reward from it. In its stochastic version, the reward is drawn from a fixed probability distribution
given the arm. The usual goal is to maximize the cumulative sum of rewards, see Robbins (1952); Auer et al.
(2002) among many others. Since the forecaster does not know the distributions, he needs to explore (try)
the different actions and yet, exploit (concentrate its draws on) the seemingly most rewarding arms. In this
paper, we adopt a different viewpoint. We assume that after a given number of pulls, the forecaster is asked to
output a recommended arm. He is then only evaluated by the average payoff of his recommended arm. This
is the so-called pure exploration problem, Bubeck et al. (2009).

The distinguishing feature from the classical multi-armed bandit problem described above is that the
exploration phase and the evaluation phase are separated. Thus, there is no explicit trade-off between the
exploration and the exploitation while pulling the arms. The target of Hoeffding and Bernstein races, see
Maron and Moore (1993); Mnih et al. (2008) among others, is more similar to ours. However, instead of
trying to extract from a fixed number of rounds the best action, racing algorithms try to identify the best
action at a given confidence level while consuming the minimal number of pulls. They optimize the budget
for a given confidence level, instead of optimizing the quality of the recommendation for a given budget
size. Another variant of the best arm identification task is the problem of minimal sampling times required to
identify an ε-optimal arm, see in particular Domingo et al. (2002) and Even-Dar et al. (2006).

We now illustrate why this is a natural framework for numerous applications. Historically, the first oc-
currence of multi-armed bandit problems was given by medical trials, see Robbins (1952). In the case of
a severe disease, ill patients only are included in the trial and the cost of picking the wrong treatment is
high. It is important to minimize the cumulative regret, since the test and cure phases coincide. However,
for cosmetic products, there exists a test phase separated from the commercialization phase, and one aims
at minimizing the regret of the commercialized product rather than the cumulative regret in the test phase,
which is irrelevant.

Another motivating example concerns channel allocation for mobile phone communications. During a
very short time before the communication starts, a cellphone can explore the set of channels to find the
best one to operate. Each evaluation of a channel is noisy and there is a limited number of evaluations
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Parameters available to the forecaster: the number of rounds n and the number of arms K.

Parameters unknown to the forecaster: the reward distributions ν1, . . . , νK of the arms.

For each round t = 1, 2, . . . , n;

(1) the forecaster chooses It ∈ {1, . . . ,K},

(2) the environment draws the reward XIt,TIt
(t) from νIt and independently of the past

given It.

At the end of the n rounds, the forecaster outputs a recommendation Jn ∈ {1, . . . ,K}.

Figure 1: The pure exploration problem for multi-armed bandits.

before the communication starts. The connection is then launched on the channel which is believed to be the
best. Opportunistic communication systems rely on the same idea. Again the cumulative regret during the
exploration phase is irrelevant since the user is only interested in the quality of its communication starting
after the exploration phase.

More generally, the pure exploration problem addresses the design of strategies making the best possible
use of available resources in order to optimize the performance of some decision-making task. That is, it
occurs in situations with a preliminary exploration phase in which costs are not measured in terms of rewards
but rather in terms of resources that come in limited budget (the number of patients in the test phase in the
clinical trial setting and the time to connect in the communication example).

2 Problem setup
A stochastic multi-armed bandit game is parameterized by the number of arms K, the number of rounds (or
budget) n, and K probability distributions ν1, . . . , νK associated respectively with arm 1, . . . , arm K. These
distributions are unknown to the forecaster. For t = 1, . . . , n, at round t, the forecaster chooses an arm It
in the set of arms {1, . . . ,K}, and observes a reward drawn from νIt independently from the past (actions
and observations). At the end of the n rounds, the forecaster selects an arm, denoted Jn, and is evaluated in
terms of the difference between the mean reward of the optimal arm and the mean reward of Jn. Precisely, let
µ1, . . . , µK be the respective means of ν1, . . . , νK . Let µ∗ = maxk∈{1,...,K} µk. The regret of the forecaster
is

rn = µ∗ − µJn .
For sake of simplicity, we will assume that the rewards are in [0, 1] and that there is a unique optimal arm.
Let i∗ denote this arm (so, µi∗ = µ∗). For i 6= i∗, we introduce the following suboptimality measure of arm i:

∆i = µ∗ − µi.

For reasons that will be obvious later, we also define ∆i∗ as the minimal gap

∆i∗ = min
i6=i∗

∆i.

We introduce the notation (i) ∈ {1, . . . ,K} to denote the i–th best arm (with ties break arbitrarily), hence

∆i∗ = ∆(1) = ∆(2) ≤ ∆(3) ≤ . . . ≤ ∆(K).

Let en denote the probability of error, that is the probability that the recommendation is not the optimal one:

en = P(Jn 6= i∗).

We have Ern =
∑
i6=i∗ P(Jn = i)∆i, and consequently

∆i∗en ≤ Ern ≤ en.

As a consequence of this equation, up to a second order term, en and Ern behave similarly, and it does not
harm to focus on the probability en.

For each arm i and all time rounds t ≥ 1, we denote by Ti(t) the number of times arm i was pulled
from rounds 1 to t, and by Xi,1, Xi,2, . . . , Xi,Ti(t) the sequence of associated rewards. Introduce X̂i,s =
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1
s

∑s
t=1Xi,t the empirical mean of arm i after s pulls. In the following, the symbol c will denote a positive

numerical constant which may differ from line to line.
The goal of this work is to propose allocation strategies with small regret, and possibly as small as the best

allocation strategy which would know beforehand the distributions ν1, . . . , νK up to a permutation. Before
going further, note that the goal is unachievable for all distributions ν1, . . . , νK : a policy cannot perform
as well as the “oracle” allocation strategy in every particular cases. For instance, when the supports of
ν1, . . . , νK are disjoint, the oracle forecaster almost surely identifies an arm by a single draw of it. As a
consequence, it has almost surely zero regret for any n ≥ K. The generic policy which does not have any
knowledge on the K distributions cannot reproduce this performance for any K-tuple of disjointly supported
distributions. In this work, the above goal of deciding as well as an oracle will be reached for the set of
Bernoulli distributions with parameters in (0, 1), but the algorithms are defined for any distributions supported
in [0, 1].

We would like to mention that the case K = 2 is unique and simple since, as we will indirectly see,
it is optimally solved by the uniform allocation strategy consisting in drawing each arm n/2 times (up to
rounding problem), and at the end recommending the arm with the highest empirical mean. Therefore, our
main contributions concern more the problem of the budget allocation when K ≥ 3. The hardness of the task
will be characterized by the following quantities

H1 =
K∑
i=1

1

∆2
i

and H2 = max
i∈{1,...,K}

i∆−2
(i) .

These quantities are equivalent up to a logarithmic factor since we have (see Section 6.1)
H2 ≤ H1 ≤ log(2K)H2. (1)

Intuitively, we will show that these quantities are indeed characteristic of the hardness of the problem, in the
sense that they give the order of magnitude of the number of samples required to find the best arm with a
reasonable probability. This statement will be made precise in the rest of the paper, in particular through
Theorem 2 and Theorem 4.

Outline. In Section 3, we propose a highly exploring policy based on upper confidence bounds, called
UCB-E (Upper Confidence Bound Exploration), in the spirit of UCB1 Auer et al. (2002). We prove that
this algorithm, provided that it is appropriately tuned, has an upper bound on the probability of error en of
order exp

(
− c n

H1

)
. The core problem of this policy is the tuning of the parameter. The optimal value of

the parameter depends on H1, which has no reason to be known beforehand by the forecaster, and which, to
our knowledge, cannot be estimated from past observations with sufficiently high confidence in order that the
resulting algorithm still satisfies a similar bound on en.

To get round this limitation, in Section 4, we propose a simple new policy called SR (Successive Rejects)
that progressively rejects the arms which seem to be suboptimal. This algorithm is parameter-free and its
probability of error en is at most of order exp

(
− n

log(2K)H2

)
. Since H2 ≤ H1 ≤ log(2K)H2, up to at most

a logarithmic term in K, the algorithm performs as well as UCB-E while not requiring the knowledge of H1.
In Section 5, we prove that H1 and H2 truly represent the hardness of the problem (up to a logarithmic

factor). Precisely, we consider a forecaster which knows the reward distributions of the arms up to a per-
mutation. When these distributions are of Bernoulli type with parameter in [p, 1 − p] for some p > 0, there
exists a permutation of the distributions for which the probability of error of the (oracle) forecaster is lower
bounded by exp

(
− cn

p(1−p)H2

)
.

Section 6 gathers some of the proofs. Section 7 provides some experiments testing the efficiency of the
proposed policies and enlightening our theoretical results. We also discuss a modification of UCB-E where
we perform a non-trivial online estimation of H1. We conclude in Section 8.

Example. To put in perspective the results we just mentioned, let us consider a specific example with
Bernoulli distributions. Let ν1 = Ber

(
1
2

)
, and νi = Ber

(
1
2 −

1
Ki

)
for i ∈ {2, . . . ,K}. Here, one can

easily check that H2 = 2K2K . Thus, in this case, the probability of missing the best arm of SR is at most of
order exp

(
− n

2 log(2K)K2K

)
. Moreover, in Section 5, we prove that there does not exist any forecaster (even

with the knowledge of the distributions up to a permutation) with a probability of missing the best arm smaller
than exp

(
− 11n
K2K

)
for infinitely many n. Thus, our analysis finds that, for this particular reward distributions,

the number of samples required to find the best arm is at least (of order of) K2K , and SR actually finds it
with (of order of) log(K)K2K samples.

3 Highly exploring policy based on upper confidence bounds
In this section, we propose and study the algorithm UCB-E described in Figure 2. When a is taken of
order log n, the algorithm essentially corresponds to the UCB1 policy introduced in Auer et al. (2002), and
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Parameter: exploration parameter a > 0.

For i ∈ {1, . . . ,K}, let Bi,s = X̂i,s +
√

a
s

for s ≥ 1 and Bi,0 = +∞.

For each round t = 1, 2, . . . , n:
Draw It ∈ argmaxi∈{1,...,K}Bi,Ti(t−1).

Let Jn ∈ argmaxi∈{1,...,K} X̂i,Ti(n).

Figure 2: UCB-E (Upper Confidence Bound Exploration) algorithm.

its cumulative regret is of order log n. Bubeck et al. (2009) have shown that algorithms having at most
logarithmic cumulative regret, have at least a (non-cumulative) regret of order n−γ for some γ > 0. So taking
a of order log n is inappropriate to reach exponentially small probability of error. For our regret notion, one
has to explore much more and typically use a parameter which is essentially linear in n. Precisely, we have
the following result, the proof of which can be found in Section 6.2.

Theorem 1 If UCB-E is run with parameter 0 < a ≤ 25
36
n−K
H1

, then it satisfies

en ≤ 2nK exp

(
− 2a

25

)
.

In particular for a = 25
36
n−K
H1

, we have en ≤ 2nK exp
(
− n−K

18H1

)
.

The theorem shows that the probability of error of UCB-E is at most of order exp(−ca) for a ≥ log n.
In fact, one can easily show a corresponding lower bound. In view of this, as long as a ≤ 25

36
n−K
H1

, we can
essentially say: the more we explore (i.e., the larger a is), the smaller the regret is. Besides, the smallest upper
bound on the probability of error is obtained for a of order n/H1, and is therefore exponentially decreasing
with n. The constant H1 depends not only on how close the mean rewards of the two best arms are, but
also on the number of arms and how close their mean reward is to the optimal mean reward. This constant
should be seen as the order of the minimal number n for which the recommended arm is the optimal one with
high probability. In Section 5, we will show that H1 is indeed a good measure of the hardness of the task by
showing that no forecaster satisfies en ≤ exp

(
− cn

H2

)
for any distributions ν1, . . . , νK , where we recall that

H2 satisfies H2 ≤ H1 ≤ log(2K)H2.
One interesting message to take from the proof of Theorem 1 is that, with probability at least 1 −

2nK exp
(
− 2a

25

)
, the number of draws of any suboptimal arm i is of order a∆−2

i . This means that the
optimal arm will be played at least n − caH1, showing that for too small a, UCB-E “exploits” too much
in view of our regret target. Theorem 1 does not specify how the algorithm performs when a is larger than
25
36
n−K
H1

. Nevertheless, similar arguments than the ones in the proof show that for large a, with high probabil-
ity, only low rewarding arms are played of order a∆−2

i times, whereas the best ones are all drawn the same
number of times up to a constant factor. The number of these similarly drawn arms grows with a. In the limit,
when a goes to infinity, UCB-E is exactly the uniform allocation strategy studied in Bubeck et al. (2009).
In general1, the uniform allocation has a probability of error which can be lower and upper bounded by a
quantity of the form exp

(
− cn∆2

i∗
K

)
. It consequently performs much worse than UCB-E for a = 25

36
n−K
H1

,
since H1 ≤ K∆−2

i∗ , and potentially H1 � K∆−2
i∗ for very large number of arms with heterogeneous mean

rewards.

One straightforward idea to cope with the absence of an oracle telling us the value of H1 would be to
estimate online the parameter H1 and use this estimation in the algorithm. Unfortunately, we were not able
to prove, and do not believe that, this modified algorithm generally attains the expected rate of convergence.
Indeed, overestimating H1 leads to low exploring, and in the event when the optimal arm has given abnor-
mally low rewards, the arm stops being drawn by the policy, its estimated mean reward is thus not corrected,
and the arm is finally not recommended by the policy. On the contrary, underestimating H1 leads to draw
too much the suboptimal arms, precluding a sufficiently accurate estimation of the mean rewards of the best
arms. For this last case, things are in fact much more subtle than what can be retranscribed in these few lines,

1We say “in general” to rule out some trivial cases (like when the reward distributions are all Dirac distributions) in
which the probability of error en would be much smaller.
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Let A1 = {1, . . . ,K}, log(K) = 1
2

+
∑K

i=2
1
i
, n0 = 0 and for k ∈ {1, . . . ,K − 1},

nk =

⌈
1

log(K)

n−K
K + 1− k

⌉
.

For each phase k = 1, 2, . . . ,K − 1:

(1) For each i ∈ Ak, select arm i for nk − nk−1 rounds.

(2) LetAk+1 = Ak \arg mini∈Ak X̂i,nk (we only remove one element fromAk, if there
is a tie, select randomly the arm to dismiss among the worst arms).

Let Jn be the unique element of AK .

Figure 3: SR (Successive Rejects) algorithm.

and we notice that keeping track of a lower bound on H1 would lead to the correct rate only under appropri-
ate assumptions on the decrease of the sequence ∆(k), k ∈ {1, . . . ,K}. In Section 7 we push this idea and
propose a way to estimate online H1, however we solely justify the corresponding algorithm by experiments.
In the next section we propose an algorithm which does not suffer from these limitations.

4 Successive Rejects algorithm
In this section, we describe and analyze a new algorithm, SR (Successive Rejects), see Figure 3 for its precise
description. Informally it proceeds as follows. First the algorithm divides the time (i.e., the n rounds) in
K − 1 phases. At the end of each phase, the algorithm dismisses the arm with the lowest empirical mean.
During the next phase, it pulls equally often each arm which has not been dismissed yet. The recommended
arm Jn is the last surviving arm. The length of the phases are carefully chosen to obtain an optimal (up to
a logarithmic factor) convergence rate. More precisely, one arm is pulled n1 =

⌈
1

log(K)
n−K
K

⌉
times, one

n2 =
⌈

1
log(K)

n−K
K−1

⌉
times, ..., and two arms are pulled nK−1 =

⌈
1

log(K)
n−K

2

⌉
times. SR does not exceed

the budget of n pulls, since, from the definition log(K) = 1
2 +

∑K
i=2

1
i , we have

n1 + . . .+ nK−1 + nK−1 ≤ K +
n−K
log(K)

(
1

2
+
K−1∑
k=1

1

K + 1− k

)
= n.

For K = 2, up to rounding effects, SR is just the uniform allocation strategy.

Theorem 2 The probability of error of SR satisfies

en ≤
K(K − 1)

2
exp

(
− n−K

log(K)H2

)
.

Proof: We can assume that the sequence of rewards for each arm is drawn before the beginning of the game.
Thus the empirical reward for arm i after s pulls is well defined even if arm i has not been actually pulled s
times. During phase k, at least one of the k worst arms is surviving. So, if the optimal arm i∗ is dismissed
at the end of phase k, it means that X̂i∗,nk

≤ maxi∈{(K),(K−1),...,(K+1−k)} X̂i,nk
. By a union bound and

Hoeffding’s inequality, the probability of error en = P(AK 6= {i∗}) thus satisfies

en ≤
K−1∑
k=1

K∑
i=K+1−k

P(X̂i∗,nk
≤ X̂(i),nk

)

≤
K−1∑
k=1

K∑
i=K+1−k

P(X̂(i),nk
− µ(i) + µ∗ − X̂i∗,nk

≥ ∆(i))

≤
K−1∑
k=1

K∑
i=K+1−k

exp
(
−nk∆2

(i)

)
≤
K−1∑
k=1

k exp
(
−nk∆2

(K+1−k)

)
.
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We conclude the proof by noting that by definition of nk and H2, we have

nk∆2
(K+1−k) ≥

n−K
log(K)

1

(K + 1− k)∆−2
(K+1−k)

≥ n−K
log(K)H2

. (2)

The following theorem provides a deeper understanding of how SR works. It lower bounds the sampling
times of the arms and shows that at the end of phase k, we have a high-confidence estimation of ∆(K+1−k)

up to numerical constant factor. This intuition will prove to be useful in Section 7, see in particular Figure 4.

Theorem 3 With probability at least 1− K3

2 exp
(
− n−K

4log(K)H2

)
, for any arm j, we have

Tj(n) ≥ n−K
4log(K)H2∆2

j

. (3)

With probability at least 1 − K3 exp
(
− n−K

32log(K)H2

)
, for any k ∈ {1, . . . ,K − 1}, the dismissed arm

`k = Ak+1 \Ak at the end of phase k satisfies

1

4
∆(K+1−k) ≤

1

2
∆`k ≤ max

m∈Ak

X̂m,nk
− X̂`k,nk

≤ 3

2
∆`k ≤ 3∆(K+1−k). (4)

Proof: We consider the event E on which for any k ∈ {1, . . . ,K− 1}, for any arm ` in the worst k arms, and
any arm j such that 2∆j ≤ ∆`, we have

X̂j,nk
− X̂`,nk

> 0.

This event holds with probability at least 1 − K3

2 exp
(
− n−K

4log(K)H2

)
, since, from Hoeffding’s inequality, a

union bound and (2), we have

K−1∑
k=1

∑
`∈{(K),(K−1),...,(K+1−k)}

j:2∆j≤∆`

P
(
X̂j,nk

− X̂`,nk
≤ 0

)

≤
K−1∑
k=1

∑
`∈{(K),(K−1),...,(K+1−k)}

j:2∆j≤∆`

exp
(
− nk(∆` −∆j)

2
)

≤
K−1∑
k=1

kK exp
(
− nk

∆2
(K+1−k)

4

)
≤ K3

2
exp

(
− n−K

4log(K)H2

)
.

During phase k, at least one of the k worst arms is surviving. On the event E , this surviving arm has an em-
pirical mean at the end of the phase which is smaller than the one of any arm j satisfying 2∆j ≤ ∆(K+1−k).
So, at the end of phase k, any arm j satisfying 2∆j ≤ ∆(K+1−k) cannot be dismissed. Now, for a given arm
j, we consider two cases depending whether there existsm ∈ {1, . . . ,K} such that ∆(m−1) ≤ 2∆j ≤ ∆(m).

First case. If no such m exists, then we have ∆2
jTj(n) ≥ 1

4∆2
(K)n1 ≥ n−K

4log(K)H2
, so that (3) holds.

Second case. If such m exists, then, from the above argument, the arm j cannot be dismissed before the end
of the phase K + 2−m (since there exists K + 1−m arms ` such that ∆` ≥ 2∆j). From (2), we get

∆2
jTj(n) ≥ ∆2

jnK+2−m ≥
∆2
j

∆2
(m−1)

n−K
log(K)H2

≥ n−K
4log(K)H2

,

which ends the proof of (3). We have seen that at the end of phase k, any arm j satisfying 2∆j ≤ ∆(K+1−k)

cannot be dismissed. Consequently, at the end of phase k, the dismissed arm `k = Ak+1 \ Ak satisfies the
left inequality of

1

2
∆(K+1−k) ≤ ∆`k ≤ 2∆(K+1−k). (5)

Let us now prove the right inequality by contradiction. Consider k such that 2∆(K+1−k) < ∆`k . Arm `k
thus belongs to the k − 1 worst arms. Hence, in the first k − 1 rejects, say at the end of phase k′, an arm
j with ∆j ≤ ∆(K+1−k) is dismissed. From the left inequality of (5), we get ∆(K+1−k′) ≤ 2∆j < ∆`k .
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On the event E , we thus have X̂j,nk′ − X̂`k,nk′ > 0 (since `k belongs to the k′ worst arms by the previous
inequality). This contradicts the fact that j is rejected at phase k′. So (5) holds.

Now let E ′ be the event on which for any arm j, and any k ∈ {1, . . . ,K − 1}
∣∣X̂j,nk

− µj
∣∣ ≤ ∆(K+1−k)

8 .
Using again Hoeffding’s inequality, a union bound and (2), this event holds with probability at least 1 −
2K(K − 1) exp

(
− n−K

32log(K)H2

)
. We now work on the event E ∩ E ′, which holds with probability at least

1−K3 exp
(
− n−K

32log(K)H2

)
. From (5), the dismissed arm `k at the end of phase k satisfies

∣∣X̂`k,nk
− µ`k

∣∣ ≤ ∆(K+1−k)

8
≤ ∆`k

4
.

Besides, we also have ∣∣ max
m∈Ak

X̂m,nk
− µ(1)

∣∣ ≤ ∆(K+1−k)

8
≤ ∆`k

4
.

Consequently, at the end of phase k, we have

1

4
∆(K+1−k) ≤

1

2
∆`k ≤ max

m∈Ak

X̂m,nk
− X̂`k,nk

≤ 3

2
∆`k ≤ 3∆(K+1−k).

5 Lower bound
In this section, we provide a general and somewhat surprising lower bound. We prove that, when the reward
distributions are Bernoulli distributions with variances bounded away from 0, then for any forecaster, one can
permute the distributions on the arms (before the game starts) so that the probability of missing the best arm
will be at least of order exp

(
− cn
H2

)
. Note that, in this formulation, we allow the forecaster to know the reward

distributions up to a permutation of the indices! However, as the lower bound expresses it, whatever Bernoulli
distributions with variances bounded away from 0 are considered, the quantity H2 is a good measure of the
hardness of finding the best arm.

Theorem 4 (Lower Bound) Let ν1, . . . , νK be Bernoulli distributions with parameters in [p, 1 − p], p ∈
(0, 1/2). For any forecaster, there exists a permutation σ : {1, . . . ,K} → {1, . . . ,K} such that the proba-
bility error of the forecaster on the bandit problem defined by ν̃1 = νσ(1), . . . , ν̃K = νσ(K) satisfies

en ≥ exp

(
− (5 + o(1))n

p(1− p)H2

)
,

where the o(1) term depends only on K, p and n and goes to 0 when n goes to infinity (see the end of the
proof).

The proof of this result is quite technical. However, it is simple to explain why we can expect such a
bound to hold. Assume (without loss of generality) that the arms are ordered, i.e., µ1 > µ2 ≥ . . . ≥ µK , and
that all rewards Xi,t, t ∈ {1, . . . , n}, i ∈ {1, . . . ,K}, are drawn before the game starts. Let i ∈ {2, . . . ,K}.
If X̂1,n/i < X̂i,n/i ≤ X̂j,n/i for all j ∈ {2, . . . , i − 1}, then it seems reasonable that a good forecaster
should not pull arm 1 more than n/i times, and furthermore not select it as its recommendation. One can see
that, the probability of the event we just described is of order of exp(−c(n/i)∆2

i ). Thus, with probability at
least exp(−cn/max2≤i≤K i∆

−2
i ), the forecaster makes an error, which is exactly the lower bound we pro-

pose. However, note that this argument does not yield a reasonable proof strategy, in particular we assumed a
“good” forecaster with a “reasonable” behavior. For instance, it is obvious that the proof has to permute the
arms, since a forecaster could, despite all, choose arm 1 as its recommendation, which imply a probability
error of 0 as soon as the best arm is in position 1.

The main idea of our proposed proof goes as follows. A bandit problem is defined by a product distri-
bution ν = ν1 ⊗ · · · ⊗ νK . One can consider that at the beginning of the game, n K-tuples of rewards are
sampled from this product distribution. This defines a table of nK rewards. A forecaster will explore a sub-
part of this table. We want to find a permutation σ of {1, . . . ,K} so that the indices of the best arm for ν and
ν̃ = νσ(1)⊗· · ·⊗νσ(K) are different and such that the likelihood ratio of the explored part of the table of nK
rewards under ν and ν̃ is at least of order exp(−cn/H2) with probability with respect to ν⊗n lower bounded
by a positive numerical constant. This would imply the claimed bound. Remark that, the “likelihood cost” of
moving distribution νi to arm j depends on both the (Kullback-Leibler) distance between the distributions νi
and νj , and the number of times arm j is pulled. Thus, we have to find the right trade-off between moving
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a distribution to a “close” distribution, and the fact that the target arm should not be pulled too much. To do
this, we “slice” the set of indices in a non-trivial (and non-intuitive) way. This “slicing” depends only on the
reward distributions, and not on the considered forecaster. Then, to put it simply, we move the less drawn arm
from one slice to the less drawn arm in the next slice. Note that the preceding sentence is not well defined,
since by doing this we would get a random permutation (which of course does not make sense to derive a
lower bound). However, at the cost of some technical difficulties, it is possible to circumvent this issue.

To achieve the program outlined above, as already hinted, we use the Kullback-Leibler divergence, which
is defined for two probability distributions ρ, ρ′ on [0, 1] with ρ absolutely continuous with respect to ρ′ as:

KL(ρ, ρ′) =

∫ 1

0

log

(
dρ

dρ′
(x)

)
dρ(x) = EX∼ρ log

(
dρ

dρ′
(X)

)
.

Another quantity of particular interest for our analysis is K̂Li,t(ρ, ρ
′) =

∑t
s=1 log

(
dρ
dρ′ (Xi,s)

)
. In particular,

note that, if arm i has distribution ρ, then this quantity represents the (non re-normalized) empirical estimation
of KL(ρ, ρ′) after t pulls of arm i. Let Pν and Eν the probability and expectation signs when we integrate
with respect to the distribution ν⊗n. Another important property is that for any two product distributions
ν, ν′, which differ only on index i, and for any event A, one has:

Pν(A) = Eν′1A exp
(
−K̂Li,Ti(n)(ν

′
i, νi)

)
, (6)

since we have
∏Ti,n

s=1
dνi
dν′i

(Xi,s) = exp
(
− K̂Li,Ti(n)(ν

′
i, νi)

)
.

Proof: First step: Notations. Without loss of generality we can assume that ν is ordered in the sense that
µ1 > µ2 ≥ . . . ≥ µK . Moreover let L ∈ {2, . . . ,K} such that H2 = L/∆2

L, that is for all i ∈ {1, . . . ,K},
i/∆2

i ≤ L/∆2
L. (7)

We define now recursively the following sets. Let k1 = 1,

Σ1 =

{
i : µL ≤ µi ≤ µL +

∆L

L1/2k1

}
,

and for j > 1,

Σj =

{
i : µL +

∆L

L1/2kj−1
< µi ≤ µL +

∆L

L1/2kj

}
,

where kj is the smallest integer (if it exists, otherwise set kj = +∞) such that |Σj | > 2|Σj−1|. Let
` = max{j : kj < +∞}. We define now the random variables Z1, . . . , Z` corresponding to the indices of
the less sampled arms of the respective slices Σ1, . . . ,Σ`: for j ∈ {1, . . . , `},

Zj ∈ argmin
i∈Σj

Ti(n).

Finally let Z`+1 ∈ argmini∈{1,...,L}\{Jn} Ti(n).

Second step: Controlling TZj
(n), j ∈ {1, . . . , `+ 1}. We first prove that for any j ∈ {1, . . . , `},

3|Σj | ≥ L
1− 1

2
kj+1−1 . (8)

To do so let us note that, by definition of kj+1, we have

2|Σj | ≥
∣∣∣{i : µL + ∆L/L

1/2kj
< µi ≤ µL + ∆L/L

1/2kj+1−1
}∣∣∣

≥
∣∣∣{i : µi ≤ µL + ∆L/L

1/2kj+1−1
}∣∣∣− (|Σ1|+ . . .+ |Σj−1|).

Now remark that, by definition again, we have |Σ1| + . . . + |Σj−1| ≤ (2−(j−1) + . . . + 2−1)|Σj | ≤ |Σj |.
Thus we obtain 3|Σj | ≥

∣∣∣{i : µi ≤ µL + ∆L/L
1/2kj+1−1

}∣∣∣. We finish the proof of (8) with the following
calculation, which makes use of (7). For any v ≥ 1,

|{i : µi ≤ µL + ∆L/v}| = |{i : ∆i ≥ ∆L(1− 1/v)}|

≥

∣∣∣∣∣
{
i :

√
i

L
∆L ≥ ∆L(1− 1/v)

}∣∣∣∣∣
=
∣∣{i : i ≥ L(1− 1/v)2

}∣∣ ≥ L(1− (1− 1/v)2

)
≥ L/v.
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Now (8) directly entails (since a minimum is smaller than an average), for j ∈ {1, . . . , `},

TZj (n) ≤ 3L
1

2
kj+1−1−1 ∑

i∈Σj

Ti(n). (9)

Besides, since Z`+1 is the less drawn arm among L− 1 arms, we trivially have

TZ`+1
(n) ≤ n

L− 1
. (10)

Third step: A change of measure. Let ν′ = νL ⊗ ν2 ⊗ · · · ⊗ νK be a modified product distribution where
we replaced the best distribution by νL. Now let us consider the event

Cn =
{
∀t ∈{1, . . . , n}, i ∈ {2, . . . , L}, j ∈ {1, . . . , L},

K̂Li,t(νi, νj) ≤ t KL(νi, νj) + on and K̂L1,t(νL, νj) ≤ t KL(νL, νj) + on

}
,

where on = 2 log(p−1)
√
n log(2L). From Hoeffding’s maximal inequality, one can prove that we have

Pν′(Cn) ≥ 1/2. We thus have
∑

1≤z1,...,z`+1≤L Pν′
(
Cn ∩ {Z1 = z1, . . . , Z`+1 = z`+1}

)
≥ 1/2. Moreover

note that Z1, . . . , Z` are all distinct. Thus there exist ` + 1 constants z1, . . . , z`+1 such that, for An =
Cn ∩ {Z1 = z1, . . . , Z`+1 = z`+1}, we have

Pν′(An) ≥ 1

2L× L!
. (11)

Since, by definition Z`+1 6= Jn, we have

An ⊂ {Jn 6= z`+1}. (12)

In the following we treat differently the cases z`+1 = 1 and z`+1 6= 1. First, let us assume that z`+1 = 1.
Then, an application of (6) and (12) directly gives, by definition of An,

en(ν) = Pν(Jn 6= 1) = Eν′1Jn 6=1 exp

(
− K̂L1,T1(n)(νL, ν1)

)
≥ Eν′1An

exp

(
− K̂L1,T1(n)(νL, ν1)

)
≥ Eν′1An

exp

(
− on − TZ`+1

(n)KL(νL, ν1)

)
≥ 1

2L× L!
exp

(
− on −

n

L− 1
KL(νL, ν1)

)
,

where we used (10) and (11) for the last equation. Now, for any p, q ∈ [0, 1], the KL divergence between
Bernoulli distributions of parameters p and q satisfies

KL(Ber(p), Ber(q)) ≤ (p− q)2

q(1− q)
. (13)

This can be seen by using log u ≤ u− 1 on the two logarithmic terms in KL(Ber(p), Ber(q)). In particular,
it implies KL(νL, ν1) ≤ ∆2

L

p(1−p) , which concludes the proof in the case z`+1 = 1.
Assume now that z`+1 6= 1. In this case we prove that the lower bound holds for a well defined permuted

product distribution ν̃ of ν. We define it as follows. Let m be the smallest j ∈ {1, . . . , ` + 1} such that
zm = z`+1. Now we set ν̃ as follows: ν̃zm = ν1, ν̃zm−1 = νzm , . . ., ν̃z1 = νz2 , ν̃1 = νz1 , and ν̃j = νj for
other values of j in {1, . . . ,K}. Remark that ν̃ is indeed the result of a permutation of the distributions of ν.
Again, an application of (6) and (12) gives, by definition of An,

en(ν̃) = Pν̃(Jn 6= zm)

= Eν′1Jn 6=zm exp

(
− K̂L1,T1(n)(νL, νz1)−

m−1∑
j=1

K̂Lzj ,Tzj
(n)(νzj , νzj+1

)− K̂Lzm,Tzm (n)(νzm , νz1)

)

≥ Eν′1An
exp

(
− (m+ 1)on − T1(n)KL(νL, νZ1

)−
m−1∑
j=1

TZj
(n)KL(νZj

, νZj+1
)

− TZm
(n)KL(νZm

, νZ1
)

)
. (14)
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From (13), the definition of Σj , and since the parameters of the Bernoulli distributions are in [p, 1 − p],
we have KL(νL, νZ1

) ≤ 1
p(1−p)

∆2
L

L , KL(νZm
, νZ1

) ≤ ∆2
L

p(1−p) , and for any j ∈ {1, . . . ,m− 1},

KL(νZj , νZj+1) ≤ 1

p(1− p)

(
∆L

L1/2kj+1

)2

.

Reporting these inequalities, as well as (9), (10) and (11) in (14), we obtain:

en(ν̃) ≥ Eν′1An
exp

(
− (m+ 1)on − 3

∆2
L

p(1− p)L

(
T1(n) +

m−1∑
j=1

∑
i∈Σj

Ti(n) +
nL

3(L− 1)

))

≥ 1

2L× L!
exp

(
− L on − 3n

∆2
L

p(1− p)L

(
1 +

L

3(L− 1)

))
Since L ≤ K and 2K ×K! ≤ exp

(
2K log(K)

)
and from the definitions of on and L, we obtain

en(ν̃) ≥ exp

(
−2K log(K)− 2K log(p−1)

√
n log(2K)− 5

n

p(1− p)H2

)
,

which concludes the proof.

6 Proofs
6.1 Proof of Inequalities (1)

Let log(K) = 1
2 +
∑K
i=2

1
i . Remark that log(K+1)−1/2 ≤ log(K) ≤ log(K)+1/2 ≤ log(2K). Precisely,

we will prove
H2 ≤ H1 ≤ log(K) H2,

which is tight to the extent that the right inequality is an equality when for some 0 < c ≤ 1/
√
K, we have

∆(i) =
√
ic for any i 6= i∗, and the left inequality is an equality if all ∆i’s are equal.

Proof: The left inequality follows from: for any i ∈ {1, . . . ,K},H1 =
∑K
k=1 ∆−2

(k) ≥
∑i
k=1 ∆−2

(i) ≥ i∆
−2
(i) .

The right inequality directly comes from
∑K
i=1 ∆−2

(i) = ∆−2
(2)+

∑K
i=2

1
i i∆

−2
(i) ≤ log(K) maxi∈{1,...,K} i∆

−2
(i) .

6.2 Proof of Theorem 1
First step. Let us consider the event

ξ =

{
∀i ∈ {1, . . . ,K}, s ∈ {1, . . . , n}, |X̂i,s − µi| <

1

5

√
a

s

}
.

From Hoeffding’s inequality and a union bound, we have P(ξ) ≥ 1− 2nK exp
(
− 2a

25

)
. In the following, we

prove that on the event ξ we have Jn = i∗, which concludes the proof. Since Jn is the empirical best arm,
and given that we are on ξ, it is enough to prove that

1

5

√
a

Ti(n)
≤ ∆i

2
,∀i ∈ {1, . . . ,K},

or equivalently:

Ti(n) ≥ 4

25

a

∆2
i

,∀i ∈ {1, . . . ,K}. (15)

Second step. Firstly we prove by induction that

Ti(t) ≤
36

25

a

∆2
i

+ 1, ∀i 6= i∗. (16)

It is obviously true at time t = 1. Now assume that the formula is true at time t − 1. If It 6= i then
Ti(t) = Ti(t − 1) and the formula still holds. On the other hand, if It = i, then in particular it means
that Bi,Ti(t−1) ≥ Bi∗,Ti∗ (t−1). Moreover, since we are on ξ, we have Bi∗,Ti∗ (t−1) ≥ µ∗ and Bi,Ti(t−1) ≤
µi + 6

5

√
a

Ti(t−1) . Thus, we have 6
5

√
a

Ti(t−1) ≥ ∆i. By using Ti(t) = Ti(t− 1) + 1, we obtain (16).

50



Parameter: exploration rate c > 0.

Definitions: For k ∈ {1, . . . ,K − 1}, let nk =
⌈

1

log(K)

n−K
K+1−k

⌉
, t0 = 0, t1 = Kn1, and

for k > 1, tk = n1 + . . . nk−1 + (K − k + 1)nk.

For i ∈ {1, . . . ,K} and a > 0, let Bi,s(a) = X̂i,s +
√

a
s

for s ≥ 1 and Bi,0 = +∞.

Algorithm: For each phase k = 0, 1, . . . ,K − 1:
Let Ĥ1,k = K if k = 0, and otherwise

Ĥ1,k = max
K−k+1≤i≤K

i∆̂−2
<i>,

where ∆̂i =
(

max1≤j≤K X̂j,Tj(tk)

)
− X̂i,Ti(tk) and < i > is an ordering such that

∆̂<1> ≤ . . . ≤ ∆̂<K>.

For t = tk + 1, . . . , tk+1:
Draw It ∈ argmaxi∈{1,...,K}Bi,Ti(t−1)(cn/Ĥ1,k).

Recommendation: Let Jn ∈ argmaxi∈{1,...,K} X̂i,Ti(n).

Figure 4: Adaptive UCB-E algorithm. Its intuitive justification goes as follows: The time points tk corre-
spond to the moments where the Successive Rejects algorithm would dismiss an arm. Intuitively, in light
of Theorem 3, one can say that at time tk a good algorithm should have reasonable approximation of the
gaps between the best arm and the k worst arms, that is the quantities ∆(K−k+1), . . . ,∆(K). Now with these
quantities, one can build a lower estimate of H2 and thus also of H1. We use this estimate between the time
points tk and tk+1 to tune the parameter a of UCB-E.

Now we prove an other useful formula:

Ti(t) ≥
4

25
min

(
a

∆2
i

,
25

36
(Ti∗(t)− 1)

)
,∀i 6= i∗. (17)

With the same inductive argument as the one to get equation (16), we only need to prove that this formula
holds when It = i∗. By definition of the algorithm, and since we are on ξ, when It = i∗ we have for all i:

µ∗ +
6

5

√
a

Ti∗(t− 1)
≥ µi +

4

5

√
a

Ti(t− 1)
,

which implies

Ti(t− 1) ≥ 16

25

a(
∆i + 6

5

√
a

Ti∗ (t−1)

)2 .

We then obtain (17) by using u+ v ≤ 2 max(u, v), Ti(t) = Ti(t− 1) and Ti∗(t− 1) = Ti∗(t)− 1.
Third step. Recall that we want to prove equation (15). From (17), we only have to show that

25

36
(Ti∗(n)− 1) ≥ a

∆2
i∗
,

where we recall that ∆i∗ is the minimal gap ∆i∗ = mini6=i∗ ∆i. Using equation (16) we obtain:

Ti∗(n)− 1 = n− 1−
∑
i6=i∗

Ti(n) ≥ n−K − 36

25
a
∑
i6=i∗

∆−2
i ≥

36

25
a∆−2

i∗ ,

where the last inequality uses 36
25H1a ≤ n−K. This concludes the proof.

7 Experiments
We propose a few simple experiments to illustrate our theoretical analysis. As a baseline comparison we
use the Hoeffding Race algorithm, see Maron and Moore (1993), and the uniform strategy, which pulls
equally often each arm and recommend the arm with the highest empirical mean, see Bubeck et al. (2009) for
its theoretical analysis. We consider only Bernoulli distributions, and the optimal arm always has parameter
1/2. Each experiment corresponds to a different situation for the gaps, they are either clustered in few groups,
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or distributed according to an arithmetic or geometric progression. In each experiment we choose the number
of samples (almost) equal to H1 (except for the last experiment where we run it twice, the second time with
2H1 samples). If our understanding of the meaning of H1 is sound, in each experiment the strategies SR and
UCB-E should be able to find the best arm with a reasonable probability (which should be roughly of the
same order in each experiment). We report our results in Figure 5. The parameters for the experiments are as
follows:

– Experiment 1: One group of bad arms, K = 20, µ2:20 = 0.4 (meaning for any j ∈ {2, . . . , 20}, µj = 0.4)
– Experiment 2: Two groups of bad arms, K = 20, µ2:6 = 0.42, µ7:20 = 0.38.
– Experiment 3: Geometric progression, K = 4, µi = 0.5− (0.37)i, i ∈ {2, 3, 4}.
– Experiment 4: 6 arms divided in three groups, K = 6, µ2 = 0.42, µ3:4 = 0.4, µ5:6 = 0.35.
– Experiment 5: Arithmetic progression, K = 15, µi = 0.5− 0.025i, i ∈ {2, . . . , 15}.
– Experiment 6: Two good arms and a large group of bad arms, K = 20, µ2 = 0.48, µ3:20 = 0.37.
– Experiment 7: Three groups of bad arms, K = 30, µ2:6 = 0.45, µ7:20 = 0.43, µ21:30 = 0.38.

The different graphics should be read as follows: Each bar represents a different algorithm and the bar’s
height represents the probability of error of this algorithm. The correspondence between algorithms and bars
is the following:

– Bar 1: Uniform sampling strategy.
– Bar 2-4: Hoeffding Race algorithm with parameters δ = 0.01, 0.1, 0.3.
– Bar 5: Successive Rejects strategy.
– Bar 6-9: UCB-E with parameter a = cn/H1 where respectively c = 1, 2, 4, 8.
– Bar 10-14: Adaptive UCB-E (see Figure 4) with parameters c = 1/4, 1/2, 1, 2, 4.

8 Conclusion
This work has investigated strategies for finding the best arm in a multi-armed bandit problem. It has proposed
a simple parameter-free algorithm, SR, that attains optimal guarantees up to a logarithmic term (Theorem 2
and Theorem 4). A precise understanding of both SR (Theorem 3) and a UCB policy (Theorem 1) lead
us to define a new algorithm, Adaptive UCB-E. It comes without guarantee of optimal rates (see end of
Section 3), but performs better than SR in practice (for c = 1, Adaptive UCB-E outperformed SR on all the
experiments we did, even those done to make it fail). One possible explanation is that SR is too static: it does
not implement more data driven arguments such as: in a phase, a surviving arm performing much worse than
the other ones is still drawn until the end of the phase even if it is clear that it is the next dismissed arm.

Extensions of this work may concentrate on the following problems. (i) What is a good measure of
hardness when one takes into account the (empirical) variances? Do we have a good scaling with respect
to the variance with the current algorithms or do we need to modify them ? (ii) Is it possible to derive a
natural anytime version of Successive Rejects (without using a doubling trick)? (iii) Is it possible to close
the logarithmic gap between the lower and upper bounds? (iv) How should we modify the algorithm and the
analysis if one is interested in recommending the top m actions instead of a single one?
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Figure 5: These results support our theoretical findings in the following sense: Despite the fact that the
experiments are very different, one can see that since we use a number of samples (almost) equal to the
hardness H1, in all of them we get a probability of error of the same order, and moreover this probability is
small enough to say that we identified the best arm. Note that the Successive Rejects algorithm represents in
all cases a substantial improvement over both the naive uniform strategy and Hoeffding Race. These results
also justify experimentally the algorithm Adaptive UCB-E. Indeed one can see that with the constant c = 1,
we obtain better results than SR in all experiments, even in experiment 6 which was designed to be a difficult
instance of Adaptive UCB-E. 53
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Abstract

We consider a bandit problem which involves sequential sampling from two populations (arms).
Each arm produces a noisy reward realization which depends on an observable random covariate.
The goal is to maximize cumulative expected reward. We derive general lower bounds on the
performance of any admissible policy, and develop an algorithm whose performance achieves the
order of said lower bound up to logarithmic terms. This is done by decomposing the global problem
into suitably “localized” bandit problems. Proofs blend ideas from nonparametric statistics and
traditional methods used in the bandit literature.

1 Introduction
The seminal paper of Robbins (1952) introduced an important class of sequential optimization problems,
otherwise known as multi–armed bandits. These models have since been used extensively in such fields as
statistics, operations research, engineering, computer science and economics. The traditional two–armed
bandit problem can be described as follows. Consider two statistical populations (arms), where at each point
in time it is possible to sample from only one of the two and receive a random reward dictated by the properties
of the sampled population. The objective is to devise a sampling policy that maximizes expected cumulative
(or discounted) rewards over a finite (or infinite) time horizon. The difference between the performance of
said sampling policy and that of an oracle, that repeatedly samples from the population with the higher mean
reward, is called the regret. Thus, one can re-phrase the objective as minimizing the regret.

The original motivation for bandit-type problems originates from treatment allocation in clinical trials;
see, e.g., Lai and Robbins (1985) for further discussion and references therein. Here patients enter sequen-
tially and receive one of several treatments. The efficacy of each treatment is unknown, and for each patient a
noisy measurement of it is recorded. The goal is to assign as many patients as possible to the best treatment.
An example of more recent work can be found in the area of web-based advertising, and more generally cus-
tomized marketing. An on-line publisher needs to choose one of several ads to present to consumers, where
the efficacy of these ads is unknown. The publisher observes click-through-rates (CTRs) for each ad, which
provide a noisy measurement of the efficacy, and based on that needs to assign ads that maximize CTR.

When the populations being sampled are homogenous, i.e., when the sequential rewards are independent
and identically distributed (iid) in each arm, Lai and Robbins (1985) proposed a family of policies that at
each step compute the empirical mean reward in each arm, and adds to that a confidence bound that accounts
for uncertainty in these estimates. These so-called upper-confidence-bound (UCB) policies were shown to be
asymptotically optimal. In particular, it is proven in Lai and Robbins (1985) that such a policy incurs a regret
of order log n, where n is the length of the time horizon, and no other “good” policy can (asymptotically)
achieve a smaller regret; see also Auer et al. (2002). The elegance of the theory and sharp results developed
in Lai and Robbins (1985) hinge to a large extent on the assumption of homogenous populations and hence
identically distributed rewards. This, however, is clearly too restrictive for many applications of interest.
Often, the decision maker observes further information and based on that a more customized allocation can
be made. In such settings rewards may still be assumed to be independent, but no longer identically distributed
in each arm. A particular way to encode this is to allow for an exogenous variable (a covariate) that affects
the rewards generated by each arm at each point in time when this arm is pulled.

Such a formulation was first introduced in Woodroofe (1979) under parametric assumptions and in a
somewhat restricted setting; see Goldenshluger and Zeevi (2009) and Wang et al. (2005) for two very different
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recent approaches to the study of such bandit problems, as well as references therein for further links to
antecedent literature. The first work to venture outside the realm of parametric modeling assumptions was
that of Yang and Zhu (2002). In particular, they assumed the mean response in each arm, conditional on
the covariate value, follows a general functional form, hence one can view their setting as as nonparametric
bandit problem. They proposed a policy that is based on estimating each response function, and then, rather
than greedily choosing the arm with the highest estimated mean response given the covariate, allows with
some small probability of selecting a potentially inferior arm. (This is a variant of ε-greedy policies; see
Auer et al. (2002).) If the nonparametric estimators of the arms’ functional response are consistent, and the
randomization is chosen in a suitable manner, then the above policies ensure that the average regret tends
to zero as the time horizon n grows to infinity. In the typical bandit terminology, such policies are said to
be consistent. However, it is unclear whether they satisfy a more refined notion of optimality, insofar as the
magnitude of the regret is concerned, as is the case for UCB-type policies in traditional bandit problems.
Moreover, the study by Yang and Zhu (2002) does not spell out the connection between the characteristics of
the class of response functions, and the resulting complexity of the nonparametric bandit problem.

The purpose of the present paper is to further understanding of nonparametric bandit problems, deriving
regret-optimal policies and shedding light on some of the elements that dictate the complexity of such prob-
lems. We make only two assumptions on the underlying functional form that governs the arms’ responses.
The first is a mild smoothness condition. Smoothness assumptions can be exploited using “plug-in” policies
as opposed “minimum contrast” policies; a detailed account of the differences and similarities between these
two setups in the full information case can be found in Audibert and Tsybakov (2007). Minimum contrast
type policies have already received some attention in the bandit literature with side information, aka contex-
tual bandits, in the papers of Langford and Zhang (2008) and also Kakade et al. (2008). In these studies,
admissible policies are restricted to a more limited set than the general class of non-anticipating policies. A
related problem online convex optimization with side information was studied by Hazan and Megiddo (2007),
where the authors use discretization technique similar to the one employed in this paper. It is worth noting
that the cumulative regret in these papers is defined in a weaker form compared to the traditional bandit lit-
erature, since the cumulative reward of a proposed policy is compared to that of the best policy in a certain
restricted class of policies. Therefore, bounds on the regret depend, among other things, on the complexity
of said class of policies. Plug-in type policies have received attention in the context of the continuum armed
bandit problem, where as the name suggests there are uncountably many arms. Notable entries in that stream
of work are Slivkins (2009) and Lu et al. (2009), who impose a smoothness condition both on the space of
arms and the space of covariates, obtaining optimal regret bounds up to logarithmic terms.

The second key assumption in our paper is a so-called margin condition, as it has been come be known
in the full information setup; cf. Tsybakov (2004). In that setting, it has been shown to critically affect
the complexity of classification problems (Tsybakov, 2004; Boucheron et al., 2005; Audibert & Tsybakov,
2007). In the bandit setup, this condition encodes the “separation” between the functions that describe the
arms’ responses and was originally studied by Goldenshluger and Zeevi (2009) in the one armed bandit
problem; see further discussion in section 2. We will see later that the margin condition is a natural measure
of complexity in the nonparametric bandit problem.

In this paper, we introduce a family of policies called UCBograms. The term is indicative of two salient
ingredients of said policies: they build on regressogram estimators; and augment the resulting mean response
estimates with upper-confidence-bound terms. The idea of the regressogram is quite natural and easy to
implement. It groups the covariate vectors into bins and then estimates, by means of simple averaging, a
constant which is a proxy for the mean response of each arm over each such bin. One then views these
bins as indexing “local” bandit problems, which are solved by applying a suitable UCB-type modification,
following the logic of Lai and Robbins (1985) and Auer et al. (2002). In other words, this family of policies
decomposes the non-parametric bandit problem into a sequence of localized standard bandit problems; see
section 3 for a complete description. The idea of binning covariates lends itself to natural implementation
in the two motivating examples described earlier: patients and consumers are segmented into groups with
“similar” characteristics; and then the treatment or ad is allocated based on the characteristic response over
that group.

In terms of performance, we prove that the UCBogram policies achieve a regret that is fairly large com-
pared to typical orders of regret observed in the literature. In particular, as opposed to a bounded or logarith-
mic growth, in our setting the order of the regret is polynomial in the time horizon n; see Theorem 3.1. One
may question, especially given the simple structure and logic underlying the UCBogram policy, whether this
is the best that can be achieved in such problems. To that end, we prove a lower bound which demonstrates
that for any admissible policy there exist arm response functions satisfying our assumptions for which one
cannot improve on the polynomial order of the upper bound established in Theorem 3.1; see Theorem 4.1. Fi-
nally, beyond these analytical results, in our view one of the contributions of the present paper is in pointing
to some possible synergies and potentially interesting connections between the traditional bandit literature
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and nonparametric statistics.

2 Description of the problem
2.1 Machine and game
A bandit machine with covariates is characterized by a sequence

(Xt, Y
(1)
t , Y

(2)
t ), t = 1, 2, . . .

of independent random vectors, where
(
Xt

)
, t = 1, 2, . . . is a sequence of iid covariates in X ⊂ IRd with

probability distribution PX , and Y (i)
t denotes the random reward yielded by arm i at time t. Denote by EX

the expectation with respect to PX . We assume that, for each i = 1, 2, the rewards Y (i)
t , t = 1, . . . , n are

random variables in [0, 1] with conditional expectation given by

IE
[
Y

(i)
t |Xt] = f (i)(Xt) , t = 1, 2, . . . , i = 1, 2 ,

where f (i), i = 1, 2, are unknown functions such that 0 ≤ f (i)(x) ≤ 1, for any i = 1, 2, x ∈ X . A
natural example is a where Y (i)

t takes values in {0, 1} so that the conditional distribution of Y (i)
t given Xt is

Bernoulli with parameter f (i)(Xt).
The game takes place sequentially on this machine, pulling one of the two arms at each time t = 1, . . . , n.

A non-anticipating policy π = {πt} is a sequence of random functions πt : X → {1, 2} indicating to the
operator which arm to pull at each time t, and such that πt depends only on observations strictly anterior
to t. The oracle rule π?, refers to the strategy that would be played by an omniscient operator with complete
knowledge of the functions f (i), i = 1, 2. Given side information Xt, the oracle policy π? prescribes the arm
with the largest expected reward, i.e.,

π?(Xt) ∈ arg max
i=1,2

f (i)(Xt) .

The oracle rule will be used to benchmark any proposed policy π and to measure the performance of the latter
via its (cumulative) regret at time n defined by

Rn(π) := IE
n∑
t=1

(
Y

(π?(Xt))
t − Y (πt(Xt))

t

)
=

n∑
t=1

EX
(
f (π?(X))(X)− f (πt(X))(X)

)
.

Also, let Sn(π) denote the inferior sampling rate at time n defined by

Sn(π) :=
n∑
t=1

PX(πt(X) 6= π?(X), f (1)(X) 6= f (2)(Xt)) , (1)

where 1I(A) is the indicator function that takes value 1 if event A is realized and 0 otherwise. The quantity
Sn(π) measures the expected number of times at which a strictly suboptimal arm has been pulled, and note
that in our setting the suboptimal arm varies as a function of the covariate value x.

Without further assumptions on the machine, the game can be arbitrarily difficult and, as a result, the
regret and inferior sampling rate can be arbitrarily close to n. In the following subsection, we describe
natural regularity conditions under which it is possible to achieve sublinear growth rate of the regret and
inferior sampling rate, and characterize policies that perform in a near-optimal manner.

2.2 Smoothness and margin conditions
As usual in nonparametric estimation we first impose some regularity on the functions f (i), i = 1, 2. Here
and in what follows we use ‖ · ‖ to denote the Euclidean norm.

SMOOTHNESS CONDITION. We say that the machine satisfies the smoothness condition with parameters
(β, L) if

|f (i)(x)− f (i)(x′)| ≤ L‖x− x′‖β , ∀x, x′ ∈ X , i = 1, 2 (2)

for some β ∈ (0, 1] and L > 0.

Notice that a direct consequence of the smoothness condition with parameters (β, L) is that the function
∆ := |f (1)− f (2)| also satisfies the smoothness condition with parameters (β, 2L). The behavior of function
∆ critically controls the complexity of the problem and the smoothness condition gives a local upper bound on
this quantity. The second condition imposed gives a lower bound on this function though in a weaker global
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sense. It is closely related to the margin condition employed in classification (Tsybakov, 2004; Mammen &
Tsybakov, 1999), which drives the terminology employed here.

MARGIN CONDITION. We say that the machine satisfies the margin condition with parameter α if there exists
δ0 ∈ (0, 1), Cδ > 0 such that

PX
[

0 < |f (1)(X)− f (2)(X)| ≤ δ
]
≤ Cδδα , ∀ δ ∈ [0, δ0]

for some α > 0.

In what follows, we will focus our attention on marginals PX that are equivalent to the Lebesgue measure
on a compact subset of IRd. In that way, the margin condition will only contain information about the behavior
of the function ∆ and not the marginal PX itself. A large value of the parameter α means that the function
∆ either takes value 0 or is bounded away from 0, except over a set of small PX -probability. Conversely, for
values of α close to 0, the margin condition is essentially void and the two functions can be arbitrary close,
making it difficult to distinguish them. This will be reflected in the bounds on the regret which are derived in
the subsequent section.

Intuitively, the smoothness condition and the margin condition work in opposite directions. Indeed, the
former ensures that the function ∆ does not “depart from zero” too fast whereas the latter warrants the
opposite. The following proposition quantifies the extent to which the conditions are conflicting.

Proposition 2.1 Under the smoothness condition with parameters (β, L), any machine that satisfies the mar-
gin condition with parameter α such that αβ > 1 exhibits an oracle policy π? which dictates pulling only one
of the two arms all the time, PX -almost surely. Conversely, if αβ ≤ 1 there exist machines with nontrivial
oracle policies.

Proof. The first part of the proof is a straightforward consequence of Proposition 3.4 in Audibert and Tsy-
bakov (2007). To prove the second part, consider the following example. Assume that d = 1, X = [0, 2],
f (2) ≡ 0 and f (1)(x) = Lsign(x − 1)|x − 1|1/α. Notice that f (1) satisfies the smoothness condition with
parameters (β, L) if and only if αβ ≤ 1. The oracle policy is not trivial and defined by π?(x) = 2 if x ≤ 1
and π?(x) = 1 if x > 1. Moreover, it can be easily shown that the machine satisfies the margin condition
with parameter α and with δ0 = Cδ = 1.

3 Policy and main result
We first outline a policy to operate the bandit machine described in the previous section. Then we state the
main result which is an upper bound on the regret for this policy. Finally, we state a proposition which allows
us to translate the bound on the regret into a bound on the inferior sampling rate.

3.1 Binning and regressograms
To design a policy that solves the bandit problem described in the previous section, one has to inevitably
find an estimate of the functions f (i), i = 1, 2 at the current point Xt. There exists a wide variety of non-
parametric regression estimators ranging from local polynomials to wavelet estimators. However, a very
simple piecewise constant estimator, commonly referred to as regressogram will be particularly suitable for
our purposes.

Assume now that X = [0, 1]d and let {Bj , j = 1, . . . ,Md} be a regular covering of X , i.e., the reindexed
collection of hypercubes defined for k = (k1, . . . , kd) ∈ {1, . . . ,M}d by

Bk =
{
x ∈ X :

k` − 1
M

≤ x` ≤
k`
M

, ` = 1, . . . , d
}
.

As stated earlier, we assume that PX is absolutely continuous with respect the the Lebesgue measure, so
that for any I ⊂ {1, . . . ,Md} we have PX(

⋂
j∈I Bj) = 0. As a result, we will omit from our analysis

considerations about events where X ∈
⋂
j∈I Bj for some I ⊂ {1, . . . ,Md}.

For each arm i = 1, 2, consider the average reward for each bin Bj , j = 1, . . . ,Md defined by

f̄
(i)
j = IE[f (i)(Xt)|Xt ∈ Bj ] =

1
pj

∫
Bj

f (i)(x)dPX(x) ,

where pj = PX(Bj) . By analogy with histograms, the empirical counterpart of the piecewise constant

function x 7→
∑Md

j=1 f̄
(i)
j 1I(x ∈ Bj), is often called a regressogram. To define it, we need the following
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quantities. Let N (i)
t (j, π) denote the number of times π prescribes to pull arm i at times anterior to t when

the covariate was in bin Bj ,

N
(i)
t (j, π) =

t∑
s=1

1I(Xs ∈ Bj , πs(Xs) = i) ,

and let Y
(i)

t (j, π) denote the average reward collected at those times,

Y
(i)

t (j, π) =
1

N
(i)
t (j, π)

t∑
s=1

Y (i)
s 1I(Xs ∈ Bj , πs(Xs) = i) ,

where here and throughout this paper, we use the convention 1/0 = ∞. For any arm i = 1, 2 and any time
t ≥ 1 the regressograms obtained from a policy π at time t are defined by the following piecewise constant
estimators

f̂
(i)
t,π(x) =

Md∑
j=1

Y
(i)

t (j, π)1I(x ∈ Bj) .

While regressograms are rather rudimentary nonparametric estimators of the functions f (i), they allow us to
decompose the original problem into a collection of Md traditional bandit machines without covariates, each
one corresponding to a different bin.

3.2 The UCBogram
The “UCBogram” is an index type policy based on upper confidence bounds for the regressogram defined
above. Upper confidence bounds (UCB) policies are known to perform optimally in the traditional two armed
bandit problem, i.e., without covariates (Lai & Robbins, 1985; Auer et al., 2002). The index of each arm is
computed as the sum of the average past reward and a stochastic term accounting for the deviations of the
observed average reward from the true average reward. In the UCBogram, the average reward is simply
replaced by the value of the regressogram at the current covariate Xt.

For any s ≥ 1 the upper confidence bound at time t bound is of the form

Ut(s) =

√
2 log t
s

,

and Ut(0) = 0. The UCBogram π̂ is defined as follows. For any x ∈ [0, 1]d, define

N
(i)
t (x) =

Md∑
j=1

N
(i)
t (j, π̂)1I(x ∈ Bj) ,

the number of times the UCBogram prescribes to pull arm i at times anterior to t when the covariate was in
the same bin as x. Then π̂ = (π̂1, π̂2, . . .) is defined recursively by

π̂t(x) ∈ arg max
i=1,2

{
f̂

(i)
t,π̂(x) + Ut(N

(i)
t (x))

}
.

Notice that the UCBogram is indeed a UCB-type policy. Indeed, for each arm i = 1, 2 and each point x,
it computes an estimator f̂ (i)

t,π(x) of the expected reward and adds an upper confidence bound Ut(N
(i)
t (x))

to account for stochastic variability in this estimator. The most attractive feature of the regressogram is that
it allows to decompose the nonparametric bandit problem into independently operated local machines as
detailed in the proof of the following theorem.

Theorem 3.1 Fix β ∈ (0, 1], L > 0 and α ∈ (0, 1]. Let X = [0, 1]d and assume that the covariates Xt have
a distribution which is equivalent1 to the Lebesgue measure on the unit hypercube X . Let the machine satisfy
both the smoothness condition with parameter (β, L) and the margin condition with parameter 0 < α ≤ 1.
Then the UCBogram policy π̂ with M = b(n/ log n)1/(2β+d)c has an expected cumulative regret at time n
bounded as follows,

IERn(π̂) ≤ Cnmax
{( n

log n

)− β(α+1)
2β+d

,
( n

(log n)2

)− 2β
2β+d

}
,

where C > 0 is a positive constant.
1Two measures µ and ν are said to be equivalent if there exist two positive constants c and c̄ such that cµ(A) ≤

ν(A) ≤ c̄µ(A) for any measurable set A.
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Proof. To keep track of positive constants, we number them c1, c2, . . .. Define c1 = 2Ldβ/2 + 1, and let
n0 ≥ 2 be the largest integer such that (

n0

log n0

)β/(2β+d)

≤ 2c1
δ0

,

where δ0 is the constant appearing in the margin condition. If n ≤ n0, we have Rn(π̂) ≤ n0 so that the result
of the theorem holds when C is chosen large enough, depending on the constant n0. In the rest of the proof,
we assume that n > n0 so that c1M−β < δ0.

Recall that the UCBogram policy π̂ is a collection of functions π̂t that are constant on each Bj . Define
the regret Rj(π̂) on bin Bj by

Rj(π̂) =
n∑
t=1

(
f (π?(Xt))(Xt)− f (π̂t(xj))(Xt)

)
1I(Xt ∈ Bj) ,

where xj is an arbitrary element of Bj . Observe that the overall regret of π̂ can be written as

IERn(π̂) =
Md∑
j=1

IERj(π̂) .

Consider the set of “well behaved” bins on which the expected reward functions of the two arms are well
separated:

J = {j : ∃ x ∈ Bj , |f (1)(x)− f (2)(x)| > c1M
−β} .

For any j /∈ J and any x ∈ Bj , we have |f (1)(x)− f (2)(x)| ≤ c1M−β < δ0 so that

IERj(π̂) ≤ c1M−β
n∑
t=1

IP
[
0 < |f (1)(Xt)− f (2)(Xt)| ≤ c1M−β , Xt ∈ Bj

]
,

Summing over j /∈ J , we obtain from the margin condition that∑
j /∈J

IERj(π̂) ≤ Cδc1+α
1 nM−β(1+α) . (3)

We now treat the well behaved bins, i.e., bins Bj such that j ∈ J . Notice that since each bin is a hyper-
cube with side length 1/M and since the reward functions satisfy the smoothness condition with parameters
(β, L), we have

|f (1)(x)− f (2)(x)| > c1M
−β − 2Ldβ/2M−β = M−β ,

for any x ∈ Bj , j ∈ J . In particular, for such j, since the two functions are continuous, the difference
f (1)(x)− f (2)(x) has constant sign over Bj and |f̄ (1)

j − f̄ (2)
j | > M−β . As a consequence, the oracle policy

π? is constant on Bj , equal to π?(j) for any j ∈ J and, conditionally on {Xt ∈ Bj}, the game can be
viewed as a standard bandit problem, i.e., without covariates, where arm i has bounded reward with mean
f̄

(i)
j . Moreover, conditionally on {Xt ∈ Bj}, the UCBogram can be seen as a standard UCB policy. Applying

for example Theorem 1 in Auer et al. (2002), we find that for j ∈ J ,

IERj(π̂) ≤
[(

1 +
π2

3
)
∆j

]
+

8 logn
∆j

≤ c2
log n
∆j

, (4)

where ∆j = |f̄ (1)
j − f̄ (2)

j | is the average gap over the bin Bj . Note that the UCB policy employed here uses

the term log t instead of log(N (1)
t (j, π) +N

(2)
t (j, π)) which is prescribed in Auer et al. (2002); it is easy to

verify that either choice leads to an identical bound on the regret.
We now use the margin condition to provide lower bounds on ∆j . Assume without loss of generality

that the gaps are ordered 0 < ∆1 ≤ ∆2 ≤ . . . ≤ ∆Md and define the integers j1 = min(J ) and j2 ∈
{j1, . . . ,Md} to be the largest integer such that ∆j2 ≤ δ0/c1. Therefore, for any j ∈ {j1, . . . , j2} ∩ J , we
have on the one hand,

PX
[

0 < |f (1) − f (2)| ≤ ∆j + (c1 − 1)M−β
]
≥

Md∑
k=1

pk1I(0 < ∆k ≤ ∆j) ≥
cj

Md
, (5)
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where we use the fact that pk = PX(Bk) ≥ c/Md since PX is equivalent to the Lebesgue measure on [0, 1]d
(see footnote 1). On the other hand, the margin condition yields for any j ∈ {j1, . . . , j2} ∩ J that,

PX
[

0 < |f (1) − f (2)| ≤ ∆j + (c1 − 1)M−β
]
≤ Cδ

(
c1∆j)α , (6)

where we have used the fact that ∆j + (c1 − 1)M−β ≤ c1∆j ≤ δ0, for any j ∈ {j1, . . . , j2} ∩ J . The
previous two inequalities together with the fact that ∆j > M−β for any j ∈ J , yield

∆j ≥ c3
( j

Md

)1/α

∨M−β , ∀ j ∈ {j1, . . . , j2} ∩ J . (7)

Combining (3), (4) and (7), we obtain the following bound,

IERn(π̂) ≤ c4
[
nM−β(1+α) + (log n)

j2∑
j=j1

[(
Md

j

) 1
α

∧Mβ

]
+Md log n

]
. (8)

We now bound from above the sum in (8). Note that

j2∑
j=j1

[(
Md

j

) 1
α

∧Mβ

]
≤

Md∑
j=1

[(
Md

j

) 1
α

∧Mβ

]
≤ c5

[
Md+β(1−α) +

Md∑
j=M ′+1

(
Md

j

) 1
α ]

, (9)

where M ′ = c6M
d−αβ . Moreover,

Md∑
j=M ′+1

(
Md

j

) 1
α

≤ c6Md

∫ 1

M−αβ
x−1/αdx .

If α < 1, this integral is bounded by c7Mβ(1−α) and if α = 1, it is bounded by c8 logM . As a result, the
right hand side of (9) is of order Md(Mβ(1−α) ∨ logM) and we obtain from (8) that

IERn(π̂) ≤ c9
[
nM−β(1+α) +Md(Mβ(1−α) ∨ logM) log n

]
, (10)

and the result follows by choosing M as prescribed.

We should point out that the version of the UCBogram described above specifies the number of binsM as
a function of the horizon n, while in practice one does not have foreknowledge of this value. This limitation
can be easily circumvented by using the so-called doubling argument (Cesa-Bianchi & Lugosi, 2006) which
consists of “reseting” the game at times 2k, k = 1, 2, . . .

The reader will note that when α = 1 there is a potentially superfluous log n factor appearing in the
upper bound in the theorem. More generally, for any α > 1, it is possible to minimize the expression on the
right hand side of (10) with respect to M , but the optimal value of M would then depend on the value of α.
This sheds some light on a significant limitation of the UCBogram which surfaces in this parameter regime:
it requires the operator to pull each arm at least once in each bin and therefore to incur a regret of at least
order Md. In other words, the UCBogram splits the space X in “too many” bins when α ≥ 1. Intuitively
this can be understood as follows. When α = 1, the gap function ∆(x) is bounded away from zero for most
x ∈ X , and hence there is no need to carefully estimate the gap function since it has constant sign over
“large” contiguous regions. As a result one could use larger bins in such regions reducing the overall number
of bins and therefore removing the extra logarithmic term alluded to above. These limitations are obviously
intrinsic to UCBogram-type policies.

3.3 The inferior sampling rate
Unlike traditional bandit problems, the connection between the inferior sampling rate defined in (1) and the
regret is more intricate here. The following lemma establishes a connection between the two.

Lemma 3.1 For any α > 0, under the margin condition we have

Sn(π) ≤ Cn
1

1+αRn(π)
α

1+α ,

for any policy π and for some positive constant C > 0.
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Proof. The idea of the proof is quite standard and originally appeared in Tsybakov (2004). It has been used
in Rigollet and Vert (2009) and Goldenshluger and Zeevi (2009). Define the two random quantities:

rn(π) =
n∑
t=1

|f (1)(Xt)− f (2)(Xt)|1I(πt(Xt) 6= π?(Xt)) ,

and

sn(π) =
n∑
t=1

1I(f (1)(Xt) 6= f (2)(Xt), πt(Xt) 6= π?(Xt)) .

We have

rn(π) ≥ δ
n∑
t=1

1I(πt(Xt) 6= π?(Xt))1I(|f (1)(Xt)− f (2)(Xt)| > δ)

≥ δ
[
sn(π)−

n∑
t=1

1I(πt(Xt) 6= π?(Xt), 0 < |f (1)(Xt)− f (2)(Xt)| ≤ δ)
]

≥ δ
[
sn(π)−

n∑
t=1

1I(0 < |f (1)(Xt)− f (2)(Xt)| ≤ δ)
]
. (11)

Taking expectations on both sides of (11), we obtain that Rn(π) ≥ δ
[
Sn(π) − nδα

]
, where we used the

margin condition. The proof follows by choosing δ = (Sn(π)/cn)1/α for c ≥ 2 large enough to ensure that
δ < δ0

Using Lemma 3.1, and the we obtain the following corollary of Theorem 3.1.

Corollary 3.1 Fix β ∈ (0, 1], L > 0 and α ∈ (0, 1]. Under the conditions of Theorem 3.1, the UCBogram
policy π̂ with M = b(n/ log n)1/(2β+d)c has an inferior sampling rate at time n bounded as follows,

IESn(π̂) ≤ Cnmax
{( n

log n

)− βα
2β+d

,
( n

(log n)2

)− β
2β+d

}
.

where C > 0 is a positive constant.

Proof. Since the function x 7→ x
α

1+α is concave for any α > 0, we can apply the Jensen inequality to the
result of Lemma 3.1 to obtain that

IESn(π̂) ≤ Cn
1

1+α [IERn(π)]
α

1+α .

The conclusion follows by bounding IERn(π) from above using Theorem 3.1.

4 Lower bound
While the UCBogram is a very simple policy, it still provides good insights as to how to construct a lower
bound on the regret incurred by any admissible policy. Indeed, the main result of this section demonstrates
that the polynomial rate of the upper bounds in Theorem 3.1 and Corollary 3.1 is optimal in a minimax sense,
for a large class of conditional reward distributions. Define the Kullback-Leibler (KL) divergence between P
and Q, where P and Q are two probability distributions by

K(P,Q) =

{ ∫
log
(

dP
dQ

)
dP if P � Q ,

∞ otherwise.

Denote by P (i)
f(X) the conditional distribution of Y (i) given X for any i = 1, 2 and assume that there exists

κ2 > 0 such that for any θ, θ′ ∈ Θ ⊂ [0, 1] the KL divergence between P (i)
θ and P (i)

θ′ satisfies

K(P (i)
θ , P

(i)
θ′ ) ≤ 1

κ2
(θ − θ′)2 . (12)

Assumption (12) is similar to Assumption (B) employed in Tsybakov, (2009, Section 2.5) but does not
require absolute continuity with respect to the Lebesgue measure. A direct consequence of the following
lemma is that Assumption (12) is satisfied when Pθ is a Bernoulli distribution with parameter θ ∈ (0, 1).
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Lemma 4.1 For any a ∈ [0, 1] and b ∈ (0, 1) let Pa and Pb denote two Bernoulli distributions with parame-
ters a and b respectively. Then

K(Pa, Pb) ≤
(a− b)2

b(1− b)
.

In particular, if b0 ∈ [0, 1/2), Assumption (12) is satisfied with κ2 = 1/4 − b20, for any a ∈ [0, 1], b ∈
[1/2− b0, 1/2 + b0].

Proof. From the definition of the KL divergence, we have

K(Pa, Pb) = a log
(a
b

)
+ (1− a) log

(1− a
1− b

)
≤ a

(a− b
b

)
− (1− a)

(a− b
1− b

)
=

(a− b)2

b(1− b)
.

Theorem 4.1 Fix α, β, L > 0 such that αβ < 1 and let X = [0, 1]d. Assume that the covariates Xt are
uniformly distributed on the unit hypercube X and that there exists τ ∈ (0, 1/2) such that {P (i)

θ , θ ∈ [1/2−
τ, 1/2 + τ ]} satisfies equation (12) for i = 1, 2. Then, there exists a pair of reward functions f (i), i = 1, 2
that satisfy both the smoothness condition with parameters (β, L) and the margin condition with parameter
α, such that for any non-anticipating policy π the regret is bounded as follows

IERn(π) ≥ Cn1− β(α+1)
2β+d , (13)

and the inferior sampling rate is bounded as follows

IESn(π) ≥ Cn1− βα
2β+d , (14)

for some positive constant C.

Proof. To simplify the arguments below, it will be useful to denote arm 2 by −1. Finally, with slight abuse
of notation, we use Sn(π, f (1), f (−1)) to denote the inferior sampling rate at time n that is defined in (1),
making the dependence on the mean reward functions explicit.

In view of Lemma 3.1, it is sufficient to prove (14). To do so we reduce our problem to a hypothesis
testing problems; an approach this is quite standard in the nonparametric literature, cf. (Tsybakov, 2009,
Chapter 2). For any policy π, and any t = 1, . . . , n, denote by IPtπ,f the joint distribution of the collection of
pairs

(X1, Y
(π1(X1))
1 ), . . . , (Xt, Y

(πt(Xt))
t )

where IE[Y (1)|X] = f(X) and IE[Y (−1)|X] = 1/2. Let IEtπ,f denote the corresponding expectation. It
follows that the oracle policy π?f is given by π?f (x) = sign[f(x)− 1/2] with the convention that sign(0) = 1.
Fix δ0 ∈ (0, 1) as in the definition of the margin condition. We now construct a class C of functions f : X →
[0, 1] such that f satisfies (2) and

PX
[

0 < |f(X)− 1/2| ≤ δ
]
≤ Cδδα , ∀ δ ∈ [0, δ0] ,

As a result, the machine characterized by the expected rewards f (1) = f and f (−1) = 1/2 satisfies both the
smoothness and the margin conditions. Moreover, we construct C in such a way that for any policy π

sup
f∈C

IESn(π, f, 1/2) ≥ Cn
( n

log n

)− βα
2β+d

. (15)

for some positive constant C. Consider the regular grid Q = {q1, . . . , qMd}, where qk denotes the center
of bin Bk, k = 1, . . . ,Md, for some M ≥ 1 to be defined. Define Cφ = min(2β−1L, τ, 1/4) and let
φ : IRd → IR+ be the function defined by

φ(x) =
{

(1− ‖x‖∞)β if 0 ≤ ‖x‖∞ ≤ 1,
0 if ‖x‖∞ > 1 .

Clearly, we have |Cφφ(x)− Cφφ(x′)| ≤ 2β−1L‖x− x′‖β∞ ≤ 2β−1L‖x− x′‖β for any x, x′ ∈ IRd.
Define the integer m = dµMd−αβe, i.e., the smallest integer that is larger than or equal to µMd−αβ ,

where µ ∈ (0, 1) is chosen small enough to ensure that m ≤ Md. Define Ωm = {−1, 1}m and for any
ω ∈ Ωm, define the function fω on [0, 1]d by

fω(x) = 1/2 +
m∑
j=1

ωjϕj(x) ,
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where ϕj(x) = M−βCφφ(M [x − qj ])1I(x ∈ Bj). Notice in particular that fω(x) = 1/2 if and only if
x ∈ X \

⋃m
j=1Bj up to a set of zero Lebesgue measure. We are now in position to define the family C as

C = {fω : ω ∈ Ωm} .

Note first that any function fω ∈ C satisfies the smoothness condition (2). Indeed, if u and v belong to the
same bin Bj , then

|fω(u)− fω(v)| ≤ |ϕj(u)− ϕj(v)| ≤ 2β−1L‖u− v‖β ≤ L‖u− v‖β . (16)

If u ∈ Bj and v ∈ Bk , j 6= k, consider the segment Su,v = {θu + (1− θ)v : θ ∈ [0, 1]} between u and v
and define the points

u′ = argmin
z∈Su,v∩Bj

‖z − v‖ , v′ = argmin
z∈Su,v∩Bk

‖z − u‖ .

We have u′ ∈ Bj , v′ ∈ Bk, and ϕj(u′) = ϕk(v′) = 0 so that

|fω(u)− fω(v)| ≤ |ϕj(u)− ϕj(u′)|+ |ϕk(v)− ϕk(v′)|
≤ 2β−1L‖u− u′‖β + 2β−1L‖v − v′‖β

≤ L‖u− v‖β ,

where in the second inequality we used (16) and in the third, we used the concavity of the function x 7→ xβ

for β ≤ 1 together with the fact that ‖u− u′‖+ ‖v − v′‖ ≤ ‖u− v‖.
We now check that the margin condition is satisfied with parameter α. For any ω ∈ Ωm, we have

PX(0 < |fω(X)− 1/2| ≤ Cφδ) =
m∑
j=1

PX(0 < |fω(X)− 1/2| ≤ Cφδ,X ∈ Bj)

= mPX(0 < φ(M [X − q1]) ≤ δMβ , X ∈ B1)

= m

∫
B1

1I(φ(Mx) ≤ δMβ)dx

= mM−d
∫

[0,1]d
1I(φ(x) ≤ δMβ)dx ,

where in the third equality, we used the fact that PX denotes the uniform distribution on [0, 1]d. Now, since
φ is non negative and uniformly bounded by 1, we have on the one hand that for δMβ > 1,∫

[0,1]d
1I(φ(x) ≤ δMβ)dx = 1 .

On the other hand, when δMβ ≤ 1, we find∫
[0,1]d

1I(φ(x) ≤ δMβ)dx = 1−
∫

[0,1]d
1I(‖x‖∞ ≤ 1−Mδ1/β)dx = 1−

(
1−Mδ1/β

)d
≤ dMδ1/β .

It yields

PX(0 < |fω(X)− 1/2| ≤ Cφδ) ≤ mM−d1I(δMβ > 1) +mdM1−dδ1/β1I(δMβ ≤ 1)
)

≤M−αβ1I(M−αβ < δα) + dM1−αβδ1/β1I(M ≤ δ−1/β)
≤ (1 + d)δα ,

where we used the fact that 1 − αβ ≥ 0 to bound the second term in the last inequality. Thus, the margin
condition is satisfied for any δ0 and with Cδ = (1 + d)/Cαφ .

We now prove (15) by observing that if we denote ω = (ω1, . . . , ωm) ∈ Ωm, we have

sup
f∈C

IESn(π, f (1), 1/2) = sup
ω∈Ωm

n∑
t=1

IEt−1
π,fω

PX [πt(Xt) 6= sign(fω(Xt))]

= sup
ω∈Ωm

m∑
j=1

n∑
t=1

IEt−1
π,fω

PX [πt(Xt) 6= ωj , Xt ∈ Bj ]

≥ 1
2m

m∑
j=1

n∑
t=1

∑
ω∈Ωm

IEt−1
π,fω

PX [πt(Xt) 6= ωj , Xt ∈ Bj ] (17)
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Observe now that for any j = 1, . . . ,m, the sum
∑
ω∈Ω[· · · ] in the previous display can be decomposed as

Qtj =
∑

ω[−j]∈Ωm−1

∑
i∈{−1,1}

IEt−1
π,f

ωi[−j]

PX [πt(Xt) 6= i,Xt ∈ Bj ] ,

where ω[−j] = (ω1, . . . , ωj−1, ωj+1, . . . , ωm) and ωi[−j] = (ω1, . . . , ωj−1, i, ωj+1, . . . , ωm) for i = −1, 1.

Using Theorem 2.2(iii) of Tsybakov (2009), and denoting by P jX(·) the conditional distribution PX(·|X ∈
Bj), we get∑
i∈{−1,1}

IEt−1
π,f

ωi[−j]

PX [πt(Xt) 6= i,Xt ∈ Bj ] =
1
Md

∑
i∈{−1,1}

IEt−1
π,f

ωi[−j]

P jX [πt(Xt) 6= i]

≥ 1
4Md

exp
[
−K
(
IPt−1
π,f

ω
−1
[−j]

× P jX , IP
t−1
π,f

ω1
[−j]

× P jX
)]

=
1

4Md
exp

[
−K
(
IPt−1
π,f

ω
−1
[−j]

, IPt−1
π,f

ω1
[−j]

)]
(18)

For any t = 2, . . . , n, letFt denote the σ-algebra generated by the information available at time t immediately
after observing Xt, i.e., Ft = σ

(
Xt, (Xs, Y

(πs(Xs))
s ), s = 1, . . . , t− 1)

)
. Define the conditional distribution

IP·|Ftπ,f of the random couple (Xt, Y
(πt(Xt))
t ), conditioned on Ft. Denote also by EXt the expectation with

respect to the marginal distribution of Xt. Applying the chain rule for KL divergence, we find that for any
t = 1, . . . , n and any f, g : X → [0, 1], we have

K
(
IPtπ,f , IP

t
π,g

)
= K

(
IPt−1
π,f , IP

t−1
π,g

)
+ IEt−1

π,f EXt

[
K
(
IP·|Ftπ,f , IP

·|Ft
π,g

)]
= K

(
IPt−1
π,f , IP

t−1
π,g

)
+ IEt−1

π,f EXt

[
K
(
IPY

(πt(Xt))
t |Ft
π,f , IPY

(πt(Xt))
t |Ft
π,g

)]
,

where IPY
(πt(Xt))
t |Ft
π,f denotes the conditional distribution of Y (πt(Xt))

t given Ft. Since, for any f ∈ C, we

have that IE[Y (πt(Xt))
t |Ft] = f (πt(Xt))(Xt) ∈ [1/2− τ, 1/2 + τ ], we can apply (12) to derive the following

upper bound:

K
(
IPY

(πt(Xt))
t |Ft
π,f

ω
−1
[−j]

, IPY
(πt(Xt))
t |Ft
π,f

ω1
[−j]

)
≤ 1

κ2

(
fω1

[−j]
(Xt)− fω−1

[−j]
(Xt)

)2

1I (πt(Xt) = 1)

≤ 4
κ2
C2
φM

−2β1I (πt(Xt) = 1, Xt ∈ Bj)

≤ M−2β

4κ2
1I (πt(Xt) = 1, Xt ∈ Bj) .

By induction, the last two displays yield that for any t = 1, . . . , n,

K(IPt−1
π,f

ω1
[−j]

, IPt−1
π,f

ω
−1
[−j]

) ≤ M−2β

4κ2
Nj,π , (19)

where

Nj,π = IEn−1
π,f

ω
−1
[−j]

EX

[
n∑
t=1

1I (πt(X) = 1, X ∈ Bj)

]
,

denotes the expected number of times t between time 1 and time n that Xt ∈ Bj and πt(Xt) = 1. Combin-
ing (18) and (19), we get

Qtj ≥
2m−1

4Md
exp

(
−M

−2β

4κ2
Nj,π

)
. (20)

On the other hand, from the definition of Qtj , we clearly have

n∑
t=1

Qtj ≥ 2m−1Nj,π . (21)
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Plugging the lower bounds (20) and (21) into (17) yields

sup
f∈C

IESn(π, f (1), 1/2) ≥ 2m−1

2m

m∑
j=1

max
{

n

4Md
exp

(
−M

−2β

4κ2
Nj,π

)
,Nj,π

}

≥ 1
4

m∑
j=1

{
n

4Md
exp

(
−M

−2β

4κ2
Nj,π

)
+ Nj,π

}

≥ m

4
inf
z≥0

{
n

4Md
exp

(
−M

−2β

4κ2
z

)
+ z

}
Notice now that

z∗ = argmin
z≥0

{
n

4Md
exp

(
−M

−2β

4κ2
z

)
+ z

}
is strictly positive if and only if n > 16κ2M2β+d, in which case

z∗ = 4κ2M2β log
( n

16κ2M2β+d

)
.

Taking

M =
⌈( n

16eκ2

) 1
2β+d

⌉
gives z∗ = c∗n

2β
2β+d for some positive constant c∗, so that

sup
f∈C

IESn(π, f (1), 1/2) ≥ Cmz∗ ≥ Cn1− αβ
2β+d .

This completes the proof.

Notice that the rates obtained in Theorem 4.1, can be obtained in the full information case, where the
operator observes the whole i.i.d sequence (Xi, Y

(1)
i , Y

(2)
i ), i = 1, . . . , n, even before the first round. Indeed,

such bounds have been obtained by Audibert and Tsybakov (2007) in the classification setup, i.e., when
the rewards are Bernoulli random variables. However, we state a different technique, tailored for bandit
policies in a partial information setup. While the final result is the same, we believe that it sheds light on the
technicalities encountered in proving such a lower bound.
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Abstract

Multiarmed bandit problem is a typical example of a dilemma between exploration and exploita-
tion in reinforcement learning. This problem is expressed as a model of a gambler playing a slot
machine with multiple arms. We study stochastic bandit problem where each arm has a reward
distribution supported in a known bounded interval, e.g. [0, 1]. In this model, Auer et al. (2002)
proposed practical policies called UCB and derived finite-time regret of UCB policies. However,
policies achieving the asymptotic bound given by Burnetas and Katehakis (1996) have been un-
known for the model. We propose Deterministic Minimum Empirical Divergence (DMED) policy
and prove that DMED achieves the asymptotic bound. Furthermore, the index used in DMED for
choosing an arm can be computed easily by a convex optimization technique. Although we do not
derive a finite-time regret, we confirm by simulations that DMED achieves a regret close to the
asymptotic bound in finite time.

1 Introduction
The multiarmed bandit problem is a problem based on an analogy with a gambler playing a slot machine with
more than one arm or lever. The objective of the gambler is to maximize the collected sum of rewards by
choosing an arm to pull for each round. There is a dilemma between exploration and exploitation.

We consider a K-armed stochastic bandit problem. There are K arms Π1, . . . ,ΠK and each Πj has a
probability distribution Fj with the expected value µj . The gambler chooses an arm to pull based on a policy
and receives a reward according to Fj independently in each round. If the expected values of the arms are
known, it is optimal to always pull the arm with the maximum expected value µ∗ = maxj µj . There have
been many studies for this problem (Agrawal, 1995; Even-Dar et al., 2002; Meuleau & Bourgine, 1999;
Strens, 2000; Vermorel & Mohri, 2005; Yakowitz & Lowe, 1991). There are also many extensions for the
problem, such as non-stationary distributions (Gittins, 1989; Ishikida & Varaiya, 1994) and non-stochastic
bandit (Auer et al., 2003).

Lai and Robbins (1985) constructed a theoretical framework for determining optimal policies. Burnetas
and Katehakis (1996) extended their result to multiparameter or non-parametric models which is relevant to
our setting. Consider a model F , that is, a generic family of distributions. The player knows F and that each
Fj is an element of F . Let Tj(n) denote the number of times that Πj has been pulled over the first n rounds.
Πi is called suboptimal if µi < µ∗. A policy is consistent on model F if E[Ti(n)] = o(na) for all suboptimal
arms Πi and all a > 0.

Burnetas and Katehakis proved the following lower bound for any suboptimal Πi under consistent policy:

Ti(n) ≥
(

1
infG∈F :E(G)>µ∗ D(Fi||G)

+ o(1)
)

log n (1)

with probability tending to one, where E(G) is the expected value of distribution G and D(·||·) denotes the
Kullback-Leibler divergence. Under mild regularity conditions on F ,

inf
G∈F :E(G)>µ

D(F ||G) = inf
G∈F :E(G)≥µ

D(F ||G)

and we write
Dmin(F, µ) = inf

G∈F :E(G)≥µ
D(F ||G).

67



A policy is asymptotically optimal if the expected value of Tj(n) achieves the right-hand side of (1) as
n → ∞. Lai and Robbins (1985) and Burnetas and Katehakis (1996) also proposed policies based on the
notion of upper confidence bound and proved their optimality for some specific models. Furthermore, Auer
et al. (2002) proposed some practical policies called UCB for other models. UCB policies estimate the
expectation of each arm in a similar way to upper confidence bound. Note that this framework of the simple
K-armed stochastic bandit problem is also important for applications. It is because efficient policies for this
simple problem are also bases of some extended framework of bandit problems, such as Kleinberg (2005) for
uncountable arms or Kleinberg et al. (2008) for the case that some arms can not be chosen at some rounds.

Now consider our model A, the family of distributions on a known interval, e.g. [0, 1]. This model A
represents one of the most basic nonparametric bandit situations. In this model, UCB policies are popular for
their simple form and fine performance. However, although the performance of UCB policies is assured theo-
retically by a non-asymptotic form, their coefficients of the logarithmic term only depend on the expectations
and the variances of arms and do not depend on the distributions themselves. Therefore, these theoretical
analyses do not necessarily achieve the bound (1).

In this paper we propose Deterministic Minimum Empirical Divergence (DMED) policy. We prove the
asymptotic optimality of DMED for our model A. Although we do not give a finite bound of DMED as op-
posed to UCB policies, we confirm by simulations that DMED achieves performance close to the asymptotic
bound in finite time.

Our DMED policy is motivated by a Bayesian viewpoint for the problem (although we do not use a
Bayesian framework for theoretical analyses). Consider the case K = 2 and assume that Π1 seems to be the
best and n ≈ T1(n) � T2(n) at the n-th round. In this case the maximum likelihood that Π1 and Π2 are
the best are roughly 1 and exp(−T2(n)Dmin(F̂2, µ̂

∗)), respectively, where F̂2 is the empirical distribution
of rewards from Π2 and µ̂∗ is the current best sample mean. Then, the posterior expectation of the regret is
proportional to T2(n) · 1 + n · exp(−T2(n)Dmin(F̂2, µ̂

∗)). DMED tries to minimize this by balancing these
two terms. Note that DMED requires a computation of Dmin(F̂i, µ̂

∗) = infG∈A:E(G)≥µ̂∗ D(F̂i||G) at each
round. As shown in Theorem 8 below, Dmin can be expressed as a univariate convex optimization problem
and it can be computed efficiently .

This paper is organized as follows. In Section 2, we give definitions used throughout this paper and
recall the asymptotic bound by Burnetas and Katehakis (1996). In Section 3, we propose DMED policy
which achieves the asymptotic bound. In Section 4, we analyze Dmin(F, µ) as an optimal value function for
a practical implementation and a proof of the optimality of DMED. In Section 5, we prove the asymptotic
optimality of DMED by the results of Section 4. Some simulation results are shown in Section 6. We conclude
the paper with some remarks in Section 7.

2 Preliminaries
In this section we introduce notation of this paper and present the asymptotic bound for a generic model,
which is established by Burnetas and Katehakis (1996).

Let F be a generic family of probability distributions on R and let Fj ∈ F be the distribution of Πj ,
j = 1, . . . , K. PF [·] and EF [·] denote the probability and the expectation under F ∈ F , respectively. When
we write e.g. PF [X ∈ A] (A ⊂ R) or EF [θ(X)] (θ(·) is a function R → R), X denotes a random variable
with distribution F . We define F (A) ≡ PF [X ∈ A] and E(F ) ≡ EF [X].

A set of probability distributions for K arms is denoted by F ≡ (F1, . . . , FK) ∈ FK ≡
∏K

j=1 F . The
joint probability and the expected value under F are denoted by PF [·], EF [·], respectively.

The expected value of Πj is denoted by µj ≡ E(Fj). We denote the optimal expected value by µ∗ ≡
maxj µj . Let Jn denote the arm chosen in the n-th round. Then

Tj(n) =
n∑

m=1

I[Jm = j],

where I[·] denotes the indicator function.
Let F̂j,t and µ̂j,t ≡ E(F̂j,t) be the empirical distribution and the mean of the first t rewards from Πj ,

respectively. Similarly, let F̂j(n) ≡ F̂j,Tj(n) and µ̂j(n) ≡ µ̂j,Tj(n) be the empirical distribution and the mean
of Πj after the first n rounds, respectively. µ̂∗(n) ≡ maxj µ̂j(n) denotes the highest empirical mean after
the first n rounds. We call Πj a current best if µ̂j(n) = µ̂∗(n).

The joint probability of two events A and B under F is written as PF [A ∩ B]. For notational simplicity
we often write, e.g., PF [Jn = j ∩ Tj(n) = t] instead of the more precise PF [{Jn = j} ∩ {Tj(n) = t}].

Finally we define an index for F ∈ F and µ ∈ R

Dinf(F, µ,F) ≡ inf
G∈F :E(G)>µ

D(F ||G)

68



where Kullback-Leibler divergence D(F ||G) is given by

D(F ||G) ≡
{

EF

[
log dF

dG

]
dF
dG exists,

+∞ otherwise.

Dinf represents how distinguishable F is from distributions having expectations larger than µ. If {G ∈ F :
E(G) > µ} is empty, we define Dinf(F, µ,F) = +∞.

Theorem 2 of Lai and Robbins (1985) gave a lower bound for E[Ti(n)] for any suboptimal Πi when a
consistent policy is adopted. However their result was hard to apply for multiparameter models and more
general non-parametric models. Later Burnetas and Katehakis (1996) extended the bound to general non-
parametric models. Their bound is given as follows.

Proposition 1 (Proposition 1 of Burnetas and Katehakis (1996)) Fix a consistent policy and F ∈ FK . If
µi < µ∗ and 0 < Dinf(Fi, µ

∗,F) < ∞, then for any ε > 0

lim
N→∞

PF

[
Ti(N) ≥ (1 − ε) log N

Dinf(Fi, µ∗,F)

]
= 1.

Consequently

lim inf
N→∞

EF [Ti(N)]
log N

≥ 1
Dinf(Fi, µ∗,F)

. (2)

3 An Asymptotically Optimal Policy
Let A ≡ {G : supp(G) ⊂ [a, b]} be the family of distributions with a bounded support, where supp(G) is
the support of distribution G and a, b are constants known to the player. We assume a = 0, b = 1 without
loss of generality. We consider A = {G : supp(G) ⊂ [0, 1]} as a model F for the rest of this paper.

When we adopt the model A, it is convenient to use

Dmin(F, µ,A) ≡ inf
G∈A:E(G)≥µ

D(F ||G)

instead of Dinf(F, µ,A) = infG∈A:E(G)>µ D(F ||G).

Lemma 2 Dmin(F, µ,A) = Dinf(F, µ,A) holds for all F ∈ A and µ < 0.

Proof: Dmin(F, µ,A) ≤ Dinf(F, µ,A) ≤ Dmin(F, µ + ε,A) holds for arbitrary ε > 0 from the definitions
of Dmin and Dinf . Dmin(F, µ,A) = Dinf(F, µ,A) follows by letting ε ↓ 0, since we will prove in Theorem
7 that Dmin(F, µ,A) is continuous in µ < 0.

We simply write Dmin(F, µ) ≡ Dmin(F, µ,A) when the third argument is obvious from the context. We
discuss properties of Dmin in Section 4.

Now we introduce Deterministic Minimum Empirical Divergence (DMED) policy and show its asymp-
totic optimality. We named it “deterministic” because our initial proposal, MED in Honda and Takemura
(2010), was a randomized policy.

In the following algorithm, some arms are pulled once in one loop. Through the loop, arms to be pulled
in the next loop are chosen and added to a list (a set) of arms. LC denotes the list of arms to be pulled in
the current loop. LN denotes the list of arms to be pulled in the next loop. LR ⊂ LC denotes the list of
remaining arms of LC which have not yet been pulled in the current loop. Arms are listed in LN according
to the occurrence of the event J ′

n(j) given by

J ′
n(j) ≡ {Tj(n)Dmin(F̂j(n), µ̂∗(n)) ≤ log n − log Tj(n)}. (3)

[Deterministic Minimum Empirical Divergence Policy]
Initialization. LC , LR := {1, · · · ,K}, LN := ∅. Pull each arm once. n := K.

Loop.

1. For i ∈ LC in the ascending order,
1.1. n := n + 1 and pull Πi. LR := LR \ {i}.
1.2. LN := LN ∪ {j} (without a duplicate) for all j /∈ LR such that J ′

n(j) occurs.
2. LC , LR := LN and LN := ∅.
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As shown above, |LC | arms are played in one loop. At every round, Πj is added to LN if j /∈ LR and J ′
n(j)

occurs. Note that if Πj is a current best for the n-th round then J ′
n(j) holds since Dmin(F̂j(n), µ̂∗(n)) = 0

for this case. Then LC is always not empty.
We use only the following fact as a property of DMED policy for our proof of the optimality:

Fact 3 (i) For any n it holds that
∑n

m=1 I[Jm = j] ≤ 2 +
∑n

m=1 I[J ′
m(j)].

(ii) If J ′
n0

(j) occurs for any n0 then Tj(n) ≥ Tj(n0) + 1 for all n ≥ n0 + K.

(i) and (ii) holds from the following reasons: (i) if Πj is pulled at round m > 2K then there exists a
corresponding nm < m such that J ′

nm
(j) occurs and j is listed newly in LN . The constant 2 is the effect

of the initialization phase. (ii) There exists only three cases when J ′
n0

(j) occurs at the n0-th round: (1) j is
listed newly in LN , (2) j is already listed in LN , (3) j is listed in LR. In each case Πj is pulled at least once
through n0 + 1, · · · , n0 + K-th rounds and Tj(n) is incremented.

Theorem 4 Fix F ∈ AK for which there exists j such that µj = µ∗ and µi < µ∗ for all i 6= j. Under
DMED policy, for any i 6= j and ε > 0 it holds that

EF [Ti(N)] ≤ 1 + ε

Dmin(Fi, µ∗)
log N + O(1)

where O(1) denotes a constant dependent on ε and F but independent of N .

Note that we obtain

lim sup
N→∞

EF [Ti(N)]
log N

≤ 1
Dmin(Fi, µ∗)

,

by dividing both sides by log N , letting N → ∞ and finally letting ε ↓ 0. In view of (2) we see that DMED
policy is asymptotically optimal. We prove Theorem 4 in Section 5 by using results on Dmin described in
Section 4.

Note that the same bound as Theorem 4 can be derived when we substitute log Tj(n) in the criterion J ′
n(j)

with an arbitrary constant or 0. However, we adopt the above criterion because simulation results seem better
than that of other criteria. Our criterion may be justified by the Bayesian interpretation given in Introduction.

4 Analyses on Minimum Divergence
Dmin(F, µ) is the essential quantity for our DMED policy. In this section we introduce a dual problem
D′

min(F, µ) for Dmin(F, µ), which is computable efficiently. The main goal of this section is to show Dmin =
D′

min and the continuity of them in F, µ. We discuss differentiability and continuity of D′
min(F, µ) as a

function of F and µ in Section 4.2. We show Dmin = D′
min in Section 4.3 by using the results of preceding

subsections.
We now endow our model A with a distance to define the continuities of Dmin(F, µ) and D′

min(F, µ) in
F ∈ A and closedness of a subset of A. We adopt Lévy distance

L(F, G) ≡ inf{h > 0 : F ((−∞, x − h]) − h ≤ G((−∞, x]) ≤ F ((−∞, x + h]) + h for all x}
for the distance between two distributions. Note that the convergence of the Lévy distance L(F, Fn) → 0 is
equivalent to the weak convergence of {Fn} to distribution F and we write Fn → F in this sense (see, e.g.,
Lamperti (1996) for detail).

4.1 A Dual Problem
For µ < 0, define

H(ν, F, µ) ≡ EF [log(1 − (X − µ)ν)]

H ′(ν, F, µ) ≡ ∂H(ν, F, µ)
∂ν

= −EF

[
X − µ

1 − (X − µ)ν

]
H ′′(ν, F, µ) ≡ ∂2H(ν, F, µ)

∂ν2
= −EF

[
(X − µ)2

(1 − (X − µ)ν)2

]
(4)

and

D′
min(F, µ) ≡ max

0≤ν≤ 1
1−µ

H(ν, F, µ). (5)

D′
min corresponds to the Lagrangian dual problem for Dmin. D′

min is a univariate convex optimization
problem and it can be computed efficiently by iterative methods such as Newton’s method (see, e.g., Boyd
and Vandenberghe (2004) for general methods of convex programming).
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We write H(ν),H ′(ν), H ′′(ν) when we regard them as a function of ν and when other arguments are
obvious from the context. Note that H(ν) is concave and strictly concave except for the degenerate case
F ({µ}) = 1 from (4). Now we define an optimal solution for (5) as

ν∗(F, µ) ≡ argmax
0≤ν≤ 1

1−µ

H(ν, F, µ).

Note that ν∗(F, µ) is unique except for the case F ({µ}) = 1 from the strict concavity of H(ν, F, µ) in
ν. For the case F ({µ}) = 1, D′

min(F, µ) = H(ν, F, µ) holds for all ν ∈ [0, (1 − µ)−1] and we define
ν∗(F, µ) ≡ (1 − µ)−1. We write ν∗(F ) or more simply ν∗ when other arguments are obvious from the
context.

The following theorem is used through proofs in Section 4 and 5.

Theorem 5 Define EF [(1−µ)/(1−X)] = ∞ for the case F ({1}) > 0. If µ ≤ E(F ) then D′
min(F, µ) = 0.

If E(F ) ≤ µ and EF [(1 − µ)/(1 − X)] ≤ 1 then ν∗ = (1 − µ)−1 and (5) is simply written as

D′
min(F, µ) = H

(
1

1 − µ

)
= EF

[
log

1 − X

1 − µ

]
.

If E(F ) ≤ µ and EF [(1 − µ)/(1 − X)] ≥ 1 then ν∗ satisfies H ′(ν∗) = 0 and

EF

[
1

1 − (X − µ)ν∗

]
= 1, EF

[
X

1 − (X − µ)ν∗

]
= µ. (6)

Proof: D′
min(F, µ) = 0 for µ ≤ E(F ) follows from H(0) = 0, H ′(0) = µ−E(F ) ≤ 0 and the concavity of

H(ν). ν∗ = (1 − µ)−1 for the case EF [(1 − µ)/(1 − X)] ≤ 1 follows from H ′((1 − µ)−1) = (1 − µ)(1 −
EF [(1 − µ)/(1 − X)]) ≥ 0 and the concavity of H(ν).

Finally we consider the case E(F ) ≤ µ and EF [(1−µ)/(1−X)] ≥ 1. For this case H ′(0) = µ−E(F ) ≥
0 and H ′((1 − µ)−1) = (1 − µ)(1 − EF [(1 − µ)/(1 − X)]) ≤ 0. Therefore H ′(ν∗) = 0 hold from the
concavity of H(ν). (6) follow from

EF

[
1

1 − (X − µ)ν∗

]
= EF

[
1 − (X − µ)ν∗

1 − (X − µ)ν∗

]
+ ν∗EF

[
X − µ

1 − (X − µ)ν∗

]
= 1 − ν∗H ′(ν∗) = 1

and

EF

[
X

1 − (X − µ)ν∗

]
= EF

[
X − µ

1 − (X − µ)ν∗

]
+ µ EF

[
1

1 − (X − µ)ν∗

]
= −H ′(ν∗) + µ = µ.

4.2 Continuity and Differentiability of the Dual Problem
In this subsection we discuss the differentiability and the continuity of D′

min(F, µ) in F and µ. We will show
Dmin = D′

min in the next subsection and the result for D′
min in this subsection also holds for Dmin.

Theorem 6 D′
min(F, µ) is differentiable in µ ∈ (E(F ), 1) for any F ∈ A with

∂

∂µ
D′

min(F, µ) = ν∗

We omit the proof but it can be proved by Corollary 3.4.3 of Fiacco (1983), which gives the differentiability
of an optimal value function with parameters.

Theorem 7 D′
min(F, µ) is continuous in (i) µ < 1 and (ii) F ∈ A.

Proof: (i) The continuity in µ is obvious in the interval (E(F ), 1) from the differentiability in Theorem 6.
The continuity in µ < E(F ) is also obvious since D′

min(F, µ) = 0 holds for all µ < E(F ). Finally we
consider the continuity at µ = E(F ). From (5) and the concavity of H(ν), it holds that

H(0) ≤ D′
min(F, µ) ≤ max{H(0), H(0) + H ′(0) 1

1−µ}

or equivalently

0 ≤ D′
min(F, µ) ≤ max

{
0, µ−E(F )

1−µ

}
.

Then limµ→E(F ) D′
min(F, µ) = D′

min(F, E(F )) = 0 is obtained by letting µ → E(F ).
(ii) We consider the lower semicontinuity and the upper semicontinuity separately.
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First we show the lower semicontinuity. Fix an arbitrary ε > 0. From (5) and the continuity of H(ν),
there exists ν0 ∈ [0, (1 − µ)−1) such that EF [log(1 − (X − µ)ν0)] ≥ D′

min(F, µ) − ε. Then we obtain

lim inf
F ′→F

D′
min(F ′, µ) ≥ lim inf

F ′→F
EF ′ [log(1 − (X − µ)ν0)]

= EF [log(1 − (X − µ)ν0)] (7)
≥ D′

min(F, µ) − ε.

Note that log(1 − (x − µ)ν0) is continuous and bounded in x ∈ [0, 1] and (7) follows from the definition of
weak convergence. The lower semicontinuity holds since ε is arbitrary.

Next we prove the upper semicontinuity. First we consider the case E(F ) > µ. In this case, E(F ′) >
µ holds for all F ′ sufficiently close to F . Then D′

min(F, µ) = D′
min(F ′, µ) = 0 holds and the upper

semicontinuity is obtained.
Next we consider the case EF [(1 − µ)/(1 − X)] > 1 and E(F ) ≤ µ. Since ν∗(F ) < (1 − µ)−1 in this

case, we obtain

lim sup
F ′→F

D′
min(F ′, µ)

≤ lim sup
F ′→F

(
H(ν∗(F ), F ′, µ) + 1

1−µ

∣∣H ′(ν∗(F ), F ′, µ)
∣∣) (by the concavity of H(ν))

= H(ν∗(F ), F, µ) + 1
1−µ

∣∣H ′(ν∗(F ), F, µ)
∣∣ (by the definition of weak convergence)

= D′
min(F, µ)

and the upper semicontinuity is proved for this case.
For the case EF [(1 − µ)/(1 − X)] ≤ 1, we omit the proof for lack of space.

The proof of the upper semicontinuity is a little complicated for the last case EF [(1−µ)/(1−X)] ≤ 1. It
is because ν∗ = (1−µ)−1 holds for the case and H(ν, F, µ) is difficult to analyze at ν = (1−µ)−1. In fact, in
every neighborhood of F , there exists G ∈ A such that H((1− µ)−1, G, µ) = H ′((1− µ)−1, G, µ) = −∞.
The upper semicontinuity can be proved by using the definition of the Lévy distance explicitly.

4.3 Equality of Minimum Divergence with the Dual Problem
In this subsection we prove Dmin = D′

min in Theorem 8. Therefore we can compute Dmin efficiently by
solving the univariate convex optimization in D′

min. Furthermore, the differentiability and the continuity in
Theorem 6 and 7 also hold for Dmin.

Theorem 8 Dmin(F, µ) = D′
min(F, µ) holds for all F ∈ A and µ < 1.

To prove this theorem, we additionally define Af and Af (F ), families of distributions with finite supports by

Af ≡ {G ∈ A : |supp(G)| < ∞},
Af (F ) ≡ {G ∈ Af : supp(G) ⊂ supp′(F )} (F ∈ Af )

where supp′(F ) ≡ {1} ∪ supp(F ). Note that Af (F ) ⊂ Af ⊂ A for all F ∈ Af .

Lemma 9 Dmin(F, µ,A) = Dmin(F, µ,Af (F )) holds for all F ∈ Af .

We omit the proof but it can be proved by the following fact: if G(A) ≥ G′(A) for all A ⊂ supp(F ) then
D(F ||G) ≤ D(F ||G′).

Before proving Dmin(F, µ) = D′
min(F, µ) for general F ∈ A, we show the equality for F ∈ Af and

E(F ) < µ < 1 by the technique of Lagrange multipliers.

Lemma 10 If E(F ) < µ < 1 and F ∈ Af then Dmin(F, µ) = D′
min(F, µ) holds.

Proof (Sketch): Let M ≡ |supp′(F )| and denote the finite symbols in supp′(F ) by x1 . . . , xM , i.e. {1} ∪
supp(F ) = {x1, . . . , xM}. We assume x1 = 1 and xi < 1 for i > 1 without loss of generality and
write fi ≡ F ({xi}). Dmin(F, µ) is expressed as the following parametric convex optimization problem for
G = (g1, . . . , gM ) from Lemma 9:

minimize :
M∑
i=1

fi log
fi

gi
, subject to : gi ≥ 0, ∀i,

M∑
i=1

xigi ≥ µ,
M∑
i=1

gi = 1.
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It is checked by the technique of Lagrange multipliers (see e.g. Section 28 of Rockafellar (1970)) that the
optimal solution is

g∗i =

{
1−µ
1−xi

fi i 6= 1
1 −

∑M
i=2

1−µ
1−xi

fi i = 1,

for the case EF [(1 − µ)/(1 − X)] ≤ 1 and

g∗i =

{
0 i = 1 and f1 = 0,

fi

1−(xi−µ)ν∗ otherwise

for the case EF [(1 − µ)/(1 − X)] ≥ 1 from (6). The lemma is proved immediately from these expressions
of {g∗i }.
Proof of Theorem 8: It is easy to check that Dmin(F, µ) = D′

min(F, µ) = 0 for µ ≤ E(F ). Hence we
consider the case E(F ) < µ < 1.

First we prove D′
min(F, µ) ≥ Dmin(F, µ). Define a measure G∗ on [0, 1] as

G∗(A) ≡

{∫
A

1−µ
1−xdF + (1 − EF [(1 − µ)/(1 − X)])I[0 ∈ A] EF [(1 − µ)/(1 − X)] ≤ 1∫

A
dF

1−(x−µ)ν∗ EF [(1 − µ)/(1 − X)] > 1.

To prove D′
min(F, µ) ≥ Dmin(F, µ), it is sufficient to show that G∗ is a probability measure with E(G∗) ≥ µ

since D(F ||G∗) = D′
min(F, µ). It is checked easily for the case EF [(1 − µ)/(1 − X)] ≤ 1. For the case

EF [(1 − µ)/(1 − X)] > 1, it is checked from (6).
Next we prove Dmin(F, µ) ≥ D′

min(F, µ). Take an arbitrary G ∈ A satisfying E(G) ≥ µ. Consider a
finite partition {Ui}i=0,··· ,n of [0, 1]:

Ui ≡
{
{0} i = 0(

i−1
n , i

n

]
i = 1, · · · , n

and define Fn, Gn ∈ Af as

Fn
({

i
n

})
≡ F (Ui), Gn

({
i
n

})
≡ G(Ui).

Then we have

D(F ||G) ≥ D(Fn||Gn) (by Theorem 2.4.2 of Pinsker (1964))
≥ Dmin(Fn, µ) (by E(Gn) ≥ E(G) ≥ µ)
= D′

min(Fn, µ) (by Lemma 10) (8)

Note that L(Fn, F ) ≤ 1/n then Fn → F as n → ∞. Therefore it holds for any ε > 0 that

D′
min(Fn, µ) ≥ D′

min(F, µ) − ε (9)

for sufficiently large n from the lower semicontinuity of D′
min(F, µ) in F .

From (8) and (9) we obtain for all G satisfying E(G) ≥ µ that

D(F ||G) ≥ D′
min(F, µ) − ε

and

Dmin(F, µ) ≥ D′
min(F, µ) − ε.

Dmin(F, µ) ≥ D′
min(F, µ) follows since ε > 0 is arbitrary.

5 A Proof of Theorem 4
Before proving Theorem 4, we show Lemmas 11–14 on properties of Dmin and ν∗.

Lemma 11 Dmin(F, µ) is monotonically increasing in µ.

This lemma follows immediately from the definition Dmin(F, µ) = minG∈A:E(G)≥µ D(F ||G). We use this
monotonicity in the proof of Theorem 4 implicitly.

Lemma 12 If E(F ) < µ then ν∗ = ν∗(F, µ) satisfies

ν∗ ≥ µ − E(F )
µ(1 − µ)

.
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Proof: This lemma is easily checked for the case EF [(1 − µ)/(1 − X)] ≤ 1 from ν∗ = (1 − µ)−1 and we
consider the case EF [(1 − µ)/(1 − X)] ≥ 1. Define

w(x, ν) ≡ x − µ

1 − (x − µ)ν
.

For any fixed ν ∈ [0, (1 − µ)−1], w(x, ν) is convex in x ∈ [0, 1]. Therefore
H ′(ν) = −EF [w(X, ν)]

≥ −EF [(1 − X)w(0, ν) + Xw(1, ν)]
= (E(F ) − 1)w(0, ν) − E(F )w(1, ν). (10)

The right-hand side of (10) is 0 for ν = (µ − E(F ))/(µ(1 − µ)) and therefore we obtain

H ′
(

µ − E(F )
µ(1 − µ)

)
≥ 0.

The lemma is proved since H ′(ν∗) = 0 holds and H ′ is monotonically decreasing.

Lemma 13 Fix arbitrary µ, µ′ ∈ (0, 1) satisfying µ′ < µ. Then there exists C(µ, µ′) > 0 such that
Dmin(F, µ) − Dmin(F, µ′) ≥ C(µ, µ′).

for all F ∈ A satisfying E(F ) ≤ µ′.

Proof: Since Dmin(F, µ) is differentiable in µ ∈ (E(F ), 1) and continuous in µ < 1, we have

Dmin(F, µ) − Dmin(F, µ′) = lim
t↓µ′

∫ µ

t

∂

∂u
Dmin(F, u)du

≥ lim
t↓µ′

∫ µ

t

u − µ′

u(1 − u)
du (by Theorem 5 and Lemma 12)

≥ (µ − µ′)2

2µ(1 − µ′)
(

=: C(µ, µ′)
)
.

Lemma 14 supG∈A Dmin(G,µ) ≤ − log(1 − µ) < +∞ for all 0 ≤ µ < 1.

Proof: By applying Jensen’s inequality for
Dmin(G,µ) = max

0≤ν≤ 1
1−µ

EG[log(1 − (X − µ)ν)],

we obtain
sup
G∈A

Dmin(G,µ) ≤ sup
G∈A

max
0≤ν≤ 1

1−µ

log(1 − (E(G) − µ)ν)

= sup
G∈A

max
{

0, log
1 − E(G)

1 − µ

}
= − log(1 − µ).

Proof of Theorem 4: We assume j = 1 and µ2 = maxk 6=1 µk without loss of generality. Then µ1 = µ∗ and
µk ≤ µ2 for k = 2, · · · , K.

Note that µ1 = 1 is a trivial case and we assume µ1 < 1 in the following. For the case µ1 = 1,
F1({1}) = 1 and µ∗(n) is always equal to 0. Therefore J ′

i(n) never occurs for sufficiently large n, because
Dmin(F̂i(n), 1) = +∞ always holds except for the case F̂i(n) = F1.

We obtain from Fact 3 (i) that

Ti(N) =
N∑

n=1

I[Jn = i] ≤ 2 +
N∑

n=1

I[J ′
n(i)].

Now we define events An and Bn as
An ≡ {µ̂1(n) ≥ µ1 − δ},

Bn ≡ {µ̂∗(n) ≤ µ2 + δ} =
K∩

k=1

{µ̂k(n) ≤ µ2 + δ}.

Cn =
K∪

k=1

{µ̂∗(n) = µ̂k(n) ∩ |µ̂k(n) − µk| ≥ δ}
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where δ > 0 is a constant satisfying µ2 < µ1−δ and set sufficiently small in an evaluation on An. It is easily
checked that {Ac

n ∩ Bc
n} ⊂ Cn. Therefore EF [Ti(N)] is bounded as

EF [Ti(N)] ≤ 2 + EF

[
N∑

n=1

I[J ′
n(i) ∩ An]

]
+ EF

[
N∑

n=1

I[Bn]

]
+ EF

[
N∑

n=1

I [Cn]

]
. (11)

In the following Lemmas 15–17 we bound the right-hand side of (11) in this order and they prove the
theorem.

Lemma 15 For all ε > 0 it holds that

EF

[
N∑

n=1

I[J ′
n(i) ∩ An]

]
≤ 1 + ε

Dmin(Fi, µ1)
log N + O(1).

Lemma 16

EF

[
N∑

n=1

I[Bn]

]
= O(1).

Lemma 17

EF

[
N∑

n=1

I[Cn]

]
= O(1).

Before proving these lemmas, we give intuitive interpretations for these terms.∑N
n=1 I[J ′

n(i) ∩ An] is the main term of Ti(N). Roughly speaking, in DMED policy, Πi is pulled and
Ti(n) is incremented until Ti(n)Dmin(F̂i(n), µ̂∗(n)) and log n−log Ti(n)(≈ log n) in (3) balance. Consider
the following two cases on the event An:

(1) If An happens and F̂i is sufficiently close to Fi, then Dmin(F̂i, µ̂
∗) & Dmin(Fi, µ

∗) holds and the above
two terms balance when Ti(n) . log n/Dmin(Fi, µ

∗), which is exactly the asymptotic bound to be
achieved.

(2) If An and Dmin(F̂i, µ̂
∗) < Dmin(Fi, µ

∗) happen, Πi may be pulled more frequently than case (1). How-
ever, as Πi is pulled, F̂i approaches Fi and Dmin(F̂i, µ̂

∗) approaches Dmin(Fi, µ
∗). Then eventually

Dmin(F̂i, µ̂
∗) < Dmin(Fi, µ

∗) does not hold and the effect of this event is not large.

The term involving Bn is essential for the consistency of DMED. If Bn occurs then µ̂1(n) is not yet
close to µ1. It requires many rounds for Π1 to be pulled since Π1 may seem to be suboptimal in this event.
Therefore Bn may happen for many n.

On the other hand when Cn occurs, empirical mean µ̂k(n) of current best Πk is not close to the true
expectation µk. Then Πk is pulled more frequently and µ̂k(n) approaches µk. As a result, Cn happens only
for a few n.

In the proofs of these three lemmas, we use Theorem 6.2.10 of Dembo and Zeitouni (1998) on the empir-
ical distribution:

Proposition 18 (Sanov’s Theorem) For every closed set Γ of probability distributions (with respect to the
Lévy distance),

lim sup
t→∞

1
t

log PF [F̂t ∈ Γ] ≤ − inf
G∈Γ

D(G||F ).

where F̂t is the empirical distribution of t samples from F .

Proof of Lemma 15 (Sketch): By partitioning the event J ′
n(i) according to the value of Ti(n), we obtain

N∑
n=1

I[J ′
n(i) ∩ An]

=
N∑

t=1

I

[
N∪

n=1

{
{tDmin(F̂i,t, µ̂

∗(n)) ≤ log n − log t} ∩ An ∩ Ti(n) = t
}]
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≤ (1 + ε) log N

Dmin(Fi, µ1)
+

N∑
t=

(1+ε) log N
Dmin(Fi,µ1)

I

[
N∪

n=1

{
{tDmin(F̂i,t, µ̂

∗(n)) ≤ log n} ∩ An ∩ Ti(n) = t
}]

≤ (1 + ε) log N

Dmin(Fi, µ1)
+

N∑
t=

(1+ε) log N
Dmin(Fi,µ1)

I
[
(1 + ε) log N

Dmin(Fi, µ1)
Dmin(F̂i,t, µ1 − δ) ≤ log N

]
(
µ1 − δ ≤ µ̂∗(n) on An

)
=

(1 + ε) log N

Dmin(Fi, µ1)
+

N∑
t=

(1+ε) log N
Dmin(Fi,µ1)

I
[
Dmin(F̂i,t, µ1 − δ) ≤ Dmin(Fi, µ1)

1 + ε

]
. (12)

Define Γδ ≡ {G ∈ A : L(Fi, G) ≥ δ}. By applying Sanov’s Theorem with F := Fi and Γ := Γδ , there
exists C1 such that

PFi [F̂i,t ∈ Γδ] = O(exp(−t C1)). (13)

Here we use the fact that for sufficiently small δ > 0{
Dmin(F̂i,t, µ1 − δ) ≤ Dmin(Fi, µ1)

1 + ε

}
⊂ {F̂i,t ∈ Γδ} (14)

or equivalently {L(F̂i,t, Fi) < δ} ⊂ {Dmin(F̂i,t, µ1 − δ) > Dmin(Fi, µ1)/(1 + ε)}. This can be proved by
the continuity in F and the differentiability in µ of Dmin(F, µ).

From (12), (13) and (14), we obtain

EF

[
N∑

n=1

I[Jn(i) ∩ An]

]
≤ (1 + ε) log N

Dmin(Fi, µ1)
+

N∑
t=

(1+ε) log N
Dmin(Fi,µ1)

O(exp(−t C1))

=
(1 + ε) log N

Dmin(Fi, µ1)
+ O(1).

Proof of Lemma 16: Define C2 ≡ C(µ1, µ2 + δ)/3 and Q ≡ dsupG∈A Dmin(G,µ2 + δ)/C2e. Q < +∞
holds from Lemma 14. Take a finite cover {Sq}q=1,2,··· ,Q of {G ∈ A : E(G) ≤ µ2 + δ} as

Sq ≡ {G ∈ A : E(G) ≤ µ2 + δ, (q − 1)C2 ≤ Dmin(G,µ2 + δ) ≤ q C2} .

Since Dmin(F, µ) is continuous in F , each Sq is a closed set. By applying Sanov’s Theorem with F := F1

and Γ := Sq, there exists tq > 0 such that for all t > tq

PF1 [F̂1,t ∈ Sq] ≤ exp
(
−t

(
inf

G∈Sq

D(G||F1) − C2

))
≤ exp

(
−t

(
inf

G∈Sq

Dmin(G, µ1) − C2

))
≤ exp

(
−t

(
inf

G∈Sq

Dmin(G, µ2 + δ) + C(µ1, µ2 + δ) − C2

))
(by Lemma 13)

≤ exp (−t(q + 1)C2) .

(
by inf

G∈Sq

Dmin(G,µ2 + δ) ≥ (q − 1)C2

)
Therefore, by defining t′ ≡ maxq=1,··· ,Q tq, it holds for all t > t′ that

PF1 [F̂1,t ∈ Sq] ≤ exp (−t(q + 1)C2) . (15)∑N
n=1 I[Bn] is bounded as

∞∑
n=1

I[Bn] ≤
Q∑

q=1

∞∑
t=1

∞∑
n=1

I[Bn ∩ T1(n) = t ∩ F̂1,t ∈ Sq] (16)

since {F̂1(n) ∈
∪Q

q=1 Sq} = {µ̂1(n) ≤ µ2 + δ} ⊃ Bn. Now for each t and q we show that
∞∑

n=1

I[Bn ∩ T1(n) = t ∩ F̂1,t ∈ Sq] ≤ t exp(t q C2) + K. (17)
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Assume that
∑∞

n=1 I[Bn ∩ T1(n) = t ∩ F̂1,t ∈ Sq] ≥ t exp(t q C2). On this event, we can take an integer
m ≥ t exp(t q C2) such that the events

Bm ∩ T1(m) = t ∩ F̂1,t ∈ Sq (18)

and
m∑

n=1

I[Bn ∩ T1(n) = t ∩ F̂1,t ∈ Sq] = dt exp(t q C2)e (19)

occur. For this m, it holds that

T1(m)Dmin(F̂1(m), µ̂∗(m)) ≤ t sup
G∈Sq

Dmin(G,µ2 + δ) (by (18))

≤ t q C2

≤ log m − log t. (by m ≥ t exp(t q C2))
Then J ′

m(1) holds and T1(n) ≥ t + 1 for all n ≥ m + K from Fact 3 (ii). Therefore we obtain (17) from
∞∑

n=1

I[Bn ∩ T1(n) = t ∩ F̂1,t ∈ Sq] =
m+K−1∑

n=1

I[Bn ∩ T1(n) = t ∩ F̂1,t ∈ Sq]

≤ dt exp(t q C2)e + K − 1 (by (19))
≤ t exp(t q C2) + K.

Now we obtain from (15), (16) and (17) that

EF

[
N∑

n=1

I[Bn]

]
≤

Q∑
q=1

∞∑
t=1

PF1 [F̂1,t ∈ Sq] (t exp(t q C2) + K)

≤
Q∑

q=1

t′∑
t=1

(t exp(t q C2) + K) +
Q∑

q=1

∞∑
t=t′

exp (−t(q + 1)C2) (t exp(t q C2) + K)

≤ O(1) + Q

∞∑
t=t′

(
t exp (−t C2) + K exp (−2 t C2)

)
= O(1).

Proof of Lemma 17: We obtain from the definition of Cn that
N∑

n=1

I[Cn] ≤
K∑

k=1

∞∑
n=1

I[µ̂∗(n) = µ̂k(n) ∩ |µ̂k(n) − µk| ≥ δ]

≤
K∑

k=1

∞∑
t=1

∞∑
n=1

I[µ̂∗(n) = µ̂k,t ∩ |µ̂k,t − µk| ≥ δ ∩ Tk(n) = t].

Suppose that µ̂∗(n0) = µ̂k,t ∩ Tk(n0) = t occurs at n0-th round for the first time. Then Πk is a current best
at the n0-th round and J ′

n0
(k) holds. Therefore Tk(n) ≥ t + 1 for all n ≥ n0 + K from Fact 3 (ii). As a

result, we obtain
∞∑

n=1

I[µ̂∗(n) = µ̂k,t ∩ |µ̂k,t − µk| ≥ δ ∩ Tk(n) = t]

=
n0+K−1∑

n=n0

I[µ̂∗(n) = µ̂k,t ∩ |µ̂k,t − µk| ≥ δ ∩ Tk(n) = t] ≤ K

and

EF

[
N∑

n=1

I[Cn]

]
≤ K

K∑
k=1

∞∑
t=1

PFk
[ |µ̂k,t − µk| ≥ δ].

By applying Sanov’s Theorem with F := Fk and Γ := {G ∈ A : |E(G) − µk| ≥ δ}, there exists C3 > 0
such that PFk

[ |µ̂k,t − µk| ≥ δ] = O(exp(−t C3)). Now we obtain

EF

[
N∑

n=1

I[Cn]

]
≤ K

K∑
k=1

∞∑
t=1

O(exp(−t C3)) = O(1).
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Figure 1: Experiment for beta distributions.
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Figure 2: Experiment for distributions, which are hard
to distinguish.

6 Experiments
In this section we give experimental results using UCB2, UCB-tuned (Auer et al., 2002) and DMED. In the
implementation of DMED, Dmin(F̂i(n), µ̂∗(n)) has to be computed at each round. We can compute it by
solving the dual problem discussed in Section 4 with e.g. Newton’s method. We omit detailed description
of our implementation of DMED but we note that Dmin can be computed (or approximated) efficiently as
follows:

(1) The optimal solution ν∗(F̂i(n − 1), µ̂i(n − 1)) of the previous round is a good approximation of the
current ν∗(F̂i(n), µ̂i(n)) and the iteration for the optimization halts quickly.

(2) µ̂∗(n) does not deviate significantly from µ∗ for sufficiently large n and Dmin(F, µ) is differentiable in µ

from Theorem 6. Therefore, Dmin(F̂i, µ̂
∗) can be approximated accurately by the linear approximation

on µ̂∗ as long as F̂i is not updated. On the other hand, F̂i is updated only O(log n) times through n
rounds and its effect on the complexity is small.

Each plot is an average over 1,000 different runs. The labels of each figure are as follows. “regret”
denotes

∑
i:µi<µ∗(µ∗ − µi)Ti(n), which is the loss due to choosing suboptimal arms. “Dmin” stands for the

asymptotic bound for a consistent policy,
∑

i:µi<µ∗(µ∗ − µi) log n/Dmin(Fi, µ
∗). The asymptotic slope of

the regret (in the semi-logarithmic plot) of a consistent policy is more than or equal to that of “Dmin”.
Figure 1 is a result for five arms with beta distributions. Beta distribution is an example of a simple contin-

uous distribution on [0, 1]. Parameters for beta distributions are (0.9, 0.1), (7, 3), (0.5, 0.5), (3, 7), (0.1, 0.9)
and expectations are µi = 0.9, 0.7, 0.5, 0.3, 0.1. Figure 2 is a result for two arms with discrete distributions

F1({0}) = 0.99, F1({1}) = 0.01, µ1 = 0.01,

F2({0.008}) = 0.5, F2({0.009}) = 0.5, µ2 = 0.0085.

It is an example of a problem where the optimal arm is hard to distinguish since the suboptimal arm appears
to be optimal at first with high probability. We see from these figures that DMED achieves a regret near the
asymptotic bound.

7 Conclusion
We proposed a policy, DMED, and proved that our policy achieves the asymptotic bound for bounded support
models. We also showed that our policy can be implemented efficiently by a convex optimization technique.

There are many models that Dmin can be computed explicitly, such as normal distribution model with
unknown mean and variance. We expect that our DMED can be extended to these models.

It is also important to consider the finite horizon case and to derive a finite-time bound of DMED. A
finite-time bound may be derived by a non-asymptotic form of Sanov’s Theorem in Exercise 6.2.19 of Dembo
and Zeitouni (1998). However, its naive application makes the whole discussion extremely longer, e.g. the
continuity of Dmin(F, µ) in F has to be of the form “if L(F, F ′) ≤ ε then |Dmin(F, µ) − Dmin(F ′, µ)| ≤
δ(ε, F, µ)” with explicit δ(·, ·, ·). Therefore other approaches may be more realistic.
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Abstract

We consider an online learning setting where at each time step the decision maker has to choose how
to distribute the future loss between k alternatives, and then observes the loss of each alternative,
where the losses are assumed to come from a joint distribution. Motivated by load balancing and job
scheduling, we consider a global cost function (over the losses incurred by each alternative), rather
than a summation of the instantaneous losses as done traditionally in online learning. Specifically,
we consider the global cost functions: (1) the makespan (the maximum over the alternatives) and
(2) the Ld norm (over the alternatives) for d > 1. We design algorithms that guarantee logarithmic
regret for this setting, where the regret is measured with respect to the best static decision (one
selects the same distribution over alternatives at every time step). We also show that the least
loaded machine, a natural algorithm for minimizing the makespan, has a regret of the order of

√
T .

We complement our theoretical findings with supporting experimental results.

1 Introduction

Consider a decision maker that has to repeatedly select between multiple actions, while having uncertainty
regarding the results of its action. This basic setting motivated a large body of research in machine learning, as
well as theoretical computer science, operation research, game theory, control theory and elsewhere. Online
learning in general, and regret minimization in particular, focus on this case. In regret minimization, in each
time step the decision maker has to select between N actions, and only then observes the loss of each action.
The cumulative loss of the decision maker is the sum of its losses at the various time steps. The main goal of
regret minimization is to compare the decision maker’s cumulative loss to the best strategy in a benchmark
class, which many times is simply the set of all actions (i.e., each strategy will play the same action in every
time step). The regret is the difference between the performance of the decision maker and the best strategy in
the benchmark class. The main result is that if we allow the decision maker to play a mixture of the actions,
the decision maker can guarantee to almost match the best single action even in the case that the losses
are selected by an adversary: the regret would be of the order of O(

√
T logN). (See [3] for an excellent

exposition of the topic.)
In this work we are interested in extending the regret minimization framework to handle the case where

the global cost is not simply additive across the time steps as was initiated in [4] for adverserial environments.
The best motivating examples are load balancing and job scheduling. Assume that each action is a machine,
and at each time step we need to map an incoming task to one of the machines, without knowing the cost that
it will introduce on each machine (where the cost can be a function of the available resources on the machine
and the resources the task requires). In such a setting we are interested in the load of each machine, which
is the sum of the costs of the tasks map to it. A natural measure of the imbalance between the machines
(actions) is either the makespan (the maximum load) or the Ld norm of the loads, both widely studied in

∗This research was partially supported by the Israel Science Foundation under contract 890015 and by a Horev Fel-
lowship and the EU under a Reintegration Grant.
†This work was supported in part by a grant from the Ministry of Science grant No. 3-6797, by a grant from the

Israel Science Foundation (grant No. 709/09) and grant No. 2008-321 from the United States-Israel Binational Science
Foundation (BSF), and by the IST Programme of the European Community, under the PASCAL2 Network of Excellence,
IST-2007-216886. This publication reflects the authors’ views only.
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job scheduling.1 This setup, in the adversarial model where losses are assumed to be a deterministic (but
unknown) sequence that is possibly even generated by an adversary, was introduced and studied in [4]. It was
proved that a regret of the order of O(

√
TN) can be guaranteed where T is the time horizon and N is the

number of actions or machines. For the specific case of makespan an improved regret of O(logN
√
T ) can

be achieved.
In our model losses are generated from a joint distribution D. After every stage the decision maker

observes the sampled loss vector and we are interested in both cases of full and partial information (that is:
both cases where D is known and D is not known are of interest). The main result of our work is to show
a logarithmic regret bounds for general cost functions (makespan and Ld norm). Contrary to most bandits
setups, the distribution D can have arbitrary correlations between the losses of various actions, capturing the
idea that some instances are inherently harder or easier. Note that the decision maker observes the entire loss
vector, and thus our work is in the perfect observation model. We emphasize that the regret is never negative,
and in the case that the decision maker global cost is less than the static optimum global cost then the regret
is zero. Namely, the runs in which the decision maker outperforms the best static strategy are regraded as
having zero regret.

To better understand our setting and results, it would be helpful to consider the following example where
there are two actions and the global cost function is the makespan. The distribution D with probability half
returns the loss vector (0, 1), where action 1 has zero loss and action 2 has a loss of one, and with probability
half D returns the loss vector (1, 0). A realization of D of size T , will have T/2 + ∆ losses of type (0, 1)
and T/2 − ∆ losses of type (1, 0). The most natural strategy the decision maker can use is to fix the best
static strategy for D, and use it in all time steps. In this case the best strategy would be (1/2, 1/2), and if
there are T/2 + ∆ losses of type (0, 1) and T/2 − ∆ losses of type (1, 0) then the load on action 1 would
be T/4 + ∆/2, the load on action 2 would be T/4 − ∆/2 and the makespan would be T/4 + |∆|/2. One
can show that the best static strategy in hindsight would have both actions with the same load and both loads
would be at most T/4. Since we expect that |∆| be of the order of

√
T , this would give a regret bound

of Θ(
√
T ). At the other extreme we can use a dynamic strategy that greedily selects at each time step the

action with the lower load. This is the well-known Least Loaded Machine (LLM) strategy. For the analysis
of the LLM we can consider the sum of the loads, since in the LLM strategy the max is just half of the sum
for two machines. Since at each time step the LLM strategy selects deterministically an action, the sum of
loads would be the sum of T Bernoulli random variables, which would be T/2 + ∆. Since with constant
probability we have ∆ = Θ(

√
T ), the regret would be Ω(

√
T ). The starting point of this research is whether

the decision maker can do better than Θ(
√
T ) regret? The main result of this work is an affirmative answer

to this question, showing logarithmic regret bounds.
In this work we consider two stochastic models, in the known distribution model the distribution D is

known to the decision maker, while in the unknown distribution model the decision maker only knows that
there is some distributionD that generates the examples. We consider two global cost function, the makespan,
where the global cost is the maximum load on any action, and Ld norm for d > 1, where the global cost is
an Ld norm of the loads. For both the makespan and the Ld norm we devise algorithms with a regret bound
of O(log T log log T ). In the unknown distribution model we show a regret bound of O(log2 T log log T ).
The above regret bounds depend on knowing the exact number of time steps T in advance, and hold only at
the last time step. We define anytime regret to be the case where we are given a bound T on the number of
time steps and the regret bound has to hold at any time t < T . We present an algorithm with an anytime
regret bound of O(T 1/3). We analyze the LLM strategy, showing that it has an anytime regret upper of
O(
√
T log T ) and lower bound of Ω(

√
T ). We also perform experiments that support our theoretical finding,

and show the benefits of the algorithms that we developed.
It would be instructive to compare our stochastic model and results to other regret minimization models in

stochastic environments under additive loss. First, note that in the known distribution model, the best action is
known, and therefore the optimal algorithm for the additive loss would simply select the best action in every
time step. For the makespan or Ld norm global cost functions, the online algorithm needs to compensate for
the stochastic variations in the loss sequence, even in the known distribution model. Second, in the unknown
distribution model, when the decision maker observes all the losses, i.e., the perfect observation model, the
simple greedy algorithm is optimal. The greedy algorithm for makespan is the LLM, and we show that its re-
gret is at least Ω(

√
T ) and at mostO(

√
T log T ). Finally, most of the work regarding stochastic environments

was devoted to the multi-armed bandit problem, where the key issue is partial observation (which induces the
exploration vs exploitation tradeoff): the decision maker observes only the loss of the action (arm) it chooses.
The multi-armed bandit has been studied since [6] with the main result being logarithmic regret ([5] and [1]),

1We remark that our information model differs from the classical job scheduling model in that we observe the costs
only after we select an action, while in job scheduling you first observe the costs and only then select the action (machine).
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with a constant that is a function of the distribution.
Regret for stochastic environments with memory has been studied in [2, 7] in the context of Markov

decision problems (MDPs). The algorithms developed there obtain logarithmic regret but requires a finite
state space and require that the MDP is either unichain or irreducible. Our problem can also be modelled
as an MDP where the states are the load vector (or their differences) and the costs are additive. The state
space in such a model is, however, continuous2 and is neither unichain nor irreducible. Moreover, efficient
exploration of the state space which is the hallmark of these works is not really relevant to online learning
with global cost that is more focused on taking advantage of the local stochastic deviations from expected
behavior.

2 Model
We consider an online learning setup where a scheduler has a finite set N = {1, . . . , n} of n actions (ma-
chines) to choose from. At each time step t ∈ [1, T ], the scheduler A selects a distribution αAt ∈ ∆(N)
over the set of actions (machines) N , where ∆(N) is the set of distributions over N . Following that a
vector of losses (loads) `t ∈ [0, 1]n is drawn from a fixed distribution D, such that p(i) = E[`t(i)] and
pmin = mini∈N p(i). We consider both cases where D is known and unknown. We stress that D is an
arbitrary distribution over [0, 1]n, and can have arbitrary correlations between the losses of different actions.
We do assume that loss vectors of different time steps are drawn independently from D.

Our goal is to minimize a given global cost function C which is defined over the average loss (or load)
of each action. In order to define this more formally we will need to introduce a few notations. Denote the
average loss (or load) of the online scheduler A on action (machine) i by LAT (i) = 1

T

∑T
t=1 α

A
t (i)`t(i) and

its average loss (or load) vector is LAT = (LAT (1), . . . , LAT (n)).
We now introduce global cost functions. In this work we consider two global cost functions, the makespan,

i.e., C∞(x) = maxi∈N x(i) or the Ld norm, i.e., Cd(x) = (
∑
i∈N x(i)d)1/d for d > 1. This implies that the

objective of the online scheduler A is to minimize either the makespan, i.e., C∞(LAT ) = maxi∈N LAT (i) or
the Ld norm, i.e., Cd(LAT ) = (

∑
i∈N (LAT (i)d)1/d. Note that both the makespan and the Ld norm introduce a

very different optimization problem in contrast to traditional online learning setup (adversarial or stochastic)
where the cost is an additive function, i.e.,

∑n
i=1 L

A
T (i).

In order to define a regret we need to introduce a comparison class. Our comparison class is the class
of static allocations for α ∈ ∆(N). Again, we need to first introduce a few notations. Denote the average
loss (or load) of machine i by LT (i) = 1

T

∑T
t=1 `t(i). The loss vector of a static allocation α ∈ ∆(N) is

LαT = α � LT where x � y = (x(1)y(1), . . . , x(n)y(n)). We define the optimal cost function C∗(LT ) as
the minimum over α ∈ ∆(N) of C(LαT ) and denote by α∗C(LT ) a minimizing α ∈ ∆(N), called the optimal
static allocation, i.e,

C∗(LT ) = min
α∈∆(N)

C(LαT ) = min
α∈∆(N)

C(α� LT ).

For the makespan we denote the optimal cost by C∗∞ and by α∗∞ the optimal static allocation, i.e., we have

C∗∞(LT ) = min
α∈∆(N)

max
i∈N

α(i)LT (i) = max
i∈N

α∗∞(i)LT (i).

Similarly for the Ld-norm we denote the optimal cost by C∗d and by α∗d.
As we mentioned before, We distinguish between two cases. In the known distribution model the sched-

uler A has as an input p = (p(1), . . . , p(n)), the expected loss of each action, while in the unknown distribu-
tion model A has no information (and has to estimate these quantities from data). We stress that in the known
distribution model the online algorithm does not know the realization of the losses but has access only to the
expectation under the distribution D.

The regret of scheduler A at time T after the loss sequence LT is defined as,

RT (LT , A) = max{C(LAT )− C∗(LT ), 0}.

The following claim proved in [4], prescribes the static optimum of makespan and Ld norm explicitly.

Claim 1 ([4]) For the makespan global cost function, we haveα∗∞(LT ) = ( 1/LT (i)Pk
i=1 1/LT (j)

)i∈K andC∗∞(LT ) =

( 1Pk
j=1 1/LT (j)

). For theLd norm we haveC∗d(LT ) = ( 1Pk
j=1 1/L

d
d−1
j

)
d−1
d andα∗d(LT ) = ( 1/LT (i)

d
d−1Pk

j=1 1/LT (j)
d
d−1

)i∈K .

The functions C∞ and Cd are convex and the functions C∗∞ and C∗d are concave.

2Even if one discretizes the MDP, the size will grow with time.
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The following lemma is a standard concentration bound.

Lemma 2 (concentration bound - additive) Let Z1, . . . , Zm be i.i.d. random variable in [0, 1] with mean
µ. Then, for any γ > 0, Pr

[
| 1
m

∑m
i=1 Zi − µ| > γ

]
≤ 2e−2γ2m

3 A Generic Load Balancing Algorithm
In this section we describe a generic load balancing algorithm G with low regret. The algorithm is described
in a parametrized way. Later on we will provide concrete instances of G with regret rates for both of known
and unknown distribution models and for the makespan and the Ld-norm global cost functions.

3.1 Overview
The basic idea of the generic algorithm is to partition the time in to m phases, where the length of phase k is
T k time steps.

In the known distribution model it is tempting to use always the optimal weights w∗ derived from the
expectations, essentially assuming that the realization will exactly match the expectation. In this case the
regret would depend on the difference between the realization and the expectation. Such a strategy will
yield a regret of the order of O(

√
T ), which is the order of the deviations we are likely to observe between

the realization and the expectation of the losses. Our main goal is to have a much lower regret, namely a
logarithmic regret.

The main idea is the following. We start with the base weights derived fromw∗. In phase k we perturb the
base weightsw∗ depending on the deviation betweenw∗ and optk−1, the optimal weights given the realization
in phase k − 1. At first sight it could appear counterintuitive that we can use the optimal allocation optk−1

of phase k − 1 to perturb the weights in phase k. Essentially, the optimal allocations in different phases are
independent, given the known loss distribution D. However, consider the makespan for illustration, then any
suboptimal allocation will have the load of some actions strictly larger than the loads of other actions. This
suggests that for the actions with observed lower loads we can increase the weight, since we are concerned
only with the action whose load is maximal. Essentially, our perturbations attempt to take advantage of those
imbalances in order to improve the performance of the online algorithm and make it match better the optimal
static allocation.

3.2 Generic Load Balancing Algorithm
The generic algorithm G depends on the following parameters: (1) C and C∗, the global cost and the optimal
cost functions, respectively; (2) the number of phases m; (3) the phases’ lengths, (T 1, . . . , Tm) where T k is
the length of phase k; and (4) w∗ ∈ ∆(N) which is a distribution over the actions N .

The generic algorithm G runs in m phases where the length of the k-th phase is T k. Let qk(i) be the
observed average loss of action i at phase k, i.e., qk(i) =

∑
t∈Tk `t(i)/T

k. Let optk(i) be the weight of
action i in the optimal allocation for phase k and let OPT k(i) = optk(i)qk(i)T k be the load on action i in
phase k using the optimal allocation for phase k.

The generic algorithmG has a parameterw∗ ∈ ∆(N) that is the base weight vector (different applications
ofGwill use different base weightsw∗). During phase k the weight of action i the algorithm does not change,
and it equals

wk(i) = w∗(i) +
1

qk−1(i)
OPT k−1(i)−Xk−1(i)

T k
= w∗(i) +

T k−1

T k
(optk−1(i)− w∗(i)), (1)

where Xk−1(i) = w∗(i)qk−1(i)T k−1 if all wk(i)’s are positive. Otherwise we set wk(i) = w∗. First note
that G has all the information to compute the weights. Second, note that Xk−1(i) depends on w∗(i) and not
on wk−1(i). Third, at first sight it might look that wk(i) and w∗(i) can be very far apart, however, in the
analysis we will require that optk−1(i) and w∗(i) are close, and therefore wk(i) and w∗(i) will be close.

3.3 Analysis of the Generic Algorithm
We now turn to deriving the properties of the generic algorithm G that will be used later for specific setups.
Before we start the analysis of the generic algorithm G we would like to state a few properties that will be
essential to our analysis. Some of the properties depend on the realized losses while other depend on the
behaviour of the algorithm G and its parameters.

Definition 3 Phase k of an algorithm is (α, β)-opt-stable if it has the following properties:

P1 For any action i we have that |qk(i)− p(i)| ≤ β/
√
T k and that qk(i) > 0;

P2 For any action i we have that |w∗(i)− optk(i)| = εk(i), where εk(i) < α/
√
T k; and
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P3 The phase lengths satisfies that T k−1 ≤ 4T k.

Let us explain and motivate the above properties. Property P1 is a property of the realization of the losses
in a phase, and it states that the empirical frequency of the losses are close their true expectations. Property P3
depends solely on the parameters ofG and relates the length of adjacent phases, requiring that the length does
not shrink too fast. Property P2 requires the base weights to be close to the optimal weight for all actions. In
this section we assume that all properties hold, while for each instance of G we will need to show that they
indeed hold for most of the phases, with high probability, for the specified parameters.

The first step in the analysis is to show that the weights assigned by the generic algorithm G are indeed
valid. First note that if we had a negative value in Eq. (1) (i.e., w∗(i) + Tk−1

Tk
(optk−1(i)−w∗(i)) < 0), then

we set wk(i) = w∗ and the weights are valid by definition. Claim 4 shows that the weights always sum to 1.
Claim 5 shows that Eq. (1) is non-negative if the phase is (α, β)-opt-stable.

Claim 4 For any phase k we have
∑
i∈N w

k(i) = 1.

Proof: First note that if we set wk = w∗ then the the claim holds. The proof follows from the following
identities.∑

i∈N
wk(i) =

∑
i∈N

[
w∗(i) +

T k−1

T k
(w∗(i) +

∑
i∈N

optk−1(i)− w∗(i))

]

= 1 +
T k−1

T k

∑
i∈N

optk−1(i)− T k−1

T k

∑
i∈N

w∗(i) = 1.

The following claim shows that wk(i) in Eq. (1) are non-negative and close to the base weights w∗(i).

Claim 5 If phase k is (α, β)-opt-stable and Tk > ( 4α
w∗(i) )2 then for every action i, we have

|wk(i)− w∗(i)| ≤ T k−1

T k
α√
T k
≤ 4α√

T k
.

Proof: First note that if we set wk(i) = w∗(i) then the the claim holds. Otherwise

wk(i) ≥ w∗(i)− T k−1

T k
|optk−1

i − w∗(i)| ≥ w∗(i)− T k−1

T k
α√
T k
≥ 0,

where the first inequality uses P2 and the last uses property P3 that T k−1/T k ≤ 4 and the fact that Tk >
(4α/w∗(i))2 .

The most important observation is made in the next lemma that considers the increase in the load due to
the generic algorithm G. It shows that the increase in the load of action i in phase k can be decomposed to
three parts. The first is the optimal cost of action i in the previous phase, phase k − 1. The second is the
difference between the load of the base weight in phase k and k − 1. The third can be viewed as a constant,
and will contribute at the end to the regret.

Lemma 6 Suppose that phase k is (α, β)-opt-stable. Then the increase for action i in the phase is bounded
by

OPT k−1(i) +Xk(i)−Xk−1(i) + αβ

(
1 +

√
T k−1

T k

)
.

Proof: The increase of the load of the online algorithm for action i during phase k is wk(i)qk(i)T k. Now,

wk(i)qk(i)T k = w∗(i)qk(i)T k +
qk(i)
qk−1(i)

(OPT k−1(i)−Xk−1(i))

= Xk(i) + (1 +
qk(i)− qk−1(i)

qk−1(i)
)(OPT k−1(i)−Xk−1(i))

= Xk(i) +OPT k−1(i)−Xk−1(i) +
qk(i)− qk−1(i)

qk−1(i)
(OPT k−1(i)−Xk−1(i))

= Xk(i) +OPT k−1(i)−Xk−1(i) + (qk(i)− qk−1(i))(optk−1
i − w∗(i))T k−1

= Xk(i) +OPT k−1(i)−Xk−1(i) + (qk(i)− qk−1(i))εk−1(i)T k−1

≤ Xk(i) +OPT k−1(i)−Xk−1(i) + (β/
√
T k + β/

√
T k−1)(α/

√
T k−1)T k−1

= Xk(i) +OPT k−1(i)−Xk−1(i) + αβ + αβ

√
T k−1

T k
,
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where the inequality is due to properties P1 and P2.

The following theorem summarizes the performance of the generic algorithm G, showing that its regret
depends on two parts, the regret of the base weights in the last phase and a term which in linear in the number
of phases.

Theorem 7 Assume that C∗ is concave, C is convex, and C(a, . . . , a) = a for a > 0. Suppose that
phases 1 . . .m′ of the generic algorithm G with its parameters are (α, β)-opt-stable and that Tm

′ ≥
maxi(4α/w∗(i))2. Then its cost in these phases is bounded by

OPT +Rm
′
+ 3m′αβ,

where OPT is the optimal cost, Rm
′

= maxiRm
′
(i) and Rm

′
(i) = max{Xm′(i) − OPTm′(i), 0}. Fur-

thermore, if m′ < m then its cost is bounded by

OPT + 3m′αβ +
m∑

k=m′

Rk.

Proof: Since C is convex, for any Z > 0

C

(
m∑
k=1

OPT k(1) + Z, . . . ,

m∑
k=1

OPT k(N) + Z

)
≤

m∑
k=1

C(OPT k(1), . . . , OPT k(N)) + Z .

Let Lk be the losses in phase k. By definition, C(OPT k(1), . . . , OPT k(N)) = C∗(Lk). Since C∗ is
concave

m∑
k=1

C∗(Lk) ≤ C∗(
m∑
k=1

Lk) = OPT.

We first deal with regret in the first m′ rounds. By Lemma 6, the increase of load at the kth phase is
bounded by

Xk(i) +OPT k−1(i)−Xk−1(i) + αβ(1 +

√
T k−1

T k
) ≤ Xk(i) +OPT k−1(i)−Xk−1(i) + 3αβ.

Summing over the different phases we obtain that the loss of G on action i is at most

[
m′∑
k=1

OPT k(i) + 3αβ] +Xm′(i)−OPTm
′
(i).

Applying the cost C to this we bound the cost on the G online algorithm by

C(LGT ) ≤ OPT +Rm
′
+ 3m′αβ.

For the last m−m′ phases since C is convex and C∗ is concave the total regret is bounded by the sum of the
regrets over the phases completing the proof of the second part of the theorem.

We can summarize the theorem in the following corollary, for the cases that are of interest to us, the
makespan and the Ld norm.

Corollary 8 Assuming that the first m′ phases of the generic algorithm G with its parameters are (α, β)-
opt-stable with probability at least 1− δ and Tm

′ ≥ maxi(4α/w∗(i))2 for the makespan and Ld norm, then
its regret is bounded by

3mαβ +
m∑

k=m′

T k,

with probability at least 1− δ.

4 Makespan
In this section we consider the makespan as the global cost function. We first analyze the case of where the
distribution is known and then turn to the case of where the distribution is unknown.
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4.1 Known distribution
To apply the generic algorithm G we need to specify its parameters: (1) the number of phases and their
duration, and (2) the base weights.

• Set w∗(i) = 1/p(i)
P , where P =

∑n
i=1 1/p(i), i.e., the optimal allocation for p.

• Set the number of phases m = log(T ).

• Set the length of phase k to be T k = T/2k for k ∈ [1,m].

Let Gkn∞ be the generic algorithm G with the above parameters and the cost functions makespan.
The analysis divides the phases into two sets: we show that the first log T/A phases, where A will

be defined shortly, are (α, β)-opt-stable with high probability; for the remaining phases we show that∑m
k=log T/A T

k is small; the result would follow from Corollary 8.

Let A = dmax{4β2/p2
min,maxi 4α2/w∗(i)2}e, β =

√
(1/2) ln(1/η), and α = 6β/(Np4

min), where
η is a parameter that controls the success probability. Since for the first log T/A phases we have T k >
4α2/w∗(i)2, once we show that with high probability all the first log T/A phases are (α, β)-opt-stable, we
establish the following theorem.

Theorem 9 Suppose we run Algorithm Gkn∞ with parameters α = 6β/(Np4
min), β =

√
(1/2) ln(1/η), and

η = δ/Nm. Then with probability at least 1− δ the regret is bounded by

O

(
log(T ) log

(
N log T

δ

)
1

Np4
min

+
1

p10
min

log
(
N log T

δ

))
= O(log T log log T ).

The next sequence of lemmas show that the first phases ofGkn∞ is (α, β)-opt-stable, where the last lemma
bounds the contribution fro the last phases.

The simplest claim is showing that P3 holds, which is immediate from the definition of T k.

Claim 10 Gkn∞ satisfies property P3.

The additive concentration bound (Lemma 2) together with the fact that T k ≥ max{4β2/p2
min, 4α

2/w∗(i)2}
for the first log T/A phases imply that for these phases property P1 is satisfied with high probability.

Claim 11 With probability 1 −mNη, for any phase k < log T/A and action i we have, |qk(i) − p(i)| <
β/
√
T k and qk(i) > 0 where β =

√
(1/2) ln(1/η).

The following lemma proves that property P2 is satisfied.

Lemma 12 With probability 1−Nmη, for any phase k < log T/A and action i,

|w∗(i)− optk(i)| ≤ α√
T k

,

where β =
√

1
2 ln(1/η) and α = 6β/(Np4

min).

Proof: First, ∣∣∣∣ 1
p(i)
− 1
qk(i)

∣∣∣∣ =
|p(i)− qk(i)|
p(i)qk(i)

≤ β√
T k

2
(p(i))2

,

where we used the bound on |p(i) − qk(i)| from Claim 11 and the fact that for the first log T/A phases we
have T k ≥ max{4β2/p2

min, 4α
2/w∗(i)2} implies that qk(i) ≥ p(i)− β/

√
T k ≥ p(i)/2 for these phases.

Second, we show that,∣∣P −Qk∣∣ =

∣∣∣∣∣
n∑
i=1

1
p(i)
− 1
qk(i)

∣∣∣∣∣ ≤
n∑
i=1

∣∣∣∣ 1
p(i)
− 1
qk(i)

∣∣∣∣ ≤ N β√
T k

2
p2

min

.

Since 1 ≤ 1/p(i) ≤ 1/pmin, we have thatN ≤ P ≤ N/pmin. By Claim 11 we have |p(i)−qk(i)| ≤ β/
√
T k,

and this implies that,∣∣p(i)P − qk(i)Qk
∣∣ ≤ P ∣∣p(i)− qk(i)

∣∣+ qk(i)
∣∣P −Qk∣∣ ≤ N

pmin

β√
T k

+N
β√
T k

2
p2

min

≤ 3Nβ

p2
min

√
T k

.

86



Since P ≥ N and similarly Qk ≥ N , this implies that,∣∣w∗i − optk(i)
∣∣ =

∣∣∣∣1/p(i)P
− 1/qk(i)

Qk

∣∣∣∣ =
|p(i)P − qk(i)Qk|
p(i)Pqk(i)Qk

≤ 2(|p(i)P − qk(i)Qk|)
p2

minN
2

=
6β

Np4
min

√
T k

,

which establishes the lemma.

To establish the number of time steps in phases which are shorter than A, we need to lower bound w∗(i).

Lemma 13 For any action i we have w∗(i) ≥ pmin/N , which implies that the total time at the last logA
phases is bounded by O(A) = O(log(1/η)/p10

min).

Proof: Since the length of the phases decays by factor of two, it is enough to bound
A = max{4β2/p2

min, 4α
2/w∗(i)2}. Consider action i. We have that P =

∑n
j=1 1/p(j) ≥ 1/p(i) +

(1/pmin)(N − 1). Thus,

w∗(i) =
1/p(i)
P

≥ 1/p(i)
1/p(i) + (N − 1)/pmin

=
pmin

p(i)pmin + p(i)(N − 1)
≥ pmin

N
.

Substituting the value of α we obtain the lemma.

Proof of Theorem 9 : By Lemma 12 and Claims 11, 10 show the first log T/A phases are (α, β)-opt-stable.
Lemma 13 bounds the length of the other phases. Applying Corollary 8 proves the theorem.

4.2 Unknown Distribution
The algorithm for an unknown distribution relies heavily on the application developed in the previous sub-
section for the known distribution model. We partition the time T to log(T/2) blocks, where the r-th block,
Br, has 2r time steps. In block r we run Gr∞, the generic algorithm G with the following parameters:

• Set wr,∗(i) using the observed probabilities in block Br−1 as follows. Let optr−1(i) be the optimal
weight for action i in block Br−1, then wr,∗(i) = optr−1(i). (For r = 1 set w1,∗ arbitrarily, note that
there are only two time steps in B1.)

• In block Br we have m = r phases, where the duration of phase k is T r,k = |Br|/2k = 2r−k.

We now need to show that the algorithm Gr∞ is (α, β)-opt-stable. We start by showing that property P3
is satisfied.

Claim 14 With probability 1−mNη we have that |wr,∗(i)−optr,k(i)| ≤ 2α/
√
T r,k, where β =

√
1
2 ln(1/η)

and α = 6β/(Np4
min).

Proof: Let w∗(i) = (1/p(i))/P . Then,

|wr,∗(i)− optr,k(i)| = |optr−1(i)− optr,k(i)| ≤ |optr−1(i)− w∗(i)|+ |w∗(i)− optr,k(i)|

≤ α

2(r−1)/2
+

α

2(r−k)/2
≤ 2α√

T r,k
,

where we used Lemma 12 twice for the second inequality.

Remember that A = max{4β2/p2
min, 4α

2/w∗(i)2}. Thus for all blocks with Br < A, our regret bounds
will be trivial. A more subtle point is that A is actually Ar as w∗(i) changes between the different blocks. So
we still need to compute Ar for any block to be able to compute the regret bounds. Note that by definition
P1 and P3 are satisfied by the same reasoning as in the previous section,

Lemma 15 If Br−1 > 4β2/p2
min, then wr,∗ ≥ pmin/(2N) and Ar = O(log 1/η/p10

min) with probability at
least 1− η.

Proof: Let q̂ be the average loss at the r−1 block. SinceBr−1 > 4β2/p2
min, then q̂r(i) ≥ p(i)−β/

√
Br−1 ≥

p(i)/2. Thus 1/q̂r(i) ≤ pmin/2. Thus

1/q̂r(i)∑
j∈N 1/q̂r(j)

≥ 1∑
j∈N 1/q̂r(j)

≥ pmin

2N
.

The second of the part of the proof is identical to the proof in Lemma 13

In each block Br, Theorem 9 bounds the regret of Gr∞, and we derive the following,
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Lemma 16 With probability 1− rNη, the regret during Br is at most

O

(
log(|Br|) log(1/η)

Np4
min

+
1

p10
min

log(1/η)
)
.

Summing over the m blocks we obtain the following theorem.

Theorem 17 With probability 1− δ, the regret is at most

O

(
log2 T log

(
N log T

δ

)
1

p4
min

+
log T
p10

min

log
(
N log T

δ

))
= O(log2 T log log T ).

5 Ld norm
As in the makespan case (in the previous section) we apply the generic algorithm to the Ld norm global cost
function. Note that the generic algorithm behaves differently for different global cost functions, even if the
same parameters are used since OPT is different. From the implementation perspective, the only difference is
that we set the base distribution w∗ to the optimal one with respect to the Ld norm rather than the makespan.
From the proof perspective, the key difference between the makespan and theLd norm is the proof of property
P2. Also, since the optimal allocation is different, we will have a different value of α. (The proofs of this
section are omitted.)

5.1 Known distribution
In this section we define Gknd , which will have a low regret for the Ld norm in the known distribution model.
Let Gknd be the generic algorithm G the following parameters.

• Set w∗(i) = (p(i))−λ/Pλ, where λ = d/(d − 1) and Pλ =
∑n
i=1(p(i))−λ, i.e., the optimal allocation

for p under the Ld norm.

• Set the number of phases m = log(T ) and the length of phase k to be T k = T/2k for k ∈ [1,m].

The following lemma will be used to show property P2, and is similar to Lemma 12 for the makespan.

Lemma 18 With probability 1−Nmη, for any action i and phase k < log(T/A) and A = (4β2/p2
min), we

have ∣∣w∗(i)− optk(i)
∣∣ ≤ α√

T k
,

where β =
√

0.5 ln(1/η), and α = O
(
d
√

ln(1/η)/
(

(d− 1)Np4d/(d−1)
min

))
.

To apply Corollary 8 we need to bound the sum of the lengths of phases of size less thanA, which is done
in the following lemma.

Lemma 19 For any action i we have w∗(i) ≥ pmin/N , which implies that the total time in the last logA
phases is bounded by O(A) = O

(
d2 log(1/η)/

(
(d− 1)2p

10d/(d−1)
min

))
.

Similarly to the previous section we obtain the following.

Theorem 20 Algorithm Gknd , with probability at least 1− δ, has regret at most

O

(
log(T ) log

(
N log T

δ

)
d

(d− 1)Np4d/(d−1)
min

+
d2

(d− 1)2p
10d/(d−1)
min

log
(
N log T

δ

))
= O(log T log log T ).

5.2 Unknown distribution
Similar to the makespan case, algorithm Gund , for Ld norm in the unknown distribution model, runs in blocks
of increasing size, where in each block uses as the base distribution the optimal allocation for the previous
block. The proofs are similar to the makespan case, where the differences are due to the different global cost
function.

For algorithm Gund , we partition the time first to log(T/2) blocks, where the r-th block, Br, has 2r time
steps. In block r we run Grd, the generic algorithm G with the following parameters:

• Set wr,∗(i) using the observed probabilities in block Br−1 as follows. Let optr−1(i) be the optimal
weight for action i in block Br−1, then wr,∗(i) = optr−1(i). (For r = 1 set w1,∗ arbitrarily, note that
there are only two time steps in B1.)
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• In block Br we have m = r phases, where the duration of phase k is T r,k = |Br|/2k = 2r−k.

Similarly to the previous section we obtain the following.

Theorem 21 Algorithm Gund , with probability 1− δ, has regret at most

O

(
log2 T log

(
N log T

δ

)
d

(d− 1)p4d/(d−1)
min

+
d2 log T

(d− 1)2p
10d/(d−1)
min

log
(
N log T

δ

))
= O(log2 T log log T ).

6 Any Time Regret
The regret algorithms presented so are optimizing the regret at the termination time T . It is not hard to see that
the previous algorithms have regret of O(

√
T ) at the initial part of the sequence. In this section we develop

algorithms that have low regret at any time t ∈ [1, T ], and develop a different application of the generic
algorithm which guarantees at an anytime a regret of O(T 1/3). We start from the case of known distribution
and move to the case of an unknown one. (The proofs are omitted.)

6.1 Known Distribution
For the known distribution model we will describe two algorithms: Gany∞ for the makespan and Ganyd for the
Ld norm. We set the parameters of the algorithms as follows:

• For Gany∞ set w∗(i) = (p(i))−1/P , where P =
∑n
i=1(p(i))−1. For Ganyd set w∗(i) = (p(i))−λ/Pλ ,

where Pλ =
∑n
i=1(p(i))−λ and λ = d/(d− 1).

• For both Gany∞ and Ganyd set m = T 1/3, the number of phases, and let the phase length be constant:
T k = T 2/3 for k ∈ [1,m].

The main result of this section is the following theorem.

Theorem 22 Given the expected loss p(i) of each action i, then with probability at least 1 − Nmη, the
regret of Gany∞ and Ganyd at any t ∈ [1, T ] is O(α∞T 1/3) and O(αdT 1/3), respectively, where α∞ =

O
(√

log(1/η)/(Np4
min)

)
, αd = O

(
d
√

ln(1/η)/
(

(d− 1)Np4d/(d−1)
min

))
, and β = O(

√
log(1/η)).

When all the phases have identical length, using Eq. (1), we observe that wk(i) is simply optk−1(i).

Observation 23 If T k = T k−1 then wk(i) = optk−1(i).

One advantage of the above observation is that we are guarantee that wk is a distribution. Therefore, we
can drop the requirement that the phase length is at least 4α2/w∗(i)2, which comes from Claim 5.

Claim 24 Suppose that all phases have identical length T k > 4β2/p2
min. Then for β = O(

√
log(1/η)), for

the makespanα∞ = O(
√

log(1/η)/(Np4
min)), for theLd normαd = O

(
d
√

ln(1/η)/
(

(d− 1)Np4d/(d−1)
min

))
,

then with probability at least 1− ηNm all phases are (α, β)-opt-stable.

The next lemma bounds the regret from the start of phase k until some time t in phase k, compared to the
optimal allocation for this time period.

Lemma 25 Suppose that the global cost C is convex and C((a, . . . , a)) = a and that an algorithm is (α, β)-
opt-stable algorithm at stages 1, 2, . . . , k. Then, at any time t during phase k, the regret is at mostO(αT 1/3).

Proof: By Observation 23 during phase k we use weight wk(i) = optk−1(i) for action i. Since all phases
are (α, β)-opt-stable then this weight is close to the base weight, namely, we have that |wk(i) − w∗(i)| =
|optk−1(i)−w∗(i)| ≤ α/

√
T k. Let τ = 1 +

∑k−1
j=1 T

j be the start of phase k. Let optk,t(i) be the weight of
the optimal allocation for the period starting at phase k and until time t, i.e., during time steps [τ, t]. Similarly
to the proofs of Claims 12 and 18, just for t− τ time steps (rather than Tk) we get that |w∗(i)− optk,t(i)| ≤
α/
√
t− τ . Combining the two and using the fact that T k = T k−1 we obtain that|wk(i) − optk,t(i)| ≤

2α/
√
t− τ . The difference between weight of the algorithm and the optimal allocation during [τ, t] in phase

k, for any action i is at most 2α(t − τ)/
√
t− τ ≤ 2α

√
T 2/3. Since the global cost C is convex and

C((a, . . . , a)) = a the regret is at most O(αT 1/3).
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We are now ready to bound the anytime regret.
Proof of Theorem 22 : Consider a time t in phase k. By Claim 24, the algorithm is (α, β)-opt-stable.
Applying Lemma 25 to phase k − 1 we have that we have that Rk−1 = O(α∞T 1/3) for makespan and
Rk−1 = O(αdT 1/3) for Ld norm. By Lemma 25 the regret in the period [τ, t] is at most O(α∞T 1/3) for
makespan and O(αdt1/3) for Ld norm. We apply Corollary 8 to derive the theorem.3

6.2 Unknown distribution
Similar to the case before, of the makespan and Ld norm, we use blocks of increasing size to (implicitly)
estimate the expectation of the losses. Formally, we have m = log(T/2) blocks, where the r-th block, Br,
has 2r time steps. In each block we run our Gany∞ and Ganyd algorithms. The parameters are:

• Set wr,∗(i) to be the optimal allocation in the previous block, i.e., optk−1(i), where in Gany∞ we use the
makespan and in Ganyd we use the Ld norm.

• In block Br we have m = |Br|1/3 phases, where the duration of phase k is T r,k = |Br|2/3.

LetA = 4β2/p2
min. For all blocks which are smaller thanA3/2 we simply bound their regret by their time.

For the longer blocks, we show that in each block all phases are (α, β)-opt-stable (with high probability).
Therefore, we obtain the following theorem.

Theorem 26 With probability 1−NηT 1/3, at anytime the regret is at most O(T 1/3α+ log3/2 1/η/p3
min) =

O(T 1/3), where α = O((
√

log(1/η))/(Np4
min)) for makespan and α = O(

d
q

ln 1
η

(d−1)Np
4d/(d−1)
min

) for Ld norm.

7 Least Loaded Machine Scheduler
The Least load machine (LLM) scheduler is an intuitive and frequently used algorithm to minimize the
makespan. The LLM scheduler puts all the weight of the next job on the least loaded machine machine, or, in
our terminology, LLM selects the action with the least observed losses. The LLM scheduler is geared towards
minimizing the makespan, and we will show that the regret of the LLM scheduler is at most O(

√
T log T ) in

the anytime model. On the other hand, the LLM scheduler suffers a regret which is Ω(
√
T ), a property that

is common to all deterministic schedulers that allocate all the weight to a single machine.
In our setting all losses are bounded by 1 so at any time t the LLM scheduler will satisfy that the difference

between the load of different actions is bounded by 1.

Lemma 27 At time t ∈ [t, T ] the difference between the load of any two actions is bounded by 1, i.e.,
|LLLMt (i)− LLLMt (j)| ≤ 1 for any t ∈ [1, T ] and i ∈ N .

We prove in the following sequence of lemmas that the frequency of LLM using machine i is proportional
to 1/p(i). The first step is to define when the realized loses are “representative” of the expectations. A
realization of the losses is a matrix M of size n × T , where the entry (i, k) is distributed according to `(i)
(using D). We can view the generation process of the losses as follows. The k-th time LLM uses action i we
return the loss in entry M [i, k]. One can see that this gives an identical distribution to D.

Definition 28 A realization matrixM is representative if for any i and k we have
∣∣∣∑k

j=1M [i, j]/k − p(i)
∣∣∣ ≤√

(log 1/η)/(2k).

Using a simple concentration bound (Lemma 2) we have the following lemma.

Lemma 29 With probability 1− 2NTη the realization matrix M is representative.

We are interested in cases where the loads on the actions is almost balanced. This definition will formally
specify when an action selection vector results in an almost balanced loads.

Definition 30 An integer vector (k(1), . . . k(N)) is ` balanced for a matrix M if
∑N
i=1 k(i) = T and for

every i we have
∑k(i)
j=1M [i, j] ∈ [`, `+ 1].

The following lemma shows that if the loads are almost balanced then the makespan is close to T/P .

3Technically, the bound of the minimum phase required in Corollary 8 does not hold, but using Observation 23 we
can derive an identical statement with an almost identical proof.
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Lemma 31 Given a representative matrix M and an ` balanced vector (k(1), . . . , k(N)), we have that
|`− T/P | = O(

√
T log(1/η)).

Proof: Since M is representative, for each i we have that |
∑k(i)
j=1M [i, j]− p(i)k(i)| ≤

√
0.5k(i) log(1/η).

Since (k(1), . . . , k(N)) is ` balanced we have that |` − p(i)k(i)| ≤
√

0.5k(i) log 1/η) + 1. Let k(i) =
`/p(i) + λ(i)/p(i), where we have shown that |λ(i)| ≤

√
0.5k(i) log(1/η) + 1. Summing over all actions,

we obtain that T =
∑N
i=1 k(i) = `P + Λ, where Λ =

∑N
i=1 λ(i)/p(i). Therefore T/P − ` = Λ/P =∑N

i=1 λ(i)(1/p(i))/P . The lemma follows since Λ/P < maxi λ(i) ≤
√

0.5T log(1/η) + 1.

The next claim states that the LLM scheduler produces balanced vectors, given its selection of actions.

Claim 32 Let k(i) be the number of times LLM used action i. Then (k(1), . . . , k(N)) is ` balanced, where
the makespan of the LLM in in the range [`, `+ 1].

In order to bound the regret, we need to lower bound the performance of the optimal allocation.

Lemma 33 Let p̂(i) be the empirical loss of action i, and p̂(i) = p(i)(1 + δ(i)). Then the optimal makespan
is at least (1 − δ)T/P , where δ = maxi |δ(i)|. In addition, with probability 1 − Nη, we have that δ <√

(log(1/η))/T .

Proof: The optimal makespan has value T/P̂ where P̂ =
∑N
i=1 1/p̂(i). By our assumption p̂(i) > p(i)(1−

δ), and the lemma follows.

We bounded, with high probability, the deviation of the LLM scheduler above the T/P bound (Lemma
31), and the deviation of the optimal below the T/P bound (Lemma 33). Therefore, we derived the following
theorem.

Theorem 34 With probability 1− 3NTη we have that the regret is at most O(
√

(log(1/η))/T ).

The LLM scheduler, as any deterministic scheduler that always assign at each time step all the weight
to a single action, is bound to have a regret of the order of at least

√
T with some constant probability. As

stated in the the introduction, for any such scheduler, the sum of the loads is a sum of T IID Bernoulli random
variables, and with constant probability some load would be of the order of

√
T above the expectation. We

summarize the result in the following theorem.

Theorem 35 The expected regret of any deterministic scheduler (including LLM) is Ω(
√
T ), for N = 2.

The influence of the number of actions N is interesting. Somewhat counterintuitively, the regret may
drop with the increase in N . To slightly de-mystify this, note that when T = N the makespan of LLM and
also the uniform weights is bounded by 1, and therefore the regret is at most 1.

8 Simulations
We demonstrate the algorithms introduced in this paper by running several toy simulations with makespan
cost. Of particular interest in the simulations below is the behaviour of the algorithms in different phases the
way their variance changes.

We compare the algorithms we developed to several standard algorithms and show considerable gain for
all variants of the generic algorithm. As in the theoretical part of the paper we consider two settings, the case
where the distributionD is known and where the distributionD is unknown. In the known distribution model
we compare the optimal allocation given the distribution to several applications of our algorithm, namely
both anytime and the logarithmic regret. In the unknown distribution we compare our algorithms to the least
loaded machine algorithm, and the algorithm presented by [4] that is suited to an adversarial setting. We use
our algorithm for unknown distribution, with a small modification where in the first phase instead of using
random weights we run least loaded machine algorithm (to avoid random guess in the beginning).

Table 1 summarizes the behavior of the different algorithms that were run 200 times where each run
consisted of 107 time steps. The table demonstrates a few interesting points. First, all of variants of our
algorithm enjoy lower regret, and even more striking they enjoy a very low standard deviation compared to
the more intuitive algorithms (LLM and the a-priori optimal). This suggests that one can regard our method
as a method for a variance reduction. The first two rows of Table 1 present the case where the distribution
D is a product distribution, where each mean value is chosen uniform at random at [0, 1]. The last two rows
present a case where the distribution D is correlated and in particular is the multinomial distribution.
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Gkn∞ Gun∞ Gkn∞ (anytime) LLM A-priori Optimal Adverserial
Uniform D
Average regret 1.6380 6.502 10.3375 20.3173 75.3860 169.3265
STD regret 1.2586 6.0256 5.5891 31.9719 39.8705 104.1208
Multinomial D
Average regret 1.8890 5.4982 8.1424 12.0866 47.0461 160.6345
Std regret 1.3544 4.5942 4.0043 20.5329 24.9777 98.2591

Table 1: Regret of different algorithms for uniform and correlated D.

Figure 1: A demonstration of the regret growth of the
algorithm when the termination time is known. The
number of machines is 8 and each point is an average
of 100 runs. In each time D is a product distribution
where the expectation of each machine is chosen at
uniform at [0, 1].

Figure 2: A demonstration of the regret the differ-
ent algorithms as the time grows. All algorithms
know the termination time which is 108 and each
point is an average of 20 runs.

As can be observed, the results of for correlated and product D are similar demonstrating the ability of
our algorithm to work even when there are correlations. Figure 1 depicts the regret of each algorithm as a
function of the termination time T . 4 As expected, the algorithm which balances at the end outperforms
the other algorithms significantly. Another point of interest is that although the adversarial and the LLM
algorithm have both O(

√
T ) regret, the LLM algorithm outperform the adversarial one.

Figure 2 provides some intuition on how the logarithmic regret algorithmGun∞ behaves during each phase.
Namely, the regret grows at the beginning of a phase and then starts to decrease until it is very small. In
addition, it demonstrates the advantage of the anytime algorithm over other algorithms.
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Abstract

We develop an online algorithm called Component Hedge for learning structured concept classes
when the loss of a structured concept sums over its components. Example classes include paths
through a graph (composed of edges) and partial permutations (composed of assignments). The
algorithm maintains a parameter vector with one non-negative weight per component, which always
lies in the convex hull of the structured concept class. The algorithm predicts by decomposing
the current parameter vector into a convex combination of concepts and choosing one of those
concepts at random. The parameters are updated by first performing a multiplicative update and
then projecting back into the convex hull. We show that Component Hedge has optimal regret
bounds for a large variety of structured concept classes.

1 Introduction
We develop online learning algorithms for structured concepts that are composed of components. For exam-
ple, sets are composed of elements, permutations of individual assignments, trees have edges as components,
etc. The number of components d is considered small, but the number of structured concepts D built from
the components is typically exponential in d.

Our algorithms address the following online prediction problem. In each trial the algorithm first produces
a concept from the structured class by choosing a concept probabilistically based on its current parameters.
It then observes the loss of each concept. Finally, it prepares for the next trial by updating its parameters by
incorporating the losses. Since the algorithm “hedges” by choosing the structured concept probabilistically,
we analyze the expected loss incurred in each trial. The goal is to develop algorithms with small regret,
which is the total expected loss of the online algorithm minus the loss of the best structured concept in the
class chosen in hindsight.

We now make a key simplifying assumption on the loss: We assume that the loss of a structured concept
in each trial is always the sum of the losses of its components and that the component losses always have
range [0, 1]. Thus if the concepts are k-element sets chosen out of n elements, then in each trial each element
is assigned a loss in [0, 1] and the loss of any particular k-set is simply the sum of the losses of its elements.
Similarly for trees, a loss in [0, 1] is assigned to each edge of the graph and the loss of a tree is the sum of the
losses of its edges.

We will show that with this simplifying assumption we still have rich learning problems that address a
variety of new settings. We give efficient algorithms (i.e. polynomial in d) that serve as an entry point for
considering more complex losses in the future.

Perhaps the simplest approach to learning structured concept classes online is Follow the Perturbed Leader
(FPL) algorithm [KV05]. FPL adds a random perturbation to the cumulative loss of each individual com-
ponent, and then plays the structured concept with minimal perturbed loss. FPL is widely applicable, since
efficient combinatorial optimization algorithms exist for a broad range of concept classes. Unfortunately, the
loss range of the structured concepts enters into the regret bounds that we can prove for FPL. For example,
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grant IIS-0917397.
†Supported by NSF grant IIS-0917397
‡Part of this research was performed while visiting UCSC. Supported by Academy of Finland grant 118653 (Algodan)
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for k-sets the loss range is [0, k] because each set contains k elements, for permutations the loss range is [0, n]
because each permutation is composed of n assignments, etc.

A second simple approach for learning well compared to the best structured concept is to run the Hedge
algorithm of [FS97] with one weight per structured concept. The original algorithm was developed for the so-
called expert setting, which in the context of this paper corresponds to learning with sets of size one. To apply
this algorithm to our setting, the experts are chosen as the structured concepts in the class we are trying to
learn. In this paper we call this algorithm Expanded Hedge (EH). It maintains its uncertainty as a probability
distribution over all structured concepts and the weight WC of concept C is proportional to exp(−η`(C)),
where `(C) is the total loss of concept C incurred so far and η is a non-negative learning rate.

There are two problems with EH. First, there are exponentially many weights to maintain. However
our simplifying assumption assures that `(C) is a sum over the losses of the component of C. This implies
that WC is proportional to a product over the components of the structured concept C and this fact can be
exploited to still achieve efficient algorithms in some cases. More importantly however, like for FPL, the loss
range of the structured concepts usually enters into the best regret bounds that we can prove.

Learning with structured concepts has also been dealt with recently in the bandit domain [CBL09]. How-
ever all of this work is based on EH and contains the additional range factors.

Our contribution Our new method, called Component Hedge (CH), avoids the additional range factors
altogether. Each structured concept C is identified with its incidence vector in {0, 1}d indicating which
components are used. The parameter space of CH is simply the convex hull of all concepts in the class C to
be learned. Thus, whereas EH maintains a weight for each structured concept, CH only maintains a weight
for each component. The current parameter vector represents CH’s first-order “uncertainty” about the quality
of each concept. The value of parameter i represents the usage of component i in the next prediction. The
usages of the components are updated in each trial by incorporating the current losses, and if the usage vector
leaves the hull, then it is projected back via a relative entropy projection. The key trick to make this projection
efficient is to find a representation of the convex hull of the concepts as a convex polytope with a number of
facets that is polynomial in d. We give many applications where this is possible.

We clearly champion the Component Hedge algorithm in this paper because we can prove regret bounds
for this algorithm that are tight within constant factors for many structured concept classes. Also it is trivial
to enhance CH with a variety of “share updates” that make it robust in the case when the best comparator
changes over time [HW98, BW02].

Two instances of CH have appeared before even though this name was not used: learning with k-sets
[WK08] and learning with permutations [HW09]. The same polytope we use for paths was also employed in
[AHR08] for developing online algorithms for the bandit setting. They avoid the projection step altogether by
exploiting a barrier function. The contribution of this paper is to clearly formulate the general methodology
of the Component Hedge algorithm and give many more involved combinatorial examples. In the case of
permutations we also show how the method can be used to learn truncated permutations. Also in earlier work
[TW03] it was pointed out that the Expanded Hedge algorithm can be simulated efficiently in many cases. In
particular, the concept class of paths in a directed graph was introduced. However, good bounds were only
achieved in very special cases. In this paper we show that CH essentially is optimal for the path problem.

Paper outline We give the basic setup for the structured prediction task, introduce CH and prove its gen-
eral regret bound in Section 2. We then turn to a list of applications in Section 3: vanilla experts, k-sets,
permutations, paths, undirected and directed spanning trees. For each structured concept class we discuss
efficient implementation of CH, and derive expected regret bounds for this algorithm. Then in Section 4 we
provide matching lower bounds for all examples, showing that the regret of CH is optimal within a constant
factor. In Section 5 we compare CH to the existing algorithms EH and FPL. We observe that the best general
regret bounds for each algorithm exceed that of CH by a significant range factor. We show that the bounds
for these other algorithms can be improved to closely match those of CH whenever the the so-called unit rule
holds for the algorithms and class. This means any loss vector ` ∈ [0, 1]d can be split into up to d scaled unit
loss vectors `i ei and processing these in separate trials always incurs at least as much loss. Unfortunately,
for most pairing of the algorithms CH and FPL with the classes we consider in this paper, we have explicit
counter examples to the unit rule. Finally, Section 6 concludes with a list of open problems.

2 Component Hedge
Prediction task We consider sequential prediction [HKW98, CBL06] over a structured concept class [KV05,
CBL09]. Fix a set of concepts C ⊆ {0, 1}d of size D = |C|. For example C could consist of the incidence
vectors of subsets of k out of n elements (then D =

(
n
k

)
and d = n), or the adjacency matrices of undirected

spanning trees on n elements (then D = (n− 1)n−2 and d = n(n− 1)/2).
Our online learning protocol proceeds in trials. At trial t, we have to produce a single concept Ct ∈ C.

Then a loss vector `t ∈ [0, 1]d is revealed, and we incur loss given by the dot product Ct · `t. Although each

94



Table 1: Example structured concept classes

Case U D d

Experts 1 n n

k-Sets k
(
n
k

)
n

Permutations n n! n2

Paths (from source via ≤ n intermediate nodes to sink) n+ 1 n! · e− o(1) n(n+ 1) + 1

Undirected spanning trees n− 1 nn−2 n(n− 1)/2

Directed spanning trees w. fixed root n− 1 nn−2 (n− 1)2

component suffers loss at most 1, a concept may suffer loss up to U := maxC∈C |C|. We allow randomized
algorithms. Thus the expected loss of of the algorithm at trial t is E[Ct] · `t, where the expectation is over
the internal randomization of the algorithm. Our goal is to minimize our (expected) regret after T trials

T∑
t=1

E[Ct] · `t −min
C∈C

T∑
t=1

C · `t.

That is, the difference between our cumulative expected loss and the loss of the best concept in hindsight.
Note that the ith component of E[Ct] is the probability that component i is “used in” concept Ct. We

therefore call E[Ct] the usage vector. This vector becomes the internal parameter of our algorithm. The set
of all usages vector is the convex hull of the concepts.

2.1 Component Hedge
Two instances of CH appeared before in the literature [HW09, WK08]. Here we give the algorithm in its
general form, and prove a general regret bound. The algorithm CH maintains its uncertainty about the best
structured concept as a usage vector wt in conv(C) ⊆ [0, 1]d, the convex hull of the concepts C. The initial
weightw0 is typically the usage of the uniform distribution on concepts. CH predicts in trial t by decomposing
wt−1 into a convex combination1 of the concepts C, then sampling Ct according to its weight in that convex
combination. The expected loss of CH is thus wt−1 · `t. The updated weight wt is obtained by trading off the
relative entropy with the linear loss:

wt := argmin
w∈conv(C)

4(w‖wt−1) + ηw · `t, where 4(w‖v) =
∑
i∈[d]

(
wi ln

wi
vi

+ vi − wi
)
.

It is easy to see that this update can be split into two steps: an unconstrained update followed by relative
entropy projection into the convex hull:

ŵt := argmin
w∈Rd

4(w‖wt−1) + ηw · `t

wt := argmin
w∈conv(C)

4(w‖ŵt).

It is easy to see that ŵti = wt−1i e−η`
t
i , that is, the old weights are simply scaled down by the exponentiated

losses. The result of the relative entropy projection wt unfortunately does not have a closed form expression.
For CH to be efficiently implementable, the hull has to be captured by polynomial in d many constraints.

This will allow us to efficiently decompose any point in the hull as a convex combination of at most d + 1
concepts. The trickier part is to efficiently implement the projection step. For this purpose one can use
generic convex optimization routines. For example this was done in the context of implementing the entropy
regularized boosting algorithm [WGV08]. We proceed on a case by case basis and often develop iterative
algorithms that locally enforce constraints and do multiple passes over all constraints. See Table 1 for a list
of structured concept classes we consider in this paper.

2.2 Regret bounds
As in [HW09], the analysis is split into two steps paralleling the two update steps. Essentially the unnormal-
ized update step already gives the regret bound and the projection step does not hurt. For any usage vector

1This decomposition usually is far from unique.
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wt−1 ∈ conv(C), loss vector `t ∈ {0, 1}d and any comparator concept C,

(1− e−η)wt−1 · `t ≤ 4(C‖wt−1)−4(C‖ŵt) + η C · `t︸ ︷︷ ︸∑
i w

t−1
i (1−e−η`

t
i )

≤ 4(C‖wt−1)−4(C‖wt) + η C · `t

The first inequality is obtained by bounding the exponential using the inequality 1 − e−ηx ≥ (1 − e−η)x
for x ∈ [0, 1] as done in [LW94]. The second inequality is an application of the Generalized Pythagorean
Theorem [HW01], using the fact that wt is a Bregman projection of ŵt into the convex set conv(C), which
contains C. We now sum over trials and obtain, abbreviating `1 + . . .+ `T to `≤T ,

(1− e−η)
T∑
t=1

wt−1 · `t ≤ 4(C‖w0)−4(C‖wT ) + ηC · `≤T .

Recall thatwt−1·`t equals the expected loss E[Ct]·`t of CH in trial t. Also, relative entropies are nonnegative,
so we may drop the second one, giving us the following bound on the total loss of the algorithm:

T∑
t=1

E[Ct] · `t ≤ 4(C‖w0) + ηC · `≤T

1− e−η
.

To proceed we have to expand the prior w0. We consider the symmetric balanced case, i.e. where the concept
class is invariant under permutation of the components, and every concept uses exactly U components. Paths
may have different lengths and hence do not satisfy these requirements. All other examples from Table 1 do.
In this balanced symmetric case we takew0 to be the usage of the uniform distribution on concepts, satisfying
w0
i = U/d for each component i. It follows that 4(C‖w0) = U ln(d/U), because any comparator C is a

0/1 vector that also uses exactly U components.
Let `? denote minC∈C C · `≤T , the loss of the best concept in hindsight. Then by choosing η =√

2U ln(d/U)
`? as a function of `?, we obtain the following general expected regret bound for CH:

E [`CH]− `? ≤
√
2`?U ln(d/U) + U ln(d/U). (1)

The best-known general regret bounds for Expanded Hedge [FS97] and Follow the Perturbed Leader [HP05]
are:

E [`EH]− `? ≤
√
2`?U lnD + U lnD (2)

E [`FPL]− `? ≤
√
4`?Ud ln d+ 3Ud ln d (3)

where D = |C|. Specific values for U , D and d in each application are listed in Table 1. We remark that if
only an upper bound ˆ̀≥ `? is available, then we can still tune η as a function of ˆ̀ to achieve these bounds
with ˆ̀under the square roots instead of `?. Moreover, standard heuristics can be used to tune η “online” when
no good upper bound on `? is given, which increase the expected regret bounds by at most a constant factor.
(e.g. [CBFH+97, HP05]).

We are not concerned with small multiplicative constants (e.g. 2 vs 4), but the gap between (1) and both
(2) and (3) is significant. To compare, observe that lnD is of order U ln d in all our applications. Thus, the
EH regret bound is worse by a factor

√
U , while FPL is worse by a bigger factor

√
d. Moreover, in Section 4

we show for the covered examples that our expected regret bound (1) for CH is optimal up to constant scaling.
Some concept classes have special structure that can be exploited to improve the regret bounds of FPL

and EH down to that of CH. We consider one such property, called the unit rule in Section 5.

3 Applications
We consider the following structured concept classes: experts, k-sets, truncated permutations, source-sink
paths, undirected and directed spanning trees. In each case we discuss implementation of CH and obtain a
regret bound. Matching lower bounds are presented in Section 4.

3.1 Experts
The most basic example is the vanilla expert setting. In this case, the set of “structured” concepts equals the
set of n standard basis vectors in Rn. We will see that in this case Component Hedge see gracefully degrades
to the original Hedge algorithm. First, the parameter spaces of both algorithms coincide since the convex
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hull of the basis vectors equals the probability simplex. Second, the predictions coincide since a vector in the
probability simplex decomposes uniquely into a convex combination of basis vectors. Third, the parameter
updates are the same, since the relative entropy projection of a non-negative weight vector into the probability
simplex amounts to re-normalizing to unity.

In fact on this simple task CH, EH and FPL each coincide with Hedge. For CH and EH this is obvious.
For FPL this fact was observed in [KW05, Kal05] by using log-of-exponential perturbations instead of ex-
ponential perturbations used in the original paper [KV05]. Thus, we obtain following regret bound for all
algorithms:

E [`CH]− `? ≤
√
2`? lnn+ lnn.

3.2 k-sets

The problem of learning with sets of k out of n elements was introduced in [WK08] and applied to online
Principal Component Analysis (PCA). Their algorithm is an instance of CH, and we review it here. The
convex hull of k-sets equals the set of w ∈ Rn+ that satisfy the following constraints:

wi ≤ 1 for all i ∈ [n] and
n∑
i=1

wi = k. (4)

Relative entropy projection into this polytope amounts to re-normalizing the sum to k, followed by redis-
tributing the mass of the components that exceed 1 over the remaining components so that their ratios are
preserved. Finally, each element of the convex hull of sets can be greedily decomposed into a convex combi-
nation of n k-sets by iteratively removing sets in the convex combination while always setting the coefficient
of the new set as high as possible. Both projection and decomposition take O(n2) time [WK08].

Regret bound By (1), the regret of CH on sets is

E [`CH]− `? ≤
√
2`?k ln(n/k) + k ln(n/k).

We give a matching lower bound in Section 4.

3.3 Truncated permutations

The second instantiation of CH that has appeared is the problem of permutations [HW09]. Here we consider
a slightly generalized task: truncated permutations of k out of n elements. A truncated permutation fills k
slots with distinct elements from a pool of n elements. Equivalently, a truncated permutation is a maximal
matching in the complete bipartite graph between [k] and [n]. Truncated permutations extend k-sets by
linearly ordering the selected k elements.

Results to search queries are usually in the form of a truncated permutation; of all n existing documents,
only the top k are displayed in order of decreasing relevance. Predicting with truncated permutations is thus
a model for learning the best search result.

Matching polytope We write i ← j for the component that assigns item j to slot i. Now the convex hull
of truncated permutations consists of all w ∈ Rk×n+ (see [Sch03, Corollary 18.1b]) satisfying the following k
row (left) and n column (right) constraints:∑

j∈[n]

wi←j = 1 for all i ∈ [k] and
∑
i∈[k]

wi←j ≤ 1 for all j ∈ [n]. (5)

Relative entropy projection The relative entropy projection of ŵ into the convex hull of truncated permu-
tations w = argminw s.t. (5)4(w‖ŵ) has no closed form solution. By convex duality, wi←j = ŵi←je

−λi−µj ,
where λi and µj are the Lagrange multipliers associated to the row and column constraints (5), which mini-
mize ∑

i∈[k] ; j∈[n]

ŵi←je
−λi−µj +

∑
i∈[k]

λi +
∑
j∈[n]

µj .

under the constraint that µ ≥ 0. This dual problem, which has 2n variables and n constraints, may be opti-
mized directly using numerical convex optimization software. Another approach is to iteratively reestablish
each violated constraint beginning from µ = 0 and λ = 0. In full permutation case (k = n), this process is
called Sinkhorn balancing. It is known to converge to the optimum, see [HW09] for an overview of efficiency
and convergence results of this iterative method.
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Decomposition Our decomposition algorithm for truncated permutations interpolates between the decom-
position algorithms used for k-sets and full permutations [WK08, HW09]. Assume w lies in the hull of
truncated permutations, i.e. the constraints (5) are satisfied. To measure progress, we define a score s(w) as
the number of zero components in w plus the number of column constraints that are satisfied with equality.

Our algorithm maintains a truncated permutation C that satisfies the following invariant: C hits all
columns whose constraints are satisfied with equality by w, and avoids all components with weight zero
in w. Such a C can be established in time O(k2n) using augmenting path methods (see [Sch03, Theorem
16.3]).

Let l be the minimum weight of the components used by C, and let h be the maximum column sum of
the columns untouched by C. So by construction h < 1. If l = 1 then w = C and we are done. Otherwise,
let α = min{l, 1− h}, and set w′ = (w − αC)/(1− α). It is easy to see that the vector w′ satisfies (5), and
that s(w′) > s(w). It is no longer the case that C satisfies the invariant w.r.t. w′. However, we may compute
a weight k matching C ′ that satisfies the invariant by executing at most s(w′)− s(w) many augmenting path
computations, which each cost O(kn) time. We describe how this works below. After that we simply recurse
on w′ and C ′. The resulting convex combination is αC plus (1− α) times the result of the recursion.

The number of iterations is bounded by the score s(w), which is at most kn. Thus, the total running time
is O(k2n2).

We now show that C can be improved to C ′ satisfying the invariant by a single augmenting path compu-
tation per violated requirement. Let C∗ be a size k matching satisfying the invariant for w′. Such a matching
always exists because w′ lies in the matching polytope. Let j ∈ [n] be a problematic column, i.e. either C
matches j to a row i but w′i←j = 0, or C does not match j while its column constraint is tight for w′. From
j, alternately follow edges from C and C∗. Since C and C∗ are both matchings, this can not lead to a cycle,
so it must lead to a path. Since all rows are matched, this path must end at a column. The path can not end
at a column whose constraint is forced in both C and C∗. So it must end at a column whose constraint is not
tight. Incorporating this augmenting path into C corrects the violated requirement without creating any new
violations.

Regret bound By (1), the regret of CH on truncated permutations is

E [`CH]− `? ≤
√
2`?k lnn+ k lnn.

We obtain a matching lower bound in Section 4.

3.4 Paths
The online shortest path problem was considered by [TW03, KV05], and by various researchers in the bandit
setting (see e.g. [CBL09, AHR08] and references therein). We develop expected regret bounds for CH for
the “full information setting”. Our regret bound improves the bounds given in [TW03, KV05] which have
the additional range factors in the square root.

Consider the a directed graph on the set of nodes [n] ∪ {s, t}. Each trial we have to play a walk from the
source node s to the sink node t. As always, our loss is given by the sum of the losses of the edges that our
walk traverses. Since each edge loss is nonnegative (it lies in [0, 1] by assumption) it is never beneficial to
visit a node more than once. Thus w.l.o.g. we restrict attention to paths.

As an example, consider the full directed graph on [n] ∪ {s, t}. Paths of length k + 1 through this graph
use k distinct internal nodes in order, and therefore are in 1-1 correspondence with truncated permutations of
size k. Paths thus generalize truncated permutations by allowing all lengths simultaneously.

Unit flow polytope To implement CH efficiently, we have to succinctly describe the convex hull of paths.
Unfortunately, we can not hope to write down linear constraints that capture the convex hull exactly. For
if we could, then we could solve the longest path problem, which is known to be NP complete, by linear
programming. Fortunately, there is a slight relaxation of the convex hull of paths that is describable by few
constraints, namely the polytope of so-called unit flows. Even better, we will see that this relaxation does not
hurt predictive performance at all.

A unit flow w ∈ Rd+ is described by the following constraints:

1 =
∑

j∈[n]+t

ws,j and
∑

j∈[n]+s

wj,i =
∑

j∈[n]+t

wi,j for each i ∈ [n]. (6)

We think of wi,j as describing the amount of flow from node i to j. The left constraint ensures that one unit
of flow leaves the source s. The right constraint enforces that at internal nodes inflow equals outflow. It easily
follows that one unit of flow enters the sink t.

The unit flow polytope is not bounded, but it has the right “bottom”. Namely, the vertices of the unit flow
polytope are the s-t paths, see [Sch03, Section 10.3]. The unit flow polytope is the Minkowski sum of the
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convex hull of s-t paths and the conic hull (nonnegative linear combinations) of directed cycles. Moreover,
each unit flow can be decomposed into at most d paths and cycles, by iterative greedy removal of a directed
cycle or paths containing the edge of least non-zero weight in time O(n4).

Since the unit flow polytope does have polynomially many constraints, we may efficiently run CH on
it. Each round, it produces a flow. We then decompose this flow into paths and cycles, and throw away the
cycles. We then sample a path from the remaining convex combination of paths.

Relative entropy projection To run CH, we have to compute the relative entropy projection of an arbitrary
vector in Rd+ into the flow polytope (6). This is a convex optimization problem in d ≈ n2 variables with
constraints. By Slater’s constraint condition, we have strong duality. So equivalently, we may solve the
concave dual problem, which only has n+ 1 variables and is unconstrained. The dual problem can therefore
be solved efficiently by numerical convex optimization software.

Say we want to find w, the relative entropy projection of ŵ into the flow polytope. Since each edge
appears in exactly two constraints with opposite sign, the solution has the form wi,j = ŵi,je

λi−λj for all
i, j ∈ [n] ∪ {s, t}, where λi is the Lagrange multiplier associated with node i (and λt = 0). The vector λ
maximizes

λs −
∑

i6=t ; j 6=s

ŵi,je
λi−λj

That is, we have to find a single scale factor eλi for each node i, such that scaling each edge weight by the
ratio of the factors of its nodes reestablishes the flow constraints (6).

We propose the following iterative algorithm. Start with all λi equal to zero. Then pick a violated
constraint, say at node i, and reestablish it by changing its associated λi. That is, we execute either

eλs ← 1∑
j∈[n]+t ŵs,je

−λj
or eλi ←

√ ∑
j∈[n]+s

ŵj,ieλj
/ ∑
j∈[n]+t

ŵi,je−λj for some i ∈ [n].

In our experiments, this algorithm converges quickly. We leave its thorough analysis as an open problem.

Decomposition Find any s-t path with non-zero weights on all edges in time O(n2). Subtract that path,
scaled by its minimum edge weight. This creates a new zero, maintains flow balance, and reduces the source’s
outflow. After at most n2 iterations the source has outflow zero. Discard the remaining conic combination of
directed cycles. The total running time is O(n4).

Regret bound for the complete directed graph Since paths have different lengths, we aim for a regret
bound that depends on the length of the comparator path. To get such a bound, we need a prior usage vector
w0 that favors shorter paths. To this end, consider the distribution P that distributes weight 2−k uniformly
over all paths of length k ≤ n, and assigns weight 2−n to the paths of length n + 1. This assures that P is
normalized to 1. Since there are n!/(n − k + 1)! paths of length k, the probability of a path P of length k
equals

P(P = P ) =
(n− k + 1)!

2kn!
if k ≤ n and P(P = P ) =

1

2nn!
if k = n+ 1.

Also, the expected path length E[P · 1] is 2 − 2−n. We now set w0 := E[P], i.e. the usage of P. There are
three kinds of edges. We have one direct edge s, t, we have 2n boundary edges of the form s, j or i, t, and we
have n(n− 1) internal edges of the type i, j. A simple computation shows that their usages are (for n ≥ 3)

w0
s,t =

1

2
, w0

s,j , w
0
i,t =

1

2n
, w0

i,j =
1− 2−(n−1)

2n(n− 1)
.

Let P be a comparator path of length k. If k = 1 then4(P‖w0) = ln 2. Otherwise, still for n ≥ 3,

4(P‖w0) = − 2 ln
1

2n
− (k − 2) ln

1− 2−(n−1)

2n(n− 1)
+ E[P · 1]− k

= (k − 2) ln
(
2n(n− 1)

)
+ 2 ln 2n+ (k − 2) ln

(
1 +

2−(n−1)

1− 2−(n−1)

)
− 2−n − (k − 2)

≤ k ln 2− (k − 2)
1− 2−n+2

1− 2−n+1
+ 2(k − 1) lnn ≤ 2k lnn.

By tuning η as before, the regret of CH with prior w0 w.r.t. a comparator path of length k is

E [`CH]− `? ≤
√
4`?k lnn+ 2k lnn.

This new regret bound improves known results in two ways. First, it does not have the range factors, which
in the case of paths usually turn out to be the diameter of the graph, i.e. the length of the longest s-t path.
Second, some previous bounds only hold for acyclic graphs. Our bound holds for the complete graph.
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Figure 1: EH is not CH on paths
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Regret bound for an arbitrary graph We discussed the full graph as a first application of CH. For
prediction on an arbitrary graphs we simply design a prior w0 with zero usage on all edges that are not
present in the graph. We could either use graph-specific knowledge, or we could use our old w0, disable
edges by setting their usage to zero, and project back into the flow polytope. Relative entropy projection
never revives zeroed edges. The regret bound now obviously depends on the graph via the prior usage w0.

3.4.1 Expanded Hedge and Component Hedge are different on paths
An efficient dynamic programming-based algorithm for EH was presented in [TW03]. This algorithm keeps
one weight per edge, just like CH. These weights are updated using the weight pushing algorithm. This
algorithm performs relative entropy projection on full distributions on paths. Like CH, weight pushing finds
a weight of each node, and scales each edge weight by the ratio of its nodes weights. We now show that CH
and EH are different on graphs. Consider the graph shown in Figure 1a. Say we use prior P with weight 1/2
on both paths (a, b, c) and (a, c). Then the usages are (1/2, 1/2, 1/2) for (ab, bc, ac). Now multiply edge ab
by 1/3 (that is, we give it loss ln 3), and both other edges by 1 (we give them loss zero). The resulting usages
of EH and CH are displayed in Table 1b. The usages are different, and hence, so are the expected losses. In
most cases (as shown e.g. in Table 1c), the updated usages of CH are irrational while the prior usages and the
scale factors of the update are rational. On the other hand, EH always maintains rationality.

3.5 Spanning trees
Whereas paths connect the source to the sink, spanning trees connect every node to every other node. Undi-
rected spanning trees are often used in network-level communication protocols. For example, the Spanning
Tree Protocol (IEEE 802.1D) is used by mesh networks of Ethernet switches to agree on a single undirected
spanning tree, and thus eliminate loops by disabling redundant links. Directed spanning trees are used for
asymmetric communication, for example for streaming multimedia from a central server to all connected
clients. In either case, the cost of a spanning tree is the sum of the costs of its edges.

Learning spanning trees was pioneered by [KGCC07] for learning dependency parse trees. They discuss
efficient methods for parameter estimation under log-loss and hinge loss. [CBL09] derive a regret bound for
undirected spanning trees in the bandit setting. We instantiate CH to both directed and undirected trees and
give the first regret bound without the range factor.

Three kinds of directed spanning trees are common. Spanning trees with a fixed root, spanning trees with
a single arbitrary root, and arborescences (or spanning forests) with multiple roots. We focus on a fixed root.
The other two models can be simulated by a fixed root. To simulate arborescences, add a dummy as the fixed
root, and put the root selection cost of node i along the path from the dummy to i. Furthermore, to force a
single root, increase the cost of all edges leaving the dummy by a fixed huge amount.

Tree polytope To characterize the convex hull of directed trees on n nodes with fixed root 1, we use a trick
based on flows from [MW95] that makes use of auxiliary variables fki,j :

0 ≤ fki,j ≤ wi,j ,
∑
i,j

wi,j = n− 1,
∑
j 6=i

fkj,i︸ ︷︷ ︸
k-flow into i

+ 1i=1︸︷︷︸
k-source at 1

=
∑
j 6=i

fki,j︸ ︷︷ ︸
k-flow out of i

+ 1i=k︸︷︷︸
k-sink at k

, for i, j, k ∈ [n].

(7)

The intuition is as follows. A tree has n− 1 edges, and every node can be reached from the root. We enforce
this by having a separate flow channel fk for each non-root node k. We place a unit of flow into this channel
at the root. Each intermediate node satisfies flow equilibrium. Finally, the target node k consumes the unit of
flow destined for it. The first equation ensures that each edge’s usage is sufficient for the flow that traverses
that edge. The undirected tree polytope is constructed based on the directed tree polytope by considering
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the above wi,j as auxiliary variables, an imposing the constraint wi,j + wj,i = vi,j . Now v are the weights
sought.

Relative entropy projection The relative entropy projection of ŵ into the convex hull of directed spanning
trees w = argminw s.t. (7)4(w‖ŵ) has no closed form solution. By convex duality, the solution satisfies

wi,j = (n− 1)
ŵi,je

∑
k 6=1 max{0,µkj−µ

k
i }∑

i,j 6=i ŵi,je
∑
k 6=1 max{0,µkj−µki }

, fkij =

{
wi,j if µkj > µki ,
0 if µkj < µki ,

where µki , the Lagrange multipliers associated to the flow balance constraints, maximize∑
k 6=1

(
µkk − µk1

)
− (n− 1) ln

(∑
i,j 6=i

ŵi,je
∑
k 6=1 max{0,µkj−µ

k
i }
)
.

This unconstrained concave maximization problem in ≈ n2 variables seems easier than the primal problem,
which has ≈ n3 variables and constraints. Note however that the objective is not differentiable everywhere.
Alternatively, we may again proceed by iteratively reestablishing constraints locally, starting from some initial
assignment to the dual variables µ. This approach is analogous to Sinkhorn balancing.

Decomposition We have no special-purpose tree decomposition algorithm, and therefore resort to a general
decomposition algorithm for convex polytopes that is based on linear programming. Let w be in the tree
polytope. Choose an arbitrary vertex C (i.e. a spanning tree) by minimizing a linear objective over the
current polytope. Now use linear programming to find the furthest point w′ in the polytope on the ray from
C through w. At least one more inequality constraint is tight for w′. Thus w′ lies in a convex polytope of
at least one dimension lower. Add this inequality constraint as an equality constraint, recursively decompose
w′, and express w as a convex combination of C and the decomposition of w′. The recursion bottoms out at
a vertex (i.e. a spanning tree) and the total number of iterations is at most d.

Regret bound By (1), the regret E [`CH]− `? of CH on undirected and directed spanning trees is at most√
2`?(n− 1) ln(n/2) + (n− 1) ln(n/2)

√
2`?(n− 1) ln(n− 1) + (n− 1) ln(n− 1)

We provide matching lower bounds in Section 4.

4 Lower bounds
Whereas it is easy to get some regret bounds with additional range factors, we show that CH is essentially
optimal in all our applications. We leverage the following lower bound for the vanilla expert case:

Theorem 1 There are positive constants c1 and c2 s.t. any online algorithm for q experts with loss range
[0, U ] can be forced to have expected regret at least

c1
√
`?U ln q + c2 ln q. (8)

This type of bound was recently proven in [AWY]. Note that c1 and c2 are independent of the number of
experts, the range of the losses and the algorithm. Earlier versions of the above lower bound using many quan-
tifier and limit arguments are given in [CBFH+97, HW09]. We now prove lower bounds for our structured
concept classes by embedding the original expert problem into each class and applying the above theorem.
This type of reduction was pioneered in [HW09] for permutations.

The general reduction works as follows. We identify q structured concepts C1, . . . , Cq in the concept
class C ⊆ {0, 1}d to be learned that partition the d components. Now assume we have an online algorithm for
learning class C. From this we construct an algorithm for learning with q experts with loss range [0, U ]. Let
` ∈ [0, U ]q denote the loss vector for the expert setting. From this we construct a loss vector L ∈ [0, 1]d for
learning C: L :=

∑q
i=

`i
UCi. That is, we spread the loss of expert i, evenly among the U many components

used by concept Ci. Second, we transform the predictions as follows. Say our algorithm for learning C
predicts with any structured concept C ∈ C. Then we play expert i with probability Ci · C/U . The expected
loss of the expert algorithm now equals the transformed loss of the algorithm for learning concepts in C:

E[`i] =

q∑
i=1

Ci · C
U

`i = C ·
q∑
i=1

`i
U
Ci = C · L

This also means that the expected loss of the expert algorithm equals the expected loss of the algorithm for
learning the structured class. This implies that the expected regret of the algorithm for learning C is at least
the expected regret of the expert algorithm. The lower bound (8) for the regret in the expert setting is thus
also a lower bound for the regret of the structured prediction task.
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k-sets We assume that k divides n. Then we can partition [d] with n/k sets, where set i uses components
(i − 1)k + 1, . . . , ik. The resulting lower bound has leading factor

√
k ln n

k , matching the upper bound for
CH within constant factors.

Truncated permutations We can partition the n2 assignments into n full permutations. For example, the n
cyclic shifts of the identity permutation achieve this. The truncations to length k of those n permutations par-
tition the kn components in the truncated case. The lower bound with leading factor

√
k lnn again matches

the regret bound of CH within constant factors.

Spanning trees As observed in [Gus83], the complete undirected graph has (n− 1)/2 edge-disjoint span-
ning trees. Hence we get a lower bound with leading factor

√
(n− 1) ln((n− 1)/2). Each undirected

spanning tree can be made directed by fixing a root. So there are at least as many disjoint directed spanning
trees with a fixed root. In both cases we match the regret of CH within a constant factor.

Paths Consider the directed graph on [n] ∪ s, t that has n/k disjoint s-t paths of length k + 1 connecting
source to sink. By construction, we can embed n/k experts with loss range [0, k] into this graph, so the
regret has leading factor at least

√
k log(n/k). This graph is a subgraph of the complete directed graph

s → Kn → t. Moreover, nature can force the algorithm to essentially play on the disjoint path graph by
giving all edges outside it sheer infinite loss in a sheer infinite number of trials. This shows that the regret
w.r.t. a comparator path of length k through the full graph has leading factor at least

√
k log(n/k).

A lower bound on the regret for arbitrary graphs is difficult to obtain since various interesting problems
can be encoded as path problems. For example, the expert problem where each expert has a different loss
range can be encoded into a graph that has a disjoint path of each length 1, 2, . . . n. The optimal algorithm
for such expert problems was recently found in [AW], but its regret has no closed form expression. It might
be that the regret of CH is tight within constant factors for all graphs, but this question remains open.

5 Comparison to other algorithms
CH is a new member of an existing ecosystem. Other algorithms for structured prediction are EH[LW94] and
FPL [KV05]. We now compare them.

Efficiency FPL can be readily applied efficiently to our examples of structured concept classes: k-sets take
O(n) per trial using variants of median-finding, truncated permutations take O(k2n) per trial using the Hun-
garian method for minimum weight bipartite matching, paths take O(n2) per trial using Dijkstra’s shortest
path algorithm and spanning trees take O(n2) per trial using either Prim’s algorithm or Chu–Liu/Edmonds’s
algorithm for finding a minimum weight spanning tree.

EH can be efficiently implemented for k-sets [WK08] and paths [TW03] using dynamic programming,
and for spanning trees [KGCC07] using the Matrix-Tree Theorem by Kirchoff (undirected) and Tutte (di-
rected). An approximate implementation based on MCMC sampling could be built for permutations based
upon [JSV04].

In most cases FPL and EH are faster than CH. This may be partly due to the novelty of CH and the lack
of special-purpose algorithms for it. On the other hand, FPL solves a linear minimization problem, which is
intuitively simpler than minimizing a convex relative entropy.

5.1 Improved regret bounds with the unit rule
On the other hand, we saw in Section 2.2 that the general regret bound for CH (1) improves the guarantees
of EH (1) by a factor

√
U and those of FPL (3) by a larger factor

√
d. It is an open question whether these

factors are real or simply an artifact of the bounding technique (see Section 6). We now give an example of a
property of structured concept classes that makes these range factors vanish.

We say that a prediction algorithm has the unit rule on a given structured concept class C if its worst-
case performance is achieved when in each trial only a single expert has nonzero loss. Without changing the
prediction algorithm, the unit rule immediately improves its regret bound by reducing the effective loss range
of each concept from [0, U ] to [0, 1]. The improved regret bounds are (c.f. (2) and (3))

E [`EH] ≤ `? +
√
2`? lnD + lnD (9)

E [`FPL] ≤ `? +
√
4`?U ln d+ 3U ln d (10)

The unit rules for EH and FPL on experts have been observed before [KV05, AWY08]. We reprove them
here for completeness. The unit rule holds for both EH and FPL on sets, and for EH on undirected trees. It
fails for EH and FPL on permutations, and for EH on directed trees.

We prove the unit rule for EH on sets here, and counter it for EH on directed trees. Proofs and counterex-
amples for the other cases are similar, and omitted for lack of space.
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5.1.1 Unit rule holds for EH on k-sets
Fix an expert i, and let j be an arbitrary other expert. We claim that if we hand out loss to i, then the usage of
j increases. For each k-set S, we denote the prior weight of S by WS . We abbreviate

Zi :=
∑
S:i∈S

WS , Z¬i :=
∑
S:i6∈S

WS , Zj :=
∑
S:j∈S

WS , Z¬j :=
∑
S:j 6∈S

WS ,

Zi∧j :=
∑

S:i∈S,j∈S
WS , Z¬i∧j :=

∑
S:i6∈S,j∈S

WS , Zi∧¬j :=
∑

S:i∈S,j 6∈S

WS , Z¬i∧¬j :=
∑

S:i6∈S,j 6∈S

WS .

Theorem 2 Assume that the prior weights have product structure, i.e. WS ∝
∏
i∈S wi. Then

Zj = P(j ∈ S1) ≤ P(j ∈ S2|`1 = δi) =
Zi∧je

−η + Z¬i∧j
Zie−η + Z¬i

.

Proof: With some rewriting, the claim is equivalent to

ZiZj ≥ Zi∧j and also Zi∧¬jZ¬i∧j ≥ Zi∧jZ¬i∧¬j

Define
R(n, k) :=

∑
S⊆[n]
|S|=k

∏
i∈S

wi.

We now show that R(n, k + 1)R(n,m) ≥ R(n, k)R(n,m+ 1) for all 0 ≤ k < m < n. The proof proceeds
by induction on n. The case n = 0 is trivial. Now suppose that the claim holds up to n. We need to show it
for n+ 1. For n > 0, we have

R(n, k) = 1k>0wnR(n− 1, k − 1) + 1k<nR(n− 1, k). (11)

Suppose that the induction hypothesis holds up to n. We must show that for all 0 ≤ k < m < n+ 1

R(n+ 1, k + 1)R(n+ 1,m) ≥ R(n+ 1, k)R(n+ 1,m+ 1).

By (11), this is equivalent to

(wn+1R(n, k) + 1k<nR(n, k + 1)) (1m>0wn+1R(n,m− 1) + 1m≤nR(n,m)) ≥
(1k>0wn+1R(n, k − 1) + 1k≤nR(n, k)) (1m+1>0wn+1R(n,m) + 1m<nR(n,m+ 1))

Now we expand, and use 0 ≤ k < m < n+ 1 to eliminate indicators. It remains to show
(wn+1)

2R(n, k)R(n,m− 1) +

wn+1R(n, k)R(n,m) +

wn+1R(n, k + 1)R(n,m− 1) +

R(n, k + 1)R(n,m)

 ≥


1k>0(wn+1)

2R(n, k − 1)R(n,m) +

1k>01m<nwn+1R(n, k − 1)R(n,m+ 1) +

wn+1R(n, k)R(n,m) +

1m<nR(n, k)R(n,m+ 1)


We now show that this inequality holds line-wise. Lines with active indicators trivially hold. If k − 1 = m,
the second line holds with equality. Otherwise, and for the other lines we use the induction hypothesis.

5.1.2 Unit rule fails for EH on directed trees
The unit rule is violated for EH on directed trees. Consider this graph (left) and its three directed spanning
trees (right):
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Note that we may always restrict attention to a given graph G by assigning zero prior weight to all spanning
trees of the full graph that use edges outside G. Now if we put a unit of loss on edge e, the usage of f
decreases, and vice versa, contradicting the unit rule. Call the prior weights on directed trees WA,WB ,WC .
Then the usages satisfy

WA +WB = P(e ∈ T1) ≥ P(e ∈ T2|`1 = δf ) =
WA +WBe

−η

WA +WBe−η +WC
,

WB = P(f ∈ T1) ≥ P(f ∈ T2|`1 = δe) =
WBe

−η

WAe−η +WBe−η +WC
.
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6 Conclusion
We developed the Component Hedge algorithm for online prediction over structured expert classes. The
advantage of CH is that it has a general regret bound without the range factors that typically plague EH and
FPL. We considered several example concept classes, and showed that the lower bound is matched in each
case.

Open problems While the unit rule is one method for proving regret bounds for EH and FPL that are close
to optimum, there might be other proof methods that show that EH and FPL perform as well as CH when
applied to structured concepts. We know of no examples of structured concept classes where EH and FPL
are clearly suboptimal. Resolving the question of whether such examples exist is our main open problem.

The prediction task for each structured concept class can be analyzed as a two-player zero-sum game
versus nature which tries to maximize the regret. The paper [AWY08] gave an efficient implementation of
the minimax optimal algorithm for playing against an adversary in the vanilla expert setting. Actually, the
key insight was that the unit rule holds for the optimal algorithm in the vanilla expert case. This fact made it
possible to design a balanced algorithm that incurs the same loss no matter which sequence of unit losses is
chosen by nature. Unfortunately, the optimum algorithm does not satisfy the unit rule for any of the structured
concept classes considered here. However, there might be some sort of relaxation of the unit rule that still
leads to an efficient implementation of the optimum algorithm.

In this paper the loss of a structured concept C always had the form C · `, where ` is the loss vector for
the components. This allowed us to maintain a mixture of concepts w and predict with a random concept C
s.t. E[C] = w. By linearity, the expected loss of such a randomly drawn concept C is the same as the loss
of the mixture w. For regression problems with for example the convex loss (C · ` − y)2 our algorithm can
still maintain a mixture w, but now the expected loss of C, i.e. E[(C · ` − y)2], is typically larger than the
loss (w · `− y)2 of the mixture. We are confident that in this more general setting we can still get good regret
bounds compared to the best mixture chosen in hind-sight. All we need to do is replace CH with the more
general “Component Exponentiated Gradient” algorithm, which would do an EG update on the parameter
vector w and project the updated vector back into the hull of the concepts.

In general, we believe that we have a versatile method of learning with structured concept classes. For
example it is easy to augment the updates with a “share update” [HW98, BW02] for the purpose of making
them robust against sequences of examples where the best comparator changes over time. We also believe that
our methods will get rid of the additional range factors in the bandit setting [CBL09] and that gain versions
of the algorithm CH also have good regret bounds.

At the core of our methods lies a relative entropy regularization which results in a multiplicative update
on the components. In general, which relative entropy to choose is always one of the deepest questions. For
example in the case of learning k-sets, a sum of binary relative entropies over the component can be used
that incorporates the wi ≤ 1 constraints into the relative entropy term. In general incorporating inequality
constraints into the relative entropy seems to have many advantages. However how to do this is an open
ended research question.
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Abstract

We analyze the regret, measured in terms of log loss, of the maximum likelihood (ML) sequential
prediction strategy. This “follow the leader” strategy also defines one of the main versions of
Minimum Description Length model selection.

We proved in prior work for single parameter exponential family models that (a) in the misspecified
case, the redundancy of follow-the-leader isnot 1

2 log n+O(1), as it is for other universal prediction
strategies; as such, the strategy also yields suboptimal individual sequence regret and inferior model
selection performance; and (b) that in general it is not possible to achieve the optimal redundancy
when predictions are constrained to the distributions in the considered model.

Here we describe a simple “flattening” of the sequential ML and related predictors, that does
achieve the optimal worst caseindividual sequenceregret of(k/2) log n + O(1) for k parame-
ter exponential family models for bounded outcome spaces; for unbounded spaces, we provide
almost-sure results. Simulations show a major improvement of the resulting model selection crite-
rion.

1 Introduction

Letx1, x2, . . . ∈ X ∗, be a sequence of outcomes revealed one at a time. After observingxn = x1, x2, . . . , xn,
a forecaster assigns a probability distribution onX , denotedP ( · | xn). Then, afterxn+1 is revealed, the
forecaster incurs thelog loss− log P (xn+1 | xn). The performance of the strategy is measured relative to
the best in a reference set of strategies, which we call themodelM. The difference between the accumulated
loss of the prediction strategy and the best strategy in the model is called theregret. The goal is to minimize
the regret in the worst case over all possible data sequences.

Sequential prediction of individual sequences with log loss has been extensively studied in learning the-
ory, in the framework ofprediction with expert advice(Azoury & Warmuth, 2001; Cesa-Bianchi & Lugosi,
2001; Cesa-Bianchi & Lugosi, 2006). However, it has also been playing an important role in the information
theory: a key result based on the Kraft-McMillan inequality (see, e.g., (Cover & Thomas, 1991)) states that,
ignoring rounding issues, for every uniquely decodable codelength functionL there is a probability distri-
butionP such thatL(x) = − log P (x) and vice versa1. Thus, at least whenX is countable, any prediction
strategy can also be thought of as auniversal source coding algorithm; the cumulative logarithmic loss cor-
responds exactly to the incurred codelength. As Rissanen’s theory of Minimum Description Length (MDL)
learning (Barron et al., 1998; Grünwald, 2005) is based on universal coding, a sequential prediction strategy
with log loss defines an MDL model selection criterion. Similarly, in statistics Dawid’s theory of prequen-
tial model assessment (Dawid, 1984) is based on sequential prediction. Thus we use the terms “prediction
strategy” and “code” interchangeably, as we do for “accumulated log loss” and “codelength”.

For parametric modelsM = {Pθ | θ ∈ Θ}, there are three “universal codes” (prediction strategies with
low regret) that are particularly well known in the source coding and MDL communities: (1) after putting
a prior distributionπ on the model parameters, one can predict using theBayesian predictive distribution
PBAYES( · | xn) =

∫

Θ
Pθ( · | xn)π(θ | xn) dθ. (2) If there is a known horizon (maximal number of outcomes),

the Shtarkov code (Shtarkov, 1987), also known as the Normalized Maximum Likelihood code (Rissanen,
1996), can be defined. This universal codeminimizesthe worst-case regret. (3) Given an estimatorθ̄ : X i →

1Throughout this text, all logarithms are to the basee and we use nats rather than bits as units of information; however,
all results presented here are valid for logarithms of any base.
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Θ, one can sequentially select an element of the model using the estimator and use that to predict the next
outcome, i.e.PPLUG-IN( · | xn) = Pθ̄(xn)( · | xn). Such “plug-in codes” were introduced independently in
the context of MDL learning (Rissanen, 1984) and in the context of prequential model validation (Dawid,
1984). If we takēθ(xn) equal to the maximum likelihood (ML) estimatorθ̂(xn), then the resulting strategy
is called the “ML plug-in strategy”, which corresponds to the “follow the leader” strategy in learning theory
terminology (Kalai & Vempala, 2003; Hutter & Poland, 2005). Strategy (3) always predicts using an element
of the model, whereas strategies (1) and (2) do not.

Under weak regularity conditions on the sequence of outcomes, the Bayesian and NML strategies have
been shown to achieve asymptotically optimal worst-case regret(k/2) log n + O(1), wherek is the number
of parameters of the model (Rissanen, 1989; Rissanen, 1996; Grünwald, 2007). As a consequence, the
same(k/2) log n + O(1)-result holds in expectation and almost surely, if the data are sampled from some
distributionP ∗, as long asP ∗ satisfies some very weak regularity conditions. In particular,P ∗ is not required
to lie in the modelM: the results still hold ifP ∗ 6∈ M, i.e. the “model is wrong”, or, as statisticians call
it, “the misspecified case”. Now ifP ∗ does lie inM, then the same(k/2) log n + O(1)-regret is achieved
in expectation underP ∗ for a large variety of plug-in models including multivariate exponential families,
ARMA processes, regression models and so on; examples are (Rissanen, 1986; Hemerly & Davis, 1989;
Wei, 1990; Li & Yu, 2000). However, in contrast to the Bayesian and NML results, the plug-in result does
not hold under misspecification, i.e. ifP ∗ 6∈ M. We reported earlier (Grünwald & de Rooij, 2005) that
under misspecification, already for single parameter exponential family models, the expected regret of the
ML plug-in strategy is1

2c log n + O(1) wherec is the variance of an outcome under the true distributionP ∗

divided by the variance under the element of the modelPθ that minimizes the Kullback-Leibler divergence
D(P ∗‖Pθ). Moreover, it is shown by (Grünwald & Kotłowski, 2010) thatno plug-in estimator can achieve
c = 1 (thus it does not help to replace maximum likelihood predictions by, say, Bayesian posterior mean or
moment-estimator-based predictions). This behavior is especially undesirable when the plug-in ML estimator
is used to define an MDL or prequential model selection procedure, because in those circumstances, as we
explained in Section 6, it is by definition not safe to assume thatP ∗ ∈ M. This is quite clearly visible in the
results of model selection experiments described by (De Rooij & Grünwald, 2006), where the plug-in based
version of MDL is significantly outperformed by MDL based on Bayesian and NML strategies.

While the ML plug-in strategy does not achieve the desired expected regret, (Grünwald & Kotłowski,
2010) describe a simple modification of the plug-in prediction strategy that does do so, in the somewhat
specific case wherek = 1 and the outcomes are generated i.i.d. from some distributionP ∗. In this paper,
we extend this result to the much more general scenario wherek can be larger than1 and where we consider
worst-case individual sequence regret rather than expected regret. Our only assumption is that the outcome
spaceX is bounded in some sense. Following (Grünwald & Kotłowski, 2010), we propose theflattenedML
prediction strategy, a modification of the ML strategy that puts it slightly outsideM, and in Theorem 11 we
show that this strategy achieves optimal asymptotic minimax regret(k/2) log n + O(1). We also show that
when the outcomes are generated i.i.d. from some distributionP ∗ of which the first four central moments
exist, we can remove the assumption of boundedX and still our prediction strategy achieves the optimal
regret(k/2) log n with probability one.

Our result is important in practice since, in contrast to the Bayesian predictive distribution, the flattened
ML strategy is in general just as easy to compute as the ML estimator itself. The flattened ML strategy can
be used to define an efficient MDL model selection criterion; we repeated the model selection experiments
of (De Rooij & Grünwald, 2006) including this new criterion to find that it displays acceptable performance,
unlike the ML plug-in strategy.

Related Work The idea of changing a “follow the leader”-strategy by modifying the leader is not new
(Kalai & Vempala, 2003; Hutter & Poland, 2005); however, our “flattened” leader is quite different from
the “perturbed” leader described in these earlier papers, and also the setting is quite different: flattened
leaders make sense relative to parametric statistical models, which may be regarded as an uncountable set
of experts satisfying continuity requirements; perturbed leaders make sense relative to finite or countable
sets of otherwise unrelated experts, and the regret bounds obtained in the latter settings are quite different
from the (k/2) log n regret obtained here. The flattened leader is more closely related to the predictive
densities considered by (Vidoni, 2008) and (Corcuera & Giummolè, 1999). These authors provideO(1/n)-
modifications of the ML density that are similar (but nonequivalent) to ours, and they investigate the behavior
of these modifications in terms of expected KL-divergence rather than cumulative regret, in a stochastic,
rather than an individual sequence setting.

The paper is organized as follows. We introduce the mathematical context for our results in Section 2.
We subsequently define the flattened ML strategy 3 and prove that the regret is(k/2) log n + O(1) in the
individual sequence setting with bounded sample space. We give an example of how this estimator can be
used in practice in Section 4, where we apply it to the model of Bernoulli distributions and show how its
worst case regret develops as a function of the sample size. In Section 5 we return to theory by providing an
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“almost sure” analogue of our individual sequence result, where we can relax the boundedness assumption
somewhat. The prediction strategy based on the flattened ML estimator can be used to define an MDL model
selection criterion; in Section 6 this criterion is evaluated in a series of model selection experiments, showing
that it overcomes many of the weaknesses of the ML plug-in prediction strategy without flattening. We end
with a conclusion in Section 7.

2 Notation and Definitions

Let X be a set of outcomes, taking values either in a finite or countable set, or in a subset of Euclidean
space. Exponential family models are families of distributions onX defined relative to a random variable
φ : X → R

k (called “sufficient statistic”), and a functionh : X → [0,∞). Let Z(η) =
∫

x∈X
eηT φ(x)h(x) dx

(the integral to be replaced by a sum for countableX ), andΘnat = {η ∈ R
k : Z(η) < ∞}.

Definition 1 (Exponential family) Theexponential family (Barndorff-Nielsen, 1978)with sufficient statistic
φ andcarrierh is the family of distributions with densitiesPη(x) = 1

Z(η)e
ηT φ(x)h(x), whereη ∈ Θnat. Θnat

is called thenatural parameter space. The family is calledregularif Θnat is an open and convex subset ofR
k,

and if the representationPη(x) is minimal, i.e. the functionsφi(x), i = 1, . . . , k are linearly independent.

We only consider regular exponential families, but this qualification will henceforth be omitted. Exam-
ples include the Poisson, geometric and multinomial families, and the model of multidimensional Gaussian
distributions. Moreover, without loss of generality, we will make the simplifying assumption thatφ(x) ≡ x,
i.e. the exponential family is in the canonical form. All results in this paper are valid for more generalφ.

The statisticφ(X) ≡ X is sufficient forη (Barndorff-Nielsen, 1978). This suggests reparameterizing
the distribution by the expected value ofX, which is called themean value parameterization. The function
µ(η) = EPη

[X] maps parameters in the natural parameterization to the mean value parameterization. It is a
diffeomorphism (Barndorff-Nielsen, 1978), therefore the mean value parameter spaceΘmeanis also an open
set ofRk. We writeM = {Pµ | µ ∈ Θmean} wherePµ is the distribution with mean value parameterµ.

The sequence of outcomesx1, . . . , xn is abbreviated byxn (x0 denotes the empty sequence). At every
iterationn = 0, 1, 2, . . ., the predictionP ( · | xn) depends on the past outcomesxn and has the form of
a probability distribution onX , therefore it can be considered as a conditional of the joint distribution of
outcomes inXn, which isP (xn) =

∏n
i=1 P (xi|x

i−1). Conversely, any probability distributionP on the
setXn defines a prediction strategy induced by its conditional distributionsP ( · | xi) for 0 ≤ i < n (Cesa-
Bianchi & Lugosi, 2006; Gr̈unwald, 2007).

We are now ready to define the plug-in prediction strategy.

Definition 2 (Plug-in prediction strategy) LetM = {Pµ | µ ∈ Θmean} be an exponential family with mean
value parameter domainΘmean. GivenM, and a function̄µ : X ∗ → Θmean, define theplug-in prediction
strategyPPLUG-IN by setting, for alln, all xn+1:

PPLUG-IN(xn+1 | xn) = Pµ̄(xn)(xn+1).

We will be mostly concerned with the maximum likelihood (ML) plug-in prediction strategy:

Definition 3 (ML prediction strategy) GivenM and constantsx0 ∈ Θmean, n0 > 0 we define theML
prediction strategyPML (xn+1|x

n) as a plug-in strategy with̄µ = µ̂◦
n, where

µ̂◦
n(xn) =

n0x0 +
∑n

i=1 xi

n0 + n
.

To understand this definition, note that for exponential families in the mean value parameterization, for
any sequence of data, the maximum likelihood parameterµ̂n is given by the averagêµn = n−1

∑

xi of the
observations (Barndorff-Nielsen, 1978). Here we define our plug-in model in terms of a smoothed maximum
likelihood estimator̂µ◦

n that introduces a ‘fake initial outcome’x0 with multiplicity n0 in order to avoid
infinite log loss for the first few outcomes, and to ensure that the plug-in ML code of the first outcome is
well-defined. The estimator̂µ◦

n can also be interpreted as “maximum a posteriori” estimator, as it maximizes
the posterior distribution with appropriate conjugate prior. In practice we can taken0 = 1 but our result holds
for anyn0 > 0.

Definition 4 (Regret) We defineregretwith respect to a sequencexn of a prediction strategyP relative to
the modelM, as a difference between the accumulated log loss ofP and the accumulated log loss of the best
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strategy fromM:

R(P ;xn) =
n
∑

i=1

− log P (xi|x
i−1) − inf

µ∈Θmean

n
∑

i=1

− log Pµ(xi)

= − log P (xn) − inf
µ∈Θmean

− log Pµ(xn).

(1)

From the definition, the minimizer:

µ̂n = arg inf
µ∈Θmean

− log Pµ(xn) = arg max
µ∈Θmean

Pµ(xn)

is the ordinary maximum likelihood estimator,µ̂n = n−1
∑

xi. Note, however, thatPµ̂n
is not the same

as the ML plug-in strategy withn0 = 0: sincePµ̂n
uses the ML estimatorbased on the whole sequenceto

predict all outcomes from the start, its predictions are generally much better than for the ML plug-in criterion.
Under some mild assumptions about the outcomes, two important prediction strategies, NML (normalized

maximum likelihood) and Bayes, achieve regrets that are (in an appropriate sense) close to optimal. To be
more specific, we must introduce the notion ofineccsisubsets ofΘmeanand the related sequences (Grünwald,
2007). These are formally defined as follows.

Definition 5 (Ineccsi subsets and sequences)Let M be a model with a smooth parameterizationΘ (e.g.,
M may be an exponential family andΘ may represent its mean-value parameterization). The subsetΘ0 ⊂ Θ
is ineccsi(“interior (is) non-empty; closure (is) compact subset of interior”) if:

1. the interior ofΘ0 is nonempty;

2. the closure ofΘ0 is a compact subset of the interior ofΘ.

The sequencex1, x2, . . . is a Θ0-sequence if there existsm, such that for alln ≥ m, the ML estimator̂µn

exists, is unique and satisfiesµ̂n ∈ Θ0.

Now, the formal definitions of NML and Bayes strategies follow:

Definition 6 (NML prediction strategy) GivenM, an ineccsi subsetΘ0 ⊂ Θmean, and a finite horizonn,
define theNML prediction strategy with respect toΘ0 as:

PNML (x
n) =

supµ∈Θ0
Pµ(xn)

∫

Xn supµ∈Θ0
Pµ(zn) dzn

.

Definition 7 (Bayes prediction strategy) GivenM and a probability distributionπ(µ) onΘmean, define the
Bayes prediction strategyas:

PBAYES(x
n) =

∫

Θmean

Pµ(xn)π(µ) dµ.

Note that the NML does not define a random process, since its predictions depend on the horizonn, i.e.
marginalizing the NML distribution with some horizon larger thann over the firstn outcomes does not yield
the NML distribution with horizonn. This is not an issue with the Bayesian strategy, which does define a
random process.

The following theorem characterizes the regret of the NML and Bayes prediction strategies:

Theorem 8 LetM = {Pµ | µ ∈ Θmean} be ak-dimensional exponential family with mean-value parameter
spaceΘmean. LetΘ0 be an ineccsi subset ofΘmeanand letx1, x2, . . . be aΘ0-sequence. Then,

R(P, xn) =
k

2
log n + O(1), (2)

whereP is either the NML strategy with respect toΘ0 with horizonn, or the Bayesian prediction strategy,
based on a prior with supportΘmean.

For a proof, see e.g. (Grünwald, 2007). (2) is the famous ‘kover2 log n formula’, refinements of which lie
at the basis of practical approximations to MDL and Bayesian learning, most notably BIC (Grünwald, 2007).
Since the NML strategy in factminimizesthe worst-case regret, it follows that a worst-case ofk

2 log n+O(1)
is optimal. We remark that, ifx1, x2, . . . do not form an ineccsi sequence, then the empirical mean of thexi

tends to the boundary of the parameter space. In that case, the behavior of the Bayesian strategy critically
depends on the prior, e.g. with the Bernoulli model and the uniform (Laplace) prior, the worst-case regret
becomeslog n; with Jeffreys’ prior, it is still(1/2) log n + O(1) (Freund, 1996); see also Section 4. In this
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paper we concentrate on the ineccsi-case, where the data remain bounded away from the boundary, and the
(k/2) log n regret is achieved for Bayes withall priors with supportΘmean.

It is known that when outcomes are generated by one of the distributions inM, the plug-in strategy
satisfies (2) as well. However it was shown by (De Rooij & Grünwald, 2005; Gr̈unwald & de Rooij, 2005)
that when the outcomes are generated i.i.d. by some distributionP ∗ outsideM, the ML plug-in strategyPML

behaves suboptimally. Specifically, its expected regret satisfies, for allµ∗ ∈ Θmean,

EP∗ [R(PML , n)] ≥
1

2

varP∗X

varPµ∗
X

log n + O(1), (3)

whereµ∗ = EP∗ [X] is the element inΘmeanminimizing KL divergenceD(P ∗‖Pµ) for µ ∈ Θmean. A similar
result in a different context was already proved earlier by (Wei, 1990). The result was later extended to hold
(essentially) for all plug-in prediction strategies (not just ML plug-in) by (Grünwald & Kotłowski, 2010). As
(3) is satisfied in the average case, the situation can only become worse in the individual sequence case.

3 The Flattened ML Strategy achieves Optimal Regret

While the plug-in strategies behave suboptimally as shown in the previous section, it remains possible that a
small modification of the plug-in strategy, which puts the predictions slightly outsideM, might lead to the
optimal regret (2). As a first example, consider the Bayesian predictive distribution whenM is the normal
family with fixed varianceσ2. In this case (see, e.g. (Grünwald, 2007)), the Bayesian code based on prior
N (µ0, τ

2
0 ) has a simple formPBAYES(xn+1|xn) = f(xn+1), wheref is the density of normal distribution

N (µn, τ2
n), with

µn =

(

(

n
∑

i=1

xi

)

+
σ2

τ2
0

µ0

)

/

(

n +
σ2

τ2
0

)

, and τ2
n = σ2/

(

n +
σ2

τ0

)

.

Thus, the Bayesian predictive distribution is itself a Gaussian with mean equal to the smoothed maximum
likelihood estimator̂µ◦

n with n0 = σ2/τ2
0 andx0 = µ0, albeit with a slightly larger varianceσ2 + O(1/n).

This shows that for the normal family with fixed variance, there exists an “almost” plug-in strategy, which
satisfies (2). This led to the conjecture, also in (Grünwald, 2007), that something similar should be possible
for exponential families in general. In this section we show that this is indeed the case: we propose a simple
modification of the ML strategy, obtained by predictingxn+1 using a slightly “flattened” versionPFML of the
ML strategyPML , defined as:

Definition 9 (Flattened ML prediction strategy) GivenM and constantsx0 ∈ Θmean, n0 > 0, we define
theflattened ML prediction strategyPFML by setting for alln:

PFML(xn+1|xn) := Pµ̂◦

n
(xn+1)

n + n0 + 1
2 (xn+1 − µ̂◦

n)T I(µ̂◦
n)(xn+1 − µ̂◦

n)

n + n0 + k
2

,

whereI(µ) is the Fisher information matrix for modelM.

We first check thatPFML is properly defined:

Lemma 10 For everyn = 0, 1, . . ., PFML(xn+1|x
n) represents a valid probability distribution, i.e. it is

nonnegative and the sum/integral overxn+1 ∈ X is equal to1.

Proof: For everyx ∈ X , PFML(x | xn) ≥ 0 because the information matrixI(µ̂◦
n) is positive definite. To

show thatPFML( · | xn) normalizes to1, let Eµ denote the expectation with respect toPµ, i.e. Eµ̂◦

n
[f(X)] =

∫

X
f(x)Pµ̂◦

n
(x) dx. Then:

∫

PFML(xn+1|x
n) dxn+1 = Eµ̂◦

n

[

PFML(X|xn)

Pµ̂◦

n
(X)

]

=

(

n + n0 +
k

2

)−1
(

n + n0 +
1

2
Eµ̂◦

n

[

(X − µ̂◦
n)T I(µ̂◦

n)(X − µ̂◦
n)
] )

=

(

n + n0 +
k

2

)−1
(

n + n0 +
1

2
Eµ̂◦

n

[

Tr
{

(X − µ̂◦
n)(X − µ̂◦

n)T I(µ̂◦
n)
}

]

)

=

(

n + n0 +
k

2

)−1
(

n + n0 +
1

2
Tr
{

(CovPµ̂◦
n
X)I(µ̂◦

n)
})

= 1,
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whereCovPµ̂◦
n
X is the covariance matrix ofPµ̂◦

n
and the last equality uses a standard result (Barndorff-

Nielsen, 1978) for the mean-value parameterization of exponential families which says that for allµ ∈ Θmean,
CovµX = I−1(µ).

The predictions of the corresponding flattened ML strategy are not harder to calculate than those of the
ordinary ML strategy, which is often much easier than calculating the predictive distribution of the Bayesian
strategy. Moreover, we show below in Theorem 11 that under some mild assumptions about the sequence of
outcomes, the flattened ML strategy always achieves the optimal regret, satisfying (2). To this end, we need
the following two propositions:

Proposition 1 Let X ∼ P ∗ with meanµ∗, and letM be the exponential family with sufficient statisticX
and mean-value parameter spaceΘmean, such thatµ∗ ∈ Θmean. Then for everyµ ∈ Θmeanwe have:

EP∗

[

− log Pµ(X) + log Pµ∗(X)
]

= D(µ∗‖µ),

whereD( · ‖ · ) is the Kullback-Leibler divergence.

Proof: By working out both sides of the equation using Definition 1, we find that they both reduce to
η(µ∗)µ∗ − log Z(η(µ∗)) − η(µ)µ∗ + log Z(η(µ)).

Proposition 2 LetM be the exponential family with sufficient statisticX and mean-value parameter space
Θmean. Then for everyµ, µ∗ ∈ Θ0, whereΘ0 is the ineccsi subset ofΘmean, we have:

D(µ∗‖µ) =
1

2
(µ − µ∗)T I(µ)(µ − µ∗) + O(‖µ − µ∗‖3).

Proof: We need two standard results regarding the properties of KL divergence (see, e.g. (Barndorff-Nielsen,
1978; Gr̈unwald, 2007)): for anyµ, µ∗ ∈ Θmean, it holds:

1. D(µ∗‖µ) ≥ 0 and the equality only holds forµ = µ∗,

2. For exponential families,∂2D(µ∗‖µ)/∂µi∂µj = Iij(µ).

By Taylor expandingD(µ∗‖µ) aroundµ∗ up to the second order, we get:

D(µ∗‖µ) = D(µ∗‖µ∗) + ∇D(µ∗‖µ)T
∣

∣

µ=µ∗
(µ − µ∗) +

1

2
(µ − µ∗)T I(µ̄)(µ − µ∗),

for someµ̄ betweenµ andµ∗. Due to the first property the zeroth order term disappears; the second order
term also disappears because the gradient vanishes at the minimum, so we have:

D(µ∗‖µ) =
1

2
(µ − µ∗)T I(µ̄)(µ − µ∗) =

1

2
(µ−µ∗)T I(µ)(µ−µ∗) +

1

2
(µ−µ∗)T

(

I(µ̄) − I(µ)
)

(µ−µ∗)

≤
1

2
(µ − µ∗)T I(µ)(µ − µ∗) +

1

2
‖I(µ̄) − I(µ)‖‖µ − µ∗‖2, (4)

where‖ · ‖ denotes vector or matrix norm, depending on the context. Taylor expandingI(µ̄) aroundµ up to
the first order givesI(µ̄) = I(µ) + ∇I(µ̃)T (µ̄ − µ), for someµ̃ between̄µ andµ. From that we get:

‖I(µ̄) − I(µ)‖ ≤ ‖∇I(µ̃)‖‖µ̄ − µ‖ ≤ C‖µ̄ − µ‖, (5)

whereC = supµ∈Θ0
‖∇I(µ)‖ is finite since closure ofΘ0 is compact and all derivatives of the information

matrix are continuous. It follows from the definition ofµ̄ that‖µ̄ − µ‖ ≤ ‖µ − µ∗‖; using this in (5) and
plugging the result into (4) finishes the proof.

Theorem 11 Let M be ak-dimensional exponential family with with mean-value parameter spaceΘmean.
Let Θ0 be an ineccsi subset ofΘmean and letx1, x2, . . . be aΘ0-sequence, i.e. for alln ≥ m, µ̂n ∈ Θ0.
Moreover, assume that the outcomes are bounded,‖xi‖ ≤ B for all i = 1, 2, . . . Then the flattened ML
strategyPFML with x0 ∈ Θ0 achieves asymptotically optimal regret, i.e.

R(PFML , x
n) =

k

2
log n + O(1), (6)

where the constant underO( · ) depends only onB, Θ0 andm, while it does not depend on the outcomesxn.
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Proof: Let xn
0 be the sequence of outcomes, composed ofn0 fake outcomesx0 and the original sequencexn,

i.e. xn
0 = x0, . . . , x0, x1, . . . , xn, and we denotex−i = x0, i = 0, . . . , n0 − 1. We will use it to cope with

the fact that we predict witĥµ◦
n using the ML strategy, while we compare toµ̂n in the definition of regret (1).

Although µ̂◦
n andµ̂n are not the same, they are sufficiently similar that if we replace the termlog Pµ̂n

(xn)
with the termlog Pµ̂◦

n
(xn

0 ) in the definition (1); the difference is only small. Let us denote such a modified
regret byR′(PFML , x

n+1). We have:

R′(PFML , x
n) −R(PFML , x

n) =

n
∑

i=−n0−1

− log Pµ̂◦

n
(xi) −

n
∑

i=1

− log Pµ̂n
(xi)

= −n0 log Pµ̂◦

n
(x0) +

n
∑

i=1

log
Pµ̂n

(xi)

Pµ̂◦

n
(xi)

= O(1) + nEPemp

[

log
Pµ̂n

(X)

Pµ̂◦

n
(X)

]

= O(1) + nD(µ̂n‖µ̂
◦
n) = O(1) −

n

2
(µ̂n − µ̂◦

n)T I(µ̂◦
n)(µ̂n − µ̂◦

n) + nO(‖µ̂n − µ̂◦
n‖

3),

wherePemp is the empirical distribution function, which puts mass1/n on every outcome ofxn, EPemp
[X] =

µ̂n, and we used Proposition 1 withP ∗ ≡ Pemp, and then Proposition 2. Using the fact that:

‖µ̂n − µ̂◦
n‖ =

n0‖(x0 − µ̂n)‖

n + n0
≤

2n0B

n
,

and sincêµ◦
n ∈ Θ0 for n ≥ m, we get for alln ≥ m:

n

2
(µ̂n − µ̂◦

n)T I(µ̂◦
n)(µ̂n − µ̂◦

n) ≤
n

2
‖I(µ̂◦

n)‖‖µ̂n − µ̂◦
n‖

2 ≤
4n2

0B
2

2n
sup

µ∈Θ0

‖I(µ)‖ = O(n−1),

where‖I(µ)‖ denotes the matrix norm and we used the fact thatsupµ∈Θ0
‖I(µ)‖ is finite due to compactness

of the closure ofΘ0 and continuity of information matrix.
Thus, we proved thatR′(PFML , x

n) − R(PFML , x
n) = O(1). To show (6), it now suffices to show that

∆(n) = R′(PFML , x
n+1) −R′(PFML , x

n) = k
2n + O(n−2), where the constant underO( · ) does not depend

on the outcomesxn. Then, sincelog n ≤
∑n

i=1
1
i ≤ log n + 1, and

∑

n n−2 converges, (6) follows. From
the definition, we have:

∆(n) = − log PFML(xn+1|x
n) −

n+1
∑

i=−n0+1

− log Pµ̂◦

n+1
(xi) +

n
∑

i=−n0+1

− log Pµ̂◦

n
(xi)

= log

(

1+
k

2(n + n0)

)

−log

(

1+
1

2(n + n0)
(xn+1 − µ̂◦

n)T I(µ̂◦
n)(xn+1 − µ̂◦

n)

)

+

n+1
∑

i=−n0+1

log
Pµ̂◦

n+1
(xi)

Pµ̂◦

n
(xi)

.

Let us denoteξn = 1
2(n+n0)

(xn+1− µ̂◦
n)T I(µ̂◦

n)(xn+1− µ̂◦
n). We will show thatlog(1+ξn) = ξn +O(n−2).

To this end, we use the fact that for everyz > −1 it holds−z ≤ − log(1 + z) ≤ −z + z2

2 (this follows e.g.
from a Taylor expansion oflog(1 + z) aroundz = 0) and show thatξ2

n = O(n−2):

ξ2
n ≤

1

4n2
‖I(µ̂◦

n)‖2‖xn+1 − µ̂◦
n‖

4 ≤
1

4n2

(

sup
µ∈Θ0

‖I(µ)‖

)2(

2n0B

)4

= O(n−2),

for all n ≥ m. Thus we provedlog(1 + ξn) = ξn + O(n−2). Moreover,log(1 + k
2n ) = k

2n + O(n−2), so

∆(n) =
k

2n
−

1

2n
(xn+1 − µ̂◦

n)T I(µ̂◦
n)(xn+1 − µ̂◦

n) +
n+1
∑

i=−n0+1

log
Pµ̂◦

n+1
(xi)

Pµ̂◦

n
(xi)

+ O(n−2). (7)

To bound the sum, we note that it equals(n + n0 + 1)D(µ̂◦
n+1‖µ̂

◦
n) where we used Proposition 1 with the

empirical distribution again. Then, using Proposition 2, we get:
n+1
∑

i=−n0+1

log
Pµ̂◦

n+1
(xi)

Pµ̂◦

n
(xi)

=
n+n0+1

2
(µ̂◦

n − µ̂◦
n+1)

T I(µ̂◦
n)(µ̂◦

n − µ̂◦
n+1) + (n + n0 + 1)O(‖µ̂◦

n − µ̂◦
n+1‖

3).

Sinceµ̂◦
n − µ̂◦

n+1 = (µ̂◦
n − xn+1)/(n + n0 + 1), and‖µ̂◦

n − xn+1‖ ≤ 2B, it follows that:
n+1
∑

i=−n0+1

log(Pµ̂◦

n+1
(xi)/Pµ̂◦

n
(xi)) =

1

2n
(xn+1 − µ̂◦

n)T I(µ̂◦
n)(xn+1 − µ̂◦

n) + O(n−2).

Putting this into (7) gives:∆(n) = k
2n + O(n−2), as claimed.

The constant inO(1) does not depend on the sequencexn, because forn < m, µ̂◦
n (as a convex combi-

nation ofx0 andµ̂n) is kept away from the boundary ofΘmeanand thusI(µ̂◦
n) is bounded from above by a

constant independent of the sequencexn.
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4 Example: the Bernoulli model

The Bernoulli model is{Pµ | µ ∈ [0, 1]}, whereX = {0, 1} andPµ(x) = µx(1 − µ)1−x. The Fisher infor-
mation isI(µ) = EPµ

[( d
dµ log Pµ(X))2] = 1/(µ(1 − µ)). After observingxn, the likelihood is maximized

by µ̂ = o/n whereo = x1 + . . .+xn; we will also usez = n−o. It turns out not to be necessary to introduce
any fake outcomes in this case (i.e.n0 → 0). Thus,µ̂n = µ̂◦

n, and the flattened ML prediction is

PFML(1 | xn) = µ̂n

(

n + 1
2I(µ̂n)(1 − µ̂n)2

n + 1
2

)

=
nµ̂n + 1

2 (1 − µ̂n)

n + 1
2

=
o + z

2n

n + 1
2

.

The regret for this estimator is maximized for
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Figure 1: Worst-case regret of Bernoulli estimators.

the all-zero or all-one sequence; an easy calcula-
tion shows it to be− 1

2 log(16/π) + log(Γ(n + 1
2 )/

Γ(n)) = 1
2 log n + O(1). Thus, even though the

worst case is achieved for non-ineccsi sequences
for which technically Theorem 11 does not apply,
we find that the flattened ML prediction strategy
achieves asymptotically optimal worst-case regret.

In Figure 1, we plot this worst-case regret to-
gether with the worst-case regret for a number of
other estimators: (1) the traditional Laplace esti-
mator P (1 | xn) = (o + 1)/(n + 2), which is
equal to the Bayes predictive distribution using a
uniform prior onµ and which does not behave very
well on non-ineccsi sequences, (2) the Krichevsky-
Trofimov estimatorP (1 | xn) = (o + 1

2 )/(n + 1)
(Krichevsky & Trofimov, 1981), which is equal to
the Bayes predictive distribution using Jeffreys’ prior, and (3) the “Last Step Minimax” estimator (Takimoto
& Warmuth, 2000), also known as “Conditional NML” estimator (Rissanen & Roos, 2007). The regret for
this last estimator was shown to be at most1

2 log(n + 1) + 1
2 in (Takimoto & Warmuth, 2000). As baselines,

we plot the functions12 log n andlog n, as well as the regret under the Shtarkov (or NML) distribution. As
mentioned in the introduction, the NML distribution is defined only with respect to a known horizon; here
the horizon is increased with the sample size, so the Shtarkov results do not reflect a valid prediction strategy
but rather provide a tight lower bound on the worst-case regret.

The figure shows that the flattened ML model shows performance comparable to the KT and last step
minimax estimators, although the constant term is slightly higher.

5 Almost Sure Convergence in the Stochastic Case

In Section 3, we showed that the flattened ML strategy achieves optimal regret under a mild assumption that
the outcomes are bounded and form aΘ0-sequence. For those cases where this condition is not satisfied, the
boundedness requirement can be replaced with the assumption that the data are generated i.i.d. from some
distribution of which the first four moments exist. We can then obtain the result (6) with probability one.

The idea of the proof is that when the outcomes are generated i.i.d., they are in some sense bounded with
high probability anyway. Specifically, if we allow the bound to increase withn, and if the rate of increase
is faster thann1/4, one can show that when the first four moments of the distribution exist, the outcomes
are actually “bounded” (i.e., for alln, the outcomeXn is bounded by the bound for sample sizen) with
probability one; this is the content of Lemma 12. In Theorem 14, we show that if the bound increasesmore
slowly thann1/3, most of the analysis done in the proof of Theorem 11 still works. Combining those two
facts gives (6) with probability one.

Lemma 12 Let X1, X2, . . . be i.i.d. random variables and suppose the firstm moments ofXn exist. Then,
for everyB > 0, α > 0, with probability 1 there exists ann′ such that‖Xn‖ ≤ Bn

1
m−α for all n ≥ n′.

Proof: Equivalently, we prove that almost surely, the eventAn = {‖Xn‖ > Bn
1

m−α } occurs only finitely
often. From the Borel-Cantelli lemma we know that this is the case when

∑∞
n=1 P (An) < ∞; we have

P (An) = P
(

‖Xn‖ ≥ Bn
1

m−α

)

= P
(

‖Xn‖
m ≥ Bmn

m
m−α

)

≤ E‖Xn‖
mB−mn− m

m−α ,

where the last step follows from Markov’s inequality. Sincemm−α > 1, the sum converges.

The next lemma is purely technical and will be needed in further proofs:
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Lemma 13 Leta1, a2, . . . be a positive infinite sequence and letb1, b2, . . . be a positive nonincreasing infinite
sequence. DefineAn = a1 + . . . + an, Bn = b1 + . . . + bn andCn = a1b1 + . . . + anbn. If An = O(n) and
Bn = O(1), thenCn = O(1).

Proof: By assumption there arec, n0 such that for everyn ≥ n0 we haveAn ≤ c · n. Fix somen ≥ n0

andAn. Now suppose there is anan′ > c for somen0 ≤ n′ ≤ n. SinceAn′ ≤ c · n, there must be an
earlier terman′′ < c for some1 ≤ n′′ < n′. By increasingan′′ to c and decreasingan′ by the same amount,
An is unchanged while the value ofCn cannot decrease. Thus we may assume w.l.o.g. thatai ≤ c for all
n0 ≤ i ≤ n. But in that case we haveCn = Cn0−1 +

∑n
i=n0

aibi ≤ Cn0−1 + c ·
∑n

i=n0
bi = O(1).

Theorem 14 Let X1, X2, . . . be i.i.d. generated by a probability distributionP ∗ of which the first four
moments exist and such thatE[X] ∈ Θmean. LetM be ak-dimensional exponential family with mean-value
parameter spaceΘmean. Then the flattened ML strategyPFML almost surely achieves asymptotically optimal
regret, i.e.

R(PFML , x
n) =

k

2
log n + O(1) (8)

holds with probability one.

Proof: Since the first four moments ofP ∗ exists, Lemma 12 states that for largen, the sequence of outcomes
x1, x2, . . . is bounded byBnq for everyq > 1/4 with probability one. For simplicity, we takeq = 0.3, but
any q ∈ (1/4, 1/3) would work. From the strong law of large numbers, we know that the smoothed ML
estimator̂µ◦

n converges with probability one. Therefore, for largen, µ̂◦
n is bounded,‖µ̂◦

n‖ ≤ C.
We only give the sketch of the proof, because it closely follows the proof of Theorem 11. The main

difference is that in Theorem 11, we had‖xn‖ ≤ B, while here we have (with probability one)‖xn‖ ≤ Bn0.3

for largen. A closer look at the proof of Theorem 11 shows that after weakening the bound on‖xn‖ we still
get the same rates. The only problem is that now we are not able to prove, that∆(n) = k

2n + O(n−2).
However, to obtain (8), it is enough to show that∆(n) = k

2n + f(n), wheref(n) is a function such that
∑

n f(n) converges and thus isO(1). To this end, instead of directly boundingξ2
n, we will show that

∑

n ξ2
n

converges. Since for largen,

ξ2
n ≤

1

4n2
sup

‖µ‖≤C

‖I(µ)‖2(‖xn+1‖ + C)4 = C ′ ‖xn+1‖
4 + O(n0.9)

n2

for some constantC ′, we only need to show that the sum
∑

n
‖xn+1‖

4

n2 converges. But this follows from
Lemma 13 withai = ‖xi+1‖

4 and bi = i−2: we haveAn =
∑n

i=1 ‖xi+1‖
4 = O(n) becauseAn/n

converges with probability one from the strong law of large numbers (because the fourth moment ofP ∗

exists), andBn =
∑n

i=1 i−2 = O(1). This means that with probability one,
∑

n ξ2
n converges.

6 Application: Model Selection

The strange behavior of the ML plug-in code first became apparent in a simulation study, where it was found
that this code gives rise to much weaker model selection performance than other model selection criteria, such
as Bayes factors model selection or even naive maximum likelihood model selection (De Rooij & Grünwald,
2005; De Rooij & Gr̈unwald, 2006); this is especially disturbing since the plug-in based version of MDL has
often been advocated for practical use (Rissanen, 1986; Rissanen, 1989; Grünwald, 2007). As mentioned in
the introduction, while the expected regret for the ML plug-in estimator isk

2 log n + O(1) when the model
contains the data generating distribution, it behaves differently when it does not. This is quite undesirable for
model selection: if it is certain that the true distribution is in all considered models, then there is no need to
do model selection in the first place!

Since the flattened ML prequential code described in this paper does not suffer from anomalous redun-
dancy under misspecification, we may reasonably hope for better model selection performance. Therefore
we have come full circle by turning back to our original (2005) model selection experiments, in order to de-
termine to what extent the flattened ML prequential plug-in code avoids the shortcomings of the unflattened
version, and whether or not it yields a useful model selection criterion.

The experimental setup is the same as it was in (De Rooij & Grünwald, 2006), but we provide a brief
description here as well to make this paper self-contained. The experiments involve a number of model
selection criteria: one based on the flattened ML plug-in code and a number of others, which will be used as
a basis for comparison. After defining these model selection criteria, we show the results of the simulation
and discuss how the performance of the criterion based on the flattened ML plug-in estimator relates to the
results we reported earlier.
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6.1 Experiments

All experiments are based on repeatedly sampling a number of outcomes from either the Poisson model
MP = {PP(X;µ) | µ ∈ (0,∞)} wherePP(x;µ) = eµµx/x! or the geometric modelMG = {PG(X;µ) |
µ ∈ (0,∞)} wherePG(x;µ) = µx(µ + 1)−(x+1). To make the models easier to compare, both are pa-
rameterized by the mean, which is standard for Poisson but not for the geometric model. We first define
a number of criteria to select between these models. All criteria can be described in terms of a func-
tion L that maps a modelM and a sequence of outcomesxn to a codelength (negative loglikelihood, ac-
cumulated prediction error). Subsequently define the level of evidence in favor of the Poisson model as
∆(xn) = L(MG, xn) − L(MP, x

n). We select Poisson if∆(xn) > 0 and geometric otherwise.
Many common model selection criteria can be defined in terms of a functionL. Our experiments involve

the following model selection criteria:

The Known meancriterion is defined byL(M, xn) = − log P (xn); hereP ∈ M is the distribution that
satisfiesEP [X] = µ, whereµ is the true mean of the data. Although the true mean is not known in practice,
this criterion is useful as an ideal baseline. It has the properties that (1) one of the two hypotheses equals the
generating distribution and (2) the sample consists of outcomes which are i.i.d. according to this distribution.
In (Cover & Thomas, 1991), Sanov’s Theorem is used to show that in such a situation, the probability that
the criterion prefers the wrong model (“error probability”) decreases exponentially in the sample size. If the
data are generated using Poisson[µ] then the error probability decreases exponentially in the sample size, with
some error exponent; if the data are generated with Geometric[µ] then the overall probability is exponentially
decreasing with the same exponent (Cover & Thomas, 1991, Theorem 12.9.1 on page 312 and text thereafter).
Thus, when the error probability is plotted on a log scale, the slope should be equal whether the generating
distribution is Poisson or geometric. This can be observed to be the case in Figures 2a and 2b.

The Maximum Likelihood (ML) criterion is defined byL(M, xn) = − log supP∈M P (xn). This is the
same as a (generalized) likelihood ratio test (GLRT) with a threshold of one. The ML criterion is well known
to be prone to overfitting: in a complex model, there may be a distribution that provides good fit to the
data purely by chance. Two approaches to penalize complex models are known as AIC (Akaike, 1974) and
BIC (Schwarz, 1978). However, for both these methods the penalty term depends only on the number of
parameters in the models. In this case, both models have only a single parameter, so in∆(xn) the penalty
terms cancel: in this case, both AIC and BIC are equivalent to a GLRT with zero threshold!

Bayes factor model selection is obtained if we setL(M, xn) = − log
∫

µ
Pµ(xn)π(µ) dµ, where the prior

π may depend on the model. In this case,∆(xn) is equal to the logarithm of the Bayes factor. We use
Jeffreys’ prior in our experiments. Because it is improper for the Poisson and geometric models, we use the
first observation to normalize the prior. LettingS =

∑n
i=1 xi, We obtain the following expressions:

πP(µ|x1) =
e−µµx1−

1
2

Γ( 1
2 + x1)

; πG(µ|x1) = (x1 + 1
2 )

µx1−
1
2

(µ + 1)x1+
3
2

;

L(MP, x
n) = − log

∫ ∞

0

PP(x
n
2 ;µ)πP(µ|x1) dµ = log

Γ(x1 + 1
2 )

Γ(S + 1
2 )

+ (S + 1
2 ) log n +

n
∑

i=2

log(xi!);

L(MG, xn) = − log

∫ ∞

0

PG(xn
2 ;µ)πG(µ|x1) dµ = − log(x1 + 1

2 ) + log
Γ(S + n + 1

2 )

Γ(n)Γ(S + 1
2 )

.

The ML plug-in criterion is defined by settingL(M, xn) = − log PML (x
n) wherePML is as in Defini-

tion 3. This codelength does not correspond to a Bayesian marginal likelihood, so this criterion does not
yield Bayes factor model selection; howeverPML is a valid universal code so it does lead to an MDL model
selection procedure.

The flattened ML plug-incriterion is defined by settingL(M, xn) = − log PFML(x
n), whereU is as in

Definition 9.
These five criteria are subjected to two different kinds of tests:

Error probability The error probability for a criterion is the probability that it will select a model that
does not contain the distribution from which the data are sampled. We estimate the error probability through
repeated sampling: in our experiments, samples are always drawn from a Poisson[µ] distribution with prob-
ability p, or from a Geom[µ] distribution with probability1 − p. Figure 2 shows the error probability as a
function of the sample size on a log scale, for various values ofp andµ. After the first two graphs, we plot the
ratio of the error probability of a criterion with the error probability of the baseline “known mean” criterion:
this allows for better distinction between the criteria.
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Figure 2: Error probability. For Figures (c) and (d), the error frequency is divided by the baseline, the error
frequency of the Known mean criterion. Estimated using106 trials.

Bias Let ∆µ(xn) be the evidence in favor of the Poisson model according to the known mean criterion. For
other criteriaC, the quantity∆C can be interpreted as anestimatorfor ∆µ. The bias of such an estimator is
E[∆C(Xn)−∆µ(Xn)], where the expectation is taken under the true distribution. We subsequently estimate
this bias for all criteria by calculating the average over many trials. The results are in Figure 3.

6.2 Discussion

In order to establish a context to discuss the behavior of the flattened ML plug-in criterion, we first briefly
summarize the conclusions from (De Rooij & Grünwald, 2006), which still apply to the current experiments.

• ML and ML plug-in exhibited worst performance; the Bayesian criterion performed reasonably on all tests.

• We found that the ML criterion consistently displays the largest bias in favor of Poisson. Figure 3 shows
how on average, for ML we obtained at least0.4 nats more evidence in favor of the Poisson model than for
known mean. The Poisson model appears to have a greater descriptive power, even though the two models
have the same number of parameters: intuitively, the Poisson model allows more information about the
data to be stored in the parameter estimate.

• In all graphs in Figure 2 one can observe the unusual slope of the error rate line of the ML plug-in criterion,
which clearly favors the geometric distribution. This is very undesirable for model selection, because the
error rate when data are sampled from Poisson with probabilityp and from geometric with probability
1 − p, is dominated by the worst of the two cases, i.e. the case that the data are Poisson distributed. This
explains why the error rate is so poor in the case wherep = 0.5 (Figures 2c and 2d). The bias is visible
more explicitly in Figure 3, where ML plug-in can be observed to become more and more favorable to the
geometric model as the sample size increases, regardless of whether the data were sampled from a Poisson
or geometric distribution.
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Figure 3: The classification bias in favor of the Poisson model in nats, estimated using105 trials.

The new experiments also include results for the new flattened ML plug-in criterion. Figure 2 shows that,
compared to ML plug-in, the slope of the error probability line for the flattened ML plug-in estimator is much
closer to that of known mean. Nevertheless, when the mean is increased in subfigure (d), we see that the error
probability seems to go down at a somewhat slower rate than it does for the Bayes and ML criteria.

In Figure 3 we find that, like ML plug-in, flattened ML plug-in is biased in favor of the geometric model.
If the data are geometric, then this bias increases with sample size, as it does for ML plug-in, albeit at a
slower rate. However, for Poisson data most of this effect appears to have been suppressed. This means that
the probability that Poisson data are incorrectly judged to be geometric never becomes much larger than for
other criteria, regardless of sample size. So for model selection purposes, the bias is acceptable.

In conclusion, the flattened ML plug-in criterion does indeed seem to provide a substantial improvement
in model selection performance over the ML plug-in criterion. That said, the bias in favor of the geometric
model has not completely vanished, which may be because of theO(1) terms in the redundancy of the
estimator which we did not analyze. The Bayesian criterion is clearly somewhat more reliable, but may be
too computationally intensive depending on the considered models.

7 Conclusion

Given a model (set of probability distributions)M, the maximum likelihood estimator̂θ(xn) based on past
observationsxn = x1, . . . , xn indexes a distribution that is a natural and easy to compute candidate for
prediction of the next observation. However, previous work shows that if the data generating distributionP ∗

is not in the model, then such a “ML plug-in” prediction strategy yields suboptimal expected regret: unlike for
other prediction strategies, such as Bayesian prediction, the expected regret isnot (k/2) log n + O(1), where
k is the number of parameters in the model. This is a serious problem when the “ML plug-in” strategy is used
for model selection: there, by its very nature, the possibility thatP ∗ 6∈ M deserves serious consideration.

To address this issue, we described a simple “flattening” of the ML distribution and related predictors,
using which the optimal worst caseindividual sequenceregret of(k/2) log n + O(1) can be achieved, for
exponential family models and bounded outcome spaces (Theorem 11 on page 6). For unbounded spaces,
we provided an almost-sure result (Theorem 14 on page 9). In Section 6, we subjected the new prediction
strategy to the same model selection experiments that showed the ML plug-in strategy to be suboptimal,
obtaining a major improvement in performance.
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Abstract

A sequence x1, . . . , xn, . . . of discrete-valued observations is generated according to some
unknown probabilistic law (measure) µ. After observing each outcome, it is required to
give the conditional probabilities of the next observation. The realizable case is when
the measure µ belongs to an arbitrary but known class C of process measures. The non-
realizable case is when µ is completely arbitrary, but the prediction performance is measured
with respect to a given set C of process measures. We are interested in the relations between
these problems and between their solutions, as well as in characterizing the cases when a
solution exists, and finding these solutions. We show that if the quality of prediction is
measured by total variation distance, then these problems coincide, while if it is measured
by expected average KL divergence, then they are different. For some of the formalizations
we also show that when a solution exists, it can be obtained as a Bayes mixture over a
countable subset of C. As an illustration to the general results obtained, we show that a
solution to the non-realizable case of the sequence prediction problem exists for the set of
all finite-memory processes, but does not exist for the set of all stationary processes.

1 Introduction

A sequence x1, . . . , xn, . . . of discrete-valued observations (xi ∈ X , X is finite) is generated according
to some unknown probabilistic law (measure). That is, µ is a probability measure on the space
Ω = (X∞,B) of one-way infinite sequences (here B is the usual Borel σ-algebra). After each new
outcome xn is revealed, it is required to predict conditional probabilities of the next observation
xn+1 = a, a ∈ X , given the past x1, . . . , xn. Since a predictor ρ is required to give conditional
probabilities ρ(xn+1 = a|x1, . . . , xn) for all possible histories x1, . . . , xn, it defines itself a probability
measure on the space Ω of one-way infinite sequences. In other words, a probability measure on Ω
can be considered both as a data-generating mechanism and as a predictor.

Therefore, given a set C of probability measures on Ω, one can ask two kinds of questions about
it. First, does there exist a predictor ρ, whose forecast probabilities converge (in a certain sense) to
the µ-conditional probabilities, if an arbitrary µ ∈ C is chosen to generate the data? Here we assume
that the “true” measure that generates the data belongs to the set C of interest, and would like to
construct a predictor that predicts all measures in C. The second type of questions is as follows:
does there exist a predictor that predicts at least as well as any predictor ρ ∈ C, if the measure that
generates the data comes possibly from outside of C? Therefore, here we consider elements of C as
predictors, and we would like to combine their predictive properties, if this is possible. Note that in
this setting the two questions above concern the same object: a set C of probability measures on Ω.

Each of these two questions, the realizable and non-realizable one, have enjoyed much attention
in the literature; the setting for the non-realizable case is usually slightly different, which is probably
why it has not (to the best of the author’s knowledge) been studied as another facet of the realizable
case. The realizable case traces back to Laplace, who has considered the problem of predicting
outcomes of a series of independent tosses of a biased coin. That is, he has considered the case when
the set C is that of all i.i.d. process measures. Other classical examples studied are the set of all
computable (or semi-computable) measures [Solomonoff, 1978], the set of k-order Markov and finite-
memory processes (e.g. [Krichevsky, 1993]) and the set of all stationary processes [Ryabko, 1988].
The general question of finding predictors for an arbitrary given set C of process measures has been
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addressed in [Ryabko and Hutter, 2007, Ryabko and Hutter, 2008, Ryabko, 2010]; the latter work
shows that when a solution exists it can be obtained as a Bayes mixture over a countable subset
of C.

The non-realizable case is usually studied in a slightly different, non-probabilistic, setting. We
refer to [Cesa-Bianchi and Lugosi, 2006] for a comprehensive overview. It is usually assumed that
the observed sequence of outcomes is an arbitrary (deterministic) sequence; it is required not to give
conditional probabilities, but just deterministic guesses (although these guesses can be selected using
randomisation). Predictions result in a certain loss, which is required to be small as compared to the
loss of a given set of reference predictors (experts) C. The losses of the experts and the predictor are
observed after each round. In this approach, it is mostly assumed that the set C is finite or countable.
The main difference with the formulation considered in this work is that we require a predictor to
give probabilities, and thus the loss is with respect to something never observed (probabilities,
not outcomes). The loss itself is not completely observable in our setting. In this sense our non-
realizable version of the problem is more difficult. Assuming that the data generating mechanism is
probabilistic, even if it is completely unknown, makes sense in such problems as, for example, game
playing, or market analysis. In these cases one may wish to assign smaller loss to those models or
experts who give probabilities closer to the correct ones (which are never observed), even though
different probability forecasts can often result in the same action. Aiming at predicting probabilities
of outcomes also allows us to abstract from the actual use of the predictions (e.g. making bets) and
thus from considering losses in a general form; instead, we can concentrate on the form of losses
(measuring the discrepancy between the forecast and true probabilities) which are more convenient
for the analysis. In this latter respect, the problems we consider are easier than those considered in
prediction with expert advice. (However, in principle nothing restricts us to considering the simple
losses that we chose; they are just a convenient choice.) Noteworthy, the probabilistic approach also
makes the machinery of probability theory applicable, hopefully making the problem easier.

In this work we consider two measures of the quality of prediction. The first one is the total
variation distance, which measures the difference between the forecast and the “true” conditional
probabilities of all future events (not just the probability of the next outcome). The second one is
expected (over the data) average (over time) Kullback-Leibler divergence. Requiring that predicted
and true probabilities converge in total variation is very strong; in particular, this is possible if
[Blackwell and Dubins, 1962] and only if [Kalai and Lehrer, 1994] the process measure generating
the data is absolutely continuous with respect to the predictor. The latter fact makes the sequence
prediction problem relatively easy to analyse. Here we investigate what can be paralleled for the
other measure of prediction quality (average KL divergence), which is much weaker, and thus allows
for solutions for the cases of much larger sets C of process measures (considered either as predictors
or as data generating mechanisms).

Having introduced our measures of prediction quality, we can further break the non-realizable case
into two problems. The first one is as follows. Given a set C of predictors, we want to find a predictor
whose prediction error converges to zero if there is at least one predictor in C whose prediction error
converges to zero; we call this problem simply the “non-realisable” case, or Problem 2 (leaving the
name “Problem 1” to the realizable case). The second problem is the “fully agnostic” problem: it
is to make the prediction error asymptotically as small as that of the best (for the given process
measure generating the data) predictor in C (we call this Problem 3). Thus, we now have three
problems about a set of process measures C to address.

We show that if the quality of prediction is measured in total variation, then all the three problems
coincide: any solution to any one of them is a solution to the other two. For the case of expected
average KL divergence, all the three problems are different: the realizable case is strictly easier than
non-realizable (Problem 2), which is, in turn, strictly easier than the fully agnostic case (Problem 3).
We then analyse which results concerning prediction in total variation can be transferred to which
of the problems concerning prediction in average KL divergence. It was shown in [Ryabko, 2010]
that, for the realizable case, if there is a solution for a given set of process measures C, then a
solution can also be obtained as a Bayesian mixture over a countable subset of C; this holds both
for prediction in total variation and in expected average KL divergence. Here we show that this
result also holds true for the (non-realizable) case of Problem 2, for prediction in expected average
KL divergence. For the fully agnostic case of Problem 3, we show that separability with respect to
a certain topology given by KL divergence is a sufficient (though not a necessary) condition for the
existence of a predictor. This is used to demonstrate that there is a solution to this problem for the
set of all finite-memory process measures, complementing similar results obtained earlier in different
settings. On the other hand, we show that there is no solution to this problem for the set of all
stationary process measures, in contrast to a result of [Ryabko, 1988] which gives a solution to the
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realizable case of this problem (that is, a predictor whose expected average KL error goes to zero if
any stationary process is chosen to generate the data).

2 Preliminaries

Let X be a finite set. The notation x1..n is used for x1, . . . , xn. We consider stochastic processes
(probability measures) on Ω := (X∞,B) where B is the sigma-field generated by the cylinder sets
[x1..n], xi ∈ X , n ∈ N and [x1..n] is the set of all infinite sequences that start with x1..n. For a finite
set A denote |A| its cardinality. We use Eµ for expectation with respect to a measure µ.

Next we introduce the measures of the quality of prediction used in this paper. For two measures
µ and ρ we are interested in how different the µ- and ρ-conditional probabilities are, given a data
sample x1..n. Introduce the (conditional) total variation distance

v(µ, ρ, x1..n) := sup
A∈B
|µ(A|x1..n)− ρ(A|x1..n)|,

if µ(x1..n) 6= 0 and ρ(x1..n) 6= 0, and v(µ, ρ, x1..n) = 1 otherwise.

Definition 1 We say that ρ predicts µ in total variation if

v(µ, ρ, x1..n)→ 0 µ-a.s.

This convergence is rather strong. In particular, it means that ρ-conditional probabilities of arbitrary
far-off events converge to µ-conditional probabilities. Moreover, ρ predicts µ in total variation if
[Blackwell and Dubins, 1962] and only if [Kalai and Lehrer, 1994] µ is absolutely continuous with
respect to ρ. Denote ≥tv the relation of absolute continuity (that is, ρ ≥tv µ if µ is absolutely
continuous with respect to ρ).

Thus, for a class C of measures there is a predictor ρ that predicts every µ ∈ C in total variation
if and only if every µ ∈ C has a density with respect to ρ. Although such sets of processes are
rather large, they do not include even such basic examples as the set of all Bernoulli i.i.d. processes.
That is, there is no ρ that would predict in total variation every Bernoulli i.i.d. process measure
δp, p ∈ [0, 1], where p is the probability of 0. Therefore, perhaps for many (if not most) practical
applications this measure of the quality of prediction is too strong, and one is interested in weaker
measures of performance.

For two measures µ and ρ introduce the expected cumulative Kullback-Leibler divergence (KL
divergence) as

dn(µ, ρ) := Eµ

n∑
t=1

∑
a∈X

µ(xt = a|x1..t−1) log
µ(xt = a|x1..t−1)

ρ(xt = a|x1..t−1)
, (1)

In words, we take the expected (over data) cumulative (over time) KL divergence between µ- and
ρ-conditional (on the past data) probability distributions of the next outcome.

Definition 2 We say that ρ predicts µ in expected average KL divergence if

1

n
dn(µ, ρ)→ 0.

This measure of performance is much weaker, in the sense that it requires good predictions only one
step ahead, and not on every step but only on average; also the convergence is not with probability 1
but in expectation. With prediction quality so measured, predictors exist for relatively large classes
of measures; most notably, [Ryabko, 1988] provides a predictor which predicts every stationary
process in expected average KL divergence. We will use the following well-known identity

dn(µ, ρ) = −
∑

x1..n∈Xn
µ(x1..n) log

ρ(x1..n)

µ(x1..n)
, (2)

where on the right-hand side we have simply the KL divergence between measures µ and ρ restricted
to the first n observations.

Thus, the results of this work will be established with respect to two very different measures of
prediction quality, one of which is very strong and the other rather weak. This suggests that the
facts established reflect some fundamental properties of the problem of prediction, rather than those
pertinent to particular measures of performance. On the other hand, it remains open to extend the
results below to different measures of performance.
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Definition 3 Introduce the following classes of process measures: P the set of all process measures,
D the set of all degenerate discrete process measures, S the set of all stationary processes, and Mk

the set of all stationary measures with memory not greater than k (k-order Markov processes, with
M0 being the set of all i.i.d. processes):

D := {µ ∈ P : ∃x ∈ X∞µ(x) = 1} , (3)

S := {µ ∈ P : ∀n, k ≥ 0 ∀a1..n ∈ Xn µ(x1..n = a1..n) = µ(x1+k..n+k = a1..n)} . (4)

Mk :=
{
µ ∈ S : ∀n ≥ 0 ∀a ∈ X ∀a1..n ∈ Xn

µ(xn+1 = a|x1..n = a1..n) = µ(xk+1 = a|x1..k = a1..k)
}
, (5)

Abusing the notation, we will sometimes use elements of D and X∞ interchangeably. The following
simple statement (whose proof is obvious) will be used repeatedly in the examples.

Lemma 4 For every ρ ∈ P there exists µ ∈ D such that dn(µ, ρ) ≥ n log |X | for all n ∈ N.

3 Sequence prediction problems

For the two notions of predictive quality introduced, we can now start stating formally the sequence
prediction problems.
Problem 1(realizable case). Given a set of probability measures C, find a measure ρ such that ρ
predicts in total variation (expected average KL divergence) every µ ∈ C, if such a ρ exists.

Thus, Problem 1 is about finding a predictor for the case when the process generating the data
is known to belong to a given class C. The set C here is a set of measures generating the data. Next
let us formulate the questions about C as a set of predictors.
Problem 2 (non-realizable case). Given a set of process measures (predictors) C, find a process
measure ρ such that ρ predicts in total variation (in expected average KL divergence) every measure
ν ∈ P such that there is µ ∈ C which predicts (in the same sense) ν.

While Problem 2 is already quite general, it does not yet address what can be called the fully
agnostic case: if nothing at all is known about the process ν generating the data, it means that there
may be no µ ∈ C such that µ predicts ν, and then, even if we have a solution ρ to the Problem 2,
we still do not know what the performance of ρ on ν is going to be, compared to the performance
of the predictors from C. To address the fully agnostic case, we have to introduce the notion of loss.

Definition 5 Introduce the almost sure total variation loss of ρ with respect to µ

ltv(µ, ρ) := inf{α ∈ [0, 1] : lim sup
n→∞

v(µ, ρ, x1..n) ≤ α µ–a.s.},

and the asymptotic KL loss

lKL(ν, ρ) := lim sup
n→∞

1

n
dn(ν, ρ).

We can now formulate the fully agnostic version of the sequence prediction problem.
Problem 3. Given a set of process measures (predictors) C, find a process measure ρ such that ρ
predicts at least as well as any µ in C, if any process measure ν ∈ P is chosen to generate the data:
l(ν, ρ) ≤ l(ν, µ) for every ν ∈ P and every µ ∈ C, where l(·, ·) is either ltv(·, ·) or lKL(·, ·).

The three problems just formulated represent different conceptual approaches to the sequence
prediction problem. Let us illustrate the difference by the following informal example. Suppose that
the set C is that of all (ergodic, finite-state) Markov chains. Markov chains being a familiar object
in probability and statistics, we can easily construct a predictor ρ that predicts every µ ∈ C (for
example, in expected average KL divergence, see [Krichevsky, 1993]). That is, if we know that the
process µ generating the data is Markovian, we know that our predictor is going to perform well.
This is the realizable case of Problem 1. In reality, rarely can we be sure that the Markov assumption
holds true for the data at hand. We may believe, however, that it is still a reasonable assumption, in
the sense that there is a Markovian model which, for our purposes (for the purposes of prediction),
is a good model of the data. Thus we may assume that there is a Markov model (a predictor) that
predicts well the process that we observe, and we would like to combine the predictive qualities of
all these Markov models. This is the “non-realizable” case of Problem 2. Note that this problem
is more difficult than the first one; in particular, a process ν generating the data may be singular
with respect to any Markov process, and still be well predicted (in the sense of expected average
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KL divergence, for example) by some of them. Still, here we are making some assumptions about
the process generating the data, and if these assumptions are wrong, then we do not know anything
about the performance of our predictor. Thus we may ultimately wish to acknowledge that we do
not know anything at all about the data; we still know a lot about Markov processes, and we would
like to use this knowledge on our data. If there is anything at all Markovian in it (that is, anything
that can be captured by a Markov model), then we would like our predictor to use it. In other
words, we want to have a predictor that predicts any process measure whatsoever (at least) as well
as any Markov predictor. This is the “fully agnostic” case of Problem 3.

Of course, Markov processes were just mentioned as an example, while in this work we are only
concerned with the most general case of arbitrary unknown (uncountable) sets C of process measures.

The following statement is rather obvious.

Proposition 1 Any solution to Problem 3 is a solution to Problem 2, and any solution to Problem 2
is a solution to Problem 1.

Despite the conceptual differences in formulations, it may be somewhat unclear whether the three
problems are indeed different. It appears that this depends on the measure of predictive quality
chosen: for the case of prediction in total variation distance, all the three problems coincide, while
for the case of prediction in expected average KL divergence, they are different.

4 Prediction in total variation

As it was mentioned, if a measure µ is absolutely continuous with respect to a measure ρ if and
only if ρ predicts µ in total variation distance, [Blackwell and Dubins, 1962, Kalai and Lehrer, 1994].
This reduces the study of at least Problem 1 for total variation distance to studying the relation of
absolute continuity. Introduce the notation ρ ≥KL µ for this relation.

Let us briefly recall some facts we know about ≥tv; details can be found, for example, in
[Plesner and Rokhlin, 1946]. Let [P]tv denote the set of equivalence classes of P with respect to
≥tv, and for µ ∈ [P]tv denote [µ] the equivalence class that contains µ. Two elements σ1, σ2 ∈ [P]tv
(or σ1, σ2 ∈ P) are called disjoint (or singular) if there is no ν ∈ [P]tv such that σ1 ≥tv ν and
σ2 ≥tv ν; in this case we write σ1 ⊥tv σ2. We write [µ1] + [µ2] for [1/2(µ1 + µ2)]. Every pair
σ1, σ2 ∈ [P]tv has a supremum sup(σ1, σ2) = σ1 + σ2. Introducing into [P]tv an extra element 0
such that σ ≥tv 0 for all σ ∈ [P]tv, we can state that for every ρ, µ ∈ [P]tv there exists a unique pair
of elements µs and µa such that µ = µa + µs, ρ ≥ µa and ρ ⊥tv µs. (This is a form of Lebesgue
decomposition.) Moreover, µa = inf(ρ, µ). Thus, every pair of elements has a supremum and an
infimum. Moreover, every bounded set of disjoint elements of [P]tv is at most countable.

Furthermore, introduce the (unconditional) total variation distance between process measures.

Definition 6 (unconditional total variation distance) Introduce the (unconditional) total vari-
ation distance

v(µ, ρ) := sup
A∈B
|µ(A)− ρ(A)|.

Known characterizations of sets C bounded with respect to ≥KL can now be related to our
prediction problems 1-3 as follows.

Theorem 7 Let C ⊂ P. The following statements about the set C are equivalent.

(i) There exists a solution to Problem 1 in total variation.

(ii) There exists a solution to Problem 2 in total variation.

(iii) There exists a solution to Problem 3 in total variation.

(iv) C is upper-bounded with respect to ≥tv.
(v) There exists a sequence µk ∈ C, k ∈ N such that for some (equivalently, for every) sequence

of weights wk ∈ (0, 1], k ∈ N such that
∑
k∈N wk = 1, the measure ν =

∑
k∈N wkµk satisfies

ν ≥tv µ for every µ ∈ C.

(vi) C is separable with respect to the total variation distance.

(vii) Let C+ := {µ ∈ P : ∃ρ ∈ C ρ ≥tv µ}. Every disjoint (with respect to ≥tv) subset of C+ is at most
countable.
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Moreover, every solution to any of the Problems 1-3 is a solution to the other two, as is any upper
bound for C. The sequence µk in the statement (v) can be taken to be any dense (in the total variation
distance) countable subset of C (cf. (vi)), or any maximal disjoint (with respect to ≥tv) subset of C+
of statement (vii), in which every measure that is not in C is replaced by any measure from C that
dominates it.

Proof: The implications (i) ⇐ (ii) ⇐ (iii) are obvious (see Proposition 1). The implication
(i)⇒ (iv) is a reformulation of the result of [Blackwell and Dubins, 1962]. The converse (and hence
(iv) ⇒ (i)) was established in [Kalai and Lehrer, 1994]. (i) ⇒ (ii) follows from the equivalence
(i) ⇔ (iv) and the transitivity of ≥tv; (i) ⇒ (iii) follows from this equivalence and from Lemma 8
below. The equivalence of (v), (vi), and (i) was established in [Ryabko, 2010]. The equivalence of
(iv) and (vii) was proven in [Plesner and Rokhlin, 1946]. The concluding statements of the theorem
are easy to demonstrate from the results cited above.

The following lemma is an easy consequence of [Blackwell and Dubins, 1962].

Lemma 8 Let µ, ρ be two process measures. Then v(µ, ρ, x1..n) converges to either 0 or 1 with
µ-probability 1.

Proof: Assume that µ is not absolutely continuous with respect to ρ (the other case is covered
by [Blackwell and Dubins, 1962]). By Lebesgue decomposition theorem, the measure µ admits a
representation µ = αµa + (1 − α)µs where α ∈ [0, 1] and the measures µa and µs are such that
µa is absolutely continuous with respect to ρ and µs is singular with respect to ρ. Let W be such
a set that µa(W ) = ρ(W ) = 1 and µs(W ) = 0. Note that µa = µ|W and µs = µ|X∞\W . From
[Blackwell and Dubins, 1962] we have v(µa, ρ, x1..n)→ 0 µa-a.s., as well as v(µa, µ, x1..n)→ 0 µa-a.s.
and v(µs, µ, x1..n) → 0 µs-a.s. Moreover, v(µs, ρ, x1..n) ≥ |µs(W |x1..n) − ρ(W |x1..n)| = 1 so that
v(µs, ρ, x1..n)→ 1 µs-a.s. We have

v(µ, ρ, x1..n) ≤ v(µ, µa, x1..n) + v(µa, ρ, x1..n) = I

and
v(µ, ρ, x1..n) ≥ −v(µ, µs, x1..n) + v(µs, ρ, x1..n) = II

for x1,... ∈ W we have I → 0 µ-a.s., and for x1,... /∈ W we have II → 1 µ-a.s., which concludes the
proof.

Using Lemma 8 we could also define expected (rather than almost sure) total variation loss of ρ
with respect to µ, as the probability that v(µ, ρ) converges to 1, and reformulate Problem 3 for this
notion of loss. However, it is easy to see that for this reformulation Theorem 9 holds true as well.

Thus, we can see that for the case of prediction in total variation, all the sequence prediction
problems formulated reduce to studying the relation of absolute continuity for process measures,
and those families of measures that are absolutely continuous (have a density) with respect to some
measure (a predictor). On the one hand, from statistical point of view such families are rather
large: the assumption that the probabilistic law in question has a density with respect to some
(nice) measure is a standard one in statistics. It should also be mentioned that such families can
easily be uncountable. On the other hand, even such basic examples as the set of all Bernoulli i.i.d.
measures does not allow for a predictor that predicts every measure in total variation. Indeed, all
these processes are singular with respect to one another; in particular, each of the non-overlapping
sets Tp of all sequences which have limiting fraction p of 0s has probability 1 with respect to one of
the measures and 0 with respect to all others; since there are uncountably many of these measures,
there is no measure ρ with respect to which they all would have a density (since such a measure
should have ρ(Tp) > 0 for all p).

That is why we have to consider weaker notions of predictions; from these, prediction in expected
average KL divergence is perhaps one of the weakest. The goal of the next sections is to see which
of the properties that we have for total variation can be transferred (and in which sense) to the case
of expected average KL divergence.

5 Prediction in expected average KL divergence

First of all we have to observe that for prediction in KL divergence Problems 1, 2, and 3 are different,
as the following theorem shows. While the examples provided in the proof are artificial, there is a
very important example illustrating the difference between Problem 1 and Problem 3 for expected
average KL divergence: the set S of all stationary processes, given in Theorem 15 in the end of this
section.
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Theorem 9 For the case of prediction in expected average KL divergence, Problems 1, 2 and 3 are
different: there exists a set C1 ⊂ P for which there is a solution to Problem 1 but there is no solution
to Problem 2, and there is a set C2 ⊂ P for which there is a solution to Problem 2 but there is no
solution to Problem 3.

Proof:We have to provide two examples. Fix the binary alphabet X = {0, 1}. For each deterministic
sequence t = t1, t2, · · · ∈ D construct the process measure γt as follows: γt(xn = tn|t1..n−1) := 1− 1

n
and for x1..n−1 6= t1..n−1 let γt(xn = 0|x1..n−1) = 1/2, for all n ∈ N. That is, γt is Bernoulli i.i.d.
1/2 process measure strongly biased towards one deterministic sequence, t. Let also γ(x1..n) = 2−n

for all x1..n ∈ Xn, n ∈ N (the Bernoulli i.i.d. 1/2). For the set C1 := {γt : t ∈ X∞} we have a
solution to Problem 1: indeed, dn(γt, γ) ≤ 1 = o(n). However, there is no solution to Problem 2.
Indeed, for each t ∈ D we have dn(t, γt) = log n = o(n) (that is, for every discrete measure there
is an element of C1 which predicts it), while by Lemma 4 for every ρ ∈ P there exists t ∈ D such
that dn(t, ρ) ≥ n for all n ∈ N (that is, there is no predictor which predicts every measure that is
predicted by at least one element of C1).

The second example is similar. For each deterministic sequence t = t1, t2, · · · ∈ D construct
the process measure γt as follows: γ′t(xn = tn|t1..n−1) := 2/3 and for x1..n−1 6= t1..n−1 let γ′t(xn =
0|x1..n−1) = 1/2, for all n ∈ N. It is easy to see that γ is a solution to Problem 2 for the set
C2 := {γ′t : t ∈ X∞}. However, there is no solution to Problem 3 for C2. Indeed, for every t ∈ D we
have dn(t, γ′t) = n log 3/2 + o(n). Therefore, if ρ is a solution to Problem 3 then lim sup 1

ndn(t, ρ) ≤
log 3/2 < 1 which contradicts Lemma 4.

Thus, prediction in expected average KL divergence turns out to be a more complicated matter
than prediction in total variation. The next idea is to try and see which of the facts about prediction
in total variation can be generalized to some of the problems concerning prediction in expected
average KL divergence.

First, observe that for the case of prediction in total variation, the equivalence of Problems 1
and 2 was derived from the transitivity of the relation ≥tv of absolute continuity. For the case of
expected average KL divergence, the relation “ρ predicts µ in expected average KL divergence” is
not transitive (and Problems 1 and 2 are not equivalent). However, for Problem 2 we are interested
in the following relation: ρ “dominates” µ if ρ predicts every ν such that µ predicts ν. This relation
is transitive. Denote it by ≥0

KL.

Definition 10 (≥0
KL) We write ρ ≥0

KL µ if for every ν ∈ P the equality lim sup 1
ndn(ν, µ) = 0

implies lim sup 1
ndn(ρ, µ) = 0.

Similarly to ≥tv, we can see that for any µ, ρ any strictly convex combination αµ + (1 − α)ρ is a
supremum of {ρ, µ} with respect to ≥0

KL. Next we will obtain a characterization of predictability
with respect to ≥0

KL similar to one of those obtained for ≥tv.
The key observation is the following. If there is a solution to Problem 2 for a set C, then a

solution can be obtained as a Bayesian mixture over a countable subset of C. For total variation,
this is (v) of Theorem 7.

Theorem 11 Let C be a set of probability measures on Ω. If there is a measure ρ such that ρ ≥0
KL µ

for every µ ∈ C (ρ is a solution to Problem 2), then there is a sequence µk ∈ C, k ∈ N such that∑
k∈N wkµk ≥0

KL µ for every µ ∈ C, where wk are some positive weights.

The proof is deferred to Appendix. An analogous result for Problem 1 was established in
[Ryabko, 2009]. (The proof of Theorem 11 is based on similar ideas, but is more involved.)

For the case of Problem 3, it remains open to prove a result similar to Theorem 11 (or statement
(v) of Theorem 7). However, we can take a different route and extend another part of Theorem 7
to obtain a characterization of sets C for which a solution to Problem 3 exists.

We have seen that in the case of prediction in total variation, separability with respect to the
topology of this distance is a necessary and sufficient condition for the existence of a solution to
Problems 1-3. In the case of expected average KL divergence the situation is somewhat different,
since, first of all, (asymptotic average) KL divergence is not a metric. While one can introduce a
topology based on it, separability with respect to this topology turns out to be a sufficient but not
a necessary condition for the existence of a predictor, as is shown in the next theorem.

Definition 12 Define the distance d∞(µ1, µ2) on process measures as follows

d∞(µ1, µ2) = lim sup
n→∞

sup
x1..n∈Xn

1

n

∣∣∣∣log
µ1(x1..n)

µ2(x1..n)

∣∣∣∣ . (6)
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Clearly, d∞ is symmetric and transitive, but is not exact. Moreover, for every µ1, µ2 we have

lim sup
n→∞

1

n
dn(µ1, µ2) ≤ d∞(µ1, µ2). (7)

The distance d∞(µ1, µ2) measures the difference in behaviour of µ1 and µ2 on all individual se-
quences. Thus, using this distance to analyze Problem 3 is most close to the traditional approach to
the non-realizable case, which is formulated in terms of predicting individual deterministic sequences.

Theorem 13 (i) Let C be a set of process measures. If C is separable with respect to d∞ then there
is a solution to Problem 3 for C, for the case of prediction in expected average KL divergence.

(ii) There exists a set of process measures C such that C is not separable with respect to d∞, but
there is a solution to Problem 3 for this set, for the case of prediction in expected average KL
divergence.

Proof: For the first statement, let C be separable and let (µk)k∈N be a dense countable subset of C.
Define ν :=

∑
k∈N wkµk, where wk are any positive summable weights. Fix any measure τ and any

µ ∈ C. We will show that lim supn→∞
1
ndn(τ, ν) ≤ lim supn→∞

1
ndn(τ, ν). For every ε, find such a

k ∈ N that d∞(µ, µk) ≤ ε. We have

dn(τ, ν) ≤ dn(τ, wkµk) = Eτ log
τ(x1..n)

µk(x1..n)
− logwk

= Eτ log
τ(x1..n)

µ(x1..n)
+ Eτ log

µ(x1..n)

µk(x1..n)
− logwk

≤ dn(τ, µ) + sup
x1..n∈Xn

log

∣∣∣∣ µ(x1..n)

µk(x1..n)

∣∣∣∣− logwk.

From this, dividing by n taking lim supn→∞ on both sides, we conclude

lim sup
n→∞

1

n
dn(τ, ν) ≤ lim sup

n→∞

1

n
dn(τ, µ) + ε.

Since this holds for every ε > 0 the first statement is proven.
The second statement is proven by the following example. Let C be the set of all deterministic

sequences (measures concentrated on just one sequence) such that the number of 0s in the first n
symbols is less than

√
n. Clearly, this set is uncountable. It is easy to check that µ1 6= µ2 implies

d∞(µ1, µ2) = ∞ for every µ1, µ2 ∈ C, but the predictor ν given by ν(xn = 0) = 1/n independently
for different n, predicts every µ ∈ C in expected average KL divergence. Since all elements of C are
deterministic, ν is also a solution to Problem 3 for C.

Although simple, Theorem 13 can be used to establish the existence of a solution to Problem 3 for
an important class of process measures: that of all processes with finite memory, as the next theorem
shows. Results, similar to Theorem 14 are known in different settings, e.g. [Ziv and Lempel, 1978,
Ryabko, 1984, Cesa-Bianchi and Lugosi, 1999] and others.

Theorem 14 There exists a solution to Problem 3 for prediction in expected average KL divergence
for the set of all finite-memory process measures M := ∪k∈NMk.

Proof: We will show that the set M is separable with respect to d∞. Then the statement will
follow from Theorem 13. It is enough to show that each set Mk is separable with respect to d∞.

Observe that the familyMk of k-order stationary binary-valued Markov processes is parametrized
by |X |k+1 [0, 1]-valued parameters: probability of observing 0 after observing x1..k, for each x1..k ∈
X k. For each k ∈ N let µkq , q ∈ Q2k be the (countable) family of all stationary k-order Markov
processes with rational values of all the parameters. We will show that this family is dense in Mk.
Indeed, for any µ1, µ2 ∈ Mk and every x1..n ∈ Xn such that µi(x1..n) 6= 0, i = 1, 2, it is easy to see
that

1

n

∣∣∣∣log
µ1(x1..n)

µ2(x1..n)

∣∣∣∣ ≤ 2 log(a+ τ) (8)

where a = infx1..k:µi(x1..k)6=0,i=1,2 µi(x1..k) and τ := infx∈X ,x1..k∈Xk |µ1(x|x1..k − µ2(x|x1..k)|. Since

the set µkq , q ∈ Q2k is dense in Mk with respect to this parametrization, for each µ ∈ Mk the

expression (8) can be made arbitrary small for appropriate µkq , so thatMk is separable with respect
to d∞.
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Another important example is the set of all stationary process measures S. This example also
illustrates the difference between the prediction problems that we consider. For this set a solution
to Problem 1 was given in [Ryabko, 1988]. In contrast, here we show that there is no solution to
Problem 3 for S.

Theorem 15 There is no solution to Problem 3 for the set of all stationary processes S.

Proof: This proof is based on the construction similar to the one used in [Ryabko, 1988] to demon-
strate impossibility of consistent prediction of stationary processes without Cesaro averaging.

Let m be a Markov chain with states 0, 1, 2, . . . and state transitions defined as follows. From
each sate k ∈ N ∪ {0} the chain passes to the state k + 1 with probability 2/3 and to the state 0
with probability 1/3. It is easy to see that this chain possesses a unique stationary distribution on
the set of states (see e.g. [Shiryaev, 1996]); taken as the initial distribution it defines a stationary
ergodic process with values in N∪{0, 1}. Fix the ternary alphabet X = {a, 0, 1}. For each sequence
t = t1, t2, · · · ∈ {0, 1}∞ define the process µt as follows. It is a deterministic function of the chain
m. If the chain is in the state 0 then the process µt outputs a; if the chain m is in the state k > 0
then the process outputs tk. That is, we have defined a hidden Markov process which in the state
0 of the underlying Markov chain always outputs a, while in other states it outputs either 0 or 1
according to the the sequence t.

To show that there is no solution to Problem 3 for S, we will show that there is no solution to
Problem 3 for the smaller set C := {µt : t ∈ {0, 1}∞}. Indeed, for any t ∈ {0, 1}∞ we have dn(t, µt) =
n log 3/2 + o(n). Then if ρ is a solution to Problem 3 for C we should have lim supn→∞

1
ndn(t, ρ) ≤

log 3/2 < 1 for every t ∈ D, which contradicts Lemma 4.

From the proof Theorem 15 one can see that, in fact, the statement that is proven is stronger:
there is no solution to Problem 3 for the set of all functions of stationary ergodic countable-state
Markov chains. We conjecture that a solution to Problem 2 exists for the latter set, but not for the
set of all stationary processes.

6 Discussion

It has been long realized that the so-called probabilistic and agnostic (adversarial, non-stochastic,
deterministic) settings of the problem of sequential prediction are strongly related. This has been
most evident from looking at the solutions to these problems, which are usually based on the same
ideas. Here we have proposed a formulation of the agnostic problem as a non-realizable case of
the probabilistic problem. While being very close to the traditional one, this setting allows us to
directly compare the two problems. As a somewhat surprising result, we can see that whether the
two problems are different depends on the measure of performance chosen: in the case of prediction
in total variation distance they coincide, while in the case of prediction in expected average KL
divergence they are different. In the latter case, the distinction becomes particularly apparent
on the example of stationary processes: while a solution to the realizable problem has long been
known, here we have shown that there is no solution to the agnostic version of this problem. The
new formalization also allowed us to introduce another problem that lies in between the realizable
and the fully agnostic problems: given a class of process measures C, find a predictor that is predicts
asymptotically optimal every measure for which at least one of the measures in C is asymptotically
optimal (Problem 2). This problem is less restrictive then the fully agnostic one (in particular,
it is not concerned with the behaviour of a predictor on every deterministic sequence) but at the
same time the solutions to this problem have performance guarantees far outside the model class
considered.

Since the problem formulations presented here are mostly new (at least, in such a general form),
it is not surprising that there are many questions left open. A promising route to obtain new results
seems to be to first analyse the case of prediction in total variation, which amounts to studying
the relation of absolute continuity and singularity of probability measures, and then to try and find
analogues in less restrictive (and thus more interesting and difficult) cases of predicting only the next
observation, possibly with Cesaro averaging. This is the approach that we took in this work. Here it
is interesting to find properties common to all or most of the prediction problems (in total variation
as well as with respect to other measures of the performance). A candidate is the “countable Bayes”
property of Theorem 11: if there is a solution to a given sequence prediction problem for a set C,
then a solution can be obtained as a mixture over a suitable countable subset of C.

Another direction for future research concerns finite-time performance analysis. In this work
we have adopted the asymptotic approach to the prediction problem, ignoring the behaviour of
predictors before asymptotic. While for prediction in total variation it is a natural choice, for other
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measures of performance, including average KL divergence, it is clear that Problems 1-3 admit
non-asymptotic formulations. It is also interesting what are the relations between performance
guarantees that can be obtained in non-asymptotic formulations of Problems 1–3.

Appendix: Proof of Theorem 11

Proof: Define the weights wk := wk−2, where w is the normalizer 6/π2. Define the sets Cµ as the set
of all measures τ ∈ P such that µ predicts τ in expected average KL divergence. Let C+ := ∪µ∈CCµ.
For each τ ∈ C+ let p(τ) be any (fixed) µ ∈ C such that τ ∈ Cµ. In other words, C+ is the set
of all measures that are predicted by some of the measures in C, and for each measure τ in C+ we
designate one “parent” measure p(τ) from C such that p(τ) predicts τ .
Step 1. For each µ ∈ C+ let δn be any monotonically increasing function such that δn(µ) = o(n) and
dn(µ, p(µ)) = o(δn(µ)). Define the sets

Unµ :=

{
x1..n ∈ Xn : µ(x1..n) ≥ 1

n
ρ(x1..n)

}
, (9)

V nµ :=
{
x1..n ∈ Xn : p(µ)(x1..n) ≥ 2−δn(µ)µ(x1..n)

}
, (10)

and
Tnµ := Unµ ∩ V nµ . (11)

We will upper-bound µ(Tnµ ). First, using Markov’s inequality, we derive

µ(Xn\Unµ ) = µ

(
ρ(x1..n)

µ(x1..n)
> n

)
≤ 1

n
Eµ

ρ(x1..n)

µ(x1..n)
=

1

n
. (12)

Next, observe that for every n ∈ N and every set A ⊂ Xn, using Jensen’s inequality we can obtain

−
∑

x1..n∈A
µ(x1..n) log

ρ(x1..n)

µ(x1..n)
= −µ(A)

∑
x1..n∈A

1

µ(A)
µ(x1..n) log

ρ(x1..n)

µ(x1..n)

≥ −µ(A) log
ρ(A)

µ(A)
≥ −µ(A) log ρ(A)− 1

2
. (13)

Moreover,

dn(µ, p(µ)) = −
∑

x1..n∈Xn\V nµ

µ(x1..n) log
p(µ)(x1..n)

µ(x1..n)

−
∑

x1..n∈V nµ

µ(x1..n) log
p(µ)(x1..n)

µ(x1..n)
≥ δn(µn)µ(Xn\V nµ )− 1/2,

where in the inequality we have used (10) for the first summand and (13) for the second. Thus,

µ(Xn\V nµ ) ≤ dn(µ, p(µ)) + 1/2

δn(µ)
= o(1). (14)

From (11), (12) and (14) we conclude

µ(Xn\Tnµ ) ≤ µ(Xn\V nµ ) + µ(Xn\Unµ ) = o(1). (15)

Step 2n: a countable cover, time n. Fix an n ∈ N. Define mn
1 := maxµ∈C ρ(Tnµ ) (since Xn are

finite all suprema are reached). Find any µn1 such that ρn1 (Tnµn1 ) = mn
1 and let Tn1 := Tnµn1 . For k > 1,

let mn
k := maxµ∈C ρ(Tnµ \Tnk−1). If mn

k > 0, let µnk be any µ ∈ C such that ρ(Tnµnk \T
n
k−1) = mn

k , and

let Tnk := Tnk−1 ∪ Tnµnk ; otherwise let Tnk := Tnk−1. Observe that (for each n) there is only a finite

number of positive mn
k , since the set Xn is finite; let Kn be the largest index k such that mn

k > 0.
Let

νn :=

Kn∑
k=1

wkp(µ
n
k ). (16)

As a result of this construction, for every n ∈ N every k ≤ Kn and every x1..n ∈ Tnk using the
definitions (11), (9) and (10) we obtain

νn(x1..n) ≥ wk
1

n
2−δn(µ)ρ(x1..n). (17)
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Step 2: the resulting predictor. Finally, define

ν :=
1

2
γ +

1

2

∑
n∈N

wnνn, (18)

where γ is the i.i.d. measure with equal probabilities of all x ∈ X (that is, γ(x1..n) = |X |−n for
every n ∈ N and every x1..n ∈ Xn). We will show that ν predicts every µ ∈ C+, and then in the end
of the proof (Step r) we will show how to replace γ by a combination of a countable set of elements
of C (in fact, γ is just a regularizer which ensures that ν-probability of any word is never too close
to 0).

Step 3: ν predicts every µ ∈ C+. Fix any µ ∈ C+. Introduce the parameters εnµ ∈ (0, 1),
n ∈ N, to be defined later, and let jnµ := 1/εnµ. Observe that ρ(Tnk \Tnk−1) ≥ ρ(Tnk+1\Tnk ), for any
k > 1 and any n ∈ N, by definition of these sets. Since the sets Tnk \Tnk−1, k ∈ N are disjoint,
we obtain ρ(Tnk \Tnk−1) ≤ 1/k. Hence, ρ(Tnµ \Tnj ) ≤ εnµ for some j ≤ jnµ , since otherwise mn

j =
maxµ∈C ρ(Tnµ \Tnjnµ ) > εnµ so that ρ(Tnjnµ+1\Tnjnµ ) > εnµ = 1/jnµ , which is a contradiction. Thus,

ρ(Tnµ \Tnjnµ ) ≤ εnµ. (19)

We can upper-bound µ(Tnµ \Tnjnµ ) as follows. First, observe that

dn(µ, ρ) = −
∑

x1..n∈Tnµ ∩Tnjnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

−
∑

x1..n∈Tnµ \Tnjnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

−
∑

x1..n∈Xn\Tnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

= I + II + III. (20)

Then, from (11) and (9) we get
I ≥ − log n. (21)

From (13) and (19) we get

II ≥ −µ(Tnµ \Tnjnµ ) log ρ(Tnµ \Tnjnµ )− 1/2 ≥ −µ(Tnµ \Tnjnµ ) log εnµ − 1/2. (22)

Furthermore,

III ≥
∑

x1..n∈Xn\Tnµ

µ(x1..n) logµ(x1..n) ≥ µ(Xn\Tnµ ) log
µ(Xn\Tnµ )

|Xn\Tnµ |

≥ −1

2
− µ(Xn\Tnµ )n log |X |, (23)

where the first inequality is obvious, in the second inequality we have used the fact that entropy
is maximized when all events are equiprobable and in the third one we used |Xn\Tnµ | ≤ |X |n.
Combining (20) with the bounds (21), (22) and (23) we obtain

dn(µ, ρ) ≥ − log n− µ(Tnµ \Tnjnµ ) log εnµ − 1− µ(Xn\Tnµ )n log |X |,

so that

µ(Tnµ \Tnjnµ ) ≤ 1

− log εnµ

(
dn(µ, ρ) + log n+ 1 + µ(Xn\Tnµ )n log |X |

)
. (24)

From the fact that dn(µ, ρ) = o(n) and (15) it follows that the term in brackets is o(n), so that
we can define the parameters εnµ in such a way that − log εnµ = o(n) while at the same time the
bound (24) gives µ(Tnµ \Tnjnµ ) = o(1). Fix such a choice of εnµ. Then, using (15), we conclude

µ(Xn\Tnjnµ ) ≤ µ(Xn\Tnµ ) + µ(Tnµ \Tnjnµ ) = o(1). (25)
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We proceed with the proof of dn(µ, ν) = o(n). For any x1..n ∈ Tnjnµ we have

ν(x1..n) ≥ 1

2
wnνn(x1..n) ≥ 1

2
wnwjnµ

1

n
2−δn(µ)ρ(x1..n) =

wnw

2n
(εnµ)22−δn(µ)ρ(x1..n), (26)

where the first inequality follows from (18), the second from (17), and in the equality we have used
wjnµ = w/(jnµ)2 and jnµ = 1/εµn. Next we use the decomposition

dn(µ, ν) = −
∑

x1..n∈Tnjnµ

µ(x1..n) log
ν(x1..n)

µ(x1..n)
−

∑
x1..n∈Xn\Tnjnµ

µ(x1..n) log
ν(x1..n)

µ(x1..n)
= I + II. (27)

From (26) we find

I ≤ − log
(wnw

2n
(εnµ)22−δn(µ)

)
−

∑
x1..n∈Tnjnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

= (1 + 3 log n− 2 log εnµ − 2 logw + δn(µ)) +

dn(µ, ρ) +
∑

x1..n∈Xn\Tnjnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)


≤ o(n)−

∑
x1..n∈Xn\Tnjnµ

µ(x1..n) logµ(x1..n)

≤ o(n) + µ(Xn\Tnjnµ )n log |X | = o(n), (28)

where in the second inequality we have used − log εnµ = o(n), dn(µ, ρ) = o(n) and δn(µ) = o(n), in
the last inequality we have again used the fact that the entropy is maximized when all events are
equiprobable, while the last equality follows from (25). Moreover, from (18) we find

II ≤ log 2 −
∑

x1..n∈Xn\Tnjnµ

µ(x1..n) log
γ(x1..n)

µ(x1..n)
≤ 1 + nµ(Xn\Tnjnµ ) log |X | = o(n), (29)

where in the last inequality we have used γ(x1..n) = |X |−n and µ(x1..n) ≤ 1, and the last equality
follows from (25).

From (27), (28) and (29) we conclude 1
ndn(ν, µ)→ 0.

Step r: the regularizer γ. It remains to show that the i.i.d. regularizer γ in the definition of
ν (18), can be replaced by a convex combination of a countably many elements from C. Indeed, for
each n ∈ N, denote

An := {x1..n ∈ Xn : ∃µ ∈ C µ(x1..n) 6= 0},
and let for each x1..n ∈ Xn the measure µx1..n be any measure from C such that µx1..n(x1..n) ≥
1
2 supµ∈C µ(x1..n). Define

γ′n(x′1..n) :=
1

|An|
∑

x1..n∈An

µx1..n
(x′1..n),

for each x′1..n ∈ An, n ∈ N, and let γ′ :=
∑
k∈N wkγ

′
k. For every µ ∈ C we have

γ′(x1..n) ≥ wn|An|−1µx1..n
(x1..n) ≥ 1

2
wn|X |−nµ(x1..n)

for every n ∈ N and every x1..n ∈ An, which clearly suffices to establish the bound II = o(n) as
in (29).
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Abstract

Suppose a decision maker has to purchase a commodity over time with varying prices
and demands. In particular, the price per unit might depend on the amount purchased
and this price function might vary from step to step. The decision maker has a buffer
of bounded size for storing units of the commodity that can be used to satisfy demands
at later points in time. We seek for an algorithm deciding at which time to buy which
amount of the commodity so as to minimize the cost. This kind of problem arises in many
technological and economical settings like, e.g., battery management in hybrid cars and
economical caching policies for mobile devices. A simplified but illustrative example is a
frugal car driver thinking about at which occasion to buy which amount of gasoline.

Within a regret analysis, we assume that the decision maker can observe the performance of
a set of expert strategies over time and synthesizes the observed strategies into a new online
algorithm. In particular, we investigate the external regret obtained by the well-known
Randomized Weighted Majority algorithm applied to our problem. We show that this
algorithm does not achieve a reasonable regret bound if its random choices are independent
from step to step, that is, the regret for T steps is Ω(T ). However, one can achieve regret

O(
√
T ) when introducing dependencies in order to reduce the number of changes between

the chosen experts. If the price functions satisfy a convexity condition then one can even
derive a deterministic variant of this algorithm achieving regret O(

√
T ).

Our more detailed bounds on the regret depend on the buffer size and the number of
available experts. The upper bounds are complemented by a matching lower bound on the
best possible external regret.
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1 Introduction

We study online buffering problems dealing with the management of a storage or buffer for a com-
modity with varying prices and demands. Our setting is similar to the standard model for regret
minimization. In particular, we assume that there is a number of experts corresponding to different
strategies for managing the buffer. An online learning algorithm observes the performance of the
experts and combines their policies with the objective to achieve a performance close to the perfor-
mance of the best expert. The buffer makes the problem different from the standard setup in online
learning since the algorithm now has a state. Switching between experts means switching between
states and this might be costly. Indeed, this switching cost is the major challenge in applying known
learning algorithms like the algorithms Randomized Weighted Majority (RWM) by Littlestone and
Warmuth [16] and Follow the Perturbed Leader (FPL) by Kalai and Vempala [14] as these algorithms
switch between experts frequently.

Informally, the online problems under consideration can be described as follows. A decision
maker has to purchase a commodity over time. Time proceeds in discrete steps. In every step, the
decision maker needs to satisfy a demand depending on environmental conditions that are not under
control of the decision maker. A price function that might vary from step to step describes at which
cost the decision maker can buy which amount of the commodity. The price per unit might be
constant or depend on the amount purchased. The decision maker has a buffer of bounded size for
storing units of the commodity that can be used to satisfy demands at later points in time. We seek
for an algorithm deciding at which time to buy which amount of the commodity so as to minimize
the cost.

An illustrative example of a buffering problem is a frugal car driver thinking about at which
occasion to buy which amount of gasoline. In this example the price per unit varies over time, but
can be assumed to be constant in every step, as typically the price for gasoline at a gas station
does not depend on the amount that is bought by a single driver. Other examples are battery
management in hybrid cars or economical caching policies for mobile devices. In these examples,
the prices typically depend on the amount that is generated or purchased. For some applications
like the battery management, the price functions may satisfy certain convexity assumptions. Some
more information about these applications is given in Section 1.5.

Englert et al. [7] study online buffering problems within the framework of competitive analy-
sis. They introduce the economical caching problem and give an online algorithm achieving the
best possible competitive ratio against input sequences generated by an adversary. Although this
work settles the problem in the competitive framework, the ”optimal online algorithm” does not
seem to be practical since it acts extremely precautiously in order to ensure a worst-case guarantee
against the adversary. In fact, the design principle underlying this algorithm is called ”thread-based”
meaning that the algorithm, in each step, buys the minimal amount that is needed to ensure the
competitiveness for all possible extensions of the price sequence. We believe that this kind of risk-
averse behavior does not reflect the speculative nature of economical decision makers who may take
the risk of buying more units than necessary when speculating on rising prices.

In this paper, we take a less pessimistic approach. As in the competitive framework, the online
learning algorithm itself does not have any information about future prices. However, we assume
that the algorithm can observe the performance of some experts (online strategies) in preceding
steps. Each of these experts may have certain assumptions or knowledge about future prices. For
example, one of these experts may assume that prices are set by an adversary and apply the ”optimal
online algorithm” from [7]. Other experts, may use stochastic prediction rules for estimating future
prices [13, 8] or place their decisions based on practical experience and heuristics [5, 15]. Regardless
of how these experts are chosen, the objective of the online learning algorithm is to come close to
the performance of the best expert.

Before presenting our results, let us formally introduce the traditional model for expert based
online learning and the adaption of this model for online buffering.

1.1 Online Learning and Weighted Majority Algorithm

In standard online learning the decision maker is equipped with N experts, numbered from 1 to N .
The setup with respect to the cost is different from ours. (In particular, there is no buffer.) One
might assume that an adversary chooses the cost for each expert in each step arbitrarily from [0, 1].

For expert i, we denote by cti its cost in time step t and by Ct
i =

∑t
k=1 c

k
i its accumulated cost

until step t. In every step t, the decision maker selects an expert. The cost of the decision maker
corresponds to the cost of the expert chosen in that step. Afterwards, it observes the cost vector
ct ∈ [0, 1]N of the experts.
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Algorithm 1 (Randomized Weighted Majority (RWM))

1: w1
i = 1, q1i = 1

N , for all i
2: for t = 1, . . . , T do
3: choose expert et at random according to Qt = (qt1, . . . , q

t
N )

4: wt+1
i = wt

i(1− η)c
t
i , for all i

5: qt+1
i =

wt+1
i∑N

j=1 wt+1
j

, for all i

6: end for

The decision maker aims at choosing the experts in such a way that its cost is close to the cost
of the best expert, that is, it aims at minimizing its regret. The decision maker corresponds to a
(possibly randomized) algorithm A. Consider a sequence of length T . Let CT

A denote the expected
cost accumulated by A until step T . Formally, the (external) regret of A on this sequence is

CT
A − CT

best .

Observe that there are no assumptions on the quality of the experts or the relation between the
experts. In general, if the decisions of each expert are arbitrarily bad, online learning algorithms
cannot achieve good solutions. In particular, regret minimization does not mean to be competitive
to an optimal offline algorithm, as in competitive analysis [3, 17]. However, one of the experts might
use a strategy guaranteeing a competitive ratio against adversarial input sequences in which case the
online learning algorithm can give (almost) the same performance guarantee as it achieves (almost)
the performance of the best expert.

The Randomized Weighted Majority (RWM) algorithm of Littlestone and Warmuth [16] guaran-
tees a regret bound of O(

√
T logN), see also [2]. It is known that this is the best possible bound in

the standard setting. The idea of this algorithm is to give each expert a probability of being chosen
which depends on the cost that the expert has experienced in the past. The probability qi that the
strategy of expert i is chosen in the next time step is controlled by the current weight wi of the
expert which itself depends only on the weights in the steps up to t− 1, the cost cti and a parameter
η ∈ [0, 12 ]. The calculation of the weights and of the probabilities used by the algorithm is described
in Algorithm 1. In the rest of the paper the probability for choosing expert i in round t is denoted
by qti , the corresponding weight is denoted by wt

i and η is a parameter from [0, 12 ].

1.2 Extending the Online Learning Model towards the Buffering Problem

We study the following online buffering problem. A decision maker has to purchase a commodity
over time. Time proceeds in discrete steps. In step t, the decision maker needs to satisfy a demand
of dt ∈ [0, 1] units of the commodity. The decision maker has a buffer of bounded size B > 0 for
storing units of the commodity that can be used to satisfy demands at later points in time. In step
t, it can purchase at most bt units, where bt ∈ [dt, B + dt]. The price per unit of the commodity
varies over time and depends on the amount bought by the decision maker. It is described by a
function pt : [0, bt]→ [0, 1]. So the price for buying x units in step t is given by xpt(x). We seek for
an algorithm deciding at which time to buy which amount of the commodity so as to minimize the
cost.

In the context of the buffering problem, we assume that there are N experts corresponding to
online algorithms and each expert is equipped with a buffer of size B. The expert decides how many
units to buy in which step. Recall that the price per unit in step t depends on the purchased amount
and is defined by the price function pt. Observe that the experts may buy up to B + 1 units per
step so that the total price for the purchased units can be as high as B + 1.

In our analysis, we account for the purchased units not at the time when the expert (or the online
learning algorithm) buys the units but when it uses them to satisfy the demand. To formalize this,
assume that every amount purchased by the expert (or the online algorithm) is put into the buffer
and all demands are satisfied from the buffer in first-in first-out (FIFO) manner. The cost accounted
for satisfying a demand with units bought in previous steps is equal to the price at which the units
were bought. This accounting trick ensures that the cost of the experts (and the online algorithm)
is at most one per step and it only decreases the accumulated cost of the experts up to an additive
value of at most B. The cost by expert i in time step t is termed cti, its cost accumulated until step

t is denoted by Ct
i =

∑t
k=1 c

k
i like in the standard model.

In every step, an online learning algorithm A chooses (possibly at random) one of the experts (or
a linear combination of experts). In step t this choice depends only on the demands and prices until
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step t− 1, i.e., on d1, . . . , dt−1, p1, . . . , pt−1. The term choosing an expert needs further clarification.
If A has chosen expert i in step t, then it purchases the same amount of the commodity as expert
i in step t with the following two exceptions: If the amount purchased by the expert together with
the units in A’s buffer does not suffice to cover the demand in this step, then A purchases a minimal
amount necessary to satisfy the demand. (After such a step the buffer is empty.) If the amount
purchased by the expert exceeds the demand in this step and the excess does not fit completely into
A’s buffer, then it purchases only the amount needed to fill the buffer up to the capacity. (After
such a step the buffer contains B units.)

The (expected) cost of algorithm A in step t is termed ctA, and the cost that A accumulates until

step t is denoted by Ct
A =

∑t
k=1 c

k
A.

1.3 Our Contribution

We investigate the regret achieved by the RWM algorithm and variations of this algorithm on the
buffering problem.

When describing the RWM algorithm, we did not specify that the random experiments in different
steps are independent. In fact, in the standard setting such dependencies do not effect the expected
cost of the RWM algorithm.1 This is different when applying the algorithm to the buffering problem.
In particular, one does not obtain a reasonable bound on the regret if experts are chosen using an
independent random experiment for every step.

To see this, consider the following input sequence with fixed per unit prices (i.e., the price
functions pt are constant): [

pt

dt

]
=

[
0
0

]([
0

1/4

] [
1

1/4

] [
0

1/4

] [
1

1/4

])T ′

.

The sequence consists of an initial step with cost and demand equal to 0 followed by T ′ rounds of
four steps with cost 0 or 1 (as specified above) and demand 1/4 each. The length of the sequence is
T = 4T ′ + 1. Suppose the buffer size is 1. The following two experts are given:

• The first expert purchases 1/2 unit in the initial step and afterwards one unit in the third step
of every round.

• The second expert purchases one unit in the first step of every round.

Obviously, both experts have cost 0 for the whole request sequence. We claim, however, that
RWM has cost Θ(T ) and, hence, the regret is Θ(T ), too. RWM assigns probability 1/2 to each
of the experts in each step. If random experiments in different steps are independent, then in two
consecutive rounds, with probability 1/16 the algorithm selects in each step an expert that does not
purchase a unit in this step. In this case, the buffer of RWM is empty in each step of the second
round, which means that RWM has cost 1/2 for serving the demands in the second round. Thus,
for each round the expected cost of RWM is at least 1/32.

A reason for the poor performance of RWM is that it changes the experts frequently and the
chosen experts might have completely different filling levels in their buffers. We present a variant of
RWM that uses dependencies in order to decrease the number of expert changes. The algorithm is
called Shrinking Dartboard (SD) algorithm as the random experiments used by this algorithm are
described in terms of a shrinking dartboard. We prove that the regret achieved by this algorithm is
at most O(

√
BT logN).

If the price functions in each step satisfy a convexity condition (e.g., if prices are constant) then
we can derive even a deterministic variant of the Weighted Majority Algorithm with a good regret
bound. The Weighted Fractional (WF) algorithm chooses linear combinations of experts rather than
selecting experts at random. WF achieves a regret of at most O(

√
BT logN), too. As this algorithm

is deterministic, its regret guarantee holds even against an adaptive adversary.
Finally, we present a lower bound of Ω(

√
BT logN) for the regret showing that SD and WF

achieve the optimal regret for the buffering problem up to constant factors. This lower bound holds
even if prices are assumed to be constant.

1In the standard setting without buffer, the expected cost of the RWM algorithm is not effected by
dependencies between different steps, unless the adversary who specifies the cost for the experts is adaptive,
i.e., the cost vector presented for a step might depend on the random coin flips of the algorithm in previous
steps.
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1.4 Related Work

A special case of online buffering problems is the economical caching [7, 8] and the one-way trading
problem [3, 6]. In one-way trading a price sequence is given, each price representing an exchange
rate from dollar to yen. The task is to trade d dollars to a maximum number of yen. In economical
caching, there is furthermore a previously unknown demand of yen at each time step which must be
consumed from a buffer or bought for the current price. Economical caching was introduced in [7].
Englert et al. analyzed it in a worst case competitive analysis yielding general tight bounds for the
competitive factor depending on the ratio between the lowest and highest exchange rate. [8] showed
that if the price sequence is modeled by a random walk, a competitive factor which does not depend
on this ratio can be achieved.

We study online buffering problems with online learning algorithms as described in Section 1.2.
Online learning algorithms are used for regret minimization. A general introduction is given in [1, 2].
In this paper we use the external regret model [2, 4] with full information.

There are several algorithms for which the regret per time step converges against zero for a long
time horizon. The following algorithms achieve a regret of O(

√
T logN): The Randomized Weighted

Majority (RWM) algorithm [16] weights each expert depending on its cost so far. In the randomized
version the weights are used as probabilities for an expert to be chosen. It is known that RWM
achieves the best possible bound for the standard setting. But this is no longer valid when applying
the algorithm to the online buffering problem. A reason for this is that RWM changes the experts
frequently.

[12] and [14] present the Follow The Perturbed Leader (FPL) algorithm that follows the expert
which has achieved the lowest cost so far plus some perturbation. FPL reduces the number of expert
changes to achieve good regret bounds. But in contrast to the Weighted Fractional (WF) algorithm
presented in this paper FPL cannot achieve this bound against an adaptive adversary when applied
to online buffering problems.

The WF algorithm can only achieve good regret bounds if the price functions satisfy a convexity
property. This assumption is also made in [9, 18]. It is shown that if the cost of each expert is
given by a convex function which may change over time, a gradient descent algorithm can be used to
achieve good regret bounds. This algorithm cannot directly be used to achieve good regret bounds
for online buffering problems, since the experts choose a fixed point of the convex function. In our
model this would lead to very limited experts. An expert would then only be able to determine
once the number units it wants to buy in every time step. This choice would be the same for all
time steps. It could no longer depend on the current price or filling status of the buffer. This expert
model is to limited and can therefore not be used to solve online buffering problems.

Online learning algorithms have been studied in many other research areas yielding a huge variety
of results. Some of the possible applications for online learning are given in [10].

1.5 Applications

One possible application for our online learning algorithms is battery management for hybrid cars.
In a hybrid car there are two engines, a combustion engine and an electrical engine. The energy
for the electrical engine is taken from a battery of bounded capacity. The battery can be recharged
using the combustion engine or regenerative energy, e.g., from the braking system. The torque is
provided by both of these engines and the demand of torque depends on the acceleration requested
by the driver and the topology of the route.

The online algorithm has to decide how much power is produced by each of the two engines. If
more power is required than the combustion engine is producing, the remaining power must be used
from the battery or it must be produced by the electrical engine by using regenerative energies. On
the other hand, if more power is produced than currently needed, the additional power is not given
to the drive shaft, but saved into the battery for later usage.

In our model, the demand specified in the input sequence corresponds to the energy needed for
providing the requested torque as well as for electrical devices, e.g., for air conditioning. The amount
that is purchased by the online algorithm corresponds to the energy produced by the combustion
engine and the exploited regenerative energy. The price of the energy generated by the combustion
engine is determined by the used amount of fuel, which itself depends on the torque and the gear.
These price functions potentially satisfy the convexity assumption used in the analysis of the WF
algorithm. The price of the exploited regenerative energy is 0.

In engineering, decisions about which engine should produce which amount of power are typically
made based on engine operating maps [5] and certain knowledge of the route [13, 15]. Engine
operating maps show the fuel consumption of the car for different operation states. The topology
of the route can, e.g., be estimated by using the on-board navigation system. Heuristics based
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Algorithm 2 (Shrinking Dartboard (SD))

1: w1
i = 1, q1i = 1

N , for all i

2: choose expert e1 at random according to Q1 = (q11 , . . . , q
1
N )

3: for t = 2, . . . , T do

4: wt
i = wt−1

i (1− η)c
t−1
i , for all i

5: qti =
wt

i∑N
j=1 wt

j

, for all i

6: with probability
wt

et

wt−1

et

do not change expert, i.e., set et = et−1

7: else choose et at random according to Qt = (qt1, . . . , q
t
N )

8: end for

on engine operating maps parametrized with typical driving conditions combined with different
prediction models for the topology are suitable candidates for the experts used by our online learning
algorithms.

Another application in a completely different context is smart caching of data streams on mobile
devices, see also [7, 11]. Suppose a data stream can be fetched by a mobile device over different
communication standards like, e.g., GSM, UMTS, WLAN, each for different cost, but not all services
are always and anywhere available. The stream can be buffered by the mobile device in a storage
of bounded size. We assume that the most expensive of these services is always available at a cost
of one per data unit and any demand per step can always be satisfied using this expensive service.
Other services can be used to download and buffer the data stream at lower cost only if they are
available.

The best way for combining the different services depends on the users mobility and the avail-
ability of the services over time. Therefore, it is not possible to implement a fixed optimal strategy
into the mobile device, but a good strategy shall be learned online. The experts for online learning
in smart caching recommend which standard to use at which time step. They might recommend also
to combine the different communication standards by using each standard to download a certain
amount of the data in a time step.

In this context it might not be appropriate to assume that the price function is convex. Besides
it might not be possible that every arbitrary amount of data can be downloaded per time step,
but some services are restricted to a certain variety of different amounts. Under these assumptions,
our algorithm WF cannot be applied as it combines experts in a fractional manner and its analysis
assumes convexity of the price function. Let us remark, however, that SD can be applied without any
assumptions on the price functions and even if different services are restricted to discrete amounts
of data as long as the simulated experts satisfy the restrictions regarding the amounts that can be
downloaded.

2 The Shrinking Dartboard Algorithm

We devise a variant of the Randomized Weighted Majority algorithm using dependencies between
the random decisions in different steps in order to reduce the number of expert changes. Algorithm 2
specifies how the experts are chosen and introduces the notation for this section. Furthermore, let

W t =
∑N

i=1 w
t
i denote the sum of weights in step t. The algorithm is called Shrinking Dartboard

(SD) algorithm as it can be illustrated in terms of a dartboard shrinking over time.
Initially, the dartboard is a disc divided into N equally sized sectors, one for each expert. The

total area covered by the disc has size N so that each sector has size 1. In step 1, SD chooses an
expert by throwing a dart to the board, that is, it picks a point from the disc uniformly at random
and chooses that expert into which sector this point falls. Over time, the expert’s sectors shrink
as illustrated in Figure 1. In particular, the size of the area covered by expert i’s sector in step t,
denoted by allowed area in step t, corresponds to the weight wt

i as specified in Algorithm 2. In step
t > 1, SD chooses an expert as follows: If the previously picked point is still in the allowed area, then
SD does not change the expert. This happens with probability wt

et/w
t−1
et and corresponds to line 6

of Algorithm 2. Otherwise, SD throws a new dart, that is, it picks a point uniformly at random from
the area covered by the sectors of all experts and chooses the expert into which sector this point
falls. This happens with probability 1− wt

et/w
t−1
et and corresponds to line 7 of Algorithm 2.

Observe that the weights used by SD correspond to the weights of the original Randomized
Weighted Majority algorithm (Algorithm 1). The following lemma shows that SD does not only use
the same weights as RWM but both algorithms have the same probability distribution for choosing
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Figure 1: Probability distribution as a dartboard

an expert in a step. The difference, however, is that the random choices made by SD in different
steps are not independent, but the selection of the expert in step t depends on the selection in step
t− 1.

Lemma 1 Pr [et = i] = qti , for i ∈ {1, . . . , N}, t ∈ {1, . . . , T}.

Proof: We use an induction on 1 ≤ t ≤ T . For t = 1, the statement in the lemma follows
immediately from the description of the algorithm. Now let t ≥ 2. Expert i is selected in step t
either because it was selected already in step t− 1 and the corresponding dart is still in the allowed
area (i.e., the expert is chosen by line 6 of Algorithm 2) or because a new dart is thrown and this
dart hits i’s sector (i.e., the expert is chosen by line 7). Hence,

Pr
[
et = i

]
= Pr

[
et−1 = i

]
· wt

i

wt−1
i

+ qti ·
N∑
j=1

Pr
[
et−1 = j

]
·

(
1−

wt
j

wt−1
j

)

= qt−1i · wt
i

wt−1
i

+ qti ·
N∑
j=1

qt−1j ·

(
1−

wt
j

wt−1
j

)

=
wt−1

i

W t−1 ·
wt

i

wt−1
i

+
wt

i

W t
·

N∑
j=1

wt−1
j

W t−1 ·
wt−1

j − wt
j

wt−1
j

=
wt

i

W t−1 +
wt

i

W t
· W

t−1 −W t

W t−1 =
wt

i

W t
= qti .

Let D denote the number of expert changes during the execution of SD. The following lemma
bounds the expected value of D in terms of the cost of the best expert.

Lemma 2 E [D] ≤ 2ηCT
best + lnN .

Proof: D is bounded from above by the number of times line 7 of the algorithm is applied which
corresponds to the number of darts that are thrown because the sector of the chosen expert shrinks.
The probability for throwing a new dart in step t ≥ 2 is

αt =
N∑
j=1

Pr
[
et−1 = j

]
·

(
1−

wt
j

wt−1
j

)
=

W t−1 −W t

W t−1 ,

where the latter equation follows from the calculation in the proof of Lemma 1. Thus, W t =
(1− αt)W t−1.

The total weight WT+1 after step T can hence be expressed in terms of these probabilities, that
is,

WT+1 = W 1
T∏

t=1

(1− αt+1) = N
T∏

t=1

(1− αt+1) .

On the other hand,

WT+1 ≥ (1− η)C
T
best
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as the latter quantity corresponds to the weight of the best expert after step T . Combining these
equations and applying the logarithm gives

CT
best ln(1− η) ≤ lnN +

T∑
t=1

ln(1− αt+1) .

Using ln(1− αt+1) ≤ −αt+1 and ln(1− η) ≥ −2η, the expected number of thrown darts is thus
T−1∑
t=1

αt+1 ≤ lnN + 2ηCT
best .

We apply the lemmas above in the following regret analysis in which we compare the cost of SD
with the cost of the best expert. As defined in the Section 1.2, Ct

i is the cost of the units expert
i uses (rather than purchases) until step t, where we assume that units are consumed from the
expert’s buffer in FIFO manner and valuated with the price at which they were bought. Recall that
cti denotes the cost accounted for expert i in step t.

Theorem 3 For η ≤ 1/2, the expected cost of SD satisfies

CT
SD ≤ (1 + η + 2ηB)CT

best +
lnN

η
+B lnN .

Setting η = min{
√

lnN/(BT ), 1/2} yields CT
SD ≤ CT

best +O(
√
BT logN).

Proof: We claim that the cost of SD is bounded from above by
T∑

t=1

ctet +DB .

In words, the cost of SD is bounded from above by the cost of the chosen experts plus the number
of expert changes times the buffer size. To see this, consider the cost in a time period beginning
with a step in which a new expert is chosen and ending with the last step before the next expert is
chosen or the sequence ends. The cost of SD in this period can be split into three contributions.

(1) Cost due to units used and bought in this period by both SD and the expert.

(2) Cost for using those units that are stored in SD’s buffer at the beginning of the period.

(3) Cost for using units bought during the period by SD to ensure feasibility.

The cost in (1) is upper bounded by
∑T

t=1 c
t
et . Observe that the sum of units covered by (2) and (3)

is at most B. Hence, the difference between the cost of SD and the cost of the expert within such
a period is at most B. Furthermore, in the very first period, the costs in (2) and (3) are 0 because
both SD and the expert start with an empty buffer and purchase and use the same units. This gives
the stated upper bound on CT

SD as the number of periods without counting the first period is D.
Next we claim that

E

[
T∑

t=1

ctet

]
≤ (1 + η)CT

best +
lnN

η
.

This follows from Lemma 1 showing that the probability that SD chooses expert i in step t is equal
to the probability that RWM chooses expert i in step t. The left hand term describes the cost
of RWM assuming that the cost accounted for the learning algorithm in step t are ctet (as in the
standard setting of online learning). Thus, we can apply the well known upper bound on the cost
of RWM holding for η ≤ 1/2 (cf., e.g., [2]).

Together with the bound on the expected value of D in Lemma 2 this yields the first bound in
the theorem.

Finally, assume η ≤
√

lnN/(BT ). Combining the first bound of the theorem with the trivial
bound CT

SD − CT
best ≤ T , we obtain

CT
SD − CT

best ≤ (η + 2ηB)T +
lnN

η
+ min {T,B lnN}

= O
(√

BT logN + min {T,B logN}
)

= O
(√

BT logN
)

,

which gives the second bound stated in the theorem.
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3 The Weighted Fractional Algorithm

The Weighted Fractional (WF) algorithm uses the same weights as the algorithms RWM and SD.
However, instead of choosing an expert at random, it simulates the experts fractionally. That is, it

purchases xt =
∑N

i=1 q
t
ix

t
i units in step t, where xti is the amount purchased by expert i in the same

step. Observe that this rule might lead to infeasibilities as the amount of purchased units together
with the units in the buffer might not be enough to satisfy the demand in a step or the buffer might
overflow. In these cases, WF enforces feasibility by purchasing a minimal amount of additional units
or reducing the amount of bought units, respectively.

The following theorem bounds the cost of WF assuming that the price functions satisfy a convex-
ity property. In particular, the function f t(x) = xpt(x) that describes the cost incurred for buying
an amount of x needs to be convex.

Theorem 4 Suppose the functions f t(x), x ∈ [0, bt] are convex, for 1 ≤ t ≤ T . Then the cost of
WF satisfies

CT
WF ≤ (1 + η + 2ηB)CT

best +
lnN

η
+B lnN .

Setting η = min{
√

lnN/(BT ), 1/2} yields CT
WF ≤ CT

best +O(
√
BT logN).

Proof: We analyze WF by relating it to another algorithm called k-SD. This algorithm splits the
buffer into k ≥ 1 sub-buffers of size B/k each. For each of these sub-buffers, we simulate algorithm
SD scaling down all demands as well as the amounts purchased by the experts by multiplying with
1/k. Besides, we adapt the price function, that is, when buying xtj units for sub-buffer j in step t,

algorithm k-SD assumes that this incurs virtual cost of f t(kxtj)/k.

For 1 ≤ j ≤ k, let LT
j denote the expected virtual cost for sub-buffer j accumulated until step

T . As k-SD simulates SD for every sub-buffer using an appropriate scaling, it holds LT
j = CT

SD/k so
that

k∑
j=1

LT
j = CT

SD .

Now let us compare the sum of the virtual cost of k-SD with the true cost of this algorithms. For
every time step t, we have

f t

 k∑
j=1

xtj

 ≤ 1

k

k∑
j=1

f t(kxtj)

by Jensen’s inequality. Thus, we observe that the true cost incurred for any step t is upper bounded
by the sum of the virtual cost for this steps. Combining this observation with the equation above
gives

CT
k-SD ≤ CT

SD ,

for every k ≥ 1.
Let us introduce a slight modification to k-SD. The resulting algorithm is called k-SD’. As k-SD

simulates SD on each sub-buffer, it needs to buy additional units in some time steps in order to
ensure feasibility. These are at most B/k units for every thrown dart (new expert) for each sub-
storage. k-SD’ does not need to buy these additional units when the respective sub-buffer is empty
but can defer this until all sub-buffers are empty. This does not increase the number of units that
need to be bought, but prices for these units might change. However, in the analysis of SD, we
estimated the prices for these units with the worst possible price. Hence, we can apply Theorem 3
not only to k-SD, but also to k-SD’ and obtain

CT
k-SD’ ≤ (1 + η + 2ηB)CT

best +
lnN

η
+B lnN ,

for every k ≥ 1.
Now we let k go to infinity. Consider a fixed step t. By the law of large numbers, the sum of the

amounts purchased by the experts chosen for the sub-buffers converges to its expectation. That is,

the sum of purchased amounts over all sub-buffers converges to
∑N

i=1 q
t
ix

t
i. As a consequence, k-SD’

(for k →∞) purchases the same amount per step as WF. Hence,

CT
WF = lim

k→∞
CT

k-SD’ .

Combining the last two equations yields the theorem.
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4 Lower Bound

The following theorem shows that our upper bounds on the external regret achieved by SD and WF
are tight up to constant factors, that is, one cannot achieve significant further improvements. Let
us remark that the lower bound given in the theorem holds even if we restrict the input sequences
to fixed prices per unit and if the experts purchase at most one unit per step.

Theorem 5 For every integer T , there exists a stochastically generated sequence of length T together
with N experts such that every learning algorithm A with a buffer of size B suffers a regret of
Ω(
√
BT logN).

Proof: The sequence consists of T ′ consecutive rounds. Each round consists of 3 phases each of
which has B steps so that the sequence has a total length of T = 3BT ′ steps. Prices are defined by
constant functions, i.e., there is a fixed price pt per unit in every step t. For simplicity in notation,
we assume that prices are chosen from the interval [0,4] instead of [0,1]. In particular, the sequence
of prices and demands has the following structure[

pt

dt

]
=

([
2
0

]B [{0, 4}
0

]B [
4
1

]B)T ′

.

Prices in the second phase of each round are chosen at random from {0, 4}. However, the choices
within the same round are dependent, that is, for all steps within the second phase of the same
round, we set the same price and this price is chosen uniformly at random from the set {0, 4}.
Prices for different rounds are selected independently.

The N experts for the problem are defined as follows: In each round, every expert chooses
independently one of the following two strategies each with probability 1/2.

a) The expert purchases B units in the first phase.

b) The expert purchases B units in the second phase.

In both cases, no further units are bought. In particular, the buffer is empty at the end and the
beginning of each round.

Let F t
i denote the random variable defining the cost of expert i in round t. Depending on the

outcome of the price for round t and the strategy chosen by the expert, this variable takes the
following values.

F t
i 0 4

a 2B 2B

b 0 4B

When analyzing this random variable, we can assume that, a column player (the designer of the
sequence) selects a column of this matrix and a row player (the considered expert) selects a row.
Both of these choices are made independently, uniformly at random. As every entry of the matrix is
chosen with probability 1/4, the expected value of F t

i is 2B. Thus, by linearity of expectation, the
expected cost of an expert over the whole sequence is 2BT ′.

Next we analyze the expected cost of the best expert. Towards this end, let F t be a random
variable describing the average cost in the column chosen by the column player in round t, that is,
if the column player chooses column 0 then F t = B and if the column player chooses column 1 then
F t = 3B. The expected value of this variable is 2B so that

E

 T ′∑
t=1

F t

 = 2BT ′ =
2

3
T .

Now define ∆t
i = F t

i − F t. The values taken by the random variable ∆t
i depend on the choices of

the row and column players and are specified in the following matrix.

∆t
i 0 4

a B −B
b −B B
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Observe that the random variables ∆t
i, 1 ≤ i ≤ N , 1 ≤ t ≤ T ′ are stochastically independent since

each of these variables takes one of the value B or −B with probability 1/2 each, regardless of

the outcome of the other variables. For 1 ≤ i ≤ N , let Si =
∑T ′

t=1 ∆t
i/B. The random variables

S1, . . . , SN are stochastically independent and each of them corresponds to the value of a fair random
walk after T ′ steps. The expected minimum over N such variables is known to be −Θ(

√
T ′ logN),

which gives

E

min
i

 T ′∑
t=1

∆t
i

 = −Θ(B
√
T ′ logN) = −Θ

(√
BT logN

)
.

Hence, the expected cost of the best expert can be estimated by

E

min
i

 T ′∑
t=1

F t
i

 = E

min
i

 T ′∑
t=1

(
F t + ∆t

i

)
= E

 T ′∑
t=1

F t

+ E

min
i

 T ′∑
t=1

∆t
i


=

2

3
T −Θ

(√
BT logN

)
.

Finally, we show that any online learning algorithm A equipped with these experts cannot achieve
an expected cost better than 2/3T . W.l.o.g, A does not purchase any unit in the third phase of a
round, but exactly B units during the first two phases of each round. In the first phase of a round,
A does not have any information about the price in the second phase since the experts decisions
(over the whole sequence) and costs (before entering the second phase) do not depend on this price
and, hence, do not give any evidence about the price. Thus, A’s decision about how many of the
B units to purchase in the first and how many units to purchase in the second phase of a round is
independent of the price selected for the second phase. As a consequence, the expected cost for each
purchased unit is 2 and, hence, the expected cost per round is 2B. Therefore, the expected cost of
A for the whole sequence is 2BT ′ = 2/3T and, consequently, the regret is Θ

(√
BT logN

)
.

5 Discussion

We observed that RWM with independent coin flips in different steps fails to give reasonable regret
bounds for buffering problems as experts have a state and switching between different states is
expensive. We addressed this problem by changing the randomized selection in such a way that
changes between experts are reduced. Let us remark that the same kind of problem occurs for
algorithm Follow the Perturbed Leader (FPL) by Kalai and Vempala [14], too. The number of
expert changes of FPL can be reduced in a similar fashion: One uses only one initial perturbation
rather than independent perturbations in every step. In fact, one can deduce from the analysis in [14]
that this results in the same regret bound as achieved by our algorithm SD. However, SD has one
additional advantage: It can easily be transformed into a simple deterministic, fractional variant of
SD guaranteeing optimal regret against an adaptive adversary, provided the price functions satisfy
a convexity condition. The same kind of transformation cannot be directly applied to FPL as the
probabilities for choosing an expert in a step are not available in closed form for FPL but would
need to be extracted from the perturbation experiment.

In the model for online learning with buffer, we have assumed that experts have identical price
functions. We want to point out, however, that this assumption is not necessary for our randomized
algorithm. It is easy to check that the analysis for SD goes through even if different experts have
different price functions within the same step. In contrast, for the deterministic, fractional algorithm
WF, the assumption of identical price functions is crucial. It is an interesting question whether one
can achieve a similar regret bound for a randomized or deterministic learning algorithm against an
adaptive adversary even if experts have different and/or non-convex price functions.

142



References

[1] A. Blum. On-line algorithms in machine learning. In Online Algorithms: The State of the Art,
volume 1442 of Lecture Notes in Computer Science, chapter 14, pages 306–325. Springer, 1998.

[2] A. Blum and Y. Mansour. Learning, regret minimization, and equilibria. In N. Nisan, T. Rough-
garden, E. Tardos, and V. V. Vazirani, editors, Algorithmic Game Theory, chapter 4, pages
79–101. Cambridge University Press, New York, NY, USA, 2007.

[3] A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cambridge Univer-
sity Press, New York, NY, USA, 1998.

[4] N. Cesa-Bianchi, Y. Freund, D. P. Helmbold, D. Haussler, R. E. Schapire, and M. K. Warmuth.
How to use expert advice. In Proceedings of the 25th ACM Symposium on Theory of Computing
(STOC), pages 382–391, 1993.

[5] M. Ehsani, Y. Gao, and K. L. Butler. Application of Electrically Peaking Hybrid (ELPH)
Propulsion System to a Full-Size Passenger Car with Simulated Design Verification. IEEE
Transactions on Vehicular Technology, 48(6):1779–1787, 1999.

[6] R. El-Yaniv, A. Fiat, R. M. Karp, and G. Turpin. Optimal search and one-way trading online
algorithms. Algorithmica, 30(1):101–139, 2001.
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Abstract

We describe online algorithms for learning a rotation from pairs of unit vectors in Rn. We show
that the expected regret of our online algorithm compared to the best fixed rotation chosen offline
is O(

√
nL), where L is the loss of the best rotation. We also give a lower bound that proves

that this expected regret bound is optimal within a constant factor. This resolves an open problem
posed in COLT 2008. Our online algorithm for choosing a rotation matrix in each trial is based on
the Follow-The-Perturbed-Leader paradigm. It adds a random spectral perturbation to the matrix
characterizing the loss incurred so far and then chooses the best rotation matrix for that loss. We
also show that any deterministic algorithm for learning rotations has Ω(T ) regret in the worst case.

1 Introduction
Rotations are a fundamental object in robotics and vision. The problem of learning rotations, or finding the
underlying rotation from a given set of examples, has numerous applications in these areas (see [Aro09] for a
summary of application areas). As a motivating example, in optical character recognition, rotational (or skew)
correction is an important and challenging problem. Optically read characters need to be aligned before they
can be recognized. A fast, low-regret online learning algorithm for rotations can be used for detecting skew
using a small number of examples.

Besides their practical importance, rotations have been shown to be powerful enough to capture seem-
ingly more general mappings. Rotations can represent arbitrary Euclidean transformations via a conformal
embedding by adding two special dimensions [WCL05]. Also [DHSA93] showed the rotation group provides
a universal representation for all Lie groups.

The batch learning problem has a simple and well known solution [Wah65, Sch66], but the question of
whether there are online algorithms for this problem was posed in [SW08] as an open problem. Recently, an
algorithm was given in [Aro09] based on the Matrix Exponentiated Gradient update [TRW05]. This algo-
rithm elegantly exploits the Lie group/Lie algebra relationship between rotation matrices and skew symmetric
matrices, respectively, and the matrix exponential and matrix logarithm that maps between these domains.
However, this algorithm deterministically predicts with a single rotation matrix in each trial. In this paper, we
prove that any such deterministic algorithm can be forced to have regret at least Ω(T ), where T is the number
of trials.

To achieve regret bounds that are sublinear in T , it is necessary to “hedge our bets” and predict randomly
from a suitable distribution over rotation matrices. There are two ways in which this can be done: either
the algorithm predicts deterministically with a parameter that represents a convex combination of rotation
matrices or it explicitly produces a rotation matrix based on its internal randomization. Our algorithm is of
the latter type and is in the Follow-The-Perturbed-Leader (FPL) [KV05] family of algorithms. At this point
we do not know how to design algorithms of the former type. One promising approach makes use of the
von Mises-Fisher distribution, which is an exponential family distribution over rotations (See discussion in
[SW10]).

In this paper we bypass the differential geometry of rotations altogether and hedge by predicting with
a random rotation matrix. The key insight is that the loss for our rotation learning problem is linear in the
chosen rotation matrix. We add a suitably chosen random perturbation matrix to the matrix characterizing the
loss incurred so far and then simply choose the best rotation matrix for the perturbed matrix. A good choice

∗Supported by NSF grant IIS-0917397
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of the perturbation matrix turns out to be a one that has exponentially distributed singular values and random
orthogonal left and right singular vectors. Surprisingly, for this choice, we can show that the regret bound for
the resulting algorithm is optimal within a constant factor.

Outline of paper: We begin with some preliminaries in the next section, the precise problem statement,
and basic properties of rotations. In this section we also prove a lower bound for any deterministic algorithm.
In section 3 we describe our randomized algorithm and give a bound on its expected regret. Following that,
in section 4 we give the lower bound which applies to any algorithm, randomized or otherwise, and which
matches the regret bound of our algorithm up to a constant factor.

2 Preliminaries and Problem Statement
2.1 Notation.
In this paper, all vectors lie in Rn and all matrices in Rn×n. We use SO(n) to denote the special orthogonal
group, i.e. the set of all rotation matrices R. These are all orthogonal matrices of determinant one. For any
vector x, ‖x‖ denotes its `2 norm. For any matrix A, ‖A‖ denotes its spectral norm (or Schatten-∞ norm)
which is the maximum singular value of A. Furthermore, ‖A‖? denotes the trace norm (also known as the
nuclear norm or Schatten-1 norm) which is the sum of all singular values. For two matrices A and B, A •B
denotes the trace product Tr(A>B) =

∑
ij AijBij .

2.2 Online Learning of Rotations problem.
Learning proceeds in a series of trials. In every iteration for t = 1, 2, . . . , T :

1. The online learner is given a unit1 vector xt (i.e. ‖xt‖ = 1).

2. The learner is then required to commit (either deterministically or probabilistically), to a rotation matrix
Rt ∈ SO(n). The choice of Rt gives the predicted vector ŷt = Rtxt.

3. Finally the algorithm obtains true result, a unit vector yt (which is presumably the result of some un-
known rotation applied to xt).

4. The loss to the learner then is half the squared norm of the difference between her predicted vector and
the “true” rotated vector:

Lt(Rt) = 1
2‖Rtxt − yt‖2 = 1

2 [‖Rtxt‖2 + ‖yt‖2 − 2y>t Rtxt] = 1− (ytx>t ) •Rt. (1)

The last equality uses the fact that rotation preserves the `2 norm. Note that the loss is always in the range
[0, 2]. The goal of the learner is to choose rotations Rt in such a way as to minimize the regret on all T
examples given by

RegretT =
T∑
t=1

Lt(Rt)− min
R∈SO(n)

T∑
t=1

Lt(R).

We aim to find online algorithms with regret sublinear in T (Such algorithms are called Hannan consistent
[CBL06]). Henceforth we give an algorithm whose regret is optimal within a constant factor.

We can also consider a setting of the problem that is more difficult for the learner in which xt is not known
at the point when the rotation matrix must be chosen. In this setting the learner first commits to a distribution
over rotations and only then sees a pair xt,yt and incurs the associated expected loss. Our algorithm works
even in this setting and the bound on its expected regret remains valid. However our lower bounds apply to
the above definition that is easier for the learner.

2.3 Main Result.
Our main result is a Follow-The-Perturbed-Leader type algorithm (see Section 3) with the following guaran-
tee on its expected regret:

Theorem 1 There is a randomized online algorithm which for any sequence of T examples for which the loss
L of the best fixed rotation in hindsight, i.e. L = minR∈SO(n)

∑T
t=1 Lt(R), is at least 16n, achieves regret

E[RegretT ] ≤ O(
√
nL).

This algorithm can be implemented to run in O(n3) time per trial.

1Note that there is no loss of generality in restricting xt and yt to be unit vectors. Our algorithm and its analysis,
work unchanged assuming only ‖ytx

>
t ‖? = ‖xt‖‖yt‖ ≤ 1.
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We also can prove a matching lower bound.

Theorem 2 For any integer T > n, and for any online algorithm for learning rotations, there is a sequence
of T examples, such that the algorithm incurs regret at least Ω(

√
nT ).

Since the per trial loss of any rotation is at most 2, the loss L of the best rotation chosen in hindsight is at
most 2T , and therefore any lower bound of Ω(

√
nT ) on the regret implies a lower bound of Ω(

√
nL). This

shows that the regret of our algorithm (given in Theorem 1 above) is tight up to constant factors.

2.4 Solving the Offline Problem.
Before describing our online algorithm, we need to understand how to solve the optimization problem of
offline (batch) algorithm:

argmin
R∈SO(n)

T∑
t=1

Lt(R) = argmax
R∈SO(n)

T∑
t=1

(ytx>t ) •R.

The equality follows from rewriting the loss function Lt as in (1). In general, an optimization problem of the
form

argmax
R∈SO(n)

M •R

for some matrix M, is a classical problem known as Wahba’s problem [Wah65]. Figure 1 gives a simple
example of the challenges in solving Wahba’s problem: degeneracies can arise unexpectedly.

−y

R x

rotation applied

x

y

Figure 1: If we have two examples (x,y) and (x,−y), then regardless of which rotation R we choose,
Rx has loss exactly 2. This a consequence of the geometric fact that the diameter connecting y to −y
subtends a right angle at Rx, and therefore Pythagoras’ theorem applies. Algebraically, for any R, we have
L1(R) + L2(R) = 2− (yx> − yx>) •R = 2− 0 = 2.

Nevertheless, Wahba’s problem has a very elegant solution2 via any singular value decomposition (SVD)
of M.

Lemma 3 Let M = UΣV> be any SVD of M, i.e. U and V are orthogonal matrices, and
Σ = diag(σ1, σ2, . . . , σn) is the diagonal matrix of non-negative singular values. Assume that σn is the
smallest singular value. Let s := det(U) det(V), where det denotes determinant. Since U and V are or-
thogonal, s ∈ {+1,−1}. Now if W := diag(1, 1, . . . , 1, s), then UWV> is a solution to Wahba’s problem,
i.e.

UWV> ∈ argmax
R∈SO(n)

M •R,

and the value of the optimal solutions is
∑n−1
i=1 σi + sσn, which is always non-negative.

2Note that the solution to Wahba’s problem may not be unique, in which case we are satisfied with any solution
amongst the optimal set of solutions.
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This solution is a rotation matrix since it is a product of three orthogonal matrices, and its determinant
equals det(U) det(V) det(W) = 1. The solution can be found in O(n3) time by constructing a SVD of M.

We have been unable to find a complete proof of this lemma for dimensions more than 3 in the literature
and for the sake of completeness we give a self-contained proof in Appendix A.

Note that if we are simply optimizing over all orthogonal matrices R ∈ O(n), with no condition on
det(R), then the construction becomes simpler (also proven in Appendix A):

Lemma 4 Let M = UΣV> be a SVD of M as in Lemma 3. Then

UV> ∈ argmax
R∈O(n)

M •R

and the value of the optimum solutions is
∑n
i=1 σi.

This is also a classical problem known as the “Orthogonal Procrustes Problem”, first solved by Schönemann
[Sch66].

2.5 The necessity of randomization in learning rotations.
We give an adversary strategy that forces any deterministic algorithm such as the simple Follow-The-Leader
algorithm (which predicts with the rotation matrix minimizing the loss on the past examples) or Arora’s
deterministic algorithm [Aro09] to have linear regret. This shows that randomization is essential for obtaining
good regret bounds for learning rotations.

Theorem 5 Any algorithm which deterministically predicts with a single rotation matrix at each trial has
worst case regret at least T on example sequences of length T .

Proof: Consider the following problem instance. In each iteration, the adversary always sets xt = e1. Since
the algorithm is deterministic, the adversary can then compute the matrix Rt in every iteration. The algorithm
predicts with ŷt = Rtxt and the adversary chooses yt as −ŷt. Therefore the algorithm’s per trial loss is

1
2‖ŷt − yt‖2 = 1

2‖2ŷt‖2 = 2,

amounting to a loss 2T in all trials.
On the other hand the loss of the optimum rotation is

min
R∈SO(n)

1
2‖Rxt − yt‖2 = T − max

R∈SO(n)
WT •R,

where WT =
∑T
t=1 ytx>t . By Lemma 3, maxR∈SO(n) WT •R ≥ 0. Thus, the loss of the optimum rotation

is at most T . Hence, the algorithm has regret at least 2T − T = T .

In view of this lower bound, only randomized algorithms can hope to achieve sublinear regret. As we
observed in equation (1), the square loss over the (non-convex) set SO(n) is linear. Therefore it is natural
to apply the Follow-The-Perturbed-Leader (FPL) type algorithm [KV05], as this generic template is capable
of handling non-convex decision sets. A direct application of the Kalai-Vempala result gives the following
algorithm:

Rt = argmin
R∈SO(n)

t−1∑
i=1

Li(R)−N •R,

where N is a random matrix whose entries are i.i.d. uniform random numbers in the range [0, 1
ε ] for some pa-

rameter ε. However, tuning ε to its optimal value gives a suboptimal regret bound ofO(n5/4
√
T ). The reason

for this suboptimality is that uniform sampling of the components of N does not match the characteristics of
our problem.

2.6 Sampling Random Orthogonal Matrices.
A fundamental task in our better implementation of FPL is sampling of random orthogonal matrices “uni-
formly”, in the sense that the density of the distribution at any two matrices U and V in O(n) is the same.
Technically, this distribution is given by the Haar measure ν on O(n) scaled so that ν(O(n)) = 1. The
distribution ν has the property that for any fixed orthogonal matrix U ∈ O(n), if V is sampled from ν, then
the distribution on O(n) induced by UV is also ν. This implies the desired uniformity property.

To sample a random orthogonal matrix from such a uniform distribution is essentially to choose a random
orthogonal basis. The following process generates such basis incrementally: start with a random unit vector,
and then repeatedly pick a random unit vector orthogonal to all vectors seen so far. This process can be
implemented by running the Gram-Schmidt process on a set of n random vectors. Indeed, the efficient way
of doing essentially this is by using the QR-decomposition of a random matrix with independent standard
Gaussian entries (see [Ste80] for more details).

4147



3 Algorithm and Analysis
Instead of using uniform randomness, the correct perturbation matrix turns out to be one with singular values
chosen from an exponential distribution with randomly chosen left and right singular vectors, as given in the
algorithm below. The online algorithm can be implemented in O(n3) time per trial by uniformly sampling
orthogonal matrices as outlined in Section 2.6 and by optimizing a linear function over rotations as done in
the solution of the off-line problem (see Sections 2.4).

Algorithm 1 FSPL: Follow-The-Spectrally-Perturbed-Leader
1: Select n non-negative real numbers σ1, σ2, . . . , σn independently from the exponential distribution with

rate parameter ε, i.e. with density ε exp(−εσ)dσ. Let Σ = diag(σ1, σ2, . . . , σn).
2: Select two random orthogonal matrices U,V ∈ O(n) uniformly from the Haar measure.
3: Define N = UΣV>.
4: for t = 1 to T do
5: Let Rt be the result of the following optimization problem:

Rt = argmin
R∈SO(n)

t−1∑
i=1

Li(R)−N •R = argmax
R∈SO(n)

[
t−1∑
i=1

(yix>i ) + N

]
•R.

6: Obtain vector xt. Predict ŷt = Rtxt and observe the result vector yt. Suffer loss Lt(Rt).
7: end for

We point out that our algorithm is basis-invariant in the following sense: fix an orthogonal matrix (i.e.
an orthonormal basis) B ∈ O(n). Consider two problem instances, one with examples (xt,yt) for t =
1, 2, . . . , T , and another with the same examples expressed in the alternate basis B, viz (Bxt,Byt), and
consider running the algorithm on these two sequences of examples. Geometrically, the instances are the
same, so it is desirable for the algorithm to behave the same way, modulo the change of basis.

In our algorithm, the orthogonal matrices U and V are drawn from the uniform Haar measure over
orthogonal matrices, the distribution of N and that of BNB> is the same. This fact allows us to correlate the
choice of the perturbations in the algorithms running over the two instances by choosing the perturbation N
for the first instance, and the perturbation BNB> for the second instance.

Thus, if

Rt = argmax
R∈SO(n)

[
t−1∑
i=1

(yix>i ) + N

]
•R,

then

BRtB> = argmax
R∈SO(n)

[
t−1∑
i=1

(Byi(Bxi)>) + BNB>
]
•R.

Note that BRtB> is simply the rotation matrix Rt expressed in basis B. The prediction of BRtB> on
the transformed example (Bxt,Byt) is BRtB>Bxt which simplifies to BRtxt. This prediction is the
same as the prediction of Rt on the original example (xt,yt), i.e. Rtxt, and while premultiplying with the
transformation B. Geometrically, our algorithms is doing the same thing on the original and the transformed
sequence of examples, and the losses are the same well.

Before launching into the analysis, we make a few observations regarding the noise matrix N. Essentially,
the noise matrix is sampled by constructing each component of its SVD randomly. With probability 1, the
singular values of N, viz. σ1, σ2, . . . , σn are all distinct, so in the sequel we assume this is the case whenever
we talk about the noise matrix N.

In the induced probability distribution over matrices N, if the SVD of N is N = UΣV>, the density of
the distribution at N is

dµ(N) = 2nn!εn exp

[
−ε

n∑
i=1

σi

]
dσ1dσ2 . . . dσndν(U)dν(V),

where dν(U) is the density at U in the Haar measure over O(n). The leading factor of 2nn! is because the
SVD is uniquely determined by the ordering of the singular values and the sign multiplying the n pairs of
right and left singular vectors. Note that

∑n
i=1 σi = ‖N‖?, the trace norm of N . Thus, since ν is the uniform

Haar measure on O(n), we may (informally) say that

dµ(N) ∝ exp(−ε‖N‖?).
Now, we can analyze FSPL. The following Theorem implies Theorem 1.
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Theorem 6 For any target rotation matrix R?, the algorithm FSPL attains the following regret bound:

E

[
T∑
t=1

Lt(Rt)

]
−

T∑
t=1

Lt(R?) ≤ ε

1− ε

T∑
t=1

Lt(R?) +
2n

(1− ε)ε
.

If L ≥ 16n and ε is set to
√

n
L , where L =

∑T
t=1 Lt(R

?), then the expected regret is bounded3 by 4
√
nL.

Proof: The analysis of FSPL is based on the technique of Kalai and Vempala [KV05] for analyzing the
Follow-The-Perturbed-Leader style algorithms.

For convenience of notation, define Wt =
∑t−1
i=1 yix>i , and the functionR : Rn×n → SO(n) to be

R(M) := argmax
R∈SO(n)

M •R.

Now the rotation matrix Rt chosen by the algorithm is denoted asR(Wt+N). The first step of analyzing any
Follow-The-Perturbed-Leader algorithm, is the following inequality which is essentially proved in [KV05],
but we give the proof in Appendix B for the sake of completeness.

Claim 7 For any target rotation matrix R?, we have
T∑
t=1

Lt(Rt)−
T∑
t=1

Lt(R?) ≤
T∑
t=1

Lt(Rt)− Lt(Rt+1) + N •R1 −N •R?.

Now, to bound the expected regret, we prove the following two bounds:

E[Lt(Rt)− Lt(Rt+1)] ≤ εE[Lt(Rt)], (2)

and
E[N • (R1 −R?)] ≤ 2n

ε
. (3)

Combining these two bounds, and some algebra, we get the stated bound on the regret:

E

[
T∑
t=1

Lt(Rt)

]
−

T∑
t=1

Lt(R?) ≤ ε

1− ε

T∑
t=1

Lt(R?) +
2n

(1− ε)ε
.

If we set ε =
√

n
L , where L =

∑T
t=1 Lt(R

?), then the expected regret is bounded by E[Regret] ≤ 4
√
nL,

assuming4 L ≥ 16n.
We prove the inequality (2) now. Since we are only interested in expected values, it doesn’t matter whether

we choose the noise at the beginning, or if we re-randomize every trial. Thus, denoting by N and N′ the
noise chosen in the tth and (t+ 1)st trials respectively, we have

E[Lt(Rt)]− E[Lt(Rt+1)]

=
∫
N

Lt(R(Wt + N))dµ(N)−
∫
N′
Lt(R(Wt+1 + N′))dµ(N′)

=
∫
N

Lt(R(Wt + N))dµ(N)− Lt(R(Wt + N))dµ(N− ytx>t )

(doing a change of variables in the integration: N′ = N− ytx>t )

≤
∫
N

εLt(R(Wt + N))dµ(N)

= εE[Lt(Rt)].

The last inequality follows from the fact that for any N, we have

dµ(N)− dµ(N− ytx>t ) ≤ εdµ(N),

which we prove now:

dµ(N− ytx>t )
dµ(N)

=
exp(−ε‖N− ytx>t ‖?)

exp(−ε‖N‖?)
≥ exp(−ε‖ytx>t ‖?) ≥ exp(−ε) ≥ 1− ε.

3Standard techniques such as the “doubling trick” (see e.g. [CBFH+97]), can be used to obtain the same type of regret
bound even if L is not known in advance while only slightly increasing the constant in front of the square root.

4A slightly better constant is obtainable via some further optimization over ε.
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We use the triangle inequality for the ‖ · ‖? norm in the first inequality, and ‖ytx>t ‖? ≤ 1 in the second
inequality.

Now, we prove inequality (3). To this end, we show that for any rotation matrix R, we have E[|N•R|] ≤
n
ε . To prove this, note that

|N •R| ≤ ‖N‖?‖R‖,
by the Hölder inequality for trace norm (Schatten 1-norm) and its dual matrix norm (Schatten ∞-norm).
Clearly, ‖R‖ = 1 since all singular values of an orthogonal matrix are one. For the noise matrix N, if
σ1, σ2, . . . , σn are its singular values, then

E[‖N‖?] = E

[
n∑
i=1

σi

]
=

n∑
i=1

E[σi] =
n

ε

since the σi’s are independently distributed exponential random variables with mean 1
ε . Putting the bounds

together, we get that

E[N • (R1 −R?)] ≤ 2n
ε
.

4 Lower Bound
We now show a lower bound against any algorithm (including probabilistic ones). This matches the upper
bound for the FSPL algorithm up to constant factors.

Proof of Theorem 2. We assume for convenience that the dimension is n+ 1, rather than n. For any online
algorithm for the rotations problem we construct an example sequence of length T for which this algorithm
has regret Ω(

√
nT ).

Let ei denote the i-th standard basis vector, i.e. the vector with 1 in its i-th coordinate and 0 everywhere
else. In trial t < T , set xt = ef(t), where f(t) = (t mod n) + 1 (i.e., cycle through the coordinates
1, 2, . . . , n), and yt = σtef(t), where σt ∈ {−1, 1} uniformly at random. For any coordinate i ∈ 1, 2, . . . , n,
let Xi =

∑
t: f(t)=i σt. For the final trial T , set xT = en+1, and yT = σTen+1, where σT ∈ {−1, 1} is

chosen in a certain way specified momentarily. First, note that

WT+1 =
T∑
t=1

ytx>t = diag(X1, X2, . . . , Xn, σT ).

We choose σT so that

det(WT+1) = σT

n∏
i=1

Xi > 0.

In other words, σT = sgn(
∏n
i=1Xi).

By Lemma 3, the solution to the offline problem is the rotation matrix R? = argmaxR∈SO(n) WT+1•R,
where

R? = diag(sgn(X1), sgn(X2), . . . , sgn(Xn), σT ),
and the loss of this matrix is

T∑
t=1

Lt(R?) = T −WT+1 •R? = T −
n∑
i=1

|Xi| − 1.

Since each Xi is a sum of bT−1
n c Rademacher variables (give or take 1), standard probabilistic bounds (such

as Khintchine’s inequality [Haa82]) imply that E[|Xi|] = Ω(
√
T/n), where the expectation is taken over the

choice of the σt’s. Thus, the expected loss of the optimal rotation is bounded as follows:

E

[
T∑
t=1

Lt(R?)

]
= T − E[WT+1 •R?] = T − Ω(

√
T/n · n) = T − Ω(

√
nT ).

Finally, note that for t < T , regardless of which specific rotation matrix Rt is selected by the algorithm,

Eσt
[Lt(Rt)] = 1− Eσt

[ytx>t •Rt] = 1− Eσt
[σt] · e>f(t)Rtef(t) = 1.

In trial T , the algorithm might at best have a loss of 0. Thus, the expected loss of the algorithm is at least
T − 1, and hence its expected regret is Ω(

√
nT ). This implies that there is a choice of the σt’s so that the

actual regret of the algorithm is Ω(
√
nT ), as required. �

7150



5 Conclusions
We have presented tight bounds on the regret for online learning of rotation matrices. Our main technique
is a Follow-The-Perturbed-Leader type algorithm with spectral perturbations. Essentially the same algorithm
works in a different setting as well: online learning of a basis (or more colorfully, the Online Orthogonal
Procrustes problem). Here, the learner is presented the example xt, and now the learner chooses an orthogonal
matrix Ut ∈ O(n) instead of a rotation matrix and predicts ŷt = Utxt. This corresponds to a change of
basis. Then the actual vector yt is revealed, and the loss is defined the same way: 1

2‖ŷt − yt‖2. The goal is
to minimize regret with respect to the best change of basis in hindsight. It is apparent from the algorithm’s
analysis that we can use the same algorithm with the same perturbations, except that we optimize over O(n)
rather than SO(n), an even simpler task (c.f. Lemma 4). Our regret bounds carry over to this setting.

It would be very interesting to find other applications of the spectral perturbations idea. In particular, the
matrix version of the FPL algorithm might lead to speedups of the Matrix Hedge [WK06] and more generally
the Matrix Exponentiated Gradient algorithm which both optimize over density matrices. To realize these
speedups one would either have to get away with a single perturbation matrix or perturbation matrices that
can be sampled inO(n2) time per trial. We expand on these ideas in an open problem posed in this conference
[HKW10].
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A Solutions of Wahba’s problem and the Orthogonal Procrustes Problem
We first prove Lemma 4, since it is simpler and it gives a reduction which will be useful for the proof of
Lemma 3.

Proof of Lemma 4: Recall that we want to compute

max
R∈O(n)

M •R.

Let M = UΣV> be an SVD of M, so that U and V are orthogonal matrices, and Σ = diag(σ1, σ2, . . . , σn)
is a diagonal matrix of the non-negative singular values σi.

Now, we do a change of variables. Instead of maximizing over an orthogonal matrix R, we maximize
over orthogonal matrix W = U>RV. This lets us rewrite the dot product we are minimizing over

M •R = Tr(M>UWV>) = Tr(VΣ>U>UWV>) = Tr(Σ>W) = Σ •W. (4)

Since W is an orthogonal matrix, we have |Wii| ≤ 1 for all i. Hence, the linear expression Σ •W =∑
i σiWii is maximized when W = I, the identity matrix. We conclude that R = UV> is an optimal

solution to maxR∈O(n) M •R and all maxima has the value
∑n
i=1 σi. �

We have been unable to find a complete, rigorous solution of Wahba’s problem in the literature for di-
mensions more than 3. For the sake of completeness, we give a complete proof. This proof was obtained
in collaboration with Abhishek Kumar, simplifying a previous version given in the submitted version of this
paper.

Proof of Lemma 3: Recall that we want to compute

max
R∈SO(n)

M •R.

As in the proof of Lemma 4, let M = UΣV> be an SVD of M. As before, we do a change of variables from
a rotation matrix R to an orthogonal matrix W = U>RV, with the following condition on the determinant
of W:

det(W) = det(U) det(R) det(V) = det(U) det(V) =: s ∈ {+1,−1}.
Using equation (4), the problem now reduces to:

max
W∈O(n),det(W)=s

Σ •W. (5)

The case det(W) = 1 is easy. We already showed in the previous lemma that

I ∈ argmax
W∈O(n)

Σ •W.

Thus in this case the constraint on the determinant of W is immaterial and the value of the maxima is∑n
i=1 σi =

∑n−1
i=1 σi + sσn, where σn is the smallest singular value.

The case det(W) = −1 is considerably harder. We need to show W = diag(1, 1, . . . , 1,−1) is an
optimal solution which has value

∑n−1
i=1 σi− σn =

∑n−1
i=1 σi + sσn, where σn is the smallest singular value.

Let W be an arbitrary orthogonal matrix of determinant−1. We make the following observations regard-
ing W. First, if λ1, λ2, . . . , λn are the n (real or complex) eigenvalues of W, then we have

n∏
i=1

λi = det(W) = −1.

Since W ∈ O(n), all eigenvalues λi have magnitude |λi| = 1: this is because if λ is an eigenvalue of W
with eigenvector v, i.e. Wv = λv, then

1 = ‖v‖ = ‖Wv‖ = ‖λv‖ = |λ|‖v‖ = |λ|,

where the second equality uses W ∈ O(n).

9152



We claim that at least one eigenvalue of the matrix W is −1. This is so because all the complex eigen-
values of the real matrix M must occur in complex conjugate pairs, a + ib and a − ib, for some b 6= 0 and
a2 + b2 = 1. Now, the product of any such complex conjugate pair of eigenvalues is (a + ib)(a − ib) =
a2 + b2 = 1. Hence, the product of all complex eigenvalues is 1. Since the product of all eigenvalues (real or
complex) is −1, and all real eigenvalues are either +1 or −1, we must have at least one eigenvalue being−1.

For convenience of notation, let λn = −1. Now, we have

tr(W) =
n−1∑
i=1

λi + λn =
n−1∑
i=1

real(λi)− 1 ≤ n− 1− 1 = n− 2.

Here, real(z) is the real part of a complex number z, and we use the fact that the sum of two complex
conjugate eigenvalues a+ ib and a− ib is 2a, which is the sum of their real parts. We also used the fact that
for any eigenvalue λi, real(λi) ≤ 1 since |λi| = 1.

Finally, note that |Wii| ≤ 1 since W is an orthogonal matrix. Now, consider the following linear program
which is a relaxation of the optimization problem (5) (This is a relaxation since the last inequality holds for
all solutions of (5) and we drop the constraint that W is an orthogonal matrix of determinant −1):

max
n∑
i=1

σiWii

∀i : −1 ≤ Wii ≤ 1
n∑
i=1

Wii ≤ n− 2.

The optimal solution to this linear program is obtained at a vertex of the polytope defined by the constraints.
We now characterize the vertices of the polytope as follows:

Claim 8 Any vertex of the polytope defined by the constraints of the above linear program satisfies Wii ∈
{+1,−1} for all i, with at least one Wii set to −1.

Proof: Any vertex is obtained by setting n of the inequalities to equalities.
Case 1: n of the −1 ≤ Wii ≤ 1 inequalities are tight. Then all Wii ∈ {−1,+1}, and to satisfy∑n
i=1Wii ≤ n− 2, we must have at least one −1.
Case 2:

∑n
i=1Wii equals the integer n− 2, exactly n− 1 of the inequalities −1 ≤Wii ≤ 1 are tight for

say 1 ≤ i ≤ n − 1, and the last one is not tight, i.e. −1 < Wnn < 1. Then for all 1 ≤ i ≤ n − 1, we have
Wii ∈ {+1,−1}, since

∑n
i=1Wii = n− 2, an integer, Wnn is also an integer, and hence must be zero. But

then with Wii ∈ {+1,−1} for 1 ≤ i ≤ n − 1 the sum
∑n−1
i=1 Wii is either n − 1 or at most n − 3. Thus∑n

i=1Wii = n− 2 can’t be satisfied and case 2 does not give any more vertices. �
With this characterization of the vertices, since the σn is the smallest singular value, the optimal vertex

for the linear program is the one where Wii = 1 for 1 ≤ i ≤ n− 1, and Wnn = −1. Thus the optimum value
of the linear program is

∑n−1
i=1 σi− σn. Since this is a relaxation to the original problem, this optimum value

is only larger than the optimum of the original problem. However, by setting W = diag(1, 1, . . . , 1,−1),
which is an orthogonal matrix of determinant−1, we achieve the same value in the original problem as in the
relaxed LP, and hence the optimal solution to the original problem is given by this W.

B Proof of Claim 7
For notational convenience, define a “hallucinated” 0-th trial with loss function L0(R) := −N • R over
rotation matrices. With this notation, Rt = arg minR∈SO(n)

∑t−1
τ=0 Lt(R), for any t ≥ 1. We prove by

induction that for any T ≥ 0, we have

T∑
t=0

Lt(Rt+1) ≤
T∑
t=0

Lt(RT+1).

The statement holds trivially for T = 0. So assume that it holds for some T ≥ 0, and now we prove it for
T + 1. For this, we have

T+1∑
t=0

Lt(Rt+1) ≤
T∑
t=0

Lt(RT+1) + LT+1(RT+2) ≤
T∑
t=0

Lt(RT+2) + LT+1(RT+2) =
T+1∑
t=0

Lt(RT+2).
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Here, the first inequality follows from the induction hypothesis, and the second from the fact that RT+1 =
arg minR∈SO(n)

∑T
t=0 Lt(R). Thus, the induction is complete.

We now continue by using RT+1 = arg minR∈SO(n)

∑T
t=0 Lt(R) a second time:

T∑
t=0

Lt(Rt+1) ≤
T∑
t=0

Lt(RT+1) ≤
T∑
t=0

Lt(R?).

This implies that

T∑
t=1

Lt(Rt)−
T∑
t=1

Lt(R?) ≤
T∑
t=1

(Lt(Rt)− Lt(Rt+1))− L0(R1) + L0(R?),

as required.
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Abstract

We consider the question of the stability of evolutionary algorithms to gradual changes,
or drift, in the target concept. We define an algorithm to be resistant to drift if, for
some inverse polynomial drift rate in the target function, it converges to accuracy 1 − �
with polynomial resources, and then stays within that accuracy indefinitely, except with
probability � at any one time. We show that every evolution algorithm, in the sense of
Valiant [20], can be converted using the Correlational Query technique of Feldman [9], into
such a drift resistant algorithm. For certain evolutionary algorithms, such as for Boolean
conjunctions, we give bounds on the rates of drift that they can resist. We develop some
new evolution algorithms that are resistant to significant drift. In particular, we give an
algorithm for evolving linear separators over the spherically symmetric distribution that is
resistant to a drift rate of O(�/n), and another algorithm over the more general product
normal distributions that resists a smaller drift rate.

The above translation result can be also interpreted as one on the robustness of the notion of
evolvability itself under changes of definition. As a second result in that direction we show
that every evolution algorithm can be converted to a quasi-monotonic one that can evolve
from any starting point without the performance ever dipping significantly below that of
the starting point. This permits the somewhat unnatural feature of arbitrary performance
degradations to be removed from several known robustness translations.

1 Overview

The evolvability model introduced by Valiant [20] was designed to provide a quantitative theory
for studying mechanisms that can evolve in populations of realistic size, in a reasonable number of
generations through the Darwinian process of variation and selection. It models evolving mecha-
nisms as functions of many arguments, where the value of a function represents the outcome of the
mechanism, and the arguments the controlling factors. For example, the function might determine
the expression level of a particular protein given the expression levels of related proteins. Evolution
is then modeled as a restricted form of learning from examples, in which the learner observes only
the empirical performance of a set of functions that are feasible variants of the current function.
The performance of a function is defined as its correlation with the ideal function, which specifies
for every possible circumstance the behavior that is most beneficial in the current environment for
the evolving entity.

The evolution process consists of repeated applications of a random variation step followed by a
selection step. In the variation step of round i, a polynomial number of variants of the algorithm’s
current hypothesis ri are generated, and their performance empirically tested. In the selection step,
one of the variants with high performance is chosen as ri+1. An algorithm therefore consists of
both a procedure for describing possible variants and as well as a selection mechanism for choosing
among the variants. The algorithm succeeds if it produces a hypothesis with performance close to
the ideal function using only a polynomial amount of resources (in terms of number of generations
and population size).

∗This work was supported in part by NSF-CCF-04-27129.
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The basic model as defined in Valiant [20] is concerned with the evolution of Boolean functions
using representations that are randomized Boolean functions. This has been shown by Feldman
[10] to be a highly robust class under variations in definition, as is necessary for any computational
model that aims to capture the capabilities and limitations of a natural phenomenon. This model
has also been extended to allow for representations with real number values, in which case a range
of models arise that differ according to whether the quadratic loss or some other metric is used in
evaluating performance [18, 10]. Our interest here remains with the original Boolean model, which
is invariant under changes of this metric.

In this paper we consider the issue of stability of an evolution algorithm to gradual changes, or
drift, in the target or ideal function. Such stability is a desirable property of evolution algorithms
that is not explicitly captured in the original definition. We present two main results in this paper.
First, for specific evolution algorithms we quantify how resistant they are to drift. Second, we show
that evolutionary algorithms can be transformed to stable ones, showing that the evolutionary model
is robust also under modifications that require resistance to drift.

The issue of resistance to drift has been discussed informally before in the context of evolution
algorithms that are monotone in the sense that their performance is increasing, or at least non-
decreasing, at every stage [18, 10]. We shall therefore start by distinguishing among three notions
of monotonicity in terms of properties that need to hold with high probability: (i) quasi-monotonic,
where for any � the performance never goes more than � below that of the starting hypothesis r0,
(ii) monotonic, where the performance never goes below that of r0, and (iii) strictly monotonic,
where performance increases by at least an inverse polynomial amount at each step. Definition (ii)
is essentially Feldman’s [10] and definition (iii) is implicit in Michael [18].

We define a notion of an evolution algorithm being stable to drift in the sense that for some
inverse polynomial amount of drift, using only polynomial resources, the algorithm will converge to
performance 1− �, and will stay with such high performance in perpetuity in the sense that at every
subsequent time, except with probability �, its performance will be at least 1 − �.

As our main result demonstrating the robustness of the evolutionary model itself, we show,
through the simulation of query learning algorithms [9], that for every distribution D, every function
class that is evolvable in the original definition, is also evolvable by an algorithm that is both (i)
quasi-monotonic, and (ii) stable to some inverse polynomial amount of drift. While the definitions
allow any small enough inverse polynomial drift rate, they require good performance in perpetuity,
and with the same representation class for all �. Some technical complications arise as a result of
the latter two requirements.

As a vehicle for studying the stability of specific algorithms, we show that there are natural
evolutionary algorithms for linear separators over symmetric distributions and over the more general
product normal distributions. Further we formulate a general result that states that for any strictly
monotonic evolution algorithm, where the increase in performance at every step is defined by an
inverse polynomial b, one can determine upper bounds on the polynomial parameters of the evolution
algorithm, namely those that bound the generation numbers, population sizes, and sample sizes,
and also a lower bound on the drift that can be resisted. We illustrate the usefulness of this
formulation by applying it to show that our algorithms for linear separators can resist a significant
amount of drift. We also apply it to existing algorithms for evolving conjunctions over the uniform
distribution, with or without negations. We note that the advantages of evolution algorithms that
use natural representations, over those obtained through simulations of query learning algorithms,
may be quantified in terms of how moderate the degrees are of the polynomials that bound the
generation number, population size, sample size and (inverse) drift rate of these algorithms. These
results appear in Sections 6 and 7 and may be read independently of Section 5.

All omitted details and proofs appear in a longer version of this paper, available online [15].

2 The Computational Model of Evolution

In this section, we provide an overview of the original computational model of evolution (Valiant
[20], where further details can be found). Many of these notions will be familiar to readers who are
acquainted with the PAC model of learning [19].

2.1 Basic Definitions

Let X be a space of examples. A concept class C over X is a set of functions mapping elements in
X to {−1, 1}. A representation class R over X consists of a set of (possibly randomized) functions
from X to {−1, 1} described in a particular language. Throughout this paper, we think of C as
the class of functions from which the ideal target f is selected, and R as a class of representations
from which the evolutionary algorithm chooses an r to approximate f . We consider only classes of
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representations that can be evaluated efficiently, that is, classes R such that for any r ∈ R and any
x ∈ X , r(x) can be evaluated in time polynomial in the size of x.

We associate a complexity parameter n with X , C, and R. This parameter indicates the number of
dimensions of each element in the domain. For example, we might define Xn to be {−1, 1}n, Cn to be
the class of monotone conjunctions over n variables, and Rn to be the class of monotone conjunctions
over n variables with each conjunction represented as a list of variables. Then C = {Cn}

∞
n=1 and

R = {Rn}
∞
n=1 are really ensembles of classes.1 Many of our results depend on this complexity

parameter n. However, we drop the subscripts when the meaning is clear from context.
The performance of a representation r with respect to the ideal target f is measured with respect

to a distribution D over examples. This distribution represents the relative frequency with which
the organism faces each set of conditions in X . Formally, for any pair of functions f : X → {−1, 1},
r : X → {−1, 1}, and distribution D over X , we define the performance of r with respect to f as

Perff (r,D) = Ex∼D[f(x)r(x)] = 1 − 2errD(f, r) ,

where errD(f, r) = Prx∼D(f(x) �= r(x)) is the 0/1 error between f and r. The performance thus
measures the correlation between f and r and is always between −1 and 1.

A new mutation is selected after each round of variation based in part on the observed fitness of
the variants, i.e., their empirical correlations with the target on a polynomial number of examples.
Formally, the empirical performance of r with respect to f on a set of examples x1, · · · , xs chosen
independently according to D is a random variable defined as (1/s)

�s
i=1 f(xi)r(xi).

We denote by � an accuracy parameter specifying how close to the ideal target a representation
must be to be considered good. A representation r is a good approximation of f if Perff (r,D) ≥ 1−�
(or equivalently, if errD(f, r) ≤ �/2). We allow the evolution algorithm to use resources that are
polynomial in both 1/� and the dimension n.

2.2 Model of Variation and Selection

An evolutionary algorithm E determines at each round i which set of mutations of the algorithm’s
current hypothesis ri−1 should be evaluated as candidates for ri, and how the selection will be made.
The algorithm E = (R, Neigh, µ, t, s) is specified by the following set of components:

• The representation class R = {Rn}
∞
n=1 specifies the space of representations over X from which

the algorithm may choose functions r to approximate the target f .

• The (possibly randomized) function Neigh(r, �) specifies for each r ∈ Rn the set of representa-
tions r� ∈ Rn into which r can randomly mutate. This set of representations is referred to as
the neighborhood of r. For all r and �, it is required that r ∈ Neigh(r, �) and that the size of
the neighborhood is upper bounded by a polynomial.

• The function µ(r, r�, �) specifies for each r ∈ Rn and each r� ∈ Neigh(r, �) the probability that r
mutates into r�. It is required that for all r and �, for all r� ∈ Neigh(r, �), µ(r, r�, �) ≥ 1/p(n, 1/�)
for a polynomial p.

• The function t(r, �), referred to as the tolerance of E , determines the difference in performance
that a mutation in the neighborhood of r must exhibit in order to be considered a “beneficial”,
“neutral”, or “deleterious” mutation. The tolerance is required to be bounded from above and
below, for all representations r, by a pair of inverse polynomials in n and 1/�.

• Finally, the function s(r, �), referred to as the sample size, determines the number of examples
used to evaluate the empirical performance of each r� ∈ Neigh(r, �). The sample size must also
be polynomial in n and 1/�.

The functions Neigh, µ, t, and s must all be computable in time polynomial in n and 1/�.
We are now ready to describe a single round of the evolution process. For any ideal target

f ∈ C, distribution D, evolutionary algorithm E = (R, Neigh, µ, t, s), accuracy parameter �, and
representation ri−1, the mutator M(f,D, E , �, ri−1) returns a random mutation ri ∈ Neigh(ri−1, �)
using the following selection procedure. First, for each r ∈ Neigh(ri−1, �), the mutator computes
the empirical performance of r with respect to f on a sample of size s.2 Call this v(r). Let

Bene =
�
r
�
� r ∈ Neigh(ri−1, �), v(r) ≥ v(ri−1) + t(ri−1, �)

�

1As in the PAC model, n should additionally upper bound the size of representation of the function to
be learned, but for brevity we shall omit this aspect here.

2We assume a single sample is used to evaluate the performance of all neighbors and ri−1, but one could
interpret the model as using independent samples for each representation. This would not change our results.
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be the set of “beneficial” mutations and

Neut =
�
r
�
� r ∈ Neigh(ri−1, �), |v(r) − v(ri−1)| < t(ri−1, �)

�

be the set of “neutral” mutations. If at least one beneficial mutation exists, then a mutation r is
chosen from Bene as the survivor ri with relative probability µ(ri−1, r, �). If no beneficial mutation
exists, then a mutation r is chosen from Neut as the survivor ri, again with probability proportional
to µ(ri−1, r, �). Notice that, by definition, ri−1 is always a member of Neut, and hence a neutral
mutation is guaranteed to exist.

2.3 Putting It All Together

A concept class C is said to be evolvable by algorithm E over distribution D if for every target f ∈ C,
starting at any r0 ∈ R, the sequence of mutations defined by E converges in polynomial time to a
representation r whose performance with respect to f is close to 1. This is formalized as follows.

Definition 1 (Evolvability [20]) For a concept class C, distribution D, and evolutionary algo-
rithm E = (R, Neigh, µ, t, s), we say that C is evolvable over D by E if there exists a polyno-
mial g(n, 1/�) such that for every n ∈ N, f ∈ Cn, r0 ∈ Rn, and � > 0, with probability at
least 1 − �, a sequence r0, r1, r2, · · · generated by setting ri = M(f,D, E , �, ri−1) for all i satisfies
Perff (rg(n,1/�),D) ≥ 1 − �.

We say that the class C is evolvable over D if there exists a valid evolution algorithm E =
(R, Neigh, µ, t, s) such that C is evolvable over D by E . The polynomial g(n, 1/�), referred to as the
generation polynomial, is an upper bound on the number of generations required for the evolution
process to converge. If the above definition holds only for a particular value (or set of values) for
r0, then we say that C is evolvable with initialization.

2.4 Alternative Models

Various alternative formulations of the basic computational model of evolution described here have
been studied. Many have been proved equivalent to the basic model in the sense that any concept
class C evolvable in the basic model is evolvable in the alternative model and vice versa. Here we
briefly discuss some of the variations that have been considered.

The performance measure Perff (r,D) is defined in terms of the 0/1 loss. Alternative perfor-
mance measures based on squared loss or other loss functions have been studied in the context of
evolution [10, 11, 18]. However, these alternative measures are identical to the original when f and
r are (possibly randomized) binary functions, as we have assumed. (When the model is extended
to allow real-valued function output, evolvability with a performance measure based on any non-
linear loss function is strictly more powerful than evolvability with the standard correlation-based
performance measure [10]. We do not consider that extension in this work.)

Alternate rules for determining how a mutation is selected have also been considered. In par-
ticular, Feldman [10] showed that evolvability using a selection rule that always chooses among the
mutations with the highest or near highest empirical performance in the neighborhood is equivalent
to evolvability with the original selection rule based on the classes Bene and Neut. He also discussed
the performance of “smooth” selection rules, in which the probability of a given mutation surviving
is a smooth function of its original frequency and the performance of mutations in the neighborhood.

Finally, Feldman [9, 10] showed that fixed-tolerance evolvability, in which the tolerance t is a
function of only n and 1/� but not the representation ri−1, is equivalent to the basic model.

3 Notions of Monotonicity

Feldman [10, 11] introduced the notion of monotonic evolution in the computational model described
above. His notion of monotonicity, restated here in Definition 2, requires that with high probability,
the performance of the current representation ri never drops below the performance of the initial
representation r0 during the evolution process.

Definition 2 (Monotonic Evolution) An evolution algorithm E monotonically evolves a class C
over a distribution D if E evolves C over D and with probability at least 1 − �, for all i ≤ g(n, 1/�),
Perff (ri,D) ≥ Perff (r0,D), where g(n, 1/�) and r0, r1, · · · are defined as in Definition 1.

When explicit initialization of the starting representation r0 is prohibited, this is equivalent to
requiring that Perff (ri,D) ≥ Perff (ri−1,D) for all i ≤ g(n, 1/�). In other words, it is equivalent
to requiring that with high probability, performance never decreases during the evolution process.
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(Feldman showed that if representations may produce real-valued output and an alternate perfor-
mance measure based on squared loss in considered, then any class C that is efficiently SQ learnable
over a known, efficiently samplable distribution D is monotonically evolvable over D.)

A stronger notion of monotonicity was used by Michael [18], who, in the context of real-valued
representations and quadratic loss functions, developed an evolution algorithm for learning 1-decision
lists in which only beneficial mutations are allowed. In this spirit, we define the notion of strict
monotonic evolution, which requires a significant (inverse polynomial) performance increase at every
round of evolution until a representation with sufficiently high performance is found.

Definition 3 (Strict Monotonic Evolution) An evolution algorithm E strictly monotonically
evolves a class C over a distribution D if E evolves C over D and, for a polynomial m, with
probability at least 1 − �, for all i ≤ g(n, 1/�), either Perff (ri−1,D) ≥ 1 − � or Perff (ri,D) ≥

Perff (ri−1,D) + 1/m(n, 1/�), where g(n, 1/�) and r0, r1, · · · are defined as in Definition 1.

Below we show that a class C is strictly monotonically evolvable over a distribution D using
representation class R if and only if it is possible to define a neighborhood function satisfying the
property that for any r ∈ R and f ∈ C, if Perff (r,D) is not already near optimal, there exists a
neighbor r� of r such that r� has a noticeable (again, inverse polynomial) performance improvement
over r. We call such a neighborhood function strictly beneficial. The idea of strictly beneficial
neighborhood functions plays an important role in developing our results in Sections 6 and 7.
Feldman [11] uses a similar notion to show monotonic evolution under square loss.

Definition 4 (Strictly Beneficial Neighborhood Function) For a concept class C, distribu-
tion D, and representation class R, we say that a (possibly randomized) function Neigh is a
strictly beneficial neighborhood function if the size of Neigh(r, �) is upper bounded by a poly-
nomial p(n, 1/�), and there exists a polynomial b(n, 1/�) such that for every n ∈ N, f ∈ Cn,
r ∈ Rn, and � > 0, if Perff (r,D) < 1 − �/2, then there exists a r� ∈ Neigh(r, �) such that

Perff (r�,D) ≥ Perff (r,D) + 1/b(n, 1/�). We refer to b(n, 1/�) as the benefit polynomial.

Lemma 5 For any concept class C, distribution D, and representation class R, if Neigh is a strictly
beneficial neighborhood function for C, D, and R, then there exist valid functions µ, t, and s such
that C is strictly monotonically evolvable over D by E = (R, Neigh, µ, t, s). If a concept class C is
strictly monotonically evolvable over D by E = (R, Neigh, µ, t, s), then Neigh is a strictly beneficial
neighborhood function for C, D, and R.

The proof of the second half of the lemma is immediate; the definition of strictly mono-
tonic evolvability requires that for any initial representation r0 ∈ R, with high probability ei-
ther Perff (r0,D) ≥ 1 − �/2 or Perff (r1,D) ≥ Perff (r0,D) + 1/m(n, 2/�) for a polynomial m.
Thus if Perff (r0,D) < 1 − �/2 there must exist an r1 in the neighborhood of r0 such that
Perff (r1,D) ≥ Perff (r0,D) + 1/m(n, 2/�). The key idea behind the proof of the first half is
to show that it is possible to set the tolerance t(r, �) in such a way that with high probability, Bene
is never empty and there is never a representation in Bene with performance too much worse than
that of the beneficial mutation guaranteed by the definition of the strictly beneficial neighborhood
function. This implies that the mutation algorithm is guaranteed to choose a new representation
with a significant increase in performance at each round.

Finally, we define quasi-monotonic evolution. This is similar to the monotonic evolution, except
that the performance is allowed to go slightly below that of r0. In Section 5.7, we show that
this notion can be made universal, in the sense that every evolvable class is also evolvable quasi-
monotonically.

Definition 6 (Quasi-Monotonic Evolution) An evolution algorithm quasi-monotonically
evolves a class C over D if E evolves C over D and with probability at least 1−�, for all i ≤ g(n, 1/�),
Perff (ri,D) ≥ Perff (r0,D) − �, where g(n, 1/�) and r0, r1, · · · are defined as in Definition 1.

4 Resistance to Drift

There are many ways one could choose to formalize the notion of drift resistance. Our formalization
is closely related to ideas from the work on tracking drifting concepts in the computational learning
literature. The first models of concept drift were proposed around the same time by Helmbold and
Long [12] and Kuh et al. [17]. In both of these models, at each time i, an input point xi is drawn
from a fixed but unknown distribution D and labeled by a target function fi ∈ C. It is assumed
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that the error of fi with respect to fi−1 on D is less than a fixed value Δ. Helmbold and Long
[12] showed that a simple algorithm that chooses a concept to (approximately) minimize error over

recent time steps achieves an average error of Õ(
√

Δd) where d is the VC dimension of C.3 More
general models of drift have also been proposed [2, 3].

Let fi ∈ C denote the ideal function on round i of the evolution process. Following Helmbold
and Long [12], we make the assumption that for all i, errD(fi−1, fi) ≤ Δ for some value Δ. This is
equivalent to assuming that Perffi−1

(fi,D) ≥ 1 − 2Δ. Call a sequence of functions satisfying this
condition a Δ-drifting sequence. We make no other assumptions on the sequence of ideal functions.

Definition 7 (Evolvability with Drifting Targets) For a concept class C, distribution D, and
evolution algorithm E = (R, Neigh, µ, t, s), we say that C is evolvable with drifting targets over D by
E if there exist polynomials g(n, 1/�) and d(n, 1/�) such that for every n ∈ N, r0 ∈ Rn, and � > 0,
for any Δ ≤ 1/d(n, 1/�), and every Δ-drifting sequence f1, f2, . . . (with fi ∈ Cn for all i), if r0, r1, . . .
is generated by E such that ri = M(fi−1,D, E , �, ri−1), then for all � ≥ g(n, 1/�), with probability at
least 1 − �, Perff�(r�,D) ≥ 1 − �. We refer to d(n, 1/�) as the drift polynomial.

As in the basic definition, we say that the class C is evolvable with drifting targets over D if there
exists a valid evolution algorithm E = (R, Neigh, µ, t, s) such that C is evolvable with drifting targets
over D by E . The drift polynomial specifies how much drift the algorithm can tolerate.

Our first main technical result, Theorem 8, relates the idea of monotonicity described above
to drift resistance by showing that given a strictly beneficial neighborhood function for a class C,
distribution D, and representation class R, one can construct a mutation algorithm E such that C is
evolvable with drifting targets over D by E . The tolerance t and sample size s of E and the resulting
generation polynomial g and drift polynomial d directly depend only on the benefit polynomial b as
described below. The proof is very similar to the proof of the first half of Lemma 5. Once again the
key idea is to show that it is possible to set the tolerance such that with high probability, Bene is
never empty and there is never a representation in Bene with performance too much worse than the
guaranteed beneficial mutation. This implies that the mutation algorithm is guaranteed to choose
a new representation with a significant increase in performance with respect to the previous target
fi−1 at each round i with high probability. As long as fi−1 and fi are sufficiently close, the chosen
representation is also guaranteed to have good performance with respect to fi.

Theorem 8 For any concept class C, distribution D, and representation class R, if Neigh is a
strictly beneficial neighborhood function for C, D, and R, then there exist valid functions µ, t, and
s such that C is evolvable with drifting targets over D by E = (R, Neigh, µ, t, s). In particular, if
Neigh is strictly beneficial with benefit polynomial b(n, 1/�), and p(n, 1/�) is an arbitrary polynomial
upper bound on the size of Neigh(r, �), then C is evolvable with drifting targets over D with

• any distributions µ that satisfy µ(r, r�, �) ≥ 1/p(n, 1/�) for all r ∈ Rn, �, and r
� ∈ Neigh(r, �),

• tolerance function t(r, �) = 1/(2b(n, 1/�)) for all r ∈ Rn,

• any generation polynomial g(n, 1/�) ≥ 16b(n, 1/�),

• any sample size s(n, 1/�) ≥ 128(b(n, 1/�))2 ln
�
2p(n, 1/�)g(n, 1/�)/�

�
, and

• any drift polynomial d(n, 1/�) ≥ 16b(n, 1/�), which allows drift Δ ≤ 1/(16b(n, 1/�)).

In Sections 6 and 7, which can be read independent of Section 5, we appeal to this theorem in
order to prove that some common concept classes are evolvable with drifting targets with relatively
large values of Δ. Using Lemma 5, we also obtain the following corollary.

Corollary 9 If a concept class C is strictly monotonically evolvable over D, then C is evolvable with
drifting targets over D.

5 Robustness Results

Feldman [9] proved that the original model of evolvability is equivalent to a restriction of the sta-
tistical query model of learning [16] known as learning by correlational statistical queries (CSQ) [5].
We extend Feldman’s analysis to show that CSQ learning is also equivalent to both evolvability with
drifting targets and quasi-monotonic evolvability, and so the notion of evolvability is robust to these
changes in definition. We begin by briefly reviewing the CSQ model.

3Throughout the paper, we use the notation Õ to suppress logarithmic factors.
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5.1 Learning from Correlational Statistical Queries

The statistical query (SQ) model was introduced by Kearns [16] and has been widely studied due
to its connections to learning with noise [1, 4]. Like the PAC model, the goal of an SQ learner is
to produce a hypothesis h that approximates the behavior of a target function f with respect to
a fixed but unknown distribution D. Unlike the PAC model, the learner is not given direct access
to labeled examples �x, f(x)�, but is instead given access to a statistical query oracle. The learner
submits queries of the form (ψ, τ) to the oracle, where ψ : X ×{−1, 1} → [−1, 1] is a query function
and τ ∈ [0, 1] is a tolerance parameter. The oracle responds to each query with any value v such that
|Ex∼D[ψ(x, f(x))] − v| ≤ τ . An algorithm is said to efficiently learn a class C in the SQ model if for
all n ∈ N, � > 0, and f ∈ Cn, and every distribution Dn over Xn, the algorithm, given access to � and
the SQ oracle for f and Dn, outputs a polynomially computable hypothesis h in polynomial time
such that err(f, h) ≤ �. Furthermore it is required that each query (ψ, τ) made by the algorithm
can be evaluated in polynomial time given access to f and Dn. It is known that any class efficiently
learnable in the SQ model is efficiently learnable in the PAC model with label noise [16].

A query (ψ, τ) is called a correlational statistical query (CSQ) [5] if ψ(x, f(x)) = φ(x)f(x) for
some function φ : X → [−1, 1]. An algorithm A is said to efficiently learn a class C in the CSQ
model if A efficiently learns C in the SQ model using only correlational statistical queries.

It is useful to consider one additional type of query, the CSQ> query [9]. A CSQ> query is
specified by a triple (φ, θ, τ), where φ : X → [−1, 1] is a query function, θ is a threshold, and
τ ∈ [0, 1] is a tolerance parameter. When presented with such a query, a CSQ> oracle for target f
and distribution D returns 1 if Ex∼D[φ(x)f(x)] ≥ θ + τ , 0 if Ex∼D[φ(x)f(x)] ≤ θ− τ , and arbitrary
value of either 1 or 0 otherwise. Feldman [9] showed that if there exists an algorithm for learning C
over D that makes CSQs, then there exists an algorithm for learning C over D using CSQ>s of the
form (φ, θ, τ) where θ ≥ τ for all queries. Furthermore the number of queries made by this algorithm
is at most O(log(1/τ)) times the number of queries made by the original CSQ algorithm.

5.2 Overview of the Reduction

The construction we present uses Feldman’s simulation [9] repeatedly. Fix a concept class C and a
distribution D such that C is learnable over D in the CSQ model. As mentioned above, this implies
that there exists a CSQ> algorithm A for learning C over D. Let H be the class of hypotheses from
which the output of A is chosen. In the analysis that follows, we restrict our attention to the case
in which A is deterministic. However, the extension of our analysis to randomized algorithms is
straightforward using Feldman’s ideas (see Lemma 4.7 in his paper [9]).

First, we present a high level outline of our reduction. Throughout this section we will use
randomized Boolean functions. If ψ : X → [−1, 1] is a real valued function, let Ψ denote the
randomized Boolean function such that for every x, E[Ψ(x)] = ψ(x). It can be easily verified that
for any function φ(x), Ex,Ψ[φ(x)Ψ(x)] = Ex[φ(x)ψ(x)]. For the rest of this section, we will abuse
notation and simply write real-valued functions in place of the corresponding randomized Boolean
functions.

Our representation is of the form r = (1−�/2)h+(�/2)Φ. Here h is a hypothesis from H and Φ is
function that encodes the state of the CSQ> algorithm that is being simulated. Feldman’s simulation
only uses the second part. Our simulation runs in perpetuity, restarting Feldman’s simulation each
time it has completed. Since the target functions are drifting over time, if h has high performance
with respect to the current target function, it will retain the performance for some time steps in
the future, but not forever. During this time, Feldman’s simulation on the Φ part produces a new
hypothesis h� which has high performance at the time this simulation is completed. At this time,
we will transition to a representation r� = (1 − �/2)h� + (�/2)Φ, where Φ is reset to start Feldman’s
simulation anew. Thus, although the target drifts, our simulation will continuously run Feldman’s
simulation to find a hypothesis that has a high performance with respect to the current target.

The rest of section 5 details the reduction. First, we show how a single run of A is simulated,
which is essentially Feldman’s reduction with minor modifications. Then we discuss how to restart
this simulation once it has completed. This requires the addition of certain intermediate states to
keep the reduction feasible in the evolution model. We also show that our reduction can be made
quasi-monotonic. Finally, we show how all this can be done using a representation class that is
independent of �, as is required. This last step is shown in the appendix of the long version [15].

5.3 Construction of the Evolutionary Algorithm

We describe the construction of our evolutionary algorithm E . Let τ = τ(n, 1/�) be a polynomial
lower bound on the tolerance of the queries made by A when run with accuracy parameter �/4.
Without loss of generality, we may assume all queries are made with this tolerance. Let q = q(n, 1/�)
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be a polynomial upper bound on the number of queries made by A, and assume that A makes exactly
q queries (if not, redundant queries can be added). Here, we allow our representation class to be
dependent on �. However, this restriction may be removed (cf. Appendix A.7.1 [15]). In the
remainder of this section we drop the subscripts n and �, except where there is a possibility of
confusion.

Following Feldman’s notation, let z denote a bit string of length q which records the oracle
responses to the queries made by A; that is, the ith bit of z is 1 if and only if the answer to the ith
query is 1. Let |z| denote the length of z, zi the prefix of z of length i, and zi the ith bit of z. Since
A is deterministic, the ith query made by A depends only on responses to the previous i−1 queries.
We denote this query by (φzi−1 , θzi−1 , τ), with θzi−1 ≥ τ , as discussed in Section 5.1. Let hz denote
the final hypothesis output by A given query responses z. Since we have chosen to simulate A with
accuracy parameter �/4, hz is guaranteed to satisfy Perff (hz,D) ≥ 1 − �/4 for any function f for
which the query responses in z are valid. Finally, let σ denote the empty string.

For every i ∈ {1, · · · , q} and z ∈ {0, 1}i, we define Φz = (1/q)
�i

j=1 I(zj = 1)φzj−1(x), where
I is an indicator function that is 1 if its input is true and 0 otherwise. For any h ∈ H, define
r�[h, z] = (1 − �/2)h(x) + (�/2)Φz(x). Recall that each of these real-valued functions can be treated
as a randomized Boolean function as required by the evolution model. The performance of this
function, which we use as our basic representation, is mainly determined by the performance of h,
but by setting the tolerance parameter low enough, the Φz part can learn useful information about
the (drifting) targets by simulating A.

Let R̃� = {r�[h, z] | h ∈ H, 0 ≤ |z| ≤ q − 1}. The representations in R̃� will be used for
simulating one round of A. To reach a state where we can restart the simulation, we will need to
add intermediate representations. These are defined below.

Let tu(n, 1/�) be an upper bound on �θzi/(8q) for all i and zi. (This will be a polynomial upper
bound on all tolerances t that we define below.) Assume for simplicity that K = 2/tu(n, 1/�) is an
integer. Let w0 = r�[h, z], for some h ∈ H and |z| = q (w0 depends on h and z, but to keep notation
simple we will avoid subscripts). For k = 1, . . . ,K, define wk = (1−k(tu(n, 1/�)/2))w0. Notice that
wK = 0, where 0 is a function that can be realized by a randomized function that ignores its input
and predicts +1 or −1 randomly. Let W� = {wi | w0 = r�[h, z], h ∈ H, |z| = q, i ∈ {0, . . . ,K}}.

Finally define R� = R̃� ∪W�. For every representation r�[h, z] ∈ R̃�, we set

• Neigh(r�[h, z], �) = {r�[h, z], r�[h, z0], r�[h, z1]},

• µ(r�[h, z], r�[h, z], �) = η and µ(r�[h, z], r�[h, z0], �)=µ(r, r�[h, z1], �)=(1 − η)/2,

• t(r�[h, z], �) = �θzi/(8q).

For the remaining representations wk ∈ W�, with w0 = r�[h, z], we set

• Neigh(wK , �) = {wK , r�[0, σ]} and Neigh(wk, �) = {wk, wk+1, r�[hz,�, σ]} for all k < K,

• µ(wK , wK) = η and µ(wK , r�[0, σ]) = 1− η, and µ(wk, wk, �) = η2, µ(wk, wk+1, �) = η− η2, and
µ(wk, r�[hz,�, σ]) = 1 − η for all k < K,

• t(wk, �) = tu(n, 1/�).

Finally, let η = �/(4q+ 2K), τ � = min{(�τ)/(2q), tu(n, 1/�)/8}, and s = 1/(2(τ �)2) log((6q+ 3K)/�).
Let E = (R�, Neigh, µ, t, s) with components defined as above. We show that E evolves C over D
tolerating drift of Δ = (�τ)/(4q + 2K + 2). This value of drift, while small, is an inverse polynomial
in n and 1/� as required. The point to note is that the evolutionary algorithm runs perpetually,
while still maintaining high performance on any given round with high probability.

For any representation r, we denote by LPE the union of the low probability events that some
estimates of performance are not within τ � of their true value, or that a mutation with relative
probability less than 2η (either in Bene or Neut) is selected over other mutations.

5.4 Simulating the CSQ> Algorithm for Drifting Targets

We now show that it is possible to simulate a CSQ> algorithm using an evolution algorithm E
even when the target is drifting. However, if we simulate a query (φ, θ, τ) on round i, there is no
guarantee that the answer to this query will remain valid in future rounds. The following lemma
shows that by lowering the tolerance of the simulated query below the tolerance that is actually
required by the CSQ> algorithm, we are able to generate a sequence of query answers that remain
valid over many rounds. Specifically, it shows that if v is a valid response for the query (φ, θ, τ/2)
with respect to fi, then v is also a valid response for the query (φ, θ, τ) with respect to fj for any
j ∈ [i− τ/(2Δ), i + τ/(2Δ)].

Lemma 10 Let f1, f2, · · · be a Δ-drifting sequence with respect to the distribution D over X . For
any tolerance τ , any threshold θ, any indices i and j such that |i − j| ≤ τ/(2Δ), and any function
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φ : X → [−1, 1], if Ex∼D[φ(x)fj(x)] ≥ θ + τ , then Ex∼D[φ(x)fi(x)] ≥ θ + τ/2. Similarly, if
Ex∼D[φ(x)fj(x)] ≤ θ − τ , then Ex∼D[φ(x)fi(x)] ≤ θ − τ/2.

We say that a string z is consistent with a target function f , if for all 1 ≤ i ≤ |z|, zi is a valid
response to the query (φzi−1 , θzi−1 , τ), with respect to f . Suppose that the algorithm E starts with
representation r0 = r�[h, σ]. (Recall that σ denotes the empty string.) The following lemma shows
that after q time steps, with high probability it will reach a representation r�[h, z] where |z| = q and
z is consistent with the target function fq, implying that z is a proper simulation of A on fq.

Lemma 11 If Δ ≤ τ/(2q), then for any Δ-drifting sequence f0, f1, . . . , fq, if r0, r1, . . . , rq is the
sequence of representations of E starting at r0 = r�[h, σ], and if the LPE does not occur for q
rounds, then rq = r�[h, z] where |z| = q and z is consistent with fq.

The proof uses the following ideas: If the LPE does not occur, there are no mutations of the
form r → r, so the length of z increases by 1 every round, and also all estimates of performance
are within τ � of their true value. When this is the case, and after observing that r�[h, z

i0] is always
neutral, it is possible to show that for any round i, (i) if r�[h, z

i1] is beneficial, then 1 is a valid
answer to the ith query with respect to fi, (ii) if r�[h, z

i1] is deleterious then 0 is a valid answer for
the ith query with respect to fi, and (c) if r�[h, z

i1] is neutral, then both 0 and 1 are valid answers
to the ith query. This implies that zi+1 is always a valid answer to the ith query with respect to fi,
and by Lemma 10, with respect to fq.

5.5 Restarting the Simulation

We now discuss how to restart Feldman’s simulation once it completes. Suppose we are in a repre-
sentation of the form r�[h, z], where |z| = q, and z is consistent with the current target function f .
Then if hz is the hypothesis output by A using query responses in z, we are guaranteed that (with
high probability) Perff (hz,D) ≥ 1−�/4. At this point, we would like the algorithm to choose a new
representation r�[hz, σ], where σ is the empty string. The intuition behind this move is as follows.
The performance of r�[hz, σ] is guaranteed to be high (and to remain high for many generations)
because much of the weight is on the hz term. Thus we can use the second term (Φσ) to restart the
learning process. After q more time steps have passed, it may be the case that the performance of
hz is no longer as high with respect to the new target, but the simulated algorithm will have already
found a different hypothesis that does have high performance with respect to this new target.

There is one tricky aspect of this approach. In some circumstances, we may need to restart the
simulation by moving from r�[h, z] to r�[hz, σ] even though z is not consistent with f . This situation
can arise for two reasons. First, we might be near the beginning of the evolution process when E
has not had enough generations to correctly determine the query responses (starting state may be
r�[h, z0] where z0 has wrong answers). Second, there is some small probability of failure on any
given round and we would like the evolutionary algorithm to recover from such failures smoothly.
In either case, to handle the situation in which hz may have performance below zero (or very close),
we will also allow r�[h, z] to mutate to r�[0, σ].

The required changes from r�[h, z] to either r�[hz, σ] or r�[0, σ] described above may be deleteri-
ous. To handle this, we employ a technique of Feldman [9], where we first decrease the performance
gradually (through neutral mutations) until these mutations are no longer deleterious. The repre-
sentations defined in W� achieve this. The claim is that starting from any representation of the form
wk, we reach either r�[hz, σ] or r�[0, σ] in at most K − k + 1 steps, with high probability. Further-
more, since the probability of moving to r�[hz, σ] is very high, this representation will be reached if
it is ever a neutral mutation (i.e., the LPE does not happen). Thus, the performance always stays
above the performance of r�[hz, σ]. Lemma 12 formalizes this claim.

Lemma 12 If Δ ≤ tu(n, 1/�)/4, then for any Δ-drifting sequence f0, f1, . . . , fq, if r0, r1, . . . , rq is
the sequence of mutations of E starting at r0 = wk, then if the LPE does not happen at any time-step,
there exists a j ≤ K−k+1 such that rj = r�[hz,�, σ] or rj = r�[0, σ]. Furthermore, for all 1 ≤ i < j,
Perffi(ri,D) ≥ Perffi(r�[hz,�, σ],D).

5.6 Equivalence to Evolvability with Drifting Targets

Combining these results, we prove the equivalence between evolvability and evolvability with drifting
targets starting from any representation in R�. The proof we give here uses the representation class
R� and therefore assumes that the value of � is known. For the needed generalization to the case
where R = ∪�R�, Feldman’s backsliding trick [9] can be used to first reach a representation with
zero performance, and then move to a representation in R�. Theorem 13 shows that every concept
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class that is learnable using CSQs (and thus every class that is evolvable) is evolvable with drifting
targets.

Theorem 13 If C is evolvable over distribution D, then C is evolvable with drifting targets over D.

Proof: Let A be a CSQ> algorithm for learning C over D with accuracy �/4. A makes q = q(n, 1/�)
queries of tolerance τ and outputs h satisfying Perff (h,D) ≥ 1 − �/4. Let E be the evolutionary
algorithm derived from A as described in Section 5.3. Recall that K = 2/tu(n, 1/�), let g = 2q+K+1.
We show that starting from an arbitrary representation r0 ∈ R�, with probability at least 1 − �,
Perffg (rg,D) ≥ 1 − �. This is sufficient to show that for all � ≥ g, with probability at least 1 − �,
Perff�(r�,D) ≥ 1 − �, since we can consider the run of E starting from r�−g.

With the setting of parameters as described in Section 5.3, with probability at least 1 − �, the
LPE does not occur for g time steps, i.e., all estimates are within τ � = min{(τ�)/(2q), tu(n, 1/�)/8}
of their true value and unlikely mutations (those with relative probabilities less that 2η) are not
chosen. Thus, we can apply the results of Lemmas 11 and 12. We assume that this is the case for
the rest of the proof. When Δ = (�τ)/(4q+ 2K + 2), the assumption of Lemmas 11 and 12 hold and
we can apply them.

First, we argue that starting from an arbitrary representation, in at most q + K steps, we will
have reached a representation of the form r�[h, σ], for some h ∈ H. If the start representation is
r�[h, z] for |z| ≤ q − 1, then in at most q − 1 steps we reach a representation of the form r�[h, z

�]
with |z�| = q, in which case by Lemma 12, the algorithm will transition to representation r�[h, σ] in
at most K + 1 additional steps. Alternately, if the start representation is wk for k ∈ {0, . . . ,K} as
defined in Section 5.3, then by Lemma 12, we reach a representation of the form r�[h, σ] in at most
K + 1 steps.

Let m be the time step when E first reaches the representation of the form r�[h, σ]. Then using
Lemma 11, rm+q = r�[h, z

∗], where z∗ is consistent with fm+q. Let h∗ = hz∗,� be the hypothesis out-
put by the simulated run of A. Then Perffm+q

(h∗,D) ≥ 1−�/4, and hence Perffm+q
(r�[h

∗, σ],D) ≥
1 − 3�/4. For the value of Δ we are using, for all i ≤ g, Perffi(r�[h

∗, σ],D) ≥ 1 − �.
From such a representation, when all estimates of performance are within τ � of their true value

and unlikely mutations (those with relative probability ≤ 2η) do not occur, the performance will
remain above 1 − �. By Lemma 12, the algorithm will move from rm+q = r�[h, z

∗] to r�[h
∗, σ] in

at most K + 1 steps, and during these time steps for any time step i it holds that Perffi(ri,D) ≥
Perffi(r�[h

∗, σ],D). Once r�[h
∗, σ] is reached, for q steps the representations will be of the form

r�[h
∗, z]. For any such time step i, Perffi(ri,D) ≥ Perffi(r�[h

∗, σ],D). This is because if the
answers in z are correct (and they will be since the LPE does not happen at any time step), the
term Φz is made up of only those functions φzj−1 for which zj = 1, which are those for which φzj−1

has a correlation greater than θzj−1 − τ ≥ 0 with the target fi (using Lemma 10). Since as observed
above the performance of r�[h

∗, σ] does not degrade below 1−� in the time horizon we are interested
in Perffi(ri,D) ≥ Perffi [r�[h

∗, σ]) ≥ 1 − �.

5.7 Equivalence to Quasi-Monotonic Evolution

Finally, we show that all evolvable classes are also evolvable quasi-monotonically. In the proof of
Theorem 13, we showed that for all � ≥ g = 2q+K+1, with high probability Perff�(r�,D) ≥ 1−�, so
quasi-monotonicity is satisfied trivially. Thus we only need to show quasi-monotonicity for the first
g steps. We will use the same construction as defined in Section 5.3, with modifications. However,
this assumes that the representation knows �, since now the trick of having the performance slide
back to zero would violate quasi-monotonicity. To make the representation class independent of � a
more complex construction is needed. Details can be found in the appendix of the long version [15].

Theorem 14 If C is evolvable over distribution D, then C is quasi-monotonically evolvable over D
with drifting targets.

6 Evolving Hyperplanes with Drifting Targets

In this section, we present two alternative algorithms for evolving n-dimensional hyperplanes with
drifting targets. The first algorithm, which generates the neighbors of a hyperplane by rotating
it a small amount in one of 2(n − 1) directions, tolerates drift on the order of �/n, but only over
spherically symmetric distributions. The second algorithm, which generates the neighbors of a
hyperplane by shifting single components of its normal vector, tolerates a smaller drift, but works
when the distribution is an unknown product normal distribution. To our knowledge, these are the
first positive results on evolving hyperplanes in the computational model of evolution.
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Formally, let Cn be the class of all n-dimensional homogeneous linear separators.4 For notational
convenience, we reference each linear separator in Cn by the hyperplane’s n-dimensional unit length
normal vector f ∈ R

n. For every f ∈ Cn and x ∈ R
n, we then have that f(x) = 1 if f · x ≥ 0,

and f(x) = −1 otherwise. The evolution algorithms we consider in this section use a representation
class Rn also consisting of n-dimensional unit vectors, where r ∈ Rn is the normal vector of the
hyperplane it represents.5 Then R = {r | �r�2 = 1}. We describe the two algorithms in turn.

6.1 An Evolution Algorithm Based on Rotations

For the rotation-based algorithm, we define the neighborhood function of r ∈ Rn as follows. Let
{u1 = r,u2, · · · ,un} be an orthonormal basis for R

n. This orthonormal basis can be chosen arbi-
trarily (and potentially randomly) as long as u1 = r. Then

Neigh(r, �) = r ∪
�
r�

�
� r� = cos

�
�/(π

√
n)

�
r± sin

�
�/(π

√
n)
�
ui , i ∈ {2, · · · , n}

�
. (1)

In other words, each r� ∈ Neigh(r, �) is obtained by rotating r by an angle of �/(π
√
n) in some

direction. The size of this neighbor set is clearly 2n− 1. We obtain the following theorem.

Theorem 15 Let C be the class of homogeneous linear separators, R be the class of homogeneous lin-
ear separators represented by unit length normal vectors, and D be an arbitrary spherically symmetric
distribution. Define Neigh as in Equation 1 and let p be any polynomial satisfying p(n, 1/�) ≥ 2n−1.
Then C is evolvable with drifting targets over D by algorithm A = (R, Neigh, µ, t, s) with
• any distributions µ that satisfy µ(r, r�, �) ≥ 1/p(n, 1/�) for all r ∈ Rn, �, and r

� ∈ Neigh(r, �),

• tolerance function t(r, �) = �/(π3n) for all r ∈ Rn,

• any generation polynomial g(n, 1/�) ≥ 8π3n/�,

• a sample size s(n, 1/�) = Õ(n2/�2), and

• any drift polynomial d(n, 1/�) ≥ 8π3n/�, which allows drift Δ ≤ �/(8π3n).

To prove this, we need only to show that Neigh is a strictly beneficial neighborhood function for
C, D, and R with b(n, 1/�) = π3n/(2�). The theorem then follows from Theorem 8. The analysis
relies on the fact that under any spherically symmetric distribution D (for example, the uniform
distribution over a sphere), errD(u,v) = arccos(u ·v)/π, where arccos(u ·v) is the angle between u
and v [6]. This allows us to reason about the performance of one function with respect to another
by analyzing the dot product between their normal vectors.

6.2 A Component-Wise Evolution Algorithm

We now describe the alternate algorithm for evolving homogeneous linear separators. The guarantees
we achieve are inferior to those described in the previous section. However, this algorithm applies
when D is any unknown product normal distribution (with polynomial variance) over R

n.
Let ri and fi denote the ith components of r and f respectively (not the values of the represen-

tation and ideal function at round i as in previous sections). The alternate algorithm is based on
the following observations. First, whenever there exists some i for which ri and fi have different
signs and aren’t too close to 0, we can obtain a new representation with a non-trivial increase in
performance by flipping the sign of ri. Second, if there are no beneficial sign flips, if there is some i
for which ri is not too close to fi, we can obtain a new representation with a significant increase in
performance by adjusting ri a little and renormalizing. The amount we must adjust ri depends on
the standard deviation of D in the ith dimension, so we must try many values when D is unknown.
Finally, if the above conditions do not hold, then the performance of r is already good enough.

Denote by {ei}
n
i=1 the basis of Rn. Let σ1, . . . , σn be the standard deviation of the distribution

D in the n dimensions. We assume that 1 ≥ σi ≥ (1/n)k for some constant k for all i, and that
the algorithm is given access to the value of k, but not the particular values σi. We define the
neighborhood function as Neigh(r, �) = Nfl ∪Nsl, where Nfl = {r− 2riei | i = 1, . . . , d} is the set of
representations obtained by flipping the sign of one component of r, and

Nsl =






r ± j�2

12nk
√
n
ei

�r ± j�2

12nk
√
n
ei�2

�
�
�
�
�
�
i ∈ {1, · · · , d}, j ∈ {1, · · · , 4nk}






is the set obtained by shifting each component by various amounts. We obtain the following.

4A homogeneous linear separator is one that passes through the origin. [6]
5Technically we must assume that the representations r ∈ Rn and input points x ∈ R

n are expressed to
a fixed finite precision so that r ·x is guaranteed to be computable in polynomial time, but for simplicity, in
the analysis that follows, we treat both as simply vectors of real numbers.
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Theorem 16 Let C be the class of homogeneous linear separators, and R be the class of homogeneous
linear separators represented by unit length normal vectors, and D be a product normal distribution
with (unknown) standard deviations σ1, · · · , σn such that 1 ≥ σi ≥ (1/n)k for all i for a constant k.
Define Neigh as above and let p be any polynomial such that p(n, 1/�) ≥ 8n2k+1 + 2n. Then C is
evolvable with drifting targets over D by algorithm A = (R, Neigh, µ, t, s) with

• any distribution µ satisfying µ(r, r�, �) ≥ 1/p(n, 1/�) for all r ∈ Rn and r
� ∈ Neigh(r, �),

• tolerance function t(r, �) = �6/(288n),

• any generation polynomial g(n, 1/�) ≥ 2304n/�6,

• a sample size s(n, 1/�) = Õ(n2/�12), and

• any drift polynomial d(n, 1/�) ≥ 2304n/�6, which allows drift Δ ≤ �6/(2304n).

The proof formalizes the set of observations described above, using them to show that Neigh is
a strictly beneficial neighborhood function for C, D, and R with b(n, 1/�) = 144n/�6. The theorem
is then an immediate consequence of Theorem 8.

7 Evolving Conjunctions with Drifting Targets

We now show that conjunctions are evolvable with drifting targets over the uniform distribution
with a drift of O(�2), independent of n. We begin by examining monotone conjunctions and prove
that the neighborhood function defined by Valiant [20] is a strictly beneficial neighborhood function
with b(n, 1/�) = �2/9. Our proof uses techniques similar to those used in the simplified analysis of
Valiant’s algorithm presented by Diochnos and Turán [8]. By building on ideas from Jacobson [14],
we extend this result to show that general conjunctions are evolvable with the same rate of drift.

7.1 Monotone Conjunctions

We represent monotone conjunctions using a representation class R where each r ∈ R is a subset of
{1, · · · , n} such that |r| ≤ log2(3/�), representing the conjunction of the variables xj for all j ∈ r.
We therefore allow the representation class to depend on � in our analysis. This dependence is easy
to remove (e.g., using Valiant’s technique of allowing an initial phase in which the length of the
representation decreases until it is below log2(3/�) [20]), but simplifies presentation.

The neighborhood of a representation r consists of the set of conjunctions that are formed by
adding a variable to r, removing a variable from r, and swapping a variable in r with a variable
not in r, plus the representation r itself. Formally, define the following three sets of conjunctions:
N+(r) = {r ∪ {j}|j �∈ r}, N−(r) = {r \ {j}|j ∈ r}, and N±(r) = {r \ {j} ∪ {k}|j ∈ S, k �∈ S}. The
neighborhood Neigh(r, �) is then defined as follows. Let q = �log2(3/�)�. If r is the empty set, then
Neigh(r, �) = N+(r) ∪ r. If 0 < |r| < q, then Neigh(r, �) = N+(r) ∪ N−(r) ∪N±(r) ∪ r. Finally, if
|r| = q, then Neigh(r, �) = N−(r) ∪ N±(r) ∪ r. Note that the size of the neighborhood is bounded
by 1 +n+n2/4 in the worst case; the combined size of the sets N+(r) and N−(r) is at most n, and
the size of N±(r) is at most n2/4. We obtain the following theorem.

Theorem 17 Let C be the class of monotone conjunctions, R be the class of monotone conjunctions
of size at most q = �log2(3/�)� represented as subsets of indices, and D be the uniform distribution.
Define Neigh as above and let p be any polynomial satisfying p(n, 1/�) ≥ 1 + n + n2/4. Then C is
evolvable with drifting targets over D by algorithm A = (R, Neigh, µ, t, s) with

• any distributions µ that satisfy µ(r, r�, �) ≥ 1/p(n, 1/�) for all r ∈ Rn, �, and r
� ∈ Neigh(r, �),

• tolerance function t(r, �) = �2/18 for all r ∈ Rn,

• any generation polynomial g(n, 1/�) ≥ 144/�2,

• a sample size s(n, 1/�) = Õ(1/�2), and

• any drift polynomial d(n, 1/�) ≥ 144/�2, which allows drift Δ ≤ �2/144.

To prove the theorem, we show that Neigh is a strictly beneficial target function with benefit
polynomial b(n, 1/�) = 9/�2 and once again appeal to Theorem 8. The proof is then essentially
just a case-by-case analysis of the performance of the best r� ∈ Neigh(r, �) for an exhaustive set of
conditions on r and f .

7.2 General Conjunctions

Jacobson [14] proposed an extension to the algorithm above that applies to general conjunctions.
The key innovation in his algorithm is the addition of a fourth set N �(r) to the neighborhood or r,
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where each r� ∈ N �(r) is obtained by negating a subset of the literals in r. We show here that the
drift rate of his construction can be analyzed in a similar way to the monotone case.

We represent general conjunctions using a representation class R where each r ∈ R is a subset
of {1, · · · , n} ∪ {−1, · · · ,−n} such that |r| ≤ log2(3/�). Here each r represents the conjunction of
literals xj for all positive j ∈ r and negated literals x−j for all negative j ∈ r, and we restrict R so
that it is never the case that both j ∈ r and −j ∈ r. The dependence of this representation class on
� can be removed as before.

As before, the neighborhood of a representation r includes the set of conjunctions that are formed
by adding a variable to r, removing a variable from r, and swapping a variable in r with a variable
not in r, plus the representation r itself. However, it now also includes a fourth set N �(r) of all
conjunctions that can be obtained by negating a subset of the literals of r. The size of the set N �(r)
is at most 2q ≤ 6/�, so by a similar argument to the one above, the size of the neighborhood is
bounded by 1 + 2n + n2 + 6/�. We obtain the following theorem.

Theorem 18 Let C be the class of conjunctions, R be the class of conjunctions of at most q =
�log2(3/�)� literals represented as above, and D be the uniform distribution. Define Neigh as above
and let p be any polynomial satisfying p(n, 1/�) ≥ 1+2n+n2 +6/�. Then C is evolvable with drifting
targets over D by A = (R, Neigh, µ, t, s) with µ, t, g, s, and d as specified in Theorem 17.

The proof uses many of the same ideas as the proof of Theorem 17. However, there are a few
extra cases that need to be considered. First, if f is a “long” conjunction, and r contains at least
one literal that is the negation of a literal in f , then we show that adding another literal to r leads
to a significant increase in performance. (If r is already of maximum size, then the performance is
already good enough.) Second, we show that if f is “short” and r contains at least one literal that is
the negation of a literal in f , then there exists an r� ∈ N �(r) with significantly better performance.
All other cases are identical to the monotone case.
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Abstract

In standard online learning, the goal of the learner is to maintain an average loss close to
the loss of the best-performing function in a fixed class. Classic results show that simple
algorithms can achieve an average loss arbitrarily close to that of the best function in
retrospect, even when input and output pairs are chosen by an adversary. However, in
many real-world applications such as spam prediction and classification of news articles,
the best target function may be drifting over time. We introduce a novel model of concept
drift in which an adversary is given control of both the distribution over input at each time
step and the corresponding labels. The goal of the learner is to maintain an average loss
close to the 0/1 loss of the best slowly changing sequence of functions with no more than
K large shifts. We provide regret bounds for learning in this model using an (inefficient)
reduction to the standard no-regret setting. We then go on to provide and analyze an
efficient algorithm for learning d-dimensional hyperplanes with drift. We conclude with
some simulations illustrating the circumstances under which this algorithm outperforms
other commonly studied algorithms when the target hyperplane is drifting.

1 Introduction

Consider the classical problem of online learning. At each time step, the learner is given a new data
instance (for example, an email) and must output a prediction of its label (for example, “spam”
or “not spam”). The true label is then revealed, and the learner suffers a loss based on both the
label and its prediction. Generally in this setting, the goal of the learner is to achieve an average
loss that is “not too big” compared to the loss it would have received if it had always chosen to
predict according to the best-performing function from a fixed class F . It is well-known that as
the number of time steps grows, very simple aggregation algorithms are able to achieve an average
loss arbitrarily close to that of the best function in retrospect. Furthermore, such guarantees hold
even if the input and output pairs are chosen in a fully adversarial manner with no distributional
assumptions [6].

Despite the extensive literature on no-regret learning and the impressive guarantees that can
be made, competing with the best fixed function is not always good enough. In many real-world
applications, the true target function is not fixed, but is slowly changing over time. Consider a
classifier designed to identify news articles related to China. Over time, the most relevant topics
might drift from the Olympics to exports to finance to human rights. When this drift occurs, the
classifier itself must also change in order to remain relevant. Similarly, the very definition of spam
is changing over time as spammers become more creative and deviant. Any useful spam filter must
evolve to keep up with this drift.
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With such applications in mind, we develop a new theoretical model for regret minimization with
concept drift. Here the goal of the algorithm is no longer to compete well with a single function,
but to maintain an average loss close to that of the best slowly changing sequence of functions with
no more than K large shifts. In order to achieve this goal, it is necessary to restrict the adversary
in some way — in classification, if the adversary is given full power over the choice of input and
output, it can force any algorithm to suffer a constant regret simply by choosing the direction of
drift at random and selecting input points near the decision boundary, even when K = 0. To address
this problem, early models of drift assumed a fixed input distribution [10] or a joint distribution
over input and output that changes slowly over time [1, 15]. More recently, Cavallanti et al. [5]
addressed this problem by bounding the number of mistakes made by the algorithm not in terms of
the number of mistakes made by the adversary, but in terms of the adversary’s hinge loss. (Recall
that the hinge loss would assign a positive loss to observations near the decision boundary even if no
error is made.) We take a different approach, requiring more traditional regret bounds in terms of
the adversary’s 0/1 loss while still endowing the adversary with a significant amount of power. We
allow the adversary to specify not a single point but a distribution over points at each time. The
distributions Dt and Dt+1 at consecutive times need not be close in any usual statistical sense, and
can even have disjoint supports. However, the adversary is prevented from choosing distributions
that put too much weight on small regions of input space where pairs of “similar” functions disagree.

Our first algorithmic result shows that learning in this model can be reduced to learning in
the standard adversarial online setting. Unfortunately, the resulting algorithms are generally not
efficient, in some cases requiring updating an exponential number of weights. Luckily, specialized
algorithms can be designed for efficiently learning particular function classes. To gain intuition, we
start by providing a simple algorithm for learning one-dimensional threshold functions with drift.
We then analyze the performance of the Modified Perceptron algorithm of Blum et al. [4], showing
that it can be used to efficiently learn d-dimensional hyperplanes with concept drift.

We conclude with some simulations illustrating the circumstances under which the Modified
Perceptron outperforms other algorithms when the target hyperplane is drifting. We find that the
Modified Perceptron performs best relative to other algorithms when the underlying dimension of
the data is small, even if the data is projected into a high dimensional space. When the underlying
dimension of the data is large, the standard Perceptron is equally capable of handling drifting targets.
This phenomenon is not explained by our theoretical results, and would be an interesting direction
for future research.

2 Related Work

The first model of concept drift was proposed by Helmbold and Long [10]. In their model, at each
time t, an input point xt is drawn from a fixed, unknown distribution D and labeled by a target
function ft, where for each t, the probability that ft and ft+1 disagree on the label of a point drawn
from D is less than a fixed value ∆. They showed that a simple algorithm achieves an average error
of Õ((∆d)1/2) where d is the VC dimension of the function class, or Õ((∆d)1/3) in the unrealizable
setting. Kuh et al. [13, 14] examined a similar model and provided an efficient algorithm for learning
two-dimensional half-planes through the origin and intersections of half-planes through the origin.

Bartlett [1] introduced a more general agnostic model of drift. In this model, the sequence
of input and output pairs is generated according to a sequence of joint distributions P1, · · · , PT ,
such that for each t, Pt and Pt+1 have total variation distance less than ∆. It is easy to verify
that the earlier drifting model described above is a special case of this model. Long [15] showed
that one can achieve a similar error rates of O((∆d)1/2) (or O((∆d)1/3) in the unrealizable setting)
in this model, and Barve and Long [3] provided additional upper and lower bounds. Freund and
Mansour [8] showed that improvements are possible if the joint distribution is changing at a constant
rate. Bartlett et al. [2] also studied a variety of drifting settings, including one in which the target
may change arbitrarily but only infrequently.

Most of these models assume a fixed or slowly changing input distribution. At the other extreme
lie models in which the input points may be chosen in an arbitrary, adversarial manner. Herbster
and Warmuth [11] studied a setting in which the time sequence is partitioned into k segments. The
goal of the algorithm is to compete with the best expert in each segment for the best segmentation
in retrospect. They later studied algorithms for tracking the best linear predictor with drift [12].

Cavallanti et al. [5] analyzed a variant of the Perceptron algorithm for learning d-dimensional
hyperplanes with drift. They bounded the number of mistakes made by the algorithm in terms of the
hinge loss of the best sequence of hyperplanes and the amount of drift in a fully adversarial setting.
As we briefly discuss in Section 3, there is no way to obtain a result such as theirs in a fully adversarial
setting if we wish to measure the regret with respect to the 0/1 loss of the drifting sequence rather
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than the hinge loss. We have no choice but to limit the power of the adversary in some way. Finally,
Hazan and Seshadhri [9] study drift in the more general online convex optimization setting, providing
bounds in terms of the maximum regret (to a single optimal point) achieved over any contiguous
time interval. This captures the notion of drift because the optimal point can vary across different
time intervals.

Our model falls between these two extremes. On the one hand, we make no requirements on how
quickly the distribution over input points can change from one time step to the next, and in fact
allow the scenario in which the support of Dt and the support of Dt+1 do not overlap on any points.
However, unlike the purely adversarial models, we require that the distribution chosen at each time
step not place “too much” weight on points where pairs of nearby functions disagree. This added
requirement gives us the ability to produce bounds in terms of 0/1 loss in situations in which it is
provably impossible to learn in a fully adversarial setting.

3 A New Model of Drift

Let F be a hypothesis class mapping elements in a set X to elements in a set Y, and let near be
an arbitrary binary relation over elements in F . For example, if F is the class of linear separators,
we might define near(f, f ′) to hold if and only if the weight vectors corresponding to f and f ′ are
sufficiently close to each other. At a high level, the near relation is meant to encapsulate some
notion of similarity between functions. Our model implicitly assumes that it is common for the
target to drift from one function to another function near it from one time step to the next.

We say that a sequence of functions f1, · · · , fT is a K-shift legal sequence if near(ft, ft+1) holds
for at least T − K time steps t < T . Unlike standard online learning where the goal is to have
low regret with respect to the best single function, the goal in our model is to have low regret with
respect to the best K-shift legal sequence. Regret is defined in terms of a loss function L, which is
assumed to satisfy the triangle inequality, be bounded in [0, 1], and satisfy L(x, x) = 0 for all x.

In order to achieve this goal, some restrictions must be made. We cannot expect an algorithm
to be able to compete in a fully adversarial setting with drift. To understand why, consider for
example the problem of online classification with drifting hyperplanes. Here the adversary can force
any algorithm to have an average loss of 1/2 by simply randomizing the direction of drift at each
time step and choosing input points near the decision boundary, even when K = 0. As such, we work
in a setting in which the adversary may specify not a single point but a distribution over points. In
particular, the adversary may specify any distribution that is “good” in the following precise sense.1

Definition 1 A distribution D is λ-good for loss function L and binary relation near if for all
pairs f, f ′ ∈ F such that near(f, f ′), Ex∼D [L(f(x), f ′(x))] ≤ λ.

For most of this paper, we restrict our attention to the problem of online classification with
Y = {+1,−1} and define L to be 0/1 loss. In this case, D is λ-good if for every f, f ′ ∈ F such
that near(f, f ′), Prx∼D (f(x) 6= f ′(x)) ≤ λ. Restricting the input distribution in this way ensures
that the adversary cannot place too much weight on areas of the input space where pairs of near
functions disagree, while still providing the adversary with the power to select arbitrarily different
distributions from one time step to the next. Note that the larger the space of near pairs is,
the smaller the set of λ-good distributions, and vice versa. When the near space is empty, every
distribution is λ-good. At the other one extreme, the set of λ-good distributions might be empty
(for example, if the function that classifies all points as positive and the function that classifies all
points as negative are defined to be near). We restrict our attention only to triples (F , near, λ)
such that at least one λ-good distribution exists.

The majority of our results hold in the following adversarial setting. Fix a value of λ and definition
of near. At each time t ∈ {1, · · · , T}, the learning algorithm chooses a (possibly randomized)
hypothesis ht. The adversary then chooses an arbitrary λ-good distribution Dt and an arbitrary
function ft ∈ F . The algorithm is presented with a point xt distributed according to Dt, learns the
label ft(xt), and receives a loss L(ht(xt), ft(xt)). Let K be the number of time steps t for which
near(ft, ft+1) does not hold. (We are usually interested in the case in which K is a small constant.)
Then by definition, f1, · · · , fT is a K-shift legal sequence. The goal of the learning algorithm is to
maintain low expected regret with respect to the best K-shift legal sequence (where the expectation
is taken with respect to the random sequence of input points and any internal randomization of
the algorithm), which is equivalent to maintaining a small expected average loss since a perfect

1Of course it could be possible to obtain results by restricting the adversary in other ways, such as
requiring that points be chosen to respect a minimum margin assumption. However, some restriction is
needed.
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K-shift legal sequence is guaranteed to exist. The adversary’s choice of Dt and ft may depend on
any available historical information, including the sequence of input points x1, · · · , xt−1, and on the
algorithm itself. The algorithm has no knowledge of the number of shifts K or the times at which
these shifts occur. We refer to this scenario as the realizable setting.

We also briefly consider an unrealizable setting in which the adversary is not required to choose
ft on the fly each time step. Instead, the adversary selects an arbitrary λ-good distribution Dt

(again for a fixed value of λ) and a distribution over labels yt conditioned on xt. The algorithm is
presented with a point xt distributed according to Dt and a label yt distributed according to the
distribution chosen by the adversary and receives a loss of L(ht(xt), yt). In this setting, the goal is
to maintain low expected regret with respect to the best K-shift legal sequence in retrospect for a
fixed value of K, where the expectation is taken with respect to the random input sequence, random
labels, and any randomization of the algorithm, and the regret is defined as

T∑
t=1

L(ht(xt), yt)− min
f1,··· ,fT∈ΦK

T∑
t=1

L(ft(xt), yt),

where ΦK is the set of all K-shift legal sequences f1, · · · , fT .
Note that unlike the standard online learning setting, we should not expect the regret per round

to go to zero, even in the realizable setting. Suppose that the target is known perfectly at some
time t. It is still possible for the algorithm to make an error at time t + 1 because the target can
move. This uncertainty never goes away, even as the number of time steps grows very large, so we
should expect to see a dependence on λ in the average regret that does not diminish over time. This
inherent uncertainty is the very heart of the drifting problem.

4 A General Reduction

We now provide general upper bounds for learning finite function classes in the model. We show
via a simple reduction that it is possible to achieve an expected average per time step regret of
O((λ logN)1/3), and that this regret can be reduced to O(

√
λ logN) in the realizable setting.2

However, the algorithm used is not always efficient when the function class is very large or infinite.
The subsequent sections are devoted to efficient algorithms for particular function classes.

The results rely on the following lemma.

Lemma 2 Let L be any loss function with L(x, x) = 0 for all x that satisfies the triangle
inequality. For any 0-shift legal sequence f1, · · · , f`, and any sequence of joint distributions
P1, · · · , P` over pairs {x1, y1}, · · · , {x`, y`} such that the marginal distributions D1, · · · , D`, over
x1, · · · , x` are λ-good, there exists a function f ∈ F such that

∑`
t=1 E{xt,yt}∼Pt [L(f(xt), yt)] ≤∑`

t=1 E{xt,yt}∼Pt [L(ft(xt), yt)] + (`− 1)2λ/2.

Proof: We first show by induction that for any λ-good distribution D and any 0-shift legal se-
quence f1, · · · , f`, Ex∼D [L(f1(x), f`(x))] ≤ (` − 1)λ. This clearly holds for ` = 1. Suppose that
Ex∼D [L(f1(x), f`−1(x))] ≤ (` − 2)λ. Since the functions form a 0-shift legal sequence and D is
λ-good, we must have Ex∼D [L(f`−1(x), f`(x))] ≤ λ. By the triangle inequality and linearity of
expectation, Ex∼D [L(f1(x), f`(x))] ≤ Ex∼D [L(f1(x), f`−1(x)) + L(f`−1(x), f`(x))] ≤ (`− 1)λ.

This implies that for any t, Ext∼Dt [L(f1(xt), yt)] ≤ Ext∼Dt [L(ft(xt), yt) + L(f1(xt), ft(xt))] ≤
Ext∼Dt [L(ft(xt), yt)] + (t− 1)λ. Summing over all t yields the lemma.

The following theorem provides a general upper bound for the unrealizable setting.

Theorem 3 Let F be a finite function class of size N and near be any binary relation on F that
yields a non-empty set of λ-good distributions. There exists an algorithm for learning F that achieves
an average expected regret of O

(
(λ lnN)1/3

)
when T ≥ (lnN)1/3λ−2/3 for any K ≤ λT , even in the

unrealizable setting.

Proof: Let A be any regret minimization algorithm for F that is guaranteed to have regret at most
r(m) over m time steps. We can construct an algorithm for learning F using A as a black box.
The algorithm simply divides the sequence of T time steps into dT/me consecutive subsequences of
length at most m and runs A on each of these subsequences.

2Here and throughout this paper, we consider the asymptotic behavior of functions as λ→ 0 (or equiva-

lently, as 1/λ→∞). This implies, for example, that an error of O(
√
λ) is preferred to an error of O(λ1/3).
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The regret of the algorithm with respect to the best function in F on each subsequence is at
most r(m). Furthermore, by Lemma 2, the best function in F on this subsequence has a regret of no
more than m2λ with respect to any legal sequence and thus also the best legal sequence. Combining
these facts with the fact that the error can be no more than m on any subsequence yields a bound
of ⌈

T

m

⌉(
r(m) +

m2λ

2

)
+Km ≤

(
T

m
+ 1
)(

r(m) +
m2λ

2

)
+Km

on the total expected regret of the algorithm with respect to the best K-shift legal sequence.
There exist well-known algorithms for finite classes with regret r(m) = O(

√
m lnN) [6]. Letting

A be one of these algorithms and setting m = (lnN)1/3λ−2/3 yields the bound.

The following theorem shows that in the realizable setting, it is possible to obtain an average
loss of O(

√
λ lnN) as long as T is sufficiently large and K sufficiently small compared with T . This

is an improvement on the previous bound whenever the bound is not trivial, i.e., when λ lnN < 1.

Theorem 4 Let F be a finite function class of size N and near be any binary relation on F such that
the set of λ-good distributions is not empty. There exists an algorithm for learning F in the realizable
setting that achieves an expected average per time step loss of O(

√
λ lnN) when T ≥

√
lnN/λ for

any K ≤ Tλ.

Proof Sketch: The proof is nearly identical to the proof of Theorem 3. The only differences are
that the regret minimization algorithm employed must guarantee a regret of O(

√
L∗ lnN + lnN)

where L∗ is the loss of the best expert (see Cesa-Bianchi and Lugosi [6] for examples), and m must
be set to

√
lnN/λ. The proof then relies on the fact that in the realizable setting, on any period of

length m during which no shift occurs, L∗ ≤ m2λ (from Lemma 2).
The results are easily extended to the case in which F is not finite but has finite VC dimension

d, but hold only under certain restricted definitions of near.

5 Efficient Algorithms for Drifting Thresholds and Hyperplanes

The reductions described in the previous section are not efficient in general and may require main-
taining an exponential number of weight for infinite function classes. In this section, we analyze
an efficient Perceptron-style algorithm for learning drifting d-dimensional hyperplanes. To pro-
mote intuition, we begin by describing and analyzing a simple specialized algorithm for learning
one-dimensional thresholds. The analysis of the Perceptron-style algorithm uses similar ideas.

5.1 One-Dimensional Thresholds
We denote by τt ∈ [0, 1] the threshold corresponding to the target function ft; thus ft(x) = 1 if and
only if x ≥ τt. For any two functions f and f ′ with corresponding thresholds τ and τ ′, we say that
the relation near(f, f ′) holds if and only if |τ − τ ′| ≤ γ for some fixed γ ≤ λ. By definition, this
implies that any λ-good input distribution Dt can place at most weight λ on any interval of width
γ.

A simple algorithm can be used to achieve optimal error bounds in the realizable setting. At each
time t, the algorithm keeps track of an interval It of threshold values corresponding to all functions
that could feasibly be the current target if no major shift has recently occurred. When the input
point xt is observed, the algorithm predicts the label selected by the majority of the threshold values
in It (that is, 0 if xt is closer to the lower border of It and 1 if it is closer to the upper border).

To start, I1 is initialized to the full interval [0, 1] since any threshold is possible. At each
subsequent time t, one of three things happens. If xt 6∈ It, then the entire feasible set agrees on the
label of xt. If the predicted label is correct, then to allow for the possibility of concept drift, the
algorithm sets It+1 to be It increased by γ on each side. If the predicted label is incorrect, then it
must be the case that a shift has recently occurred, and It+1 is reset to the full interval [0, 1]. (Note
that this can happen at most K times.) On the other hand, if xt ∈ It, then there is disagreement in
the shift-free interval about the label of the point and the algorithm learns new information about
the current threshold by learning the label. In this case, all infeasible thresholds are removed from
the shift-free feasible set and then again γ is added on each side to account for possible concept drift.
Namely, if xt ∈ It = (a, b) then It+1 is either (a − γ, xt + γ) or (xt − γ, b + γ). The next theorem
shows that this algorithm results in error O(

√
λ) as long as T is sufficiently large.

Theorem 5 Let F be the class of one-dimensional thresholds and let near be defined as above.
The expected average error of the algorithm described above in the realizable setting is no more than
K/T +

√
2(K + 1)λ/(Tγ) +

√
5λ.
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Proof: Let inct be a random variable that is 1 if the label of the input point at time t is inconsistent
with all hypotheses in the version space and 0 otherwise; if inct = 1, then the algorithm described
above makes a mistake at time t and sets It+1 to the full interval [0, 1]. Note that

∑T
t=1 inct ≤ K.

Let errt be a random variable that is 1 if the label of the input at time t is consistent with some
hypothesis in the version space but the algorithm makes an error anyway and 0 if this is not the
case. For any positive-width interval I and λ-good distribution D, D(I) ≤ d|I|/γeλ ≤ (|I|/γ + 1)λ,
where |I| is the length of interval I. Hence, at every time step t, Pr (errt = 1|It, ft, Dt) ≤ Dt(It) ≤
|It|λ/γ + λ, and so |It| ≥ (γ/λ)Pr (errt = 1|It, ft, Dt)− γ.

Since the algorithm predicts according to the majority of the (shift-free) feasible set, it eliminates
at least half of the hypotheses in this set on each consistent mistake. However, at every time step,
the feasible set can grow by γ on each side. Thus,

E [|It+1| |It, ft, Dt] ≤ Pr (errt = 1|It, ft, Dt) (|It|/2 + 2γ)
+ (1− Pr (errt = 1|It, ft, Dt)) (|It|+ 2γ) + Pr (inct = 1|It, ft, Dt) · 1

= |It|+ 2γ − (|It|/2)Pr (errt = 1|It, ft, Dt) + Pr (inct = 1|It, ft, Dt)

≤ |It|+ 5γ/2− (γ/(2λ))Pr (errt = 1|It, ft, Dt)
2 + Pr (inct = 1|It, ft, Dt) ,

where the final step follows from the lower bound on |It| given above. Taking the expectation of
both sides with respect to {It, ft, Dt} gives us that for any t,

E [|It+1|] = E [|It|] + 5γ/2− (γ/(2λ))E
[
Pr (errt = 1|It, ft, Dt)

2
]

+ E [Pr (inct = 1|It, ft, Dt)]

≤ E [|It|] + 5γ/2− (γ/(2λ)) (Pr (errt = 1))2 + Pr (inct = 1) ,

where the last step follows from the convexity of x2. Summing over all time steps gives us

T∑
t=1

E [|It+1|] ≤
T∑
t=1

E [|It|] + 5γT/2− (γ/(2λ))
T∑
t=1

(Pr (errt = 1))2 +
T∑
t=1

Pr (inct = 1) .

Noting that E [|I1|] = 1 and E [|IT+1|] ≥ 0, multiplying both sides by 2λ/(γT ), and rearranging
terms gives us

1
T

T∑
t=1

(Pr (errt = 1))2 ≤ 2λ
γT

+ 5λ+
2λ
γT

T∑
t=1

Pr (inct = 1) ≤ 2λ
γT

(K + 1) + 5λ . (1)

The last inequality holds because
∑T
t=1 Pr (inct = 1) =

∑T
t=1 E [inct] = E

[∑T
t=1 inct

]
≤ K. Ap-

plying Jensen’s inequality to the left-hand side and taking the square root of both sides, we get

1
T

T∑
t=1

Pr (errt = 1) ≤

√
2λ(K + 1)

Tγ
+ 5λ ≤

√
2λ(K + 1)

Tγ
+
√

5λ .

This allows us to bound the expected average error with

E

[
1
T

T∑
t=1

(errt + inct)

]
=

1
T

T∑
t=1

Pr (errt = 1) +
1
T

T∑
t=1

Pr (inct = 1) ≤

√
2λ(K + 1)

Tγ
+
√

5λ+
K

T
.

The following theorem shows that the dependence on λ cannot be significantly improved. The
proof is in the appendix.

Theorem 6 Any algorithm for learning one-dimensional thresholds in the realizable setting (i.e.,
K = 0) under the definition of near stated above must suffer error Ω(

√
λ).

5.2 Hyperplanes

We now move on to the more interesting problem of efficiently learning hyperplanes with drift. For
any two normalized vectors u and u′, let θ(u, u′) = arccos(u · u′) denote the angle between u and
u′. We define near(u, u′) to hold if and only if θ(u, u′) ≤ γ for some fixed parameter γ ∈ (0, π/2).
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At each time step t, the adversary selects an arbitrary λ-good distribution Dt over unit-length d-
dimensional points and a unit-length weight vector ut such that the set u1, · · · , uT forms a K-shift
legal sequence.3 The input point xt is then drawn from Dt and assigned the label sign(ut · xt).

We analyze the Modified Perceptron algorithm originally proposed by Blum et al. [4] and later
studied by Dasgupta et al. [7] in the context of active learning. This algorithm maintains a current
weight vector wt. The initial weight vector w1 can be selected arbitrarily. At each time step t, when
the algorithm observes the point xt, it predicts the label sign(wt · xt). If the algorithm makes a
mistake at time t, it sets wt+1 = wt− 2(wt ·xt)xt, otherwise no update is made and wt+1 = wt. The
factor of 2 in the update rule enforces that ||wt|| = 1 for all t as long as ||xt|| = 1. Note that unlike
the algorithm for thresholds, this algorithm does not require any knowledge of γ.

We begin with a lemma which extends Lemma 3 of Dasgupta et al. [7] from a uniform distribution
to a λ-good distribution. The intuition behind the proofs is similar. At a high level, we need to
show that the adversary cannot place too much weight on points close to the algorithm’s current
decision boundary. Thus if the algorithm’s probability of making a mistake is high, then there is
a significant probability that the mistake will be on a point far from the boundary and significant
progress will be made. In this lemma and the results that follow, let errt be a random variable that
is 1 if the algorithm makes an error at time t and 0 otherwise.

Lemma 7 Consider the Modified Perceptron. At every time t, wt+1 ·ut ≥ wt ·ut. Furthermore, there
exists a positive constant c ≤ 10 such that for all t, for any η ∈ (0, 1/2), if Pr (errt|wt, ut, Dt) ≥
2cηλ/γ+4λ, then with probability at least Pr (errt|wt, ut, Dt)−(2cηλ/γ+4λ), we have 1−wt+1 ·ut ≤(
1− η2/d

)
(1− wt · ut).

The proof relies on the following fact about λ-good distributions under the current definition of
near.

Lemma 8 There exists a positive constant c ≤ 10 such that for any η ∈ (0, 1/2), for any d-
dimensional vector w such that ||w|| = 1, for any λ-good distribution D, Prx∼D(|w · x| ≤ η/

√
d) ≤

cηλ/γ + 2λ.

The proof of this lemma is based on the following intuition. Consider the pair of hyperplanes
corresponding to any two weight vectors w1 and w2 such that the angle between w1 and w2 is at
most γ. Let ∆ be the set of points x on which these hyperplanes disagree, i.e., all x such that
sign(w1 · x) 6= sign(w2 · x). Since D is λ-good, D(∆) ≤ λ. The idea of the proof is to cover at least
half of the points x such that |w · x| ≤ η/

√
d using k sets like ∆, implying that the total weight D

assigns to these points is at most kλ. In particular, we show that it is possible to construct such
a cover with k ≤ 5η/γ + 1, implying that the total probability D can place on points x such that
|w · x| ≤ η/

√
d is bounded by 10ηλ/γ + 2λ. The full proof appears in the appendix.

We are now ready to prove Lemma 7.
Proof of Lemma 7: The first half of the lemma is trivial if no mistake is made since wt+1 = wt in
this case. If a mistake is made, then wt+1 · ut = wt · ut− 2(wt · xt)(xt · ut). Since there was an error,
sign(wt · xt) 6= sign(xt · ut) and 2(wt · xt)(xt · ut) < 0.

For the second half, by Lemma 8 and the union bound, Pr
(
|wt · xt||ut · xt| ≤ η2/d

)
≤ 2cηλ/γ +

4λ. Thus if Pr (errt|wt, ut, Dt) > 2cηλ/γ + 4λ, then the probability that an error is made and
|wt ·xt||ut ·xt| > η2/d is at least Pr (errt|wt, ut, Dt)−(2cηλ/γ+4λ). Suppose this is the case. Then,
as desired,

1−wt+1 · ut = 1− wt · ut + 2(wt · xt)(xt · ut) = 1− wt · ut − 2|wt · xt||xt · ut|

≤ 1− wt · ut −
2η2

d
≤ 1− wt · ut −

2η2

d

1− wt · ut
2

= (1− wt · ut)
(

1− η2

d

)
.

Corollary 9 below follows from a simple application of technical properties of the cosine function.

Corollary 9 There exists a constant c ≤ 10 such that for any η ∈ (0, 1/2), if Pr (errt|wt, ut, Dt) >
2cηλ/γ + 4λ, then with probability at least Pr (errt|wt, ut, Dt)− (2cηλ/γ + 4λ),

θ(wt+1, ut) ≤
√

1− η2

d
θ(wt, ut) ≤

(
1− η2

2d

)
θ(wt, ut) .

3The assumption that ||ut|| = ||xt|| = 1 simplifies our presentation of results and nothing more. By
modifying the definition of near and the update rule in a straight-forward manner, all of the results in this
section can be extended to hold when the assumption is not true.
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Finally, the following theorem uses these lemmas to bound the average error of the Modified
Perceptron. The evolution of the angle between wt and ut is analyzed over time, similarly to how
the evolution of |It| was analyzed in the proof of Theorem 5. The result for general values of K is
obtained by breaking the sequence down into (no more than) K + 1 subsequences on which there
is no shift, applying a similar analysis on each subsequence, and summing the error bounds. This
analysis is possible only if the time steps at which the shifts occur are fixed in advance, though it
does not require that the algorithm is aware of the shifts in advance. The optimal setting of η and
a brief interpretation of the resulting bounds are given below.

Theorem 10 Let F be the class of hyperplanes and let near(u, u′) hold if and only if arccos(u·u′) ≤
γ for a fixed parameter γ ≤ λ. There exists a constant c ≤ 10 such that when K = 0, for any
η ∈ (0, 1/2), the expected average error of the Modified Perceptron algorithm is no more than(

1 +
2π
Tγ

+
η2

2d

)
λd

qη2
+ 2q

where q = (cηλ/γ + 2λ).
If the adversary chooses the time steps t at which a shift will occur in advance (yet, unknown

to the learner), then for any K, for any η ∈ (0, 1/2), the expected average error of the Modified
Perceptron algorithm is no more than

K + 1
T

+
(

1 +
2π(K + 1)

Tγ
+
η2

2d

)
λd

qη2
+ 2q .

The bounds stated in this theorem can be difficult to interpret. Before jumping into the proof,
let us take a moment to examine them in more detail to understand what this theorem really means.
Setting η = (d/λ)1/4γ1/2 in Theorem 10, we obtain that when T >> (K + 1)/γ, the average error
is bounded by O(λ1/4d1/4

√
λ/γ)). If we think of γ as a constant fraction of λ, then this bound is

essentially O(λ1/4d1/4). We do not know if it is possible to improve this bound to achieve an error of
O(
√
λd), which would match the bound of the inefficient algorithm presented in Section 4. Certainly

such a bound would be desirable. However, this bound tells us that for hyperplanes, some amount
of drift-resistance is possible with an efficient algorithm.

Note that in order for the bound to be non-trivial, γ must be small compared to 1/d, in which
case η is less than 1/2.
Proof of Theorem 10: We first prove the result for K = 0 and then briefly discuss the how to
extend the proof to cover general values of K.

Let θt = θ(wt, ut). By definition, Pr (errt = 1|wt, ut, Dt) ≤ (θt/γ + 1)λ, and θt ≥
Pr (errt = 1|wt, ut, Dt) γ/λ − γ. By Lemma 7, for all t, wt+1 · wt ≥ wt · ut. Thus θ(wt+1, ut) ≤
θ(wt, ut), and since we have assumed no shifts, θt+1 ≤ θt + γ. We will show that this implies that
for any t,

E [θt+1|wt, ut, Dt] ≤ θt +
(

1 +
η2

2d

)
γ − (Pr (errt = 1|wt, ut, Dt)− 2q)

η2qγ

dλ
, (2)

where q = (cηλ/γ + 2λ). This clearly holds if Pr (errt = 1|wt, ut, Dt) ≤ 2q since η2 and d are
positive and in this case the last term is negative. Suppose instead that Pr (errt = 1|wt, ut, Dt) >
2q = 2(cηλ/γ + 4λ). By Corollary 9 and the bounds above,

E [θt+1|wt, ut, Dt]

≤ (Pr (errt = 1|wt, ut, Dt)− 2q)
(

1− η2

2d

)
θt + (1− (Pr (errt = 1|wt, ut, Dt)− 2q)) θt + γ

≤ θt + γ − (Pr (errt = 1|wt, ut, Dt)− 2q)
η2

2d

(
Pr (errt = 1|wt, ut, Dt) γ

λ
− γ
)

≤ θt + γ − (Pr (errt = 1|wt, ut, Dt)− 2q)
η2

2d

(
2qγ
λ
− γ
)

which implies Equation 2. Now, taking the expectation over {wt, ut, Dt} of both sides of Equation 2,
we get that for any t

E [θt+1] ≤ E [θt] +
(

1 +
η2

2d

)
γ − (Pr (errt)− 2q)

η2qγ

dλ
.
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Summing over time steps, we then have that

T∑
t=1

E [θt+1] ≤
T∑
t=1

E [θt] +
(

1 +
η2

2d

)
γT − η2qγ

dλ

(
T∑
t=1

Pr (errt)− 2qT

)
.

Since θt ∈ [0, 2π) for all t, this implies that

0 ≤ 2π +
(

1 +
η2

2d

)
γT − η2qγ

dλ

(
T∑
t=1

Pr (errt)− 2qT

)
.

Rearranging terms and multiplying both sides by dλ/(η2qγ) yields

T∑
t=1

Pr (errt) ≤
2πdλ
η2qγ

+
(

1 +
η2

2d

)
dλ

η2q
T + 2qT .

Dividing both sides by T gives the desired bound on error.
To get the bound for general K, note that the analysis leading up to this past equation can be

applied to all subsequences during which there is no shift. Summing the above bound for all such
subsequences (where T is replaced by the length of the subsequence) with Pr (errt) pessimistically
bounded by 1 whenever a shift occurs between times t and t+ 1 leads to the bound.

6 Simulations

In this section, we discuss a series of simulations on synthetic data designed to illustrate the ef-
fectiveness of different algorithms for learning drifting hyperplanes. In particular, we compare the
performance of the standard Perceptron algorithm [16], the Shift Perceptron [5], the Randomized
Budget Perceptron [5], and the Modified Perceptron [4, 7] analyzed above. Like the Perceptron
algorithm, the Shift Perceptron maintains a vector of weights, but each time a mistake is made, the
Shift Perceptron shrinks its current weight vector towards zero in a way that depends on both the
current number of mistakes and a parameter λ. The Randomized Budget Perceptron is similar but
additionally tracks the set of examples that contribute to its current weight vector. If the size of
this set exceeds a predetermined budget B, one example is randomly removed and the weight vector
is updated by removing the contribution of this example.

For each experiment, the sequence x1,x2, · · · of synthetic data points was generated as follows.
We first generated 5000 d-dimensional random points z1, · · · , z5000 drawn from a zero-mean unit-
covariance Gaussian distribution. We then generated a random D× d linear transformation matrix
A, and used this to project each d-dimensional point zt to a D-dimensional vector xt = Azt. The
resulting data points were thus D-dimensional points with a true underlying dimension of d. We
fixed D = 1000 and experimented with various values of d between 5 and 500.

We generated each sequence of randomly drifting target weight vectors u1,u2, · · · as follows. To
start, u1 was drawn from a zero-mean unit-covariance D-dimensional Gaussian distribution. In the
first set of experiments, which we refer to as the random drift experiments, each subsequent target
ut was set to ut−1 + δt where δt ∼ N (0, σI) for σ = 0.1. In the second set of experiments, which
we refer to as the linear drift experiments, each ut was set to ut−1 + δ for a fixed random vector δ.
Each set of experiments was repeated 1000 times.

Both the Shift Perceptron and the Randomized Budget Perceptron are tuned using a single
parameter (denoted by λ and B respectively). While we originally planned to tune these parameters
using additional random draws of the data, the best values of these parameters simply reduced each
algorithm to the original Perceptron. Instead, we set λ = 0.01 or λ = 0.0001, and B = 300, as these
values resulted in fairly typical behavior for each of the algorithms.

The results are summarized in Figure 1. The two left plots show the results for the random
drift experiments with d = 5. The two right plots show the results for the linear drift experiments
with d = 50. The two top plots show the cumulative number of mistakes made by each of the
four algorithms averaged over 1000 runs, while the bottom two plots show difference between the
cumulative number of mistakes made by the Perceptron and the cumulative number of mistakes
made by each algorithm. (Values above 0 indicate that an algorithm made more mistakes than the
Perceptron, while values below 0 indicate than an algorithm made fewer.) The error bars correspond
to the 95% confidence interval over the 1000 runs.

Consider the top-left plot summarizing the results of the random drift experiments. We see that
all algorithms made between 250 and 300 mistakes, but the Modified Perceptron (green circles)
made (statistically significantly) fewer mistakes than the others. This difference is easier to see in
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Figure 1: Cumulative number of mistakes (top) and difference between the cumulative number
of mistakes and the cumulative number of mistakes made by the Perceptron algorithm (bottom)
averaged over 1000 runs for the random drift experiments (left) and linear drift experiments (right).
Four algorithms are evaluated: The standard Perceptron (red squares, largely hidden behind the
Shift Perceptron), the Modified Perceptron (analyzed above, green circles), the Random Budget
Perceptron with B = 300 (blue triangles), and the Shift Perceptron with λ = 0.1 (black stars) and
λ = 0.0001 (teal diamonds). The bars indicate 95% confidence intervals.

the bottom-left plot. The Shift Perceptron made about 2% more mistakes than the Perceptron
throughout the entire run. The Randomized Budget Perceptron was identical to the Perceptron
algorithm until its budget of examples is exceeded, but overall made 1.2% more mistakes. Finally,
during a prefix of training the Modified Perceptron made more mistakes than the Perceptron, but
after about 500 training examples, the Modified Perceptron outperformed the Perceptron, making
about 4% fewer mistakes.

The two right plots show qualitatively similar results for the linear drift experiments. During
the first 500 examples the Modified Perceptron made more mistakes then the Perceptron algorithm,
but it eventually performs better, ending with 15% fewer mistakes. As before, the performance
of the Randomized Budget Perceptron started to degrade after its number of mistakes exceeded
the budget. Finally, the Shift Perceptron made 4% more mistakes than the Perceptron after 1000
examples.

The total number of mistakes made by each of the four algorithms for various values of d are
shown in the top two panels of Figure 2. As before, the bottom panels show the performance relative
to the Perceptron, with values above 0 corresponding to more mistakes than the Perceptron. The
two left plots show the results for the random drift experiments and the two right plots for the linear
drift.

Comparing the top plots we observe that the random drift setting is slightly harder than the
linear drift setting for lower values of d. For example, for d = 20 most algorithms made about
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Figure 2: Total number of mistakes (top) and difference between the total number of mistakes
and the number of mistakes made by the Perceptron algorithm (bottom) for different values of
the underlying dimension d of the data for the random drift experiments (left) and the linear drift
experiments (right). Again, the bars indicate 95% confidence intervals. (The elongation of these
bars toward the edge of the plot is only an artifact of the log-scale axis.)

550 errors in the random drift setting but only 400 mistakes in the linear drift setting. For high
values of d this gap is reduced. For small values of d, the Modified Perceptron outperformed the
other algorithms, especially in the linear drift setting. For example, it made 100 fewer mistakes than
the Perceptron algorithm with d = 5. When the underlying dimension d was large it made more
mistakes compared to the other algorithms. The break-even point is about d = 15 for random drift
and d = 150 for linear drift. The reason for this phenomenon is not clear to us. Note, however, that
the underlying dimension d plays a major role in determining the difficulty of each problem, while
the actual dimension D matters less. (This is not apparent from the experiments presented here,
but we found it to be true when experimenting with different values of D.) This observation is in
line with the dimension-independent bounds commonly published in the literature.
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A Additional Proofs

A.1 Proof of Theorem 6
We describe a strategy that the adversary can employ in order to force any learning algorithm to
make a mistake with probability at least (1− 1/e)/2 every 2/

√
λ time steps, resulting in an average

error of Ω(
√
λ).

The strategy for the adversary is simple. At time t = 0, the adversary sets f1 such that τt = 1/2.
The adversary then chooses a random bit b which is 1 with probability 1/2 and 0 with probability
1/2. If b = 1, then the adversary gradually shifts the threshold to the right, increasing it by γ

each time step until it reaches 1/2 + γ/
√
λ, and then shifts it back again. On the other hand, if

b = 0, then the adversary fixes τt = 1/2 for t = 1 to 2/
√
λ. In either case, at each of time step, the

adversary sets Dt to be any λ-good distribution for which weight
√
λ is spread uniformly over the

region [1/2, 1/2 + γ/
√
λ]. After time 2/

√
λ, the process repeats with a new random bit b.

Let us consider the probability that the learning algorithm makes at least one mistake during the
first 2/

√
λ time steps. Because the learning algorithm does not know the random bit b, the algorithm

cannot know whether the target is shifting or fixed, even if it is aware of the adversary’s strategy.
Therefore, the first time that the algorithm sees a point xt in (1/2, 1/2 + tγ) for t ∈ {1, · · · , 1/

√
λ}

or a point xt in (1/2, 1/2 + (2/
√
λ − t)γ) for t ∈ {1/

√
λ + 1, · · · , 2/

√
λ}, it makes a mistake with

probability 1/2. The algorithm will see at least one such point with probability 1−
∏1/

√
λ

t=1 (1−tλ)2 =

1− e
P1/

√
λ

t=1 2 ln(1−tλ) ≥ 1− e
P1/

√
λ

t=1 −2tλ ≥ 1− e−1, where the first inequality follows from the fact that
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ln(x) ≤ x−1 and the second from the fact that
∑1/

√
λ

t=1 t ≥ 1/(2λ). This implies that the probability
that the algorithm makes at least one mistake during one of the first 2/

√
λ time steps is (1−1/e)/2.

The same analysis can be repeated to show that this is true of each consecutive interval of 2/
√
λ

steps. Thus the error rate of any algorithm is at least (1− 1/e)
√
λ/4.

A.2 Proof of Lemma 8
Let U be the uniform distribution over d-dimensional unit vectors. For any d-dimensional vector x
such that ||x|| = 1, Prz∼U (|z · x| > 1/(2

√
d)) ≥ 1/2 (see Dasgupta et al. [7]). Let I be an indicator

function that is 1 if its input is true and 0 otherwise. For any distribution Q over d-dimensional unit
vectors,

sup
z:||z||=1

Prx∼Q(|z · x| > 1/(2
√
d)) ≥ Ez∼U

[
Ex∼Q

[
I(|z · x| > 1/(2

√
d))
]]

= Ex∼Q
[
Prz∼U (|z · x| > 1/(2

√
d))
]
≥ 1/2.

This implies that for any distribution Q there exists a vector z such that Prx∼Q(|z ·x| > 1/(2
√
d)) ≥

1/2. For the remainder of the proof we let Q be the distribution D conditioned on |w · x| ≤ η/
√
d,

and define z to be any vector satisfying the property above for Q.
Let w+ = w + 2ηz and w− = w − 2ηz. Let X be the set of all unit vectors x such that

|z ·x| > 1/(2
√
d) and |w ·x| ≤ η/

√
d. It is easy to verify that for all x ∈ X, sign(w+ ·x) 6= sign(w− ·x).

Furthermore, we can construct a sequence of unit vectors w0, . . . , wk such that w0 = w+/‖w+‖ and
wk = w−/‖w−‖, arccos(wi · wi+1) < γ, and k ≤ 5η/γ + 1. To see how, let θ be the angle between
w0 and wk. Then cos(θ) = (w+ ·w−)/(‖w+‖ ‖w−‖) ≥ (1− 4η2)/(1 + 4η2) > 1− 8η2, where the first
inequality follows from the fact that ‖w+‖‖w−‖ =

√
(1 + 4η2 + 4η(w · z))(1 + 4η2 − 4η(w · z)) =√

(1 + 4η2)2 − 16η2(w · z)2 ≤ 1 + 4η2.
Since η < 1/2 we have that θ ∈ [0, π/2]. It can be shown that for any θ ∈ [0, π/2], (4/π2)θ2 ≤

1− cos(θ). This implies that θ <
√

2πη < 5η. Since the angle between each pair wi and wi+1 can be
γ, we can create a sequence of vectors satisfying the property above with k ≤ d5η/γe ≤ 5η/γ + 1.

We have established that for every x ∈ X, sign(w+ · x) 6= sign(w− · x). This implies that for
every x there is an i such that sign(wi · x) 6= sign(wi+1 · x). Thus to bound the weight of X under
D, it suffices to bound the weight of the regions ∆i = {x : sign(wi · x) 6= sign(wi+1 · x)}. Since,
by construction, the angle between each adjacent pair of vectors is at most γ and D is λ-good, D
places weight no more than λ on each set ∆i, and no more than kλ ≤ 5ηλ/γ + λ on the set X.

Finally, since we have shown that Prx∼Q(|z ·x| > 1/(2
√
d)) ≥ 1/2, it follows that Prx∼D(|w ·x| ≤

η/
√
d) ≤ 2D(X) ≤ 10ηλ/γ + 2λ.
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Abstract

In learning, a semantic or behavioral U-shape occurs when a learner �rst learns, then
unlearns, and, �nally, relearns, some target concept (on the way to success). Within the
framework of Inductive Inference, previous results have shown, for example, that such U-
shapes are unnecessary for explanatory learning, but are necessary for behaviorally correct
and non-trivial vacillatory learning. Herein we focus more on syntactic U-shapes.

This paper introduces two general techniques and applies them especially to syntactic U-
shapes in learning: one technique to show when they are necessary and one to show when
they are unnecessary. The technique for the former is very general and applicable to a much
wider range of learning criteria. It employs so-called self-learning classes of languages which
are shown to characterize completely one criterion learning more than another.

We apply these techniques to show that, for set-driven and partially set-driven learning, any
kind of U-shapes are unnecessary. Furthermore, we show that U-shapes are not unnecessary
in a strong way for iterative learning, contrasting an earlier result by Case and Moelius
that semantic U-shapes are unnecessary for iterative learning.

1 Introduction

In Section 1.1 we explain U-shaped learning. In Section 1.2 we brie�y discuss the general techniques
of the present paper and summarize in Section 1.3 our applications of these techniques regarding
the necessity of U-shaped learning.

1.1 U-Shaped Learning

U-shaped learning occurs when a learner �rst learns a correct behavior, then abandons that correct
behavior and �nally returns to it once again. This pattern of learning has been observed by cognitive
and developmental psychologists in a variety of child development phenomena, such as language
learning [SS82], understanding of temperature [SS82], weight conservation [SS82], object permanence
[SS82] and face recognition [Car82]. The case of language acquisition is paradigmatic. For example, a
child �rst uses spoke, the correct past tense of the irregular verb speak. Then the child overregularizes
incorrectly using speaked. Lastly the child returns to using spoke. The language acquisition case of
U-shaped learning behavior has �gured prominently in cognitive science [MPU+92, TA02].

While the prior cognitive science literature on U-shaped learning was typically concerned with
modeling how humans achieve U-shaped behavior, [BCM+08, CCJS07] are motivated by the ques-
tion of why humans exhibit this seemingly ine�cient behavior. Is it a mere harmless evolutionary
ine�ciency or is it necessary for full human learning power? A technically answerable version of this
question is: are there some formal learning tasks for which U-shaped behavior is logically necessary?
We �rst need to describe some formal criteria of successful learning.

An algorithmic learning function h is, in e�ect, fed an in�nite sequence consisting of the elements
of a (formal) language L in arbitrary order with possibly some pause symbols # in between elements.

∗Timo Kötzing was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant no. NE
1182/5-1.
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During this process h outputs a corresponding sequence p(0), p(1), . . . of hypotheses (grammars)
which may generate the language L to be learned. A fundamental criterion of successful learning
of a language is called explanatory learning (TxtEx-learning) and was introduced by Gold [Gol67].
Explanatory learning requires that the learner's output conjectures stabilize in the limit to a single
conjecture (grammar/program, description/explanation) that generates the input language. Behav-
iorally correct learning [CL82, OW82] requires, for successful learning, only convergence in the limit
to possibly in�nitely many syntactically distinct but correct conjectures. Another interesting class
of criteria features vacillatory learning [Cas99, JORS99]. This paradigm involves learning criteria
which allow the learner to vacillate in the limit between at most some bounded, �nite number of
syntactically distinct but correct conjectures. For each criterion that we consider above (and be-
low), a non-U-shaped learner is naturally modeled as a learner that never semantically returns to a
previously abandoned correct conjecture on languages it learns according to that criterion.

[BCM+08] showed that every TxtEx-learnable class of languages is TxtEx-learnable by a non-
U-shaped learner, that is, for TxtEx-learnability, U-shaped learning is not necessary. Furthermore,
based on a proof in [FJO94], [BCM+08] noted that, by contrast, for behaviorally correct learning
[CL82, OW82], U-shaped learning is necessary for full learning power. In [CCJS07] it is shown that,
for non-trivial vacillatory learning, U-shaped learning is again necessary (for full learning power).
Thus, in many contexts, seemingly ine�cient U-shaped learning can actually increase one's learning
power.

What turns out to be a variant of non-U-shaped learning is strongly non-U-shaped learning es-
sentially de�ned in [Wie91],1 where the learner is required never to syntactically abandon a correct
conjecture on languages it learns according to that criterion. Clearly, strong non-U-shaped learnabil-
ity implies non-U-shaped learnability.2 In our experience, for theoretical purposes, it is frequently
easier to show non-U-shaped learnability by showing strong non-U-shaped learnability. Herein we
especially study strong non-U-shaped learnability.

1.2 Presented Techniques

The present paper presents two general techniques to tackle problems regarding U-shaped learning.
The �rst general technique can be used to show the necessity of U-shapes and employs so-called

self-learning classes of languages. These are explained in Section 3 below. These self-learning
classes of languages provide a general way for �nding classes of languages that separate two learning
criteria, i.e., they give a general way of �nding an example class of languages learnable with a given
learning criterion, but not with another. Theorem 3.6 implies that its presented self-learning classes
necessarily separate two learnability sets � if any class does. This technique is not specialized only
to analyze U-shaped learning, but can be applied to other learning criteria as well. The technique
is developed and discussed further in Section 3.

The second general technique is used to show that U-shapes are unnecessary and is phrased in
terms of su�cient conditions for the non-U-shaped learnability of classes of languages. Section 4's
Theorems 4.8 and 4.9 provide these su�cient conditions, each for a di�erent kind of U-shapes.
Theorem 4.8 actually characterizes strong non-U-shaped learnability.

1.3 Applications of General Techniques

A learning machine is set-driven [WC80, SR84, Ful90, JORS99] (respectively, partially set-driven
[SR84, Ful90, JORS99]) i�, at any time, its output conjecture depends only on the set of numerical
data it has seen (respectively, set and data-sequence length), not on the order of that data's pre-
sentation.3 Child language learning may be insensitive to the order or timing of data presentation;
set-drivenness and partial set-drivenness provide two local notions of such insensitivity [Cas99]. It
is interesting, then, to see the interaction of these notions with forbidding U-shapes of one kind
or another. As we shall see in Section 5, Theorems 5.1 and 5.2, proved with the aid of a general
technique from Section 4, imply, for these local data order insensitivity notions, for TxtEx-learning,
U-shapes, even in the strong sense are unnecessary.

1Wiehagen actually used the term semantically �nite in place of strongly non-U-shaped. However, there
is a clear connection between this notion and that of non-U-shapedness. Our choice of terminology is meant
to expose this connection. See also [CM08a].

2For non-U-shaped learning, the learner (on the way to success) must not semantically abandon a correct
conjecture. In general, semantic change of conjecture is not algorithmically detectable, but syntactic change
is. However, in the cognitive science lab we can many times see a behavioral/semantic change, but it is
beyond the current state of the art to see, for example, grammars in people's heads � so we can't yet see
mere syntactic changes in people's heads.

3Note that partially set-driven learning is also known as rearrangement independent learning.
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An iterative learner outputs its conjectures only on the basis of its immediately prior conjecture (if
any) and its current datum. As we shall see in Section 5, iterative learning provides a (�rst) example
of a setting in which non-U-shaped and strongly non-U-shaped learning are extensionally distinct:
[CM08b] shows semantic U-shapes to be unnecessary in iterative learning, while Theorem 5.4 in the
present paper implies that they are not strongly unnecessary. To prove this latter result, we actually
employ a self-learning class of languages that is a bit easier to work with than the relevant one from
Theorem 3.6 � although the latter must work too (by Theorems 3.6 and 5.4).4

Some of our proofs involve subtle in�nitary program self-reference arguments employing (variants
of) the Operator Recursion Theorem (ORT) from [Cas74, Cas94, JORS99].

1.4 Open Problems

Some problems regarding the necessity of U-shapes of one kind or another still remain open. An
iterative with counter learner is an iterative learner which, in making its conjectures, also has access
to the data-sequence length of the set of numerical data so far. For example, it is still open whether
semantic U-shapes are necessary for iterative with counter learning � as asked in [CM08b]. If so,
then the relevant self-learning class from Theorem 3.6 below must provide a separation.

See the end of Section 5 for some more open problems regarding the necessity of any one of the
two kinds of U-shapes for learning criteria of the present paper.

2 Mathematical Preliminaries

Unintroduced computability-theoretic notions follow [Rog67].
Strings herein are �nite and over the alphabet {0, 1}. {0, 1}∗ denotes the set of all such strings;

ε denotes the empty string.
N denotes the set of natural numbers, {0, 1, 2, . . .}. We do not distinguish between natural

numbers and their dyadic representations as strings.5

We �x the 1-1 and onto pairing function 〈·, ·〉 : N×N→ N from [RC94, Section 2.3]. In particular,
for all x, y,

〈x, y〉 =

m∑
k=0

xk22k+1 +

n∑
k=0

yk22k, (1)

where x =
∑m
k=0 xk2k, y =

∑n
k=0 yk2k and x0, . . . , xm, y0, . . . , yn ∈ {0, 1}. The binary representa-

tion of 〈x, y〉 is an interleaving of the binary representations of x and y, where we alternate x's and
y's digits and start on the right with the least most signi�cant y digit. For example, 〈15, 2〉 = 94,
since 15 = 1111 (binary), 2 = 0010 (binary), and 94 = 10101110 (binary). De�ne π1 and π2 to be
the functions such that, for all x and y,

π1(〈x, y〉) = x; (2)

π2(〈x, y〉) = y. (3)

π1 and π2 are, respectively, called the �rst and second projection functions.
The symbols ⊆,⊂,⊇,⊃ respectively denote the subset, proper subset, superset and proper su-

perset relation between sets.
For sets A,B, we let A \B = {a ∈ A | a 6∈ B}.
The quanti�er ∀∞x means �for all but �nitely many x�, the quanti�er ∃∞x means �for in�nitely

many x�. For any set A, card(A) denotes the cardinality of A.
P and R denote, respectively, the set of all partial and of all total functions N→ N. With dom

and range we denote, respectively, domain and range of a given function.
We sometimes denote a partial function f of n > 0 arguments x1, . . . , xn in lambda notation (as

in Lisp) as λx1, . . . , xn f(x1, . . . , xn). For example, with c ∈ N, λx c is the constantly c function of
one argument.

Whenever we consider tuples of natural numbers as input to f ∈ P, it is understood that the
general coding function 〈·, ·〉 is used to (left-associatively) code the tuples into a single natural
number.

If f ∈ P is not de�ned for some argument x, then we denote this fact by f(x)↑, and we say that
f on x diverges; the opposite is denoted by f(x)↓, and we say that f on x converges. If f on x
converges to p, then we denote this fact by f(x)↓ = p.

4Some recent papers [CK08, CK10] have also employed (di�erent) self-learning classes for separations.
5The dyadic representation of a natural number x = the x-th �nite string over {0, 1} in length-

lexicographical order, where the counting of strings starts with zero [RC94]. Hence, unlike with binary
representation, lead zeros matter.
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We say that f ∈ P converges to p i� ∃x0 : ∀x ≥ x0 : f(x)↓ ∈ {?, p}; we write f → p to denote
this.6

Computability Notions
We let P and R, respectively, denote the set of all partial computable and all total computable

functions from N to N; let ϕ0, ϕ1, . . . be any acceptable programming system (numbering) of P
[Rog67]. ϕp is the element of P computed by the program in this system with numerical name p.
Via numerical naming all general purpose real world programming systems are acceptable.

A set L ⊆ N is computably enumerable (ce) i� it is the domain of a partial computable function.
Let E denote the set of all ce sets. We let W be the mapping such that ∀e : W (e) = dom(ϕe). For
each e, we write We instead of W (e). W is, then, a mapping from N onto E . We say that e is an
index, or program, (in W ) for We. These programs e constitute a hypothesis space for learning in
the present paper.

In this paper, a computable operator is a mapping from any one (respectively, two) partial
function(s) N → N into one such partial function such that there exists an algorithm which, when
fed any enumeration(s) of the graph(s) of the input(s), it outputs some enumeration of the graph
of the output. Rogers [Rog67] extensively treats the one-ary case of these operators and calls them
recursive operators.

A �nite sequence is a mapping with a �nite initial segment of N as domain (and range, ⊆ N).
∅ denotes the empty sequence (and, also, the empty set). The set of all �nite sequences is denoted
by Seq. For any given set A ⊆ N, the set of all �nite sequences of elements in A is denoted with
Seq(A). For each �nite sequence σ, we will denote the �rst element, if any, of that sequence by σ(0),
the second, if any, by σ(1) and so on. #elets(σ) denotes the number of elements in a �nite sequence
σ, that is, the cardinality of its domain.

Following [LV08], we de�ne for all x ∈ N: x = 1size(x)0x. Using this notation we can de�ne
a function 〈·〉Seq coding arbitrarily long �nite sequences of natural numbers into N (represented
dyadically) such that

〈σ〉Seq = σ(0) . . . σ(#elets(σ)− 1). (4)

In particular, 〈∅〉Seq = ε.
For example the �nite sequence (4, 7, 10)decimal = (01, 000, 011)dyadic is coded as

11 0 01 111 0 000 111 0 011 (but without the spaces, which were added for ease of reading).7

We use � (with in�x notation) to denote concatenation on sequences. With a slight abuse of
notation, for a sequence σ and a natural number x, we let σ �x denote the sequence that starts with
the sequence σ and then ends with x.

For any �nite sequence σ such that #elets(σ) > 0, we let last(σ) be the last element of σ and
σ− be σ with its last element deleted. By convention, we set ∅− = ∅.

Obviously, 〈·〉Seq is 1-1 [LV08].
Henceforth, we will many times identify a �nite sequence σ with its code number 〈σ〉Seq. However,

when we employ expressions such as σ(x), σ = f and σ ⊂ f , we consider σ as a sequence, not as a
number.

For a partial function f ∈ P and i ∈ N, if ∀j < i : f(j)↓, then f [i] is de�ned to be the �nite
sequence f(0), . . . , f(i− 1).

We �x the following 1-1 coding for all �nite subsets of N. For each non-empty �nite set D =
{x0 < . . . < xn}, 〈x0, . . . , xn〉Seq is the code for D and 〈〉Seq is the code for ∅.

Henceforth, we will many times identify a �nite set D with its code number. However, when we
employ expressions such as x ∈ D, card(D), max(D) and D ⊂ D′, we consider D and D′ as sets,
not as numbers.

The symbol # is pronounced pause and is used to symbolize �no new input data� in a text. For
each (possibly in�nite) sequence q, let content(q) = (range(q) \ {#}).

Later, we will type in�nite sequences as being in R, but, technically, texts (for languages ⊆ N)
are in�nite sequences, but they may contain pauses (#s) which are not natural numbers. Also, �nite
initial segments of texts are example �nite sequences which can contain pauses. In our coding above
of �nite sequences, we code only sequences of natural numbers (and not pauses). To get around this,
we will assume from now on that N∪ {#} is e�ciently coded 1-1 onto N, say, by coding # as 0 and
n ∈ N as (n+ 1). In this way texts can be thought of as ∈ R and �nite initial segments of texts can,
then, be coded as sequences of natural numbers. However, for texts T and for �nite initial segments

6f(x) converges should not be confused with f converges to.
71100111100001110011 is of course the dyadic representation of some number ∈ N.
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of such T , we will, whenever we need to talk about the value of T (m), ignore the coding and work,
for example, with whether the actual (not coded) values of T (m) = # or = n ∈ N. This ignoring of
the coding will be useful from time to time.

From now on, by convention, f , g and h with or without decoration range over (partial)
functions N → N; x, y with or without decorations range over N; σ, τ with or without decorations
range over �nite sequences of natural numbers; D with or without decorations ranges over �nite
subsets of N.

We will make use of a padded variant of the s-m-n Theorem [Rog67]. Intuitively, s-m-n permits
algorithmic storage of arbitrary data (and, hence, programs) inside any program. The suitable
padded variant of s-m-n we use herein states that there is a strictly monotonic increasing total
computable function s such that

∀a, b, c : ϕs(a,b)(c) = ϕa(b, c). (5)

In (5), ϕ-program s(a, b) is essentially ϕ-program a with datum b stored inside. We will also use
a suitably padded version of Case's Operator Recursion Theorem (ORT), providing in�nitary self
(and other) reference [Cas74, Cas94, JORS99]. ORT itself states that, for all computable operators
Θ : P→ P,

∃e ∈ R∀a, b : ϕe(a)(b) = Θ(e)(a, b). (6)

In the padded version we employ, the function e will also be strictly monotone increasing.

2.1 Computability-Theoretic Learning

In this section we formally de�ne several criteria for computability-theoretic learning.
A language is a ce set L ⊆ N. Any total function T : N → N ∪ {#} is called a text. For any

given language L, a text for L is a text T such that content(T ) = L. With Txt(L) we denote the
set of all texts for L.

A sequence generating operator is a computable operator β taking as arguments a function h
(the learner) and a text T and that outputs a function p. We call p the learning sequence of h given
T .

Intuitively, β de�nes how a learner can interact with a given text to produce a sequence of
conjectures.

We de�ne the sequence generating operators G, Psd, Sd, ItCtr and It as follows. G, Psd,
Sd, ItCtr and It, respectively, stand for Gold [Gol67], partially set-driven [SR84, Ful85, Ful90,
JORS99], set-driven [WC80, JORS99] iterative with counter [CM08b] and iterative [WC80, Wie76],
respectively. For all h, T, i,

G(h, T )(i) = h(T [i]);

Psd(h, T )(i) = h(content(T [i]), i);

Sd(h, T )(i) = h(content(T [i]));

ItCtr(h, T )(i) =

{
?, if i = 0;

h(ItCtr(h, T )(i− 1), T (i− 1), i− 1), otherwise;

It(h, T )(i) =

{
?, if i = 0;

h(It(h, T )(i− 1), T (i− 1)), otherwise.

Successful learning might require the learner to observe certain restrictions, for example non-U-
shapedness. These restrictions are formalized in our next de�nition.

A learning restriction is a predicate on a learner and a language, parameterized with a sequence
generating operator. We write the parameter as a subscript and give the following examples.

• No restriction: The constantly true predicate of the appropriate type T.

• Total Learner: ∀β, h, L : Rβ(h, L)⇔ h ∈ R.
• Non-U-shaped: ∀β, h, L : NUβ(h, L) ⇔ [∀T ∈ Txt(L), ∀i : (Wβ(h,T )(i) = L ⇒ Wβ(h,T )(i+1) =
Wβ(h,T )(i))].

• Strongly non-U-shaped: ∀β, h, L : SNUβ(h, L) ⇔ [∀T ∈ Txt(L)∀i : (Wβ(h,T )(i) = L ⇒
β(h, T )(i+ 1) = β(h, T )(i))].

We combine any two learning restrictions by intersecting them, and we denote this combination by
juxtaposition.
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In order to motivate and de�ne another group of learning restrictions, we now de�ne the concept
of a stabilizer sequence (called �stabilizer segment� in [Ful90]).

Let β be a sequence generating operator. Let L be a language and h ∈ P a learner. A sequence
σ ∈ Seq(L) is said to be a β-stabilizer sequence of h on L i�

(∀T ∈ Txt(L)|σ ⊆ T )∀i ≥ #elets(σ) : β(h, T )(#elets(σ)) = β(h, T )(i); (7)

Intuitively, a stabilizer sequence σ of h on L is a sequence of elements from L such that h on any
text extending σ will never make a change of conjecture after having seen σ.

It is well known that, if a learner h TxtEx-learns a language L, then there is a stabilizer sequence
of h on L (see [JORS99]). However, texts don't necessarily contain such a sequence as an initial
segment. Below, we de�ne a learning restriction that requires a learner and a language to have
stabilizer sequences as initial sequences of all texts for the language.

• Stabilizing: ∀β, h, L:

Stabβ(h, L)⇔ [∀T ∈ Txt(L)∃i0 : T [i0] is a β-stabilizer sequence of h on L].

Let β be sequence generating operator. For a learner h and a language L, we de�ne a β-sink of
h on L to be a conjecture e such that

∀T ∈ Txt(L)∀i0 : [β(h, T )(i0) = e⇒ (∀i ≥ i0)(β(h, T )(i) = e)]. (8)

Intuitively, a sink is a conjecture never abandoned on texts for L.
We specialize the concept of a stabilizer sequence to a sink-stabilizer sequence. This will be

technically helpful for some of our results.

• Sink-stabilizing: ∀β, h, L:

Sinkβ(h, L)⇔ [∀T ∈ Txt(L)∃e : (β(h, T )→ e ∧ e is a β-sink of h on L)].

Clearly, for all β, h, L, Sinkβ(h, L) implies Stabβ(h, L). Sink-stabilizing is of interest, as we show
a characterization theorem (Theorem 4.8 below) of strong non-U-shaped learning in terms of sink-
stabilizing learning.

In order to obtain at least a su�cient condition for (not necessarily strongly) non-U-shaped
learning, we weaken the concept of a sink as follows. For now, let f ∈ P. An f -weak β-sink of h on
L is a conjecture e such that

∀T ∈ Txt(L)∀i0 : [β(h, T )(i0) = e⇒ (∀i ≥ i0)(f(β(h, T )(i), e) = 1)]. (9)

We would like to employ for f above f0 = λe, e′ We = We′ , in order to capture the notion of a
�never semantically abandoned conjecture;� however, this function is not computable. Instead, we
will use functions �approximating� f0: Let

F = {f ∈ R | ∀e, e′ : (f(e, e′) = 1⇒We = We′)}.8 (10)

For all f ∈ F , we de�ne the following learning restriction.

• f -weak β-sink-stabilizing: ∀β, h, L:

Weaksinkfβ(h, L)⇔ [∀T ∈ Txt(L)∃e : (β(h, T )→ e ∧ e is an f -weak β-sink of h on L].

We are now ready to give some formal de�nitions for successful learning.

De�nition 2.1.

• For this paper, a learning criterion is a pair (α, β) such that α is a learning restriction and β a
sequence generating operator. We also write αTxtβEx to denote the learning criterion (α, β).

• Let (α, β) be a learning criterion and h a learner. We say that h αTxtβEx-learns a language
L i� αβ(h, L) and, for all texts T for L, β(h, T ) is total and there is e with β(h, T ) → e and
We = L.

• We denote the class of all languages αTxtβEx-learned by h with αTxtβEx(h). Abusing
notation, we use αTxtβEx to denote the set of all classes of languages αTxtβEx-learnable by
some learner (as well as the learning criterion).

8Intuitively, all f ∈ F only output 1 if the inputs are semantically equivalent.
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• We omit α if α = T.

We let

The30 =
{(α, β) | α ∈ {T,NU,SNU,Sink,Stab}, β ∈ {G,Psd,Sd, ItCtr, It}} ∪
{
⋃
f∈F (Weaksinkf , β) | β ∈ {G,Psd,Sd, ItCtr, It}}. (11)

This is a set of thirty particular learning criteria especially considered in this paper.
As noted above in Section 1.2, Theorem 3.6 below applies to learning criteria separations well

beyond our concerns in the present paper with showing U-shapes do (or don't) make a di�erence in
learning power. In particular we will see that Theorem 3.6 applies to all pairs of learning criteria
from The30. Indirectly in Section 4 and directly in Section 5, though, we are mainly concerned with
pairs of criteria (I0, I1), with each criterion from The30, where I0 = SNUI1 (or I0 = NUI1).
Starred Learners
For a learner h, possibly learning with restricted access to past data, we write h∗(σ) for what the
current output of h is after being fed the sequence σ of data items.

In particular, for h ∈ P and σ a sequence, we have the following.

• If h is a set-driven learner:
h∗(σ) = h(content(σ)). (12)

• If h is a partially set-driven learner:

h∗(σ) = h(content(σ),#elets(σ)). (13)

3 Self-Learning Classes of Languages for Separations

In this section we discuss a way of showing U-shapes to be necessary. Formally, this is done via
showing that a learnability class separates from its non-U-shaped variant.

The approach described below is very general and can be applied to show separation results in
many other areas of computability-theoretic learning in the limit as well.

The key idea is that of self-learning classes of languages. In the previous literature, self-describing
classes of languages have been used.9 A particularly simple example class of self-describing languages,
taken from [CL82, Theorem 1], is

L0 = {L recursive | L 6= ∅ ∧ WminL = L}. (14)

Intuitively, each L ∈ L0 gives a complete description of itself, encoded (as a W -index) within only
�nitely many (in fact, one) of its elements. It is well-known, using standard computability theoretic
arguments, that these kind of classes of languages are very big (for example, L0 contains a �nite
variant of any given ce language, which can easily be seen using Kleene's Recursion Theorem).

Many variants of self-describing classes of languages have been used for separation results within
computability-theoretic learning (see, for example, [BB75, CL82, CS83, Cas99, JORS99]). Showing
a separation with a complicated self-describing class of languages sometimes requires a non-trivial
learner (see, for extreme examples, [CJLZ99]).

We now take the technique of self-describing one step further. A self-learning class of languages
is such that each element of each language of the class provides instructions for what to compute
and output as a new hypothesis. Thus, all a learner needs to do is to execute the instructions given
by its latest datum. For example, an informal10 learner h1 can be de�ned such that

∀σ, x : h1(σ � x) = ϕx(σ � x). (15)

Intuitively, h1 interprets the latest datum as a program in the ϕ-system and runs this program on all
known data. Variants of this h1 can be de�ned to obtain learners with special additional properties,
such as totality or set-drivenness (see Theorem 3.6).

In practice, the general scheme is as follows. Suppose we want to show, for two learning criteria
I0 and I1, I1 \I0 6= ∅. Then, we de�ne a simple learner, for example h1 above, and let L1 be the class
of all languages I1-learned by h1. All that would remain to be shown is that L1 is not I0-learnable,
which can often be done using ORT.

9See [JORS99]. In there, the term �self-describing� was used on page 71 in the context of function learning
and extended on page 97 to language learning.

10Note that we ignore the possible input of x = #.
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Below, in Theorem 3.6, we give a very general result regarding some self-learning classes of
languages guaranteed to witness separations when they exist. In order to do so, we proceed next by
making some formal de�nitions.

For a function e ∈ P and a language L, we let e(L) = {e(x) | x ∈ L}; for a class of languages L,
we let e(L) = {e(L) | L ∈ L}.

Let Pc1-1 ⊆ P (repectively, Rc1-1 ⊆ R), denote the set of all 1-1 partial (respectively, total)
computable functions with computable domain and range.

De�nition 3.1. A learning criterion I is called computably Pc1-1-robust i� there is a computable
operator Θ : P2 → P such that

∀h ∈ P,∀e ∈ Pc1-1 : e(I(h)) ⊆ I(Θ(h, e)). (16)

Intuitively, if a learner h learns languages L, then Θ(h, e) learns e(L).

Remark 3.2. Let I be computably Pc1-1-robust. Then we have

∀e ∈ Pc1-1,∀L ⊆ E : L ∈ I ⇔ e(L) ∈ I.

Remark 3.3. Let (α, β) ∈ The30. Then (α, β) is computably Pc1-1-robust.

De�nition 3.4. Let I = (α, β) be a learning criterion. We call I data normal i�, for all p0 such

that Wp0 = ∅, there is a computable operator Θ̂ : P→ P such that

I(h) ⊆ I(Θ̂(h)) (17)

and (a) � (d) below.

(a) There is fβ ∈ R such that

∀h, T,∀i > 0 : β(h, T )(i) = h(fβ(T [i], β(h, T )[i])).11 (18)

(b) There is a function dβ ∈ R such that

∀T ∈ Txt, i ∈ N : β(Θ̂(h), T )[i]↓ ⇒

dβ(fβ(T [i], β(Θ̂(h), T )[i])) ∈
{
{#} if content(T [i]) = ∅;
content(T [i]), otherwise.12

(19)

(c) For all h ∈ P,
∀σ, τ : dβ(fβ(σ, τ)) = #⇒ Θ̂(h)(fβ(σ, τ)) = p0.

13 (20)

(d) For all h, h′ ∈ P,
[∀L ∈ I(h)∀T ∈ Txt(L) : β(h, T ) = β(h′, T )]⇒ I(h) ⊆ I(h′).14 (21)

Remark 3.5. Let (α, β) ∈ The30. Then (α, β) is data normal.

Next (Theorem 3.6) is the main result of this section, giving su�cient conditions for when a
separation will necessarily be witnessed by a speci�c self-learning class of languages. As a corollary,
we get that for each pair of learning criteria from The30, any separations are witnessed by such
classes! In this sense, self-learning classes of languages capture the essence of separations (when
they exist). Note that the proof of the theorem would simplify a lot, were one to suppose somewhat
stronger properties of the learning criteria, in particular, excluding the use of It and ItCtr as
sequence generating operators. Theorem 3.6 can be modi�ed to cover other kinds of criteria, for
example, those pertaining to learnability by total learners. In a future paper, we will analyze self
learning-classes in more depth and will provide further theorems like Theorem 3.6.

11Intuitively, the i-th conjecture of h on T depends only on some information (as speci�ed by fβ) about
the �rst i datapoints and conjectures.

12Intuitively, from the information given by fβ , a datum (if any) that this datum is based on can be
extracted.

13Intuitively, constantly outputting one and the same index for the empty language is a viable strategy as
long as no numerical data has been presented.

14Intuitively, changing a learner on inputs that do not present data from a language learned does not harm
learnability.
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Theorem 3.6. Learning criteria are as in De�nition 2.1. Let I0 and I1 be computably Pc1-1-robust
learning criteria. Suppose I1 is data normal as witnessed by f1 and d1. Let p0 be such that Wp0 = ∅
and h1 be such that

∀x : h1(x) =

{
p0, if d1(x) = #;

ϕd1(x)(x), otherwise.
(22)

Further, let L1 = I1(h1). Then we have

I1 \ I0 6= ∅ ⇔ L1 6∈ I0.

Proof. The implication �⇐� is obvious. Regarding �⇒�, let L ∈ I1 as witnessed by h and suppose
L 6∈ I0. Let Θ be as given by I1 being computably Pc1-1-robust. Let Θ̂ be as given by I1 being data
normal. By padded ORT, there is a strictly monotone increasing e ∈ R such that

∀x, y : ϕe(x)(y) = (Θ̂ ◦Θ)(h, e)(y). (23)

As e ∈ Pc1-1 and I0 is computably Pc1-1-robust, we have, from Remark 3.2 with I0 in the place
of I, e(L) 6∈ I0. It now su�ces to show e(L) ⊆ L1, as this would imply L1 6∈ I0 as desired.

Suppose I1 = (α1, β1). Let L ∈ e(L) and T ∈ Txt(L). We show, by induction on i,

∀i : β1(h1, T )(i) = β1((Θ̂ ◦Θ)(h, e), T )(i). (24)

Let h′ = Θ(h, e). For all i with content(T [i]) = ∅, we have
β1(h1, T )[i] =

(18)
h1(f1(T [i], β1(h1, T )[i])) =

(22)
p0

=
(19) & (20)

Θ̂(h′)(f1(T [i], β1(Θ̂(h′), T )[i])) =
(18)

β1(Θ̂(h′), T )(i).
(25)

Let i ∈ N, suppose content(T [i]) 6= ∅ and (inductively) β1(h1, T )[i] = β1((Θ̂ ◦Θ)(h, e), T )[i]. Let

x = f1(T [i], β1(h1, T )[i]) =
IH
f1(T [i], β1((Θ̂ ◦Θ)(h, e), T )[i]). (26)

Note that d1(x) ∈
(19)

content(T [i]) ⊆ L ⊆ range(e). We have

β1(h1, T )(i) =
(18) & (26)

h1(x) =
(22)

ϕd1(x)(x) =
(23)

(Θ̂ ◦Θ)(h, e)(x) =
(18) & (26)

β1((Θ̂ ◦Θ)(h, e), T )(i). (27)

This concludes the induction. Thus, h1 on any text for a language from e(L) makes the same

conjectures as (Θ̂ ◦Θ)(h, e) on T . By (16) and (17), (Θ̂ ◦Θ)(h, e) I1-learns e(L); thus, using (d) of
I1 being data normal, e(L) ⊆ I1(h1) = L1.

4 Helping Remove U-Shapes

In this section we provide, in Theorem 4.8, a general technique for helping with the removal of U-
shapes from a learner, preserving what is learned. When applicable, this shows U-shapes unnecessary.
Theorem 4.8 is technically a characterization theorem, and is applied in Section 5 to provide cases
where strong non U-shaped learning makes no di�erence. Also, in this section is another result,
Theorem 4.9, which could similarly be used to provide other cases where mere non U-shaped learning
makes no di�erence � although we do not apply this theorem in the present paper.

Lemma 4.1. Let h ∈ P. Then there is a in�nite set L ∈ E such that h does not TxtGEx-learn
any L′ ⊇ L such that L′ =∗ L.

Proof.15 Trivial if N 6∈ TxtGEx(h). Otherwise, let σ be a locking sequence for h on N, D =
content(σ). Then, obviously, h does not learn any L such that D ⊆ L ⊂ N.

De�nition 4.2. For each h ∈ P, let Lh denote a set L corresponding to h and as shown existent in
Lemma 4.1.

De�nition 4.3. Let h ∈ P, L = TxtGEx(h) and let Q be a ce set. Then, using padded s-m-n,
there is a strictly monotone increasing function ph,Q ∈ R

∀e, x : Wph,Q(e,x) = {y ∈ Lh | Q(e, x)} ∪ {y ∈We | not (Q(e, x) in ≤ y steps)}. (28)

15This version of the proof is due to Frank Stephan [Ste09].
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Lemma 4.4. Let h ∈ P, L = TxtGEx(h) and Q be a ce set. For all e, x, we have

Wph,Q(e,x) ∈ L ⇒ ¬Q(e, x) (29)

⇒ Wph,Q(e,x) = We. (30)

Proof. Immediate from the choice of Lh.

Lemma 4.5. Let β ∈ {It,Sd, ItCtr,Psd,G}. We have that

{〈e0, e1, e2〉 | e0 is not a β-sink of ϕe1 on We2} is ce (31)

and, for all f ∈ F (where F is from (10)),

{〈e0, e1, e2〉 | e0 is not an f -weak β-sink of ϕe1 on We2} is ce. (32)

Proof. Immediate.

Remember that Rc1-1 ⊆ R denotes the set of all 1-1 total computable functions with computable
domain and range.

De�nition 4.6. A sequence generating operator β is called 1-1 left-modi�able i�

∀r ∈ Rc1-1 ∃sl, sr ∈ R ∀h ∈ P, T ∈ Txt : β(sl ◦ h ◦ sr, T ) = r ◦ β(h, T ).

Remark 4.7. It,Sd, ItCtr,Psd and G are 1-1 left-modi�able.

We now present the two main Theorems of this section, the �rst of which characterizes strong
non-U-shaped learning; the second is a su�cient condition on (not necessarily strong) non-U-shaped
learning.

Theorem 4.8. Let β be 1-1 left-modi�able and ful�ll (a) of data normal. Let α ∈ {T,R}. Then

SinkαTxtβEx = SNUαTxtβEx.

Proof. �⊇�: Let h0 ∈ P, L = SNUTxtβEx(h0). Let L ∈ L and let T be a text for L. Let k be
such that h0 has converged on T after T [k] to some e. Then

We = L. (33)

To show that e is a β-sink of h0 on L: Let T ∈ Txt(L) and i0 such that β(h0, T )(i0) = e. Let
i ≥ i0. Then, as h0 is strongly non-U-shaped on L and from (33), β(h0, T )(i) = e.

�⊆�: Let h0 ∈ P, L = SinkTxtβEx(h0). Let Q be a ce predicate such that

∀e : Q(e)⇔ e is not a β-sink of h0 on We. (34)

With fβ as given by (a) of data normal, let h∗0 = h0 ◦ fβ . Let p = ph∗0 ,Q as in De�nition 4.3. Let
β's left-modi�ability with respect to p be witnessed by sl and sr ∈ R. Let h ∈ R be such that

h = sl ◦ h0 ◦ sr. (35)

Note that, if h0 ∈ R, then h ∈ R.

Claim 1. h is strongly non-U-shaped.
Proof of Claim 1. Let L ∈ L, e ∈ N and σ such that content(σ) ⊆ L. Suppose h∗(σ) = p(e) and

Wp(e) = L ∈ L. (36)

From (29) we get ¬Q(e). Hence, from the de�nition of Q in (34), for all texts T for L extending
σ, we have that h0 has syntactically converged after seeing σ. Thus, h has syntactically converged
after seeing σ (and, thus, does not exhibit a U-shape). (for Claim 1)

Claim 2. L ⊆ TxtβEx(h).
Proof of Claim 2. Let L ∈ L and let T be a text for L. As h0 is sink-locking, there is k minimal
such that, with e = h∗0(T [k]),

e is a sink of h on L. (37)
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Thus, h0 converges on T to e; therefore,

We = L. (38)

Furthermore, h on T converges to p(e) and, by (37), ¬Q(e); hence,

Wp(e) =
(30)

We =
(38)

L. (39)

(for Claim 2)

Theorem 4.9. Let F be as in (10). Let β be 1-1 left-modi�able and ful�ll (a) of data normal. Let
α ∈ {T,R}. Then ⋃

f∈F

WeaksinkfαTxtβEx ⊆ NUαTxtβEx.

The proof is analogous to that of the proof of �⊆� of Theorem 4.8.
Theorem 4.9 gives a good way of showing the non-U-shaped learnability of a class of languages:

To de�ne a
⋃
f∈FWeaksinkfαTxtβEx-learner to learn the class, one can use a strictly monotone

increasing computable function p ∈ R (called a padding function) on two arguments such that
∀e, x : Wp(e,x) = We and let f ∈ F be such that f(p(e, x), p(e′, x′)) = 1 i� e = e′.

5 Applications of the Techniques to The30

In this section we essentially apply general techniques presented in the two just previous sections to
prove a number of results pertaining to the necessity of U-shapes in learning.

Note that [CM07] implies that RTxtSdEx ⊂ TxtSdEx. This separation can also be shown
using Theorem 3.6.

Theorem 5.1. We have

(i) TxtSdEx = SNUTxtSdEx and
(ii) RTxtSdEx = SNURTxtSdEx.

Our proof of this theorem involves an application of Theorem 4.8.

Theorem 5.2.

SNURTxtPsdEx = TxtPsdEx.

Our proof of this theorem involves an application of Theorem 4.8.
As TxtGEx = TxtPsdEx [SR84, Ful85, Ful90, JORS99], we immediately get the following

corollary, reproving a result from [BCM+08] and one from [CM08a].

Corollary 5.3.

NUTxtGEx =
[BCM+08]

TxtGEx =
[CM08a]

SNUTxtGEx.

From [CM08b, Theorem 2] we have TxtItEx = NUTxtItEx. Contrasting this result, we have
the following theorem.

Theorem 5.4.

SNUTxtItEx ⊂ NUTxtItEx.

Our proof makes use of padded ORT and, as noted above, for convenience, a self-learning class
simpler to work with than that from Theorem 3.6.
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6 Summary and Open Problems

Summing up, the following main results within the focus of the present paper and regarding the
necessity of syntactic or semantic U-shapes are shown or already known. Some of the justi�catory
remarks omit citing TxtGEx = TxtPsdEx [SR84, Ful90] (and trivial inclusions).

SNUTxtGEx =
[CM08a], Cor 5.3

NUTxtGEx =
[BCM+08], Cor 5.3

TxtGEx;

SNURTxtGEx =
Thm 5.2

NURTxtGEx =
[BCM+08], Thm 5.2

TxtRGEx;

SNUTxtPsdEx =
Thm 5.2

NUTxtPsdEx =
Thm 5.2

TxtPsdEx;

SNURTxtPsdEx =
Thm 5.2

NURTxtPsdEx =
Thm 5.2

TxtRPsdEx;

SNUTxtSdEx =
Thm 5.1

NUTxtSdEx =
Thm 5.1

TxtSdEx;

SNURTxtSdEx =
Thm 5.1

NURTxtSdEx =
Thm 5.1

TxtRSdEx;

SNUTxtItEx ⊂
Thm 5.4

NUTxtItEx =
[CM08b]

TxtItEx.

Trivially, we have

SNURTxtItEx ⊆ NURTxtItEx ⊆ RTxtItEx;
SNUTxtItCtrEx ⊆ NUTxtItCtrEx ⊆ TxtItCtrEx;

SNURTxtItCtrEx ⊆ NURTxtItCtrEx ⊆ RTxtItCtrEx.

The other directions of inclusions are open. We think that NURTxtItEx = RTxtItEx can
be obtained as a corollary to the proof of NUTxtItEx = TxtItEx in [CM08b]. Furthermore,
we suspect we can show SNURTxtItEx ⊂ NURTxtItEx by a variant of the proof above of
Theorem 5.4.
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Abstract

In the present paper, we introduce a variant of Gold-style learners that is not required to infer pre-
cise descriptions of the languages in a class, but that must find descriptive patterns, i. e., optimal
generalisations within a class of pattern languages. Our first main result characterises those indexed
families of recursive languages that can be inferred by such learners, and we demonstrate that this
characterisation shows enlightening connections to Angluin’s corresponding result for exact infer-
ence. Using a notion of descriptiveness that is restricted to the natural subclass of terminal-free
E-pattern languages, we introduce a generic inference strategy, and our second main result char-
acterises those classes of languages that can be generalised by this strategy. This characterisation
demonstrates that there are major classes of languages that can be generalised in our model, but not
be inferred by a normal Gold-style learner. Our corresponding technical considerations lead to deep
insights of intrinsic interest into combinatorial and algorithmic properties of pattern languages.

1 Introduction
In Gold’s intensively studied learning paradigm of language identification in the limit from positive data
(Gold, 1967), it is a requirement for the computational learner to infer, for any positive presentation of
any language in some class, an exact description of that language. While this maximum accuracy of the
output of the inference procedure is clearly a natural goal, it has a number of downsides, the most obvious
one being the fact that it can lead to significant limitations to the learning power of the model. From a
more applied point of view, there is another important reason why one might wish to relax it and settle
for receiving an approximation of the language from the learner: depending on the class of languages to
be inferred, the corresponding grammars or acceptors might have undesirable properties, i. e., they might
have computationally hard decision problems or be incomprehensible to a (human) user. Thus, in various
settings it might be perfectly acceptable for an inference procedure to output a compact and reasonably
precise approximation of the language instead of producing a precise yet arbitrarily complex grammar.

In the present paper, we introduce and study such a variant of Gold’s model, where the requirement of
exact language identification is dropped and replaced with that of inference of easily interpretable approxi-
mations. More precisely, we consider a learner that, for any language it reads, must converge to a consistent
pattern, i. e., a finite string that consists of variables and of terminal symbols and that can be turned into
any word of the language by substituting arbitrary strings of terminal symbols for the variables. In addition
to being seen as mere descriptions of common features of words in a given language, such a pattern α can
also be interpreted as a generator of a formal language L(α), the so-called pattern language (cf. Angluin
(1980a)), which is simply the maximum set of words the pattern is consistent with. Hence, referring to this
terminology, we can state that our learner has to output a pattern generating a language that is a superset of
the input language, which means that our approach does not yield an arbitrary approximation of a language,
but rather a generalisation. Even though many classes of pattern languages have a number of NP-complete or
undecidable basic decision problems (see, e. g., Angluin (1980a), Jiang et al. (1994) and Freydenberger and
Reidenbach (2010)), patterns (or related concepts, such as regular expressions and their various extensions
implemented in today’s programming languages and text editors, see Câmpeanu et al. (2003)) are widely
used when commonalities of words are to be specified or interpreted by a human user, which demonstrates
that they are a worthwhile concept in the context of our paper.

∗Corresponding author.
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When inferring consistent patterns instead of precise descriptions, it is of course vital to develop and
employ a notion of high-quality patterns, so that the inference procedure does not lead to an overly imprecise
result. Otherwise, the learner could always output the pattern α := x1 (where x1 is a variable), which
is consistent with every language, and this approach would obviously neither lead to a rich theory nor to
practically relevant results. In our model, the inference procedure shall therefore be required to converge
to a pattern δ that is descriptive of the language L (with respect to a class PAT? of pattern languages).
This means that δ must be consistent with L, L(δ) must be included in PAT?, and there is no pattern δ′
satisfying L(δ′) ∈ PAT? and L ⊆ L(δ′) ⊂ L(δ); in other words, a pattern is descriptive of a language if
there is no other pattern providing a closer match for the language. Since descriptiveness captures a natural
understanding of patterns providing a desirable generalisation of languages and, furthermore, descriptive
patterns can be used to devise Gold-style learners precisely identifying classes of pattern languages from
positive data, this concept has been thoroughly investigated (see, e. g., Angluin (1980a), Jiang et al. (1994)
and Freydenberger and Reidenbach (2009)). While established definitions of descriptiveness often restrict
their view to patterns covering finite languages and normally use the full class of E- or NE-pattern languages
(to be formally introduced in Section 2) as the class PAT? of admissible pattern languages, we allow a
descriptive pattern to cover a finite or an infinite language, and we have a class PAT? that can be arbitrarily
chosen. Both of these extensions of the original definition are absolutely straightforward.

To summarise our model of inference, we consider a learner that reads a positive presentation of a lan-
guage and, after having seen a new input word, outputs a pattern, the so-called hypothesis. We then say that,
for a class L of languages and a class PAT? of pattern languages, the learner PAT?-descriptively generalises
L if and only if, for every positive presentation of every language L ∈ L, the sequence of hypotheses pro-
duced by the learner converges to a pattern δ that is descriptive of L with respect to the class PAT?. A more
formal definition of our model is given in Section 3.1.

The main difference between descriptive generalisation and related approaches (see, e. g., Arimura et al.
(1994), Mukouchi (1994), Kobayashi and Yokomori (1995), Kobayashi and Yokomori (1997) and, indirectly,
Jain and Kinber (2008)) is that we have a distinct split between a class L of languages to be inferred and
an arbitrary class PAT? of pattern languages determining the set of admissible hypotheses. This leads to a
compact and powerful model that yields interesting insights into the question of to which extent the generalis-
ability of L depends on properties of L or of PAT?. We discuss this topic in Section 3.2, and we demonstrate
in Section 3.3 that descriptive generalisation can be interpreted as a natural instance of a very general and
simple inference model which, to the best of our knowledge, has not been considered so far.

In Section 4, we investigate our model for a fixed and rich class PAT?, namely the class of terminal-
free E-pattern languages, i. e., the class of all pattern languages generated by patterns not containing any
terminal symbols, where the empty word may be substituted for the variables in the pattern. Our studies
reveal that, for this choice of PAT?, descriptive generalisation and inductive inference from positive data
are incomparable, and they show that there are major and natural classes of formal languages that can be
descriptively generalised according to our model, but not precisely inferred in Gold’s model. Technically,
our decision to focus on terminal-free E-pattern languages leads to a number of substantial combinatorial
challenges for pattern languages, and we present various respective insights and tools of intrinsic interest.

Due to space constraints, Sections 2.2 and 4 do not include any proofs of formal statements.

2 Preliminaries
This paper is largely self-contained. For language theoretic and recursion theoretic notations not explicitly
defined, Rozenberg and Salomaa (1997) and Rogers (1992) can be consulted, respectively.

2.1 Definitions
Let N := {0, 1, 2, 3, . . .} and let ∞ denote infinity. The symbols ⊆, ⊂, ⊇ and ⊃ refer to subset, proper
subset, superset and proper superset relation, respectively. The symbols P and \ denote the power set and
the set difference, respectively. For an arbitrary alphabet A, a string (over A) is a finite sequence of symbols
from A, and λ stands for the empty string. The symbol A+ denotes the set of all nonempty strings over A,
and A∗ := A+ ∪ {λ}.

For any alphabet A, a language L (over A) is a set of strings over A, i. e. L ⊆ A∗. A language L is
empty if L = ∅; otherwise, it is nonempty. A class L of languages (over A) is a set of languages over A, i. e.
L ⊆ P(A∗). Let FINA denote the class of all finite languages over A.

For the concatenation of two stringsw1, w2 we writew1 ·w2 or simplyw1w2. We say that a string v ∈ A∗
is a factor of a string w ∈ A∗ if there are u1, u2 ∈ A∗ such that w = u1vu2. The notation |K| stands for the
size of a set K or the length of a string K; the term |w|a refers to the number of occurrences of the symbol a
in the string w. For any w ∈ Σ∗ and any n ∈ N, wn denotes the n-fold concatenation of w, with w0 := λ.
Furthermore, we use · and the regular operations ∗ and + on sets and strings in the usual way.
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For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies h(vw) = h(v)h(w) for all
v, w ∈ A∗. Given morphisms g : A∗ → B∗ and g : B∗ → C∗ (for alphabets A, B, C), their composition
h ◦ g is defined by h ◦ g(w) := h(g(w)) for all w ∈ A∗.

A morphism h : A∗ → B∗ is said to be nonerasing if h(a) 6= λ for all a ∈ A. For any string w ∈ C∗,
where C ⊆ A and |w|a ≥ 1 for every a ∈ C, the morphism h : A∗ → B∗ is called a renaming (of w) if
h : C∗ → B∗ is injective and |h(a)| = 1 for every a ∈ C.

Let Σ be a (finite or infinite) alphabet of so-called terminal symbols (or: letters) and X an infinite set of
variables with Σ ∩ X = ∅. We normally assume {a, b, . . .} ⊆ Σ and {x1, x2, x3 . . .} ⊆ X . A pattern is
a string over Σ ∪X , a terminal-free pattern is a string over X and a word is a string over Σ. The set of all
patterns over Σ ∪X is denoted by PatΣ. For any pattern α, we refer to the set of variables in α as var(α),
and to the set of terminal symbols in α as symb(α).

A morphism σ : (Σ ∪X)∗ → (Σ ∪X)∗ is called terminal-preserving if σ(a) = a for every a ∈ Σ. A
terminal-preserving morphism σ : (Σ ∪X)∗ → Σ∗ is called a substitution.

The NE-pattern language LNE,Σ(α) of a pattern α ∈ PatΣ is given by

LNE,Σ(α) := {σ(α) | σ : (Σ ∪X)∗ → Σ∗ is a nonerasing substitution},

and the E-pattern language LE,Σ(α) of α is given by

LE,Σ(α) := {σ(α) | σ : (Σ ∪X)∗ → Σ∗ is a substitution}.

Let ePATΣ denote the class of all E-pattern languages over Σ, and ePATtf,Σ the class of all terminal-free
E-pattern languages over Σ. Let PAT?,Σ be a class of NE-pattern languages or a class of E-pattern languages
over Σ, and let Pat?,Σ be the corresponding class of generating patterns. If the correspondence is clear, we
write L(α) instead of LE,Σ(α) or LNE,Σ(α) for any α ∈ Pat?,Σ.

Let PAT?,Σ be a class of NE-pattern languages or a class of E-pattern languages over Σ. We say that a
pattern δ ∈ (Σ∪X)+ is PAT?,Σ-descriptive of a language L ⊆ Σ∗ if and only if L(δ) ∈ PAT?,Σ, L(δ) ⊇ L,
and there is no pattern α with L(α) ∈ PAT?,Σ satisfying L ⊆ L(α) ⊂ L(δ). Furthermore, DPAT?,Σ(L)
denotes the set of all patterns that are PAT?,Σ-descriptive of L.

Let L be a class of languages over some alphabet A. Then L is said to be indexable provided that there
exists an indexing (Li)i∈N of languages Li such that, first, L = {Li | i ∈ N} and, second, there exists a
total computable function χ which uniformly decides the membership problem for (Li)i∈N – i. e., for every
w ∈ A∗ and for every i ∈ N, χ(w, i) = 1 if and only if w ∈ Li . In this case, we call L = (Li)i∈N an indexed
family (of recursive languages). Of course, in this notation for an indexed family (which conforms with the
use in the literature) the equality symbol “=” does not refer to an equality in the usual sense, but is merely a
symbol indicating that L contains all languages in (Li)i∈N and vice versa.

2.2 Preliminary Results
Obviously, the definition of a descriptive pattern is based on the inclusion of pattern languages, which is an
undecidable problem for both the full class of NE-pattern languages and the full class of E-pattern languages
(cf. Jiang et al. (1995), Freydenberger and Reidenbach (2010)). A significant part of our subsequent technical
considerations, however, is restricted to terminal-free E-pattern languages, where the inclusion problem is
known to be decidable. This directly results from the following characterisation:

Theorem 1 (Jiang et al. (1994)) Let |Σ| ≥ 2. For every α, β ∈ X+, LE,Σ(α) ⊆ LE,Σ(β) holds if and only
if there is a morphism φ : X∗ → X∗ with φ(β) = α.

Unfortunately, this problem is NP-complete:

Theorem 2 (Ehrenfeucht and Rozenberg (1979)) Let Σ be an alphabet with |Σ| ≥ 2. Then the inclusion
problem for ePATtf,Σ is NP-complete.

On the other hand, in conjunction with Reidenbach and Schneider (2009), a recent result by Holub (2009)
demonstrates that the equivalence problem can be decided in polynomial time:

Theorem 3 There is a polynomial-time algorithm deciding, for any pair of terminal-free patterns α, β and
for any alphabet Σ with |Σ| ≥ 2, on whether LE,Σ(α) = LE,Σ(β).

As shown by Freydenberger and Reidenbach (2009), not every language has an ePATtf,Σ- or an ePATΣ-
descriptive pattern:

Theorem 4 There is an infinite sequence (βn)n≥0 over X+ such that, for every alphabet Σ with |Σ| ≥ 2,
DePATtf,Σ(LΣ) = DePATΣ(LΣ) = ∅ holds for the language LΣ :=

⋃
n≥0 LE,Σ(βn).
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Note that LΣ is an infinite language (and, in fact, an infinite union of languages from ePATtf,Σ). In contrast
to this, Jiang et al. (1994) shows that every finite language has an ePATΣ-descriptive pattern. This is also
true when considering ePATtf,Σ-descriptive patterns:

Proposition 5 For every Σ with |Σ| ≥ 2 and every finite nonempty S ∈ FINΣ, DePATtf,Σ(S) 6= ∅, and a
δ ∈ DePATtf,Σ(S) can be effectively computed.

While Proposition 5 proves the existence of an ePATtf,Σ-descriptive pattern for every finite nonempty set,
its proof makes use of a procedure that computes a descriptive pattern in a costly manner, since it solves
the NP-complete inclusion problem (cf. Theorem 2) for an exponential number of patterns. Indeed, there is
probably no algorithm that solves this problem in polynomial time:

Theorem 6 Let Σ be an alphabet with |Σ| ≥ 2. If P 6= NP, then there is no polynomial-time algorithm
computing, for any finite set S of words, a pattern that is ePATΣ-descriptive of S.

Theorem 6 addresses a problem left open by Jiang et al. (1994), and it provides a result that is stronger than
the corresponding statement by Angluin (1980a) on NE-descriptive patterns. Since Theorem 6 can be proved
using terminal-free patterns only, we can strengthen the corresponding result as follows:

Corollary 7 Let Σ be an alphabet with |Σ| ≥ 2. If P 6= NP, then there is no polynomial-time algorithm
computing, for any finite set S of words, a pattern that is ePATtf,Σ-descriptive of S.

3 Inferring Descriptive Generalisations
In the present section, we formally introduce our notion of inferring descriptive generalisations, establish
some of its basic properties (mainly by characterising, for any class of pattern languages determining the
set of valid hypotheses, those indexed families that can be generalised in our model) and, finally, present a
much more general inference paradigm that captures the essence of our approach. If we wish to compare
Gold’s well-known model of language identification in the limit from positive data (cf. Gold (1967)) with our
model, then we refer to the former occasionally as LIM-TEXT. We use the same notation for the class of all
classes of languages that can be inferred in that model; the meaning of this term shall therefore follow from
the context.

3.1 The Inference Paradigm
We formalise our explanations on the model given in Section 1 as follows: For any alphabet Σ and any
nonempty language L ⊆ Σ∗, we call a total function t : N → Σ∗ a text of L if and only if it satisfies
{t(i) | i ∈ N} = L. Moreover, for every text t and every n ∈ N, tn encodes the first n values of t in a single
string, i. e. tn := t(1)∇ t(2)∇ t(3)∇ . . . ∇ t(n) with∇ 6∈ Σ; additionally, we define t[n] := {t(i) | i ≤ n}.
Finally, text(L) denotes the set of all (computable and non-computable, repetitive and non-repetitive) texts
of a language L.

Let L be a class of nonempty languages over an alphabet Σ, and let PAT?,Σ be a class of NE-pattern
languages or a class of E-pattern languages over Σ. Then L is PAT?,Σ-descriptively generalisable (or,
if PAT?,Σ is understood, (descriptively) generalisable for short) if and only if there exists a computable
function S : (Σ∪{∇})∗ → (Σ∪X)+ such that, for every L ∈ L and for every t ∈ text(L), S(tn) is defined
for every n ∈ N, and there is a δ ∈ (Σ ∪X)+ with δ ∈ DPAT?,Σ(L) and there is an m ∈ N with S(tn) = δ
for every n ≥ m. We call S a (generalisation) strategy and, for every n ∈ N, S(tn) a hypothesis of S. The
notation DGPAT?,Σ refers to the class of all classes of languages that are PAT?,Σ-descriptively generalisable.

Consequently, and as already mentioned in Section 1, we have an inference model where the class to
be inferred and the hypothesis space (we shall use this term in a rather informal manner for both the class
PAT?,Σ and any set Pat? of patterns satisfying PAT?,Σ = {LΣ(α) | α ∈ Pat?}) are entirely different
objects. We feel that this feature precisely reflects our motivation as outlined in Section 1, and it establishes
the difference of our approach to a number of related models.

3.2 Fundamental Insights into the Model
We now discuss some basic properties of descriptive generalisation without considering a specific class of
pattern languages determining the hypothesis space. At first glance, the definitions of descriptive generali-
sation and of the LIM-TEXT model are closely related, and our first observation states that they are indeed
equivalent if they are applied to any class of pattern languages:

Proposition 8 Let PAT?,Σ be a class of pattern languages. Then PAT?,Σ ∈ LIM-TEXT if and only if
PAT?,Σ ∈ DGPAT?,Σ .
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Proof: Directly from the definitions of LIM-TEXT and DGPAT?,Σ .

While descriptive generalisation and inductive inference from positive data, thus, seem to be very similar,
there are major differences between these two models. In fact, there are classes that can be descriptively
generalised, although neither the class nor the hypothesis space can be exactly inferred from positive data:

Proposition 9 There exists a class L of languages and a class PAT?,Σ of pattern languages satisfying L /∈
LIM-TEXT, PAT?,Σ /∈ LIM-TEXT, and L ∈ DGPAT?,Σ .

Proof: The statement follows from our Corollaries 26 and 31 in Section 4 and the fact that ePATtf,Σ /∈
LIM-TEXT for |Σ| = 2 (cf. Reidenbach (2006)).

Since the definition of descriptive generalisation allows any class of pattern languages to be chosen as a
hypothesis space, we can even devise a maximally powerful (yet utterly useless) generalisation strategy:

Proposition 10 Let Σ be an alphabet. There exists a class PAT?,Σ of pattern languages such that every
class L of languages over Σ satisfies L ∈ DGPAT?,Σ .

Proof: Let PAT?,Σ := {LE,Σ(x1)}. Since x1 is PAT?,Σ-descriptive of every language L ⊆ Σ∗, a strategy
S that constantly outputs x1 generalises L.

Obviously, the substantial gap between the LIM-TEXT model and descriptive generalisation illustrated
by Proposition 10 is based on a proof that uses a trivial notion of descriptiveness. In Section 4, we shall
demonstrate that there are similarly deep differences between both models if a natural and nontrivial class of
pattern languages, namely ePATtf,Σ, is used as admissible hypotheses for the generalisation process.

The main result of the present section is the following characterisation of descriptively generalisable in-
dexed families of recursive languages. While our model as well as our studies in Section 4 consider descrip-
tive generalisations of arbitrary classes of languages, this restriction facilitates an interesting comparison of
our result to Angluin’s characterisation of those indexed families that are inferrable in the LIM-TEXT model
(see Angluin (1980b)). It is also worth noting that the subsequent argument cannot be based on strong insights
into the descriptiveness of patterns, since we deal with arbitrary classes of pattern languages.

Theorem 11 Let Σ be an alphabet, let L = (Li)i∈N be an indexed family of nonempty recursive languages
over Σ, and let PAT?,Σ be a class of pattern languages. L = (Li)i∈N ∈ DGPAT?,Σ if and only if there are
effective procedures d and f satisfying the following conditions:

(i) For every i ∈ N, there exists a δd(i) ∈ DPAT?,Σ(Li) such that d enumerates a sequence of patterns
di,0, di,1, di,2, . . . satisfying, for all but finitely many j ∈ N, di,j = δd(i).

(ii) For every i ∈ N, f enumerates a finite set Fi ⊆ Li such that, for every j ∈ N with Fi ⊆ Lj , if
δd(i) /∈ DPAT?,Σ(Lj), then there is a w ∈ Lj with w /∈ Li.

Proof: We begin with the if direction. In our proof, F (m)
i refers to the subset of Fi that is enumerated by f

in m ∈ N steps of the computation.
We define a generalisation strategy S as follows: For any text t and for any m ∈ N, when given tm as

an input, S outputs the pattern di,m, where i ∈ N is the smallest index satisfying: (a) t[m] ⊆ Li and (b)
F

(m)
i ⊆ t[m]. If no such i exists, then S outputs d0,0.

Since L = (Li)i∈N is an indexed family, which means that the membership problem is uniformly decid-
able for all i and for all w ∈ Σ∗, and d and f are effective, it is obvious that S is computable and defined for
every input tm.

We now demonstrate that S PAT?,Σ-descriptively generalises L = (Li)i∈N if (i) and (ii) are satisfied.
Thus, we choose an arbitrary n ∈ N and an arbitrary text t of Ln, and we show that S, when reading t,
converges to a pattern that is PAT?,Σ-descriptive of Ln. Before we start our actual reasoning, we determine a
value m0 ∈ N such that a number of vital parameters for the computation of S(tm0) have already stabilised:
Let m1 ∈ N be sufficiently large such that, for every k ∈ N with k ≤ n and Lk 6⊇ Ln, t[m1] contains a
word w satisfying w /∈ Lk. The value m1 must exists since Lk 6⊇ Ln and t is a text of Ln. Let m2 ∈ N be
sufficiently large such that, for every k ∈ N with k ≤ n, dk,m = δd(k) for every m ≥ m2. The value m2

must exists due to (i). Let m3 ∈ N be sufficiently large such that, for every k ∈ N with k ≤ n, F (m3)
k = Fk.

The value m3 must exist since, according to (ii), Fk is finite. Let m4 ∈ N be sufficiently large such that
Fn ⊆ t[m4]. The value m4 must exist since t is a text of Ln and, according to (ii), Fn ⊆ Ln. Then
m0 := max{m1,m2,m3,m4, n}.

Referring to these definitions, our proof of the if direction is based on the following Claims:

Claim 1. For every m ≥ m0, n satisfies t[m] ⊆ Ln, and F (m)
n ⊆ t[m].
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Proof (Claim 1). The first part of the statement holds since t is a text of Ln; the second part holds because of
m ≥ m0 ≥ m4. (Claim 1)

Claim 2. For every m ≥ m0, S(tm) ∈ DPAT?,Σ(Ln).

Proof (Claim 2). Let S(tm) = dk,m. By definition, S outputs the pattern dk,m for the smallest index k ≤ m
satisfying conditions (a) and (b), or it outputs the auxiliary hypothesis d0,0 if such a k does not exist. Due to
Claim 1, and since m ≥ m0, we know that there exists at least one index (namely n) satisfying (a) and (b)
for tm. Thus, m ≥ m0 ≥ n implies that S does not choose to output its auxiliary hypothesis. Therefore, the
following statements hold true for k: (1) k ≤ n (since S outputs dk,m for the smallest k satisfying conditions
(a) and (b) of the definition of S); (2) dk,m = δd(k) (because ofm ≥ m0 ≥ m2 in conjunction with statement
(1)); (3) t[m] ⊆ Lk (because of condition (a)); (4) Fk ⊆ t[m] ⊆ Ln (because of m ≥ m0 ≥ m3 in
conjunction with statement (1), and due to condition (b)).

Now assume to the contrary that S(tm) = dk,m /∈ DPAT?,Σ(Ln). Due to statement (2), this means that
δd(k) /∈ DPAT?,Σ(Ln). Then statement (4) and condition (ii) of the Theorem imply that there exists a word
w ∈ Ln \ Lk which, due to m ≥ m0 ≥ m1 in conjunction with statement (1), satisfies w ∈ t[m]. Hence,
t[m] 6⊆ Lk. This contradicts statement (3). (Claim 2)

Claim 3. There is a pattern δ and an m′ ≥ m0 such that, for every m ≥ m′, S(tm) = δ.

Proof (Claim 3). Due to statement (1) in the proof of Claim 2 andm ≥ m0 ≥ m2, there is only a finite number
of possible hypotheses – namely δd(0), δd(1), . . . , δd(n) – that S can output when reading tm. Therefore, it is
sufficient to show that a hypothesis, once it has been discarded, is not chosen by S anymore. More precisely,
we prove that if, for an l0 ≥ m, S(tl0) = δd(k) and S(tl0+1) 6= δd(k), then, for every l ≥ l0 + 1, there exists
a k′ 6= k with S(tl) = δd(k′).

Since l0 ≥ m ≥ m3, S(tl0) = δd(k) implies (A) t[l0] ⊆ Lk and (B) Fk ⊆ t[l0]. By definition,
t[l0 + 1] ⊇ t[l0], and therefore (B) is satisfied for tl0+1, too. Thus, the only event that can trigger a change
of the hypothesis when extending tl0 to tl0+1 is t[l0 + 1] 6⊆ Lk; this implies M 6⊆ Lk for all supersets M of
t[l0 + 1]. Hence, for every l ≥ l0+1, there is a k′ 6= k with S(tl) = δd(k′). (Claim 3)

To summarise, Claim 3 shows that S converges when reading t to a pattern δ, and Claim 2 demonstrates that
δ is PAT?,Σ-descriptive of Ln. This concludes the proof of the if direction.

We continue with the only if direction. Hence, let S be a computable generalisation strategy that PAT?,Σ-
descriptively generalises L = (Li)i∈N, i. e., for every i and for every text t of Li, S converges to a pattern
that is PAT?,Σ-descriptive of Li. We show that this implies the existence of effective procedures d and f
satisfying conditions (i) and (ii).

Since L = (Li)i∈N is an indexed family, there is an effective procedure enumerating, for every i ∈ N, all
words wi,0, wi,1, wi,2, . . . in Li. Furthermore, we can use this to define a second effective procedure which
enumerates, for every i ∈ N, all finite sequences si,0, si,1, si,2, . . . of words in Li. Note that each sequence
si,j , j ∈ N, may contain repetitions of words. Furthermore, if Li is finite, we can nevertheless easily make
sure that the output of the above procedures is infinite for every i.

We now give a procedure that defines the behaviour of d and f :

Procedure SIM S
Let i ∈ N, and let wi,0, wi,1, wi,2, . . . and si,0, si,1, si,2, . . . be as given above. Go to Stage 0.

Stage 0. Define t0 := wi,0, Fi := {wi,0}. Define x := 0 and di,x := S(t0). Go to Stage 1.

Stage n (n ≥ 1). For every j = 0, 1, 2, . . . proceed as follows: Consider si,j = (ŵj,0, ŵj,1, . . . , ŵj,y),
y ∈ N, and define t′j := ŵj,0 ∇ ŵj,1 ∇ . . . ∇ ŵj,y . Define x := x + 1 and di,x = S(tn−1 ∇ t′j). If
S(tn−1 ∇ t′j) 6= S(tn−1), then define tn := tn−1 ∇ t′j ∇ wi,n, Fi := Fi ∪ {ŵj,0, ŵj,1, . . . , ŵj,y, wi,n}, and
go to Stage n+ 1.

Since S and the procedures enumerating the wi,j and si,j , i, j ∈ N, are computable, the same holds
for SIM S. Consequently, effective procedures d and f which, for all i ∈ N, uniformly produce sequences
di,0, di,1, di,2, . . . and enumerate Fi, respectively, can be directly derived from SIM S.

We now show that d and f satisfy conditions (i) and (ii). Our corresponding reasoning makes use of the
following fact:

Claim 4. For every i ∈ N there exists an n0 such that procedure SIM S, when given input i, enters Stage n0,
but it does not enter Stage n0 + 1.
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Proof (Claim 4). Assume to the contrary that procedure SIM S enters an infinite number of stages. This
implies that S does not converge to a fixed pattern, since SIM S goes to the next stage if and only if S
changes its hypothesis for the given input. However, since all considered words are contained in Li, each
transition from Stage n to Stage n + 1 adds the word wi,n to tn, and {wi,j | j ∈ N} = Li, the string
limn→∞ tn is an encoding of a text t of Li. Since S PAT?,Σ-descriptively generalises L = (Li)i∈N, this
means that S, when reading t, must converge to a pattern. This is a contradiction. (Claim 4)

By definition, for every i ∈ N, SIM S produces an infinite sequence of patterns. It outputs a pattern di,x+1

that differs from di,x only if it moves from one stage to another. Thus, due to Claim 4 and for the cor-
responding x0 ∈ N, the sequence of patterns di,x0 , di,x0+1, di,x0+2, . . . produced in Stage n0 satisfies, for
every j ∈ N, di,x0+j = di,x0 . Furthermore, due to fact that the constructed input is a text of Li, S needs to
converge to a PAT?,Σ-descriptive pattern of Li. This implies that di,x0 = δd(i) for a δd(i) ∈ DPAT?,Σ(Li).
Consequently, the sequence of patterns di,0, di,1, di,2, . . . satisfies condition (i).

SIM S adds a finite number of words to Fi if and only if it moves to the next stage. Hence, Claim 4
shows that each Fi is finite. Now assume to the contrary that, for an i ∈ N, Fi does not satisfy condition (ii),
i. e., there exists a j ∈ N with Fi ⊆ Lj , δd(i) /∈ DPAT?,Σ(Lj) and Lj ⊆ Li. Let t<j> be an arbitrary text of
Lj . Since Fi ⊆ Lj and tn0−1 encodes the words in Fi, for every m ∈ N, tn0−1 ∇ tm<j> is an encoding of
initial values of a text of Lj . Thus, for m → ∞, S must converge when reading tn0−1 ∇ tm<j> to a pattern
that is PAT?,Σ-descriptive of Lj . According to Claim 4, when tn0−1 is continued with the encoding of any
finite sequence of words from Li, SIM S does not leave Stage n0. Since Lj ⊆ Li, this implies that SIM S
does not leave Stage n0 for tn0−1 being continued with the encoding of any finite sequence of initial values
of t<j>. Therefore S converges, when given tn0−1 ∇ tm<j> for m = 0, 1, 2, . . ., by definition to δd(i). This
contradicts δd(i) /∈ DPAT?,Σ(Lj). Consequently, Fi satisfies condition (ii), and this concludes the proof of
the only if direction.

Hence, L = (Li)i∈N is PAT?,Σ-descriptively generalisable if and only if there are effective procedures d
and f satisfying conditions (i) and (ii).

As briefly mentioned above, Theorem 11 shows natural connections to the seminal characterisation of
learnable indexed families given by Angluin (1980b), and therefore it is not surprising that some elements of
our proof do not need to differ from hers. Most of these similarities result from the fact that each successful
inductive inference process requires the existence of so-called locking sequences (see Lange et al. (2008)
for a detailed discussion), and this is reflected by Angluin’s telltale Ti and our comparable concept Fi.
Nevertheless, there are crucial differences between the two characterisations. First, we need to define an
enumeration of an appropriate subset of our hypothesis space (this is done by the procedure d), whereas this
is automatically given in Angluin’s model. In this context, it is important to note that we have to attune
the set Fi to the pattern δd(i), i ∈ N, which leads to d and f being defined by the same procedure SIM S.
Second, while Angluin’s Ti must, for every j with Lj ⊂ Li, contain a word from Li \ Lj , our equivalent
Fi only needs to do so if δd(i) is not an acceptable hypothesis for Lj . This fits with the requirement of
inductive inference from positive examples to distinguish between all languages Li and Lj with Li 6= Lj ,
whereas descriptive generalisation only has to distinguish between some of them, and this requisite might be
asymmetric, i. e., a strategy S might have to discover that a text of a language Li is not a text of a language
Lj , but it might not need to figure out that a text of Lj is not a text of Li. The explanation of why descriptive
generalisation, in general, is more powerful than inductive inference from positive data directly follows from
this observation; further considerations on this topic are given in Section 3.3. Thirdly, and finally, the strategy
S we deploy in our proof is, in a sense, not optimal, as it might discard a correct hypothesis – i. e. pattern
δd(j) that incidentally is descriptive of the language Li the text of which is read – simply because Li contains
a word that is not contained in Lj .

Our generic strategy S of course is not very efficient; furthermore, it has the bothersome property de-
scribed above. However, it is worth mentioning that S does not test whether the given words are contained in
the language of the hypothesis pattern, and it does not check the inclusion of pattern languages, either. Thus,
it circumvents two decision problems that, for many natural classes of pattern languages, are known to be
NP-complete or even undecidable (see, e. g., Angluin (1980a) and Freydenberger and Reidenbach (2010)),
although these decision problems are essential elements of the definition of descriptiveness. Instead, S infers
descriptive patterns purely based on membership tests for the languages in the indexed family. Thus, if in-
dexed families with a fast membership test are to be generalised, then our strategy raises hope that it might be
possible to do this efficiently in spite of using a hypothesis space with an NP-complete membership test. On
the other hand, it might be difficult to find rich classes of pattern languages where the procedure d introduced
by Theorem 11 is efficient (even though it should normally be possible to devise a d that, for every i ∈ N,
directly outputs the pattern δd(i) instead of enumerating the sequence di,j). This expectation is substantiated
by Theorem 4.2 in Angluin (1980a) and our Theorem 6 and Corollary 7 given in Section 2.
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3.3 A More General View
While an application of Theorem 11 might require profound knowledge on the descriptiveness of patterns,
a closer look confirms our above remark that the actual characterisation and its proof do not at all. More
precisely, neither the Theorem nor our reasoning deal with the properties of the descriptive patterns δd(i),
i ∈ N, but they merely make use of a notion of the validity of a hypothesis for a given language, i. e., a
hypothesis is acceptable for a language if it is descriptive, but we do not check for descriptiveness. This view
is quite convenient to study the difference between descriptive generalisation and inductive inference from
positive data. In the LIM-TEXT model when applied to indexed families, a hypothesis i – i. e., the index of
the language Li – is valid for a language Lj , j 6= i, if and only if the hypothesis j is valid for the language
Li (if and only if Li = Lj). In our model, this symmetry does not necessarily exist, as demonstrated by the
following example:

Example 12 Let Σ := {a, b}. Let L1 := {a b a b a, b a b a b} and L2 := {a b a b a, b a b a b, a b a a b a}.
We state without proof that δ1 := x1 a b a bx2 is ePATΣ-descriptive ofL1 and δ2 := x1x2x1x2x1 is ePATΣ-
descriptive of L2. While δ2 is also ePATΣ-descriptive of L1, δ1 is not ePATΣ-descriptive of L2. Hence, a
strategy S that ePATΣ-descriptively generalises a class including L1 and L2 can output δ1 or δ2 when
reading a text for L1, but it must not output δ1 when reading a text for L2.

Referring to this phenomenon and restricted to indexed families, we can now give a much more general model
of inference than the one of descriptive generalisation, and we can still characterise those indexed families
that can be inferred according to this model in exactly the same way as we have done in Theorem 11. Hence,
let L = (Li)i∈N be an indexed family. Furthermore, for any i ∈ N, let HYP be a function that maps i to
a subset of N that consists of all valid hypotheses for Li. Here it is important to note that the numbers in
HYP(i) do normally not refer to indices of the indexed family L = (Li)i∈N; e. g., in our model of descriptive
generalisation they would stand for indices in an arbitrary enumeration of a set of patterns. We then say that
L = (Li)i∈N is inductively inferrable with hypotheses validity relation HYP if and only if there exists a
computable function S : (Σ ∪ {∇})∗ → N such that, for every i ∈ N and for every t ∈ text(Li), S(tn) is
defined for every n ∈ N and there is a j ∈ HYP(i) and there is an m ∈ N with S(tn) = j for every n ≥ m.

Our notion of descriptive generalisation demonstrates that there are natural instances of the model of
inductive inference with hypotheses validity relation HYP. Nevertheless, to the best of our knowledge, its
properties have not been explicitly studied so far.

As announced above, we now rephrase Theorem 11 so that it characterises those indexed families that are
inductively inferrable with hypotheses validity relation HYP:

Theorem 13 Let Σ be an alphabet, let L = (Li)i∈N be an indexed family of nonempty languages over Σ,
and let HYP : N → P(N) be a function. L = (Li)i∈N is inductively inferrable with hypotheses validity
relation HYP if and only if there are effective procedures h and f satisfying the following conditions:

(i) For every i ∈ N, there exists a ηi ∈ HYP(i) such that h enumerates a sequence of natural numbers
i0, i1, i2, . . . satisfying, for all but finitely many k ∈ N, ik = ηi.

(ii) For every i ∈ N, f enumerates a finite set Fi ⊆ Li such that, for every j ∈ N with Fi ⊆ Lj , if
ηi /∈ HYP(j), then there is a w ∈ Lj with w /∈ Li.

Proof: Minor and straightforward editing of the proof of Theorem 11 – mainly substituting h for d, ik for
di,k, ηi for δd(i), and HYP(i) for DPAT?,Σ(Li) – turns it into a reasoning suitable for Theorem 13.

To conclude this section on basic properties of our model, we wish to mention that descriptive generalisa-
tion can alternatively be interpreted as inductive inference of classes of pattern languages from partial texts.
Hence, we can understand any language Li as a tool to define texts that do not contain all words in L(δd(i)),
but nevertheless can be used to infer δd(i). Within the scope of the present paper, we do not explicitly discuss
such a view, but we expect that it might be a worthwhile topic for further studies. We anticipate that its
analysis might involve substantial conceptual challenges that cannot be solved using established insights into
related approaches (see Fulk and Jain (1996)).

4 Inferring ePATtf,Σ-Descriptive Patterns
We now study our model for a fixed hypothesis space, namely the class ePATtf,Σ. The decidability of the
inclusion problem for this class (see Theorem 1) allows us to develop a set of powerful tools.

This section is divided into three parts. In the first part, we consider some questions on the existence of
ePATtf,Σ-descriptive patterns for various classes of languages and develop a set of tools in order to simplify
proofs on the existence and nonexistence of ePATtf,Σ-descriptive patterns.

The second part deals with a generalisation strategy that is based on the procedure that is described in
Proposition 5, which we deem so natural that we call it the canonical strategy Canon for ePATtf,Σ-descriptive
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generalisations. Most importantly, we give a characterisation of the class T SLΣ of languages that can be
descriptively generalised with Canon.

In the final part of this section, we examine the relationship of various classes of languages to T SLΣ in
order to gain further insights into DGePATtf,Σ and the power of Canon.

4.1 Basic tools
Before we proceed to an examination of ePATtf,Σ-descriptive generalisation in the next part of this section,
we develop some tools and techniques that simplify the work with ePATtf,Σ-descriptive patterns, and gather
some results on the existence and nonexistence of such patterns for some classes of languages. We begin with
the following result:

Lemma 14 Let Σ be an alphabet with |Σ| ≥ 2, and let L1, L2 ⊆ Σ∗ with L1 ⊇ L2. If there is a δ ∈
DePATtf,Σ(L2) with LE,Σ(δ) ⊇ L1, then δ ∈ DePATtf,Σ(L1).

This observation might seem to be elementary, but together with Lemma 17, it forms the fundament of the
proof of almost every result in this section. The technical base of that Lemma derives from a phenomenon
that often arises when dealing with ePATtf,Σ-descriptive patterns. We consider the following example:

Example 15 Let Σ := {a, b} and let L1 := {a2}, L2 := {(a b1 a a b2 a . . . a bn a)2 | n ≥ 2}, and
L3 := LE,Σ(x2

1) \ {a2, b2}. It is easy to see that all three languages are included in LE,Σ(x2
1). However, in

addition to this, for every α ∈ X+ with LE,Σ(α) ⊇ Li (with 1 ≤ i ≤ 3), LE,Σ(α) ⊇ LE,Σ(x2
1) holds as

well. For L1, this is obvious. For L2, assume that LE,Σ(α) ⊇ L2 for some α ∈ X+, let n := | var(α)| and
w = (a b1 a a b2 a . . . a bn a)2 ∈ L2, and choose any morphism φ with φ(α) = w. As w contains n distinct
factors of the form a b+ a, each occurring exactly twice, there must be an x ∈ var(α) that contains at least
one complete occurrence of such a segment, which implies |α|x ∈ {1, 2}. In both cases, we can construct a
morphism ψ with ψ(α) = x2

1 (by mapping x to x1 or x2
1 and erasing all other variables), which (according

to Theorem 1) leads to LE,Σ(α) ⊇ LE,Σ(x2
1). Finally, as L3 ⊃ L2, this also proves the claim for L3.

As LE,Σ(x2
1) and all three Li have exactly the same superpatterns, we are able to conclude that, for every

i ∈ {1, . . . , 3}, DePATtf,Σ(LE,Σ(x2
1)) = DePATtf,Σ(Li). Although the four languages might seem rather

different, they have exactly the same sets of ePATtf,Σ-descriptive patterns.

When generalising languages using ePATtf,Σ-descriptive patterns, every language has a certain superset that
is covered by every descriptive generalisation of this language, and cannot be avoided. In order to formalise
this line of reasoning (and in order to use this phenomenon), we introduce the set of superpatterns Super(L),
and the superpattern hulls S-HullΣ(L), which are defined as

Super(L) := {α ∈ X+ | for every w ∈ L, there is a morphism φ with φ(α) = w},

S-HullΣ(L) :=
⋂

α∈Super(L)

LE,Σ(α)

for all alphabets Σ,Σ′ and any language L ⊆ (Σ′)∗. Note that, by Theorem 1, for every pair of patterns
α, β ∈ X+ and every Σ with Σ ≥ 2, LE,Σ(α) ⊆ LE,Σ(β) if and only if β ∈ Super(LE,Σ(α)) if and only if
β ∈ Super({α}). This allows us to state the following corollary:

Corollary 16 Let Σ,Σ′ be alphabets with |Σ|, |Σ′| ≥ 2. Then DePATtf,Σ(L) = DePATtf,Σ’(L) for every
L ⊆ (Σ ∩ Σ′)∗.

Although Super(L) and S-HullΣ(L) might appear to be rather simple concepts, they can be used to establish
most of the results in this section. Using Lemma 14, we can develop one of our main tools:

Lemma 17 Let Σ be an alphabet with |Σ| ≥ 2. For everyL ⊆ Σ∗,DePATtf,Σ(L) = DePATtf,Σ(S-HullΣ(L)).

In a sense, S-HullΣ(L) captures the whole essence of L with respect to ePATtf,Σ-descriptive patterns, as
every ePATtf,Σ-descriptive generalisation of L is unable to distinguish between these two languages. This is
illustrated by the following example:

Example 18 Let |Σ| ≥ 2 and define L := LE,Σ(x2
1) ∪ LE,Σ(x3

1). Furthermore, let

δ1 := x2
1x

3
2, δ2 := x1x2x1x

2
2, δ3 := x1x

2
2x1x2, δ4 := x1x

3
2x1, δ5 := x1x

2
2x

2
1,

δ6 := x1x2x1x2x1, δ7 := x1x2x
2
1x2, δ8 := x2

1x
2
2x1, δ9 := x2

1x2x1x2, δ10 := x3
1x

2
2.

Recalling Theorem 1, it is easy to see that, for every α ∈ Super(L), there is a δi, 1 ≤ i ≤ 10, with
LE,Σ(α) ⊇ LE,Σ(δi) (as, for every α, there must be morphisms mapping α to both x2

1 and x3
1). By a
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convention common in the literature, all patterns are given in canonical form (cf. Reidenbach and Schneider
(2009)), where variables names are introduced in increasing lexicographic order.

This example illustrates two important phenomena. First, note that δi ∈ DePATtf,Σ(L) for 1 ≤ i ≤ 10,
and for every δ ∈ DePATtf,Σ(L), there is a δi with LE,Σ(δ) = LE,Σ(δi), but LE,Σ(δ) 6= LE,Σ(δj) for every
j 6= i. Thus, L has ten distinct ePATtf,Σ-descriptive patterns.

Second, the previous observation leads to S-HullΣ(L) =
⋂10
i=1 LE,Σ(δi). For every n ≥ 2, there are

j, k ≥ 0 with n = 2j+3k, and therefore, S-HullΣ(L) ⊇
⋃∞
n=2 LE,Σ(xn1 ). Thus, every ePATtf,Σ-descriptive

generalisation of L is unable to exclude any language LE,Σ(xn1 ) with n ≥ 2. In this sense, S-HullΣ(L)
provides information on the coarseness of all descriptive generalisations.

Observe that L in the previous example is a finite union of languages from ePATtf,Σ that has a descriptive
pattern, and recall that, according to Proposition 5, every finite set of words has an ePATtf,Σ-descriptive
pattern, while (by Theorem 4), there are infinite unions of languages from ePATtf,Σ that have no descriptive
pattern.

Using Lemma 17, we can extend Proposition 5 to show that not only every finite set of words, but every
finite union of languages from ePATtf,Σ has an ePATtf,Σ-descriptive pattern:

Proposition 19 Let Σ be an alphabet with |Σ| ≥ 2, letA = {α1, . . . , αn} ⊂ X+ and letL =
⋃n
i=1 LE,Σ(αi).

Then DePATtf,Σ(L) 6= ∅.

Basically, Example 18 and Proposition 19 are based on the fact that words in languages from ePATtf,Σ

and the generating patterns of these languages can often be used interchangeably by defining a morphism
that maps the words back to their generating pattern. We proceed to develop this approach into another
tool that allows us to make further statements on the (non-)existence of ePATtf,Σ-descriptive patterns. Let
ν : Σ∗ → X∗ an arbitrary renaming. We define V-HullΣ(L) :=

⋃
w∈L LE,Σ(ν(w)). Like S-HullΣ(L),

V-HullΣ(L) is equivalent to L with respect to Super and DePATtf,Σ :

Lemma 20 Let Σ be an alphabet, |Σ| ≥ 2. For every L over Σ, Super(L) = Super(V-HullΣ(L)), and
DePATtf,Σ(L) = DePATtf,Σ(V-HullΣ(L)).

This leads us to the following insight into the existence of ePATtf,Σ-descriptive patterns for infinite unions
of languages from ePATtf,Σ:

Proposition 21 Let |Σ| ≥ 2. Then there is a set of patternsA ⊂ {x1, x2}+ such that no pattern is ePATtf,Σ-
descriptive of

⋃
α∈A LE,Σ(α).

Thus, unlike in the case of finite unions of languages from ePATtf,Σ (cf. Proposition 19), even restricting
the number of variables in the generating patterns does not ensure that infinite unions of languages from
ePATtf,Σ have a descriptive pattern. The renaming ν that maps terminals to variables can also be used to
obtain the following technical result:

Lemma 22 Let Σ be an alphabet with |Σ| ≥ 2. For every nonempty language L ⊆ Σ∗, S-HullΣ(L) is
infinite.

This insight shall be used in Section 4.3. We conclude the present part of Section 4 with a short remark
illustrating that there are finite classes of languages which are not contained in DGePATtf,Σ :

Proposition 23 Let Σ be an alphabet, |Σ| ≥ 2. There exists a class L of nonempty languages over Σ with
|L| = 1 and L /∈ DGePATtf,Σ .

4.2 The Canonical Strategy and Telling Sets
According to Proposition 5, every finite set has a computable ePATtf,Σ-descriptive pattern. We consider it the
canonical strategy of descriptive inference on any text t of a given languageL to compute a descriptive pattern
of every initial segment tn, in the hope that the hypothesises will converge to a pattern that is descriptive of L.
As evidenced by the language L := LE,Σ(x2

1) ∪ LE,Σ(x3
1) (cf. Example 18), there are languages with more

than one descriptive pattern. Furthermore, this applies also to finite languages, as for the set S := {a2, b3}
(for arbitrary letters a, b ∈ Σ), DePATtf,Σ(S) = DePATtf,Σ(L) holds. Although S already contains all the
information that is needed to compute a descriptive generalisation of L, the six distinct patterns δ1 to δ6 from
Example 18 are all valid hypothesises. In order to allow our strategy to converge to one single hypothesis, we
impose a total and well-founded order<LLO onX+ and let our strategy return the<LLO-minimal hypothesis.

Let <LLO denote the length-lexicographic order1 on X+. Note that <LLO is total and does not contain
infinite decreasing chains. Thus, every set has exactly one element that is minimal with respect to <LLO.

1I. e., α <LLO β if |α| < |β|, or if |α| = |β|, and α precedes β in the lexicographic order.
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The strategy Canon : (Σ ∪ {∇})∗ → (Σ ∪X)+ is defined by, for every text t,

Canon(tn) := δ, where δ ∈ DePATtf,Σ(t[n]) and δ <LLO γ for every other γ ∈ DePATtf,Σ(t[n]).

The computability of Canon follows immediately from the proof of Proposition 5, as all that remains
is to sort the finite search space by <LLO. We say that Canon converges on a text t ∈ text(L) (of some
language L over some alphabet Σ) if there is a pattern α ∈ X+ with Canon(tn) = α for all but finitely many
values of n. If, in addition to this, α ∈ DePATtf,Σ(L), Canon is said to converge correctly on t. Now, when
considering the languages L and S given in the example above, for every text t ∈ text(L), there is an n ≥ 0
with S ⊆ t[n]. From this point on, Canon(t[n]) will return the pattern δ10 = x3

1x
2
2, as δ10 is an element of

(DePATtf,Σ(S)∩DePATtf,Σ(L)) and the <LLO-minimum of the canonical forms of the δi. This phenomenon
leads to the definition of what we call telling sets, which are of crucial importance for the study of descriptive
generalisability with the strategy Canon:

Definition 24 Let L ⊆ Σ∗. A finite set S ⊆ L is a telling set for L if (DePATtf,Σ(S) ∩DePATtf,Σ(L)) 6= ∅.

Note that telling sets have some similarity to the concept of telltales that is used in the model of learning in
the limit. For a comparison of telltales and telling sets, see our comments after Corollary 32.

Using Lemma 14, we are now able to show that the existence of a telling set is characteristic for the
correct convergence of Canon on any text:

Theorem 25 Let Σ an alphabet with |Σ| ≥ 2. For every language L ⊆ Σ∗, and every text t ∈ text(L),
Canon converges correctly on t if and only if L has a telling set.

In the final part of this section, we shall demonstrate that this is a strong result, by investigating the existence
and nonexistence of telling sets for various languages.

4.3 Examination of the Class T SLΣ

As stated by Theorem 25, the existence of telling sets is a strong sufficient criterion for ePATtf,Σ-descriptive
generalisability. Furthermore, generalisability of a class L ⊆ P(Σ∗) using Canon does not depend on the
properties of the whole class, but only on the existence of a telling set for every single language L ∈ L. Thus,
we consider the largest possible class that can be generalised by Canon and define T SLΣ := {L ⊆ Σ∗ |
L has a telling set}. Theorem 25 immediately leads to the following corollary:

Corollary 26 For every alphabet Σ with |Σ| ≥ 2, T SLΣ ∈ DGePATtf,Σ .

Thus, by examining T SLΣ, we gain insights into the power of Canon and of the whole model of descrip-
tive generalisation. Before we proceed to an examination of the relation of various classes of languages to
T SLΣ, we show that it is not required to choose Σ as small as possible, a result that is similar to Corollary 16,
which states that DePATtf,Σ(L) is largely independent of the choice of Σ. The same holds for telling sets:

Corollary 27 Let Σ,Σ′ be alphabets with |Σ|, |Σ′| ≥ 2. Then L ∈ T SLΣ if and only if L ∈ T SLΣ′ for
every L ⊆ (Σ ∩ Σ′).

This also implies that, for every Σ′ ⊇ Σ, T SLΣ′ ⊇ T SLΣ. We begin our examination of T SLΣ by
expanding finite languages without losing their telling set properties. The next result follows immediately
from Lemmas 14 and 17:

Lemma 28 Let Σ be an alphabet with |Σ| ≥ 2. Every nonempty S ∈ FINΣ is a telling set of S-HullΣ(S)
and of every L with S ⊆ L ⊆ S-HullΣ(S).

In addition to showing that FINΣ ⊆ T SLΣ, this result allows us (in conjunction with Lemma 22) to make
the following statement on the cardinality of T SLΣ:

Proposition 29 T SLΣ is uncountable for every alphabet Σ with |Σ| ≥ 2.

This is an uncommon property, as inference from positive data is normally considered for classes consisting
of countably many languages from some countable domain. Nonetheless, inferrability of uncountable classes
has been studied before, see Jain et al. (2009).

Next, we shall see that T SLΣ contains a rich and natural class of languages, the DTF0L languages.
A DTF0L language L over Σ is defined through a finite set of axioms w1, . . . , wm ∈ Σ∗ and a finite set
of morphisms φ1, . . . , φn : Σ∗ → Σ∗. Then L is the smallest language that satisfies wi ∈ L for every
i ∈ {1, . . . ,m}, and if w ∈ L, then φi(w) ∈ L for every i ∈ {1, . . . , n}. We denote the class of all DTF0L
languages over Σ by DTF0LΣ. Apart from FINΣ, the most prominent subclass of DTF0LΣ is the class
of D0L languages, where every language is defined through a single axiom and a single morphism (i. e.,
m = n = 1). The class D0L has been widely studied, for details, see Kari et al. (1997).
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Proposition 30 Let Σ be an alphabet with |Σ| ≥ 2. Then DTF0LΣ ⊆ T SLΣ.

Lemma 28 and Proposition 30 both imply that FINΣ ⊆ T SLΣ. Furthermore, Proposition 29 and Propo-
sition 30 both demonstrate that T SLΣ contains at least one infinite language, which leads to the following
observation:

Corollary 31 The class T SLΣ is superfinite for every alphabet Σ with |Σ| ≥ 2.

Together with Proposition 23, this allows us to describe the relation between DGePATtf,Σ and LIM-TEXT:

Corollary 32 Let Σ be an alphabet, |Σ| ≥ 2. Then DGePATtf,Σ and LIM-TEXT are incomparable.

We now briefly discuss the relation between telling sets and the notion of telltales. As already mentioned in
Section 3.2, according to Angluin (1980b), an indexed family L = (Li)i∈N of non-empty recursive languages
is in LIM-TEXT if and only if there exists an effective procedure which, for every j ≥ 0, enumerates a set
Tj such that Tj is finite, Tj ⊆ Lj , and there does not exist a j′ ≥ 0 with Tj ⊇ Lj′ ⊃ Lj . If there
exists a set Tj satisfying these conditions, it is called a telltale for Lj with respect to L = (Li)i∈N. Thus,
the concepts of telltales and telling sets are incomparable, as the former refers to a language and the class
of languages it is contained in, whereas the latter relates to a language and certain properties of the class
ePATtf,Σ. Nevertheless, for every language L in ePATtf,Σ, a set S is a telling set for L if and only if S
is a telltale for L with respect to ePATtf,Σ (for more details on the existence of telltales for languages in
ePATtf,Σ, see Reidenbach (2008)).

As Proposition 33 and Proposition 34 below show, Lemma 25 by Reidenbach (2008) and Lemma 7 by
Reidenbach (2006) on the existence and nonexistence of telltales lead to the corresponding results for telling
sets:

Proposition 33 Let Σ,Σ′ be alphabets, Σ′ ⊆ Σ and |Σ′| ≥ 3. For every α ∈ X+, LE,Σ′(α) has a telling
set.

On the other hand, it is impossible to encode the structure of comparatively simple patterns in their languages
with only two letters, which leads to the following negative result:

Proposition 34 Let Σ be an alphabet with |Σ| ≥ 2, and let a, b be two distinct letters from Σ. Then
LE,{a,b}(x2

1x
2
2x

2
3) /∈ T SLΣ.

In contrast to this, Lemma 20 can be used to show that restricting the number of variables in the patterns leads
to telling sets not only for languages from ePATtf,Σ, but also for their finite unions:

Proposition 35 Let α1, . . . , αn ∈ {x1, . . . , x|Σ|}+, and let L :=
⋃n
i=1 LE,Σ(αi). Then L ∈ T SLΣ.

Proposition 35 is especially interesting when compared to Proposition 21, which tells us that infinite unions
of languages from ePATtf,Σ might not only have no telling set, but not even a descriptive pattern.

Furthermore, we state that the infinite sequence (βn)n≥0 that is used in the definition of the languages
LΣ for the proof of Theorem 4 describes an infinite ascending chain of languages from ePATtf,Σ; i. e.,
LE,Σ(β) ⊂ LE,Σ(βn+1) for every n ≥ 0. Although the presence of such a chain in S-HullΣ(L) for a
language L does not necessarily imply emptiness of DePATtf,Σ(L), it is a sufficient criterion for L /∈ T SLΣ

(again, the proof relies on Lemma 17):

Lemma 36 Let Σ be an alphabet with |Σ| ≥ 2 and let L ⊆ Σ∗. If there is an infinite chain (βn)n≥0

over X+ with LE,Σ(βn) ⊆ S-HullΣ(L) for every n ≥ 0, LE,Σ(βn) ⊂ LE,Σ(βn+1) for every n ≥ 0, and⋃
n≥0 LE,Σ(βn) ⊇ L, then L has no telling set.

As a direct application of this result, we can prove that there are regular languages that have no telling set:

Proposition 37 For every alphabet Σ with |Σ| ≥ 2, there is a regular language L ⊆ Σ∗ with L /∈ T SLΣ.

Note that this language is also an example of a language L that has no telling set, although S-HullΣ(L) has a
telling set.
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Câmpeanu, C., Salomaa, K., & Yu, S. (2003). A formal study of practical regular expressions. International
Journal of Foundations of Computer Science, 14, 1007–1018.

Ehrenfeucht, A., & Rozenberg, G. (1979). Finding a homomorphism between two words is NP-complete.
Information Processing Letters, 9, 86–88.

Freydenberger, D., & Reidenbach, D. (2009). Existence and nonexistence of descriptive patterns. Proc. DLT
2009 (pp. 228–239).

Freydenberger, D., & Reidenbach, D. (2010). Bad news on decision problems for patterns. Information and
Computation, 208, 83–96.

Fulk, M., & Jain, S. (1996). Learning in the presence of inaccurate information. Theoretical Computer
Science, 161, 235–261.

Gold, E. (1967). Language identification in the limit. Information and Control, 10, 447–474.

Holub, S. (2009). Polynomial-time algorithm for fixed points of nontrivial morphisms. Discrete Mathematics,
309, 5069–5076.

Jain, S., & Kinber, E. (2008). Learning and extending sublanguages. Theoretical Computer Science, 397,
233–246.

Jain, S., Luo, Q., Semukhin, P., & Stephan, F. (2009). Uncountable automatic classes and learning. Proc.
ALT 2009 (pp. 293–307).

Jiang, T., Kinber, E., Salomaa, A., Salomaa, K., & Yu, S. (1994). Pattern languages with and without erasing.
International Journal of Computer Mathematics, 50, 147–163.

Jiang, T., Salomaa, A., Salomaa, K., & Yu, S. (1995). Decision problems for patterns. Journal of Computer
and System Sciences, 50, 53–63.

Kari, L., Rozenberg, G., & Salomaa, A. (1997). L systems. In G. Rozenberg and A. Salomaa (Eds.),
Handbook of Formal Languages, vol. 1, chapter 5, 253–328. Springer.

Kobayashi, S., & Yokomori, T. (1995). On approximately identifying concept classes in the limit. Proc. ALT
1995 (pp. 298–312).

Kobayashi, S., & Yokomori, T. (1997). Learning approximately regular languages with reversible languages.
Theoretical Computer Science, 174, 251–257.

Lange, S., Zeugmann, T., & Zilles, S. (2008). Learning indexed families of recursive languages from positive
data: A survey. Theoretical Computer Science, 397, 194–232.

Mukouchi, Y. (1994). Inductive inference of an approximate concept from positive data. Proc. ALT 1994 (pp.
484–499).

Reidenbach, D. (2006). A non-learnable class of E-pattern languages. Theoretical Computer Science, 350,
91–102.

Reidenbach, D. (2008). Discontinuities in pattern inference. Theoretical Computer Science, 397, 166–193.

Reidenbach, D., & Schneider, J. (2009). Morphically primitive words. Theoretical Computer Science, 410,
2148–2161.

Rogers, H. (1992). Theory of recursive functions and effective computability. Cambridge, MA: MIT Press.
3rd print.

Rozenberg, G., & Salomaa, A. (1997). Handbook of Formal Languages, vol. 1. Berlin: Springer.

206



Quantum Predictive Learning and
Communication Complexity with Single Input

Dmitry Gavinsky
NEC Laboratories America, Inc.
4 Independence Way, Suite 200

Princeton, NJ 08540, U.S.A.

Abstract
We define a new model of quantum learning that we call Predictive Quantum (PQ). This is a quantum
analogue of PAC , where during the testing phase the student is only required to answer a polynomial
number of testing queries.
We demonstrate a relational concept class that is efficiently learnable in PQ , while in any “rea-
sonable” classical model exponential amount of training data would be required. This is the first
unconditional separation between quantum and classical learning.
We show that our separation is the best possible in several ways; in particular, there is no analogous
result for a functional class, as well as for several weaker versions of quantum learning.
In order to demonstrate tightness of our separation we consider a special case of one-way commu-
nication that we call single-input mode, where Bob receives no input. Somewhat surprisingly, this
setting becomes nontrivial when relational communication tasks are considered. In particular, any
problem with two-sided input can be transformed into a single-input relational problem of equal
classical one-way cost. We show that the situation is different in the quantum case, where the same
transformation can make the communication complexity exponentially larger. This happens if and
only if the original problem has exponential gap between quantum and classical one-way communi-
cation costs. We believe that these auxiliary results might be of independent interest.

1 Introduction
In this paper we compare quantum and classical modes of computational learning and give the first uncondi-
tional exponential separation between the two.

Let X be a (finite) domain and Y be a set of possible labels. Let C be a concept class consisting of functions
` : X → Y , each ` ∈ C can be viewed as assignment of a label to every x ∈ X . The knowledge of X , Y
and C is shared between a teacher and a learner; the teacher also knows some target concept `0 ∈ C, unknown
to the learner. The learning process consists of two stages: the learning phase, followed by the testing phase.
In the learning phase, the teacher and the learner communicate in order to let the latter learn `0. In the testing
phase, the learner has to demonstrate that he has successfully learned `0: for example, an arbitrary x ∈ X may
be given to him, and he would have to respond with `0(x).

A learning model specifies the set of rules governing the learning and the testing phases. The teacher is, in
general, viewed as an adversary that obeys the model’s restrictions.

One of the most natural and widely used learning models is that of Probably Approximately Correct (PAC ),
defined by Valiant [V84]. In the learning phase of PAC a sequence of training examples

(x1, `0(x1)), . . . , (xk, `0(xk))
is sent by the teacher to the learner. The examples are independently chosen according to some distribution D
over the domain X .1 In the testing phase the learner is given a random x ∼ D and has to respond with `0(x).

1Several variations of PAC are studied in the literature, in particular there is a definition that allows “distribution-
specific” learning algorithms. In this paper we will always fix D to be the uniform distribution over X , as that is sufficient
for our purposes and simplifies the notation at the same time.
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Two error parameters are present in the definition of PAC : accuracy 1 − ε and confidence 1 − δ. We say
that learning was successful if in the testing phase the learner correctly labels a randomly chosen x ∼ D with
probability at least 1 − ε. A learning algorithm must be successful with probability at least 1 − δ, taken over
both algorithm’s randomness and the set of examples received during the learning phase.

We say that a concept class C is efficiently learnable in PAC if there exists an algorithm that runs in time
at most polylogarithmic in the domain size and polynomial in 1/ε and 1/δ, and learns any ` ∈ C. Note that
the running time of an algorithm is, trivially, an upper bound on the number of training examples that it uses
during the learning phase.

1.1 Previous work
In [BJ95] Bshouty and Jackson introduced a natural quantum analogue of PAC , which we denote here by
QAC . They gave an efficient algorithm that learns DNF formulas w.r.t. the uniform distribution from quantum
examples – this is currently not known to be possible from classical examples (even with a quantum learning
algorithm).

The question of whether quantum learning models are more efficient than the classical ones has been con-
sidered by Servedio and Gortler [SG04], who showed that the models PAC and QAC are equivalent from the
information-theoretic point of view. On the other hand, they showed that quantum models are computationally
more powerful than their classical analogues if certain cryptographic assumptions hold.

1.2 Our results
In the definition of a new learning model PQ (Predictive Quantum) we will generalize QAC in several ways.

First, we allow relational concept classes. Namely, the elements ` of C can be arbitrary subsets of X × Y ,
thus allowing multiple correct labellings for every x ∈ X . During the learning phase the learner receives pairs
(xi, yi), such that xi ∼ D and yi is a uniformly random element of

{
y
∣∣(xi, y) ∈ `0

}
. At the testing phase any

y satisfying (x, y) ∈ `0 is accepted as a correct answer to the query x.
Second, we classify all learning models as follows:

• We call standard a learning model where in the testing phase the learner outputs a final hypothesis, viewed
as a function h : X → Y . In the testing phase it is checked whether h(x) agrees well with the target
concept. The final hypothesis should be efficiently evaluatable (under the same notion of efficiency that
applies to the learning algorithms in the model).

• We say that a model is quasi-predictive if the learner has to answer queries in the testing phase. The
number of testing queries that will be asked is unknown during the learning phase.

• We call a model predictive if the learner should answer a single query in the testing phase.2

For example, the PAC model, as defined above, is predictive. If we would allow an arbitrary number of
testing queries, that would make it quasi-predictive. If we require that in the end of the learning phase the
learner produces a hypothesis h : X → Y , such that Prx∼D [h(x) = `(x)] ≥ 1− ε, that turns the model into
standard.

As long as the learning phase remains unchanged, standard learnability of a concept implies its quasi-
predictive learnability, which, in turn, implies predictive learnability. On the other hand, it is well known that
in any “reasonable” classical learning model, a predictive learning algorithm can be turned into a standard one
(this can be achieved by producing a final hypothesis consisting of a description of the answering subroutine,
all the data available after the learning phase, and a random string, if randomness is used by the answering
subroutine). Therefore, in the classical case the standard, the quasi-predictive, and the predictive modes of
learning are essentially equivalent; in particular, the above three definitions of PAC give rise to the same
family of efficiently learnable concept classes. We will see that the situation is different with quantum learning.

For the rest of the paper let n
def= dlog |X|e. Consider the following definition.

Definition 1 Let D be a distribution over X . We say that a hypothesis h : X → Y approximates a concept
` ∈ C w.r.t. D if

2Note that a concept class that is efficiently learnable by our definition of predictive learning is also efficiently learnable
in a version where polynomial number of testing queries are made. For notational convenience we will use the single-query
definition of predictive learnability.
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• Prx∼D [h(x) = `(x)] ≥ 2/3, when ` : X → Y is a function;

• Prx∼D [(x, h(x)) ∈ `] ≥ 2/3, when ` ⊆ X × Y is a relation.

A hypotheses class H is said to approximate C if for every ` ∈ C, H contains some h that approximates `.

Any standard algorithm that learns C with ε ≤ 1/3 must use a class of final hypotheses that approximates
C. An efficient algorithm can use a class of final hypotheses of size at most exponential in poly(n). As outlined
above, efficient learnability in any classical model implies efficient learnability in the corresponding standard
model, and therefore C is efficiently learnable in some classical model only if there exists H of size at most
2poly(n) that approximates C.

We call a concept class C unspeakable if any classH that approximates it should be of size at least 22Ω(n)
. In

particular, neither a classical algorithm nor a standard quantum algorithm can efficiently learn an unspeakable
concept class.

In this paper we demonstrate an efficient quantum predictive algorithm that learns an unspeakable rela-
tional concept class. Therefore, quantum predictive learnability does not imply quantum standard learnability.
On the other hand, we will show that no quasi-predictive quantum algorithm can efficiently learn an unspeak-
able concept class. We also show that efficient quantum learning of a functional unspeakable concept class is
impossible, and therefore the combination of relational concepts and quantum predictive mode of learning is
essential for learning an unspeakable class.

Following is a summary of our main results (cf. Theorem 7, Lemma 11, and Lemma 12).

Theorem 2 There exists a relational concept class that is unspeakable but can be efficiently learned in the
model of predictive quantum PAC .

A concept class C that witnesses the above theorem is given in Definition 6. Its construction has been
inspired by a communication problem due to Bar-Yossef, Jayram and Kerenidis [BJK04].

Theorem 3 Classical learning of an unspeakable concept class is not possible from less than exponential
amount of information from the teacher, even by a computationally unlimited learner.

Both standard and quasi-predictive learning of an unspeakable concept class is not possible from less than
exponential amount of quantum (w.l.g.) information from the teacher, even by a computationally unlimited
learner.

Predictive learning of an unspeakable functional concept class is not possible from less than exponential
amount of quantum (w.l.g.) information from the teacher, even by a computationally unlimited learner.

Two parts of Theorem 3 are proved by making connection to two “impossibility of separation” results in
communication complexity. One of them is due to Aaronson [A04], and the other is new and might be of
independent interest.

We will consider a special case of one-way communication, which will we call single-input mode, where
Bob receives no input. We show that, somewhat surprisingly, for any single-input communication task the
quantum and the classical one-way costs are asymptotically the same (the statement is trivial for functional
tasks, but the relational case is more involved). More details can be found in Section 4.2.

2 Definitions and more

For a ∈ N we denote [a] def= {1, . . . , a}. We view the elements of Za as integers {0, 1, , . . . , a− 1}, and
accordingly we define their ordering 0 < 1 < · · · < a− 1. For any i ∈ N and b ∈ Za, let i · b = ib be the i’th
power of b w.r.t. the group operation +.

We use subscripts to address individual bits of binary strings: for x ∈ {0, 1}n and i ∈ [n], xi stands for the
i’th bit of x.

Let D be the uniform distribution over X , recall Definition 1.

Definition 4 Let C be a concept class. We say that C is unspeakable if |C′| ∈ 22Ω(n)
holds for any C′ that

approximates C w.r.t. D.
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2.1 Quantum learning
In [SG04] the authors provide an excellent survey of quantum vs. classical learning. Below we sketch one
possible intuition behind the concepts considered in this work.3

Starting from PAC , how can we make it quantum? First, we can give the student ability to run any
computation that a quantum computer can perform efficiently (e.g., to decide membership in any language
from the complexity class BQP ). Second, we can let the training examples be quantum, i.e., the student
receives from the teacher quantum bits (qubits). In this paper we consider the situation when both the student
and the examples are quantum.

Information-theoretic consequences of “quantumness” stem from the facts that, on the one hand, quantum
states require exponential (in the number of qubits) amount of classical bits for their full description, while
on the other hand, the uncertainty principle dictates that given a quantum state only a (tiny) fraction of that
classical data can be accessed by an observer.4

Note also that computational impact of a student being quantum is not necessarily captured by the power of
BQP : As training examples are quantum, the student can apply quantum algorithms to quantum input, while
BQP only deals with situations when quantum algorithms are fed with classical input.

What can be viewed as a reasonable model of quantum training examples? Let the target concept be `0.
First, assume that `0 : X → Y is a Boolean function, then a quantum example shall look like

1√
|X|

∑
x∈X

|x, `0(x)〉 ,

where |·〉 denotes the corresponding basis state5 of the quantum register over n + 1 qubits. Note that the above
form of training examples corresponds to the uniform distribution of x ∈ X , since measuring the first n qubits
in the computational basis can return each possible x0 ∈ X with the same probability of 1/|X|.

Now, let `0 ⊆ X × Y be a relation. We need a quantum superposition over all possible pairs (x, y) ∈ `0.
Naturally, we want to choose the amplitudes such that every x0 still shows up with probability 1/|X|, and at
the same time, conditional on obtaining x′0, every element of

{
y
∣∣(x′0, y) ∈ `0

}
appears with equal probability.

It can be seen that the following quantum superposition satisfies the requirements:∑
(x,y)∈`0

1√
|X| ·

∣∣{y′∣∣(x, y′) ∈ `0
}∣∣ |x, y〉 .

This quantum state will be used in Definition 5 below to describe the training examples that our student will
receive from the teacher.

2.2 The model of predictive quantum learning
We will usually ignore normalization factors and global phases of quantum states.6 We define a predictive
quantum version of PAC , as follows.

Definition 5 In the PQ (Predictive Quantum) learning model, a learning algorithm can ask for arbitrarily
many copies of the state ∑

(x,y)∈`0

1√∣∣{y′∣∣(x, y′) ∈ `0
}∣∣ |x, y〉 ,

3This part is mostly meant to assist a reader whose familiarity with quantum computing is limited; analyzing the philo-
sophical foundations of quantum mechanics is beyond our scope.

4To visualize the uncertainty principle, consider a classical observer who wants to measure a quantum particle moving
with velocity v(t) and taking position x(t), as functions of time t. At the moment t0 it is possible to measure v(t0) with
high accuracy, but then x(t0) can only be determined very roughly; alternatively, it is possible to measure x(t0) with high
accuracy, but that leaves v(t0) with large uncertainty. The “quantum catch” here is that the uncertainty does not result
from any kind of “imperfection” in the measurement devices being used, but rather constitutes one of several fundamental
principles of quantum mechanics.

5This is Dirac’s “bra-ket” notation: Kets (|·〉) denote unit vectors corresponding to pure quantum states, and bras (〈·|)
stand for the complex conjugates of kets. Naturally,

˙
·
˛̨
·
¸

and |·〉〈·| are, respectively, the inner and the outer products of two
vector operands.

6That is, we allow arbitrary non-zero complex vectors to represent quantum states.
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where `0 ⊆ X × Y is a relational target concept. In the end of the learning process the algorithm receives an
element x ∈ X and should, with probability at least 5/6, output any y satisfying (x, y) ∈ `0.

A learning algorithm is efficient if its running time is at most polynomial in n
def
= dlog |X|e. A concept class

C is efficiently learnable in PQ if there exists an efficient algorithm that PQ-learns every ` ∈ C.

In the above definition the relative amplitudes of the pairs |x, y〉 in a training example are chosen such
that a projective measurement in the computational basis would result in a uniformly chosen x, and given x,
all elements of

{
y′
∣∣(x, y′) ∈ `0

}
are equally likely to come with it. Therefore, the model can be viewed as a

natural quantum generalization of the relational version of PAC , as discussed in the Introduction.
The fact that all quantum training examples are the same lets us get rid of the confidence parameter (δ)

in the definition of PQ (there is no such thing as “unlucky” sample of training examples). For simplicity, we
choose the required accuracy (ε) to always be 5/6. Note also that in the testing phase we want the learning
algorithm to give a correct answer to any x ∈ X with good probability (instead of just being able to cope with
a randomly chosen x). This further simplifies the definition and also makes our result stronger (as we construct
a PQ-algorithm, and do not state any lower bound against this model).

3 Concept class C
We define a concept class C that will be shown to be both unspeakable and efficiently PQ-learnable. Our
definition has been inspired by a communication problem considered in [BJK04].

Definition 6 Let N be prime. Every concept in the class C is represented by C ∈ {0, 1}N . The set of queries
is [N − 1], represented by binary strings of length n = dlog Ne. A pair (x, b) ∈ ZN ×{0, 1} is a valid answer
to query j w.r.t. C ∈ C if Cx ⊕ Cx+j = b.

We slightly abuse the notation by viewing each C ∈ C either as a binary string of length N or as a set{
(j, x, b)

∣∣(x, b) is a valid answer to j w.r.t. C
}

.

Theorem 7 The concept class C is unspeakable. On the other hand, C is efficiently learnable in PQ .

The two parts of the theorem will be proved in Sections 3.1 and 3.2, respectively. The key observation that
we use to efficiently learn C is the following (originating from [KW04]). Let a binary string x ∈ {0, 1}n be
represented as a quantum state |α(x)〉 =

∑
(−1)xi |i〉, where i ranges in [n]. Even though it is impossible to

recover individual bits of x by measuring |α(x)〉, there is something nontrivial about x that can be learned from
|α(x)〉. Namely, given any perfect matching M over [n], it is possible to measure |α(x)〉 in such a way that for
some (i, j) ∈ M the value of xi ⊕ xj would become known after the measurement. The quantum state |α(x)〉
fits in dlog ne qubits; on the other hand, it can be shown that the amount of classical information needed to
allow similar type of access to x is nΩ(1), and this is used to show that C is unspeakable.

3.1 Efficient PQ-learning of C
Our learner will need k PQ-examples in order to answer to the testing query with probability 1 − 1/2k, and
whenever an answer is given it is correct.7 Fix C ∈ C, then the training examples are of the form∣∣αC

〉 def=
∑

(j,x,i)∈C

|j, x, i〉 .

The learner measures the last register of each of the k instances of
∣∣αC

〉
in the basis {|0〉 + |1〉, |0〉 − |1〉}.

With probability 1 − 1/2k at least one measurement results in |0〉 − |1〉, then the learner keeps that copy and
abandons the rest (otherwise he gives up). Next, the learner measures the second register in the computational
basis, thus obtaining in the first two registers∑

(j,x0,i)∈C

(−1)i |j, x0〉 =
∑

j∈[N−1]

(−1)Cx0⊕Cx0+j |j, x0〉 =
∑

j∈[N−1]

(−1)Cx0+j |j, x0〉

7If we allow a slightly modified form of training examples, where i is represented through the amplitude asP
(j,x,i)∈C(−1)i |j, x〉, then it is possible to PQ-learn C exactly from one such example.
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for some x0 ∈ ZN . Then he performs the transformation |j, x0〉 → |j + x0, x0〉, and the state of the first
register becomes ∣∣αC

x0

〉 def=
∑

j∈[N−1]

(−1)Cx0+j |x0 + j〉 =
∑

k∈ZN\{x0}

(−1)Ck |k〉 .

At this point the learner is ready for the testing phase. Assume that a question q ∈ [N − 1] has been asked.
Define the following perfect matching over ZN \ {x0}:

mq
def=
{(

x0 + (2i + 1)q, x0 + (2i + 2)q
)∣∣∣∣0 ≤ i ≤ N − 3

2

}
.

Pairwise disjointness of the edges and the fact that x0 is isolated follow from primality of N . The learner
performs projective measurement of

∣∣αC
x0

〉
onto (N − 1)/2 subspaces, each spanned by a pair of vectors |a〉

and |b〉 where a and b are connected in mq (to make the measurement complete we add |x0〉〈x0| to it, but this
outcome never occurs).

Assume that the outcome of the last measurement corresponds to the edge (a, a + q) ∈ mq. Then the state
of the register that contained

∣∣αC
x0

〉
becomes either |a〉 + |a + q〉 or |a〉 − |a + q〉, the former corresponding

to Ca ⊕ Ca+q = 0 and the latter to Ca ⊕ Ca+q = 1. As the two states are orthogonal, the learner is able to
distinguish and, respectively, answer (a, 0) in the first case and (a, 1) in the second, and that is a correct answer.

All quantum operations involved in the algorithm can be performed efficiently.

3.2 C is unspeakable

Let us see that the concept class C is unspeakable. The following proof uses some ideas from [BJK04]
and [GKRW06].

Assume that C is approximated by a class D. Then there exists some h0 ∈ D that simultaneously approxi-
mates at least 2N

/
|D| elements of C, denote the set of those elements by C0.

Consider the answers that h0 gives to all possible queries q ∈ [N − 1]. Denote (xq, iq)
def= h0(q) and let

Q0
def=
{
q
∣∣(xq, iq) is a good answer to q w.r.t. at least 3/5’th of C0’s elements

}
.

Counting reveals that |Q0| ≥ N−1
6 .

Let eq
def= (xq, xq + q) and E0

def=
{
eq

∣∣q ∈ Q0

}
. Every edge eq corresponds to at most 2 different values of

q ∈ [N − 1], therefore |E0| ≥ N−1
12 . Consider a graph G0 over N nodes, whose edges are the elements of E0.

Observe that G0 contains at least
√

2 |E0| ≥
√

N−1
6 non-isolated vertices.

Let F0 ⊆ G0 be a forest consisting of a spanning tree for each connected component of G0. Then F0

contains at least
√

N−1
24 edges, denote them by E′

0. Let Q′
0 ⊆ Q0 be a subset of size |E′

0|, such that

E′
0 =

{
eq

∣∣q ∈ Q′
0

}
.

View the elements of C as binary strings of length N . Let us consider two probability distributions, one
corresponding to uniformly choosing C ∈ C and the other corresponding to uniformly choosing C ∈ C0 –
denote them by DC and DC

0 , respectively. Then

log
(
|C|
|C0|

)
= H

[
DC
]
−H

[
DC

0

]
,

where H [·] denotes the binary entropy.

For every eq = (a, b) put Iq
def= Ca ⊕Cb, and let J

def= (Iq)q∈Q′
0
. It is straightforward from the construction

of Q′
0 that if C ∼ DC then the collection

{
Iq

∣∣q ∈ Q′
0

}
consists of mutually independent unbiased Boolean

random variables, and therefore HDC [J ] = |Q′
0|.
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As H [C] = H [J ] + H
[
C
∣∣J] holds w.r.t. any distribution of C,

log
(
|C|
|C0|

)
= H

DC
[C]− H

DC
0

[C] = H
DC

[J ]− H
DC

0

[J ] + H
DC

[
C
∣∣J]− H

DC
0

[
C
∣∣J]

≥ H
DC

[J ]− H
DC

0

[J ] = |Q′
0| − H

DC
0

[J ]

≥ |Q′
0| −

∑
q∈Q′

0

H
DC

0

[Iq] =
∑

q∈Q′
0

(
1− H

DC
0

[Iq]

)
,

(1)

where the first inequality follows from the fact that HDC

[
C
∣∣J] = N − |Q′

0|, which is the maximum of
H
[
C
∣∣J] under any distribution of C.

From the definition of Q0 (and the fact that Q′
0 ⊆ Q0), we know that each of

{
Iq

∣∣q ∈ Q′
0

}
is at least

3/5-biased, therefore HDC
0

[Iq] ≤ 49
50 , and (1) leads to

log
(
|C|
|C0|

)
≥ |Q′

0|
50

=
|E′

0|
50

>

√
N

250
,

for sufficiently large N . According to our choice of h0,

|D| ≥ |C|
|C0|

∈ 2NΩ(1)
⊆ 22Ω(n)

,

which means that the class C is unspeakable.

4 Optimality of our separation
The model of PQ where we demonstrated learnability of C is computationally feasible. But in the definition of
PQ we have modified what is probably the most usual learning setting in several ways: Besides being quantum,
our algorithm is predictive; moreover, the concept class that we learn is a relational one. In this section we will
see that all these “enhancements” are essential in order to be able to learn an unspeakable class efficiently.

We already know that classical learning of an unspeakable class cannot be efficient. We will show that
exponential amount of training data is required in order to learn a functional unspeakable concept (Lemma 11),
as well as to learn any unspeakable concept in quasi-predictive setting (Lemma 12). The both results are estab-
lished through making a connection to one-way communication complexity: Our proof of Lemma 11 is based
on Aaronson’s [A04], and in order to prove Lemma 12 we establish a new fact about one-way communication
complexity that might be of independent interest (Theorem 9, Corollary 10).

4.1 Quantum and classical one-way communication complexity
The one-way model of communication complexity is defined as follows. Let P ⊆ X × Y ×Z be a (relational)
two-party communication problem. Input to P has the form (x, y) ∈ X × Y , in the beginning it is split
between two players: Alice receives x and Bob receives y. The goal is for Bob to produce z ∈ Z, such that
(x, y, z) ∈ P . The players cooperate to achieve it, namely Alice sends a message m to Bob, and he outputs
z ∈ Z based on the message m and his portion of input y.

Assume for convenience that both the length of y and the length of m are functions of the lengths of x, and
denote the latter by n = dlog |X|e. Both Alice and Bob are all-powerful computationally, and their goal is to
solve the problem using as short m as possible. There are two versions of this model that we are interested
in, namely quantum and classical. In the former the action of the players should obey the laws of quantum
mechanics, in particular the message m is quantum and its “length” is measured in qubits; in the latter the
message is classical and consists of bits. We let our protocols employ mixed strategies, i.e., shared randomness
is allowed.

For any ε we say that a protocol T solves P with error ε if Alice and Bob, who behave according to T ,
produce a correct answer to every input (x, y) ∈ X × Y with probability at least 1 − ε. For a distribution µ
over X × Y we say that T solves P with error ε w.r.t. µ if a correct answer is produced with probability at
least 1− ε when (x, y) ∼ µ. The ε-error communication cost of P is the smallest possible message length of
a protocol that solves P with error ε, and ε-error communication cost w.r.t. µ is defined similarly. We say that
the bounded-error cost of P is at most k if for any ε ∈ Ω (1) its ε-error cost is at most k.
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Denote by R1
ε (P ) (R1

µ,ε(P )) the classical one-way ε-error communication cost of P (w.r.t. µ), and by
R1 (P ) its bounded-error classical cost. Denote by Q1

ε (P ), Q1
µ,ε(P ) and Q1 (P ) the corresponding quantum

analogs.
An important special case of relational communication problems are functional problems (partial or total).

The following theorem follows readily from Theorem 6 of [A04]:

Theorem 8 [A04] For any functional two-party communication problem F : X × Y → Z, it holds that
R1 (F ) ∈ O

(
log(|Y |)Q1

ε(F ) logQ1
ε(F )

)
for any ε < 1/2− Ω (1).

4.2 One-way communication when Bob receives no input
In this section we present a new result in communication complexity, it will be used later to prove Lemma 12.

Consider a special case of one-way communication that we call single-input mode, where Bob receives no
input. Denote 0 def= {0}, and let P ⊆ X × 0× Z be a communication task where Alice receives x and sends a
single message m to Bob, who has to output z ∈ Z based on the message m alone.

This setting is not as trivial as it may appear at first glance.8 For instance, any communication problem with
two-sided input P ⊆ X × Y ×Z has a single-input analogue P ′ ⊆ X × 0×ZY , where Bob has to produce a
list of answers to the original P w.r.t. all y ∈ Y . Namely, let

P ′
µ,ε

def=
{

(x, 0, (zy)y∈Y )
∣∣∣∣ Pr

y∼µx

[(x, y, zy) ∈ P ] ≥ ε

}
,

where µ is a distribution on X × Y and µx is the marginal distribution of B when (A,B) ∼ µ and A = x.
Note that for any µ and ε ∈ Ω (1), R1 (P ′

µ,ε) ≤ R1 (P ), and on the other hand, by the Minimax theorem
R1 (P ) = sup

{
R1(P ′

µ,ε)
}

, where the supremum is taken w.r.t. all possible µ and ε ∈ Ω (1).
In other words, P ′

µ,ε is essentially as difficult to solve in the model of one-way classical communication
as P is. Somewhat surprisingly, the same is not true in the case of quantum communication. More generally,
below we show that for any single-input communication task the quantum and the classical one-way costs are
asymptotically the same. In particular, this means that Q1 (P ) can be exponentially smaller than Q1 (P ′

µ,ε) for
some ε ∈ Ω (1) – this happens if and only if the gap between Q1 (P ) and R1 (P ) is exponential (examples of
such P were given in [BJK04], [GKKRW07]).

Theorem 9 For any relational two-party communication problem P ⊆ X × 0 × Z, any distribution µ over
x ∈ X and any Ω (1) < ε < 1− Ω (1), it holds that R1

µ,ε(P ) ∈ O
(
Q1

µ,ε(P )
)
.

Corollary 10 For any P ⊆ X × 0× Z, it holds that R1 (P ) ∈ O
(
Q1(P )

)
.

Proof: By the Minimax theorem, for every ε there exists µ such that R1
ε (P ) = R1

µ,ε(P ).

If P is a function then Corollary 10 is a very trivial special case of Theorem 8. On the other hand, Corol-
lary 10 applies to the much more general case of relational problems, where a statement analogous to Theorem 8
provably does not hold.
Proof:(Theorem 9) Let W be a valid Q1

µ,ε-protocol of cost m for P , i.e., W guarantees error at most ε w.r.t.
x ∼ µ. We want to build an R1

µ,ε-protocol of cost O (m).
Let A and B be random variables taking the value of Alice’s input x ∈ X and Bob’s answer z ∈ Z,

respectively. Assume A ∼ µ and let µB be the corresponding distribution of B. Conditional upon A = x let
B ∼ µB

x . Define a random variable B′ as a “refined version” of B, namely: if A = x then the conditional
distribution of B′ is

µB′

x (z) def=
{

µB
x (z)/(1− εx) if (x, 0, z) ∈ P

0 otherwise
,

where 1− εx is the probability that W returns a correct answer on input x.
By the Holevo bound and the information processing principle,

m ≥ I [A : B] = E
A=x

[
dKL

(
µB

x

∣∣∣∣µB
)]

.

8It is important that we consider relational problems, for functions the single-input mode is indeed uninteresting.
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For every x ∈ X ,

dKL

(
µB′

x

∣∣∣∣∣∣µB
)

=
∑

z

µB′

x (z) log
µB′

x (z)
µB(z)

≤ 1
1− εx

∑
z

µB
x (z) log

(
µB

x (z)
µB(z)

· 1
1− εx

)
≤ 1

1− ε
· dKL

(
µB

x

∣∣∣∣µB
)

+
1

1− ε
log

1
1− ε

.

By linearity of expectation,

E
A=x

[
dKL

(
µB′

x

∣∣∣∣∣∣µB
)]

≤ m

1− ε
+

1
1− ε

log
1

1− ε
<

2m

1− ε
, (2)

for sufficiently large m.
We claim that there exists an R1

µ,ε-protocol for P of cost
⌈

11m
ε(1−ε)

⌉
. By the definition of B′, any z in the

support of µB′

x is a correct answer to x ∈ X . The key observation is that µB′

x is not too far from µB , by (2).
Therefore, if Alice and Bob sample sufficiently many elements from µB , with high probability at least one of
them would belong to the support of µB′

x . Such sampling can be performed by the players locally, using shared
randomness. Then Alice can send a pointer to an element which is a good answer w.r.t. her x.

Let us estimate the probability that a randomly chosen z ∼ µB satisfies µB′

x (z) > 0. Let

X ′ def=
{

x ∈ X

∣∣∣∣dKL

(
µB′

x

∣∣∣∣∣∣µB
)

<
5m

ε(1− ε)

}
,

then it follows from (2) that µ(X ′) > 1− ε/2. Fix any x0 ∈ X ′ and let Z ′ def=
{

z
∣∣∣µB′

x0
(z) > 0

}
. From

∑
z∈Z′

µB′

x0
(z) log

µB′

x0
(z)

µB(z)
= dKL

(
µB′

x0

∣∣∣∣∣∣µB
)

<
5m

ε(1− ε)

it follows that

Pr
z∼µB′

x0

[
µB′

x0
(z)

µB(z)
< 2

10m
ε(1−ε)

]
≥ 1

2
.

Let Z ′′ def=
{

z ∈ Z ′
∣∣∣µB(z) > µB′

x0
(z) · 2−

10m
ε(1−ε)

}
, then µB(Z ′′) > 2−

10m
ε(1−ε)−1.

We have that for any x0 ∈ X ′,

Pr
z∼µB

[(x0, 0, z) ∈ P ] = µB(Z ′) ≥ µB(Z ′′) > 2−
10m

ε(1−ε)−1.

If we sample M
def=
⌈
2

11m
ε(1−ε)

⌉
elements from µB then with probability greater than 1− ε/3 at least one of them

is a correct answer w.r.t. to the given x0, whenever x0 ∈ X ′. As the latter happens with probability at least
1 − ε/2, the unconditional probability that one of the M elements is a correct answer is greater than 1 − ε.
A pointer to one of M elements requires

⌈
11m

ε(1−ε)

⌉
bits, and that is the cost of our R1

µ,ε-protocol for P , as
required.

4.3 Connection to learnability of unspeakable concepts
Let us see how Theorem 8 and Corollary 10 imply that our construction in Theorem 2 is tight. First, let us see
that no unspeakable functional concept class can be efficiently learned even in a quantum predictive learning
model.

Lemma 11 Predictive learning of an unspeakable functional concept class is not possible from less than expo-
nential amount of quantum (w.l.g.) information from the teacher, even by a computationally unlimited learner.
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Proof: Assume that for some functional concept class F that is unspeakable, the following holds. A teacher T
knows some f0 ∈ F , hidden from a learner S. Then T exchanges at most kq qubits with S. Finally, S is given
some x0 from the domain X of the functions in F , and is able to compute f0(x0) with confidence at least 5/6.

Consider the following two-party communication task G. Alice receives f0 ∈ F , Bob receives x0 ∈ X and
they have to output f0(x0). Clearly, Q1

5/6 (G) ≤ kq.
Let kc = R1 (G). As F is unspeakable, kc ∈ 2Ω(n). By Theorem 8, kc ∈ O (n · kq log(kq)), and so

kq ∈ 2Ω(n), as required.

Now we show that unspeakable concepts cannot be efficiently learned in the quasi-predictive (or standard)
setting:

Lemma 12 Both standard and quasi-predictive learning of an unspeakable concept class is not possible from
less than exponential amount of quantum (w.l.g.) information from the teacher, even by a computationally
unlimited learner.

Proof: It is enough to prove the statement only for quasi-predictive learning, and the standard model can be
viewed as a special case.

Let C be an unspeakable concept class consisting of relations over X × Y , assume that it is learnable in
the quasi-predictive model by a protocol of cost kq. Then there exists a protocol, according to which a teacher
T who knows some `0 ∈ C exchanges at most kq qubits with a learner S who doesn’t know `0. Nevertheless,
afterward S is able to answer with sufficient confidence any number of testing questions regarding `0.

For us it is enough to consider the testing phase where all possible x ∈ X are asked (say, in the lexicographic
order) and the learner responds with (yx)x∈X , such that

∀(`0, x) ∈ C ×X : Pr [(x, yx) ∈ `0] ≥ 5/6,

where the probability is taken w.r.t. possible runs of the learning protocol for the given `0 ∈ C.
Define a relational single-input communication problem PC ⊆ C × 0× Y X as

PC
def=
{

(`0, 0, (yx)x∈X)
∣∣∣∣ ∣∣{x∣∣(x, yx) ∈ `0

}∣∣ ≥ 4
5
|X|
}

.

The learning protocol for C that we considered above can be turned into a Q1 -protocol of cost kq for PC
that is correct with probability 1 − o (1) w.r.t. every `0 ∈ C, in particular Q1 (PC) ≤ kq. By Corollary 10,
R1 (PC) ∈ O (kq).

Any R1 -protocol of cost kc for PC readily leads to an approximating class for C of size 2kc . As C is
unspeakable, kc ∈ 2Ω(n), where n = log |X|. Therefore, kq ∈ 2Ω(n), as required.

For simplicity, in the two proofs above we assumed distribution-free mode of learning, where the learner
in the testing phase had to give correct answer to any x ∈ X with high probability. Distributional versions of
Lemmas 11 and 12 can be proved similarly.

5 Open problems
We demonstrated that efficient quantum predictive learning of an unspeakable relational concept class is possi-
ble. The following questions seem interesting.

When we considered the limitations of quantum quasi-predictive learning (in the proof of Lemma 12), we
argued that certain “quasi-hypothesis” of polynomial length can be extracted from an efficient quantum quasi-
predictive learning algorithm. But our construction does not rely upon the efficiency of the learning algorithm,
and on the other hand, the quasi-hypothesis we construct cannot, in general, be efficiently evaluated. It would
be interesting to come up with a stronger argument that would “preserve efficiency”; or otherwise, to give an
example of an interesting quantum quasi-predictive learning algorithm. Similar observations can be made w.r.t.
our proof of Lemma 11. The transformation in [A04] is, in general, not efficient. Are there interesting quantum
predictive (or even quasi-predictive) learning algorithms for functional concepts?

In the above questions by “interesting” we meant quantum algorithms for learning a concept class that
admits concise hypotheses, but only those that cannot be efficiently evaluated. Observe that such “quasi-
unspeakable” concept classes cannot be learned efficiently in any reasonable classical model (in the classical
setting the equivalence between standard and predictive learning is efficiency-preserving).
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Note that a trivial positive answer to these questions would follow, e.g., from an assumption that BQP *
P/poly. Therefore the goal should be to weaken the assumptions.

More generally, give new examples of efficient quantum (quasi-)predictive learning of concept classes that
are not efficiently learnable classically. Such examples might be interesting even for models stronger than PQ
(e.g., one may allow the learner to make membership queries).
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Abstract

We study online learning when individual instances are corrupted by adversarially chosen
random noise. We assume the noise distribution is unknown, and may change over time
with no restriction other than having zero mean and bounded variance. Our technique relies
on a family of unbiased estimators for non-linear functions, which may be of independent
interest. We show that a variant of online gradient descent can learn functions in any dot-
product (e.g., polynomial) or Gaussian kernel space with any analytic convex loss function.
Our variant uses randomized estimates that need to query a random number of noisy copies
of each instance, where with high probability this number is upper bounded by a constant.
Allowing such multiple queries cannot be avoided: Indeed, we show that online learning is
in general impossible when only one noisy copy of each instance can be accessed.

1 Introduction

In many machine learning applications training data are typically collected by measuring certain
physical quantities. Examples include bioinformatics, medical tests, robotics, and remote sensing.
These measurements have errors that may be due to several reasons: sensor costs, communication
constraints, or intrinsic physical limitations. In all such cases, the learner trains on a distorted
version of the actual “target” data, which is where the learner’s predictive ability is eventually
evaluated. In this work we investigate the extent to which a learning algorithm can achieve a good
predictive performance when training data are corrupted by noise with unknown distribution.

We prove upper and lower bounds on the learner’s cumulative loss in the framework of online
learning, where examples are generated by an arbitrary and possibily adversarial source. We model
the measurement error via a random perturbation which affects each instance observed by the learner.
We do not assume any specific property of the noise distribution other than zero-mean and bounded
variance. Moreover, we allow the noise distribution to change at every step in an adversarial way
and fully hidden from the learner. Our positive results are quite general: by using a randomized
unbiased estimate for the loss gradient and a randomized feature mapping to estimate kernel values,
we show that a variant of online gradient descent can learn functions in any dot-product (e.g.,
polynomial) or Gaussian RKHS under any given analytic convex loss function. Our techniques are
readily extendable to other kernel types as well.

In order to obtain unbiased estimates of loss gradients and kernel values, we allow the learner
to query a random number of independently perturbed copies of the current unseen instance. We
show how low-variance estimates can be computed using a number of queries that is constant with
high probability. This is in sharp contrast with standard averaging techniques which attempts to
directly estimate the noisy instance, as these require a sample whose size depends on the scale of
the problem. Finally, we formally show that learning is impossible, even without kernels, when only
one perturbed copy of each instance can be accessed. This is true for essentially any reasonable loss
function.

Our paper is organized as follows. In the next subsection we discuss related work. In Sec. 2 we
introduce our setting and justify some of our choices. In Sec. 4 we present our main results but
before that, in Sec. 3, we discuss the techniques used to obtain them. In the same section, we also
explain why existing techniques are insufficient to deal with our problem. The detailed proofs and
subroutine implementations appear in Sec. 5, with some of the more technical lemmas and proofs
relegated to [7]. We wrap up with a discussion on possible avenues for future work in Sec. 6.

218



1.1 Related Work
In the machine learning literature, the problem of learning from noisy examples, and, in particular,
from noisy training instances, has traditionally received a lot of attention —see, for example, the
recent survey [12]. On the other hand, there are comparably few theoretically-principled studies
on this topic. Two of them focus on models quite different from the one studied here: random
attribute noise in PAC boolean learning [3, 9], and malicious noise [10, 5]. In the first case, learning
is restricted to classes of boolean functions and the noise must be independent across each boolean
coordinate. In the second case, an adversary is allowed to perturb a small fraction of the training
examples in an arbitrary way, making learning impossible in a strong informational sense unless this
perturbed fraction is very small (of the order of the desired accuracy for the predictor).

The previous work perhaps closest to the one presented here is [11], where binary classification
mistake bounds are proven for the online Winnow algorithm in the presence of attribute errors.
Similarly to our setting, the sequence of instances observed by the learner is chosen by an adversary.
However, in [11] the noise is generated by an adversary, who may change the value of each attribute
in an arbitrary way. The final mistake bound, which only applies when the noiseless data sequence
is linearly separable without kernels, depends on the sum of all adversarial perturbations.

2 Setting

We consider a setting where the goal is to predict values y ∈ R based on instances x ∈ Rd. In
this paper we focus on kernel-based linear predictors of the form x 7→ 〈w,Ψ(x)〉, where Ψ is a
feature mapping into some reproducing kernel Hilbert space (RKHS). We assume there exists a
kernel function that efficiently implements dot products in that space, i.e., k(x,x′) = 〈Ψ(x),Ψ(x′)〉.
Note that a special case of this setting is linear kernels, where Ψ(·) is the identity mapping and
k(x,x′) = 〈x,x′〉.

The standard online learning protocol for linear prediction with kernels is defined as follows: at
each round t, the learner picks a linear hypothesis wt from the RKHS. The adversary then picks an
example (xt, yt) and reveals it to the learner. The loss suffered by the learner is `(〈wt,Ψ(xt)〉, yt),
where ` is a known and fixed loss function. The goal of the learner is to minimize regret with respect
to a fixed convex set of hypotheses W, namely

T∑
t=1

`(〈wt,Ψ(xt)〉, yt)− min
w∈W

T∑
t=1

`(〈w,Ψ(xt)〉, yt).

Typically, we wish to find a strategy for the learner, such that no matter what is the adversary’s
strategy of choosing the sequence of examples, the expression above is sub-linear in T .

We now make the following twist, which limits the information available to the learner: instead
of receiving (xt, yt), the learner observes yt and is given access to an oracle At. On each call, At
returns an independent copy of xt + Zt, where Zt is a zero-mean random vector with some known
finite bound on its variance (in the sense that E

[
‖Zt‖2

]
≤ a for some uniform constant a). In

general, the distribution of Zt is unknown to the learner. It might be chosen by the adversary, and
change from round to round or even between consecutive calls to At. Note that here we assume that
yt remains unperturbed, but we emphasize that this is just for simplicity - our techniques can be
readily extended to deal with noisy values as well.

The learner may call At more than once. In fact, as we discuss later on, being able to call At
more than once is necessary for the learner to have any hope to succeed. On the other hand, if the
learner calls At an unlimited number of times, it can reconstruct xt arbitrarily well by averaging,
and we are back to the standard learning setting. In this paper we focus on learning algorithms
that call At only a small, essentially constant number of times, which depends only on our choice
of loss function and kernel (rather than T , the norm of xt, or the variance of Zt, which will happen
with näıve averaging techniques). Moreover, since the number of queries is bounded with very high
probability, one can even produce an algorithm with an absolute bound on the number of queries,
which will fail or introduce some bias with an arbitrarily small probability. For simplicity, we ignore
these issues in this paper.

In this setting, we wish to minimize the regret in hindsight with respect to the unperturbed data
and averaged over the noise introduced by the oracle, namely

E

[
T∑
t=1

`(〈wt,Ψ(xt)〉, yt)− min
w∈W

T∑
t=1

`(〈w,Ψ(xt)〉, yt)

]
(1)

where the random quantities are the predictors w1,w2, . . . generated by the learner, which depend
on the observed noisy instances (in [7], we briefly discuss alternative regret measures, and why
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they are unsatisfactory). This kind of regret is relevant where we actually wish to learn from data,
without the noise causing a hindrance. In particular, consider the batch setting, where the examples
{(xt, yt)}Tt=1 are actually sampled i.i.d. from some unknown distribution, and we wish to find a
predictor which minimizes the expected loss E[`(〈w,x〉, y)] with respect to new examples (x, y).
Using standard online-to-batch conversion techniques, if we can find an online algorithm with a
sublinear bound on Eq. (1), then it is possible to construct learning algorithms for the batch setting
which are robust to noise. That is, algorithms generating a predictor w with close to minimal
expected loss E[`(〈w,x〉, y)] among all w ∈ W.

While our techniques are quite general, the exact algorithmic and theoretical results depend a
lot on which loss function and kernel is used. Discussing the loss function first, we will assume that
`(〈w,Ψ(x)〉, y) is a convex function of w for each example (x, y). Somewhat abusing notation, we
assume the loss can be written either as `(〈w,Ψ(x)〉, y) = f(y〈w,Ψ(x)〉) or as `(〈w,Ψ(x)〉, y) =
f(〈w,Ψ(x)〉 − y) for some function f . We refer to the first type as classification losses, as it
encompasses most reasonable losses for classification, where y ∈ {−1,+1} and the goal is to predict
the label. We refer to the second type as regression losses, as it encompasses most reasonable
regression losses, where y takes arbitrary real values. For simplicity, we present some of our results
in terms of classification losses, but they all hold for regression losses as well with slight modifications.

We present our results under the assumption that the loss function is “smooth”, in the sense
that `′(a) can be written as

∑∞
n=0 γna

n, for any a in its domain. This assumption holds for instance
for the squared loss `(a) = a2, the exponential loss `(a) = exp(a), and smoothed versions of loss
functions such as the hinge loss and the absolute loss (we discuss examples in more details in Sub-
section 4.2). This assumption can be relaxed under certain conditions, and this is further discussed
in Subsection 3.2.

Turning to the issue of kernels, we note that the general presentation of our approach is somewhat
hampered by the fact that it needs to be tailored to the kernel we use. In this paper, we focus on
two families of kernels:
Dot Product Kernels: the kernel k(x,x′) can be written as a function of 〈x,x′〉. Examples of such
kernels k(x,x′) are linear kernels 〈x,x′〉; homogeneous polynomial kernels (〈x,x′〉)n, inhomogeneous
polynomial kernels (1 + 〈x,x′〉)n; exponential kernels e〈x,x

′〉; binomial kernels (1 + 〈x,x′〉)−α, and
more (see for instance [15, 17]).

Gaussian Kernels: k(x,x′) = e−‖x−x′‖2/σ2
for some σ2 > 0.

Again, we emphasize that our techniques are extendable to other kernel types as well.

3 Techniques

Our results are based on two key ideas: the use of online gradient descent algorithms, and construc-
tion of unbiased gradient estimators in the kernel setting. The latter is based on a general method
to build unbiased estimators for non-linear functions, which may be of independent interest.

3.1 Online Gradient Descent

There exist well developed theory and algorithms for dealing with the standard online learning
setting, where the example (xt, yt) is revealed after each round, and for general convex loss functions.
One of the simplest and most well known ones is the online gradient descent algorithm due to
Zinkevich [18]. Since this algorithm forms a basis for our algorithm in the new setting, we briefly
review it below (as adapted to our setting).

The algorithm initializes the classifier w1 = 0. At round t, the algorithm predicts according to
wt, and updates the learning rule according to wt+1 = P

(
wt − ηt∇t

)
, where ηt is a suitably chosen

constant which might depend on t; ∇t = `′
(
yt〈wt,Ψ(xt)〉

)
ytΨ(xt) is the gradient of `

(
yt〈w,Ψ(xt)〉

)
with respect to wt; and P is a projection operator on the convex set W, on whose elements we wish
to achieve low regret. In particular, if we wish to compete with hypotheses of bounded squared
norm Bw, P simply involves rescaling the norm of the predictor so as to have squared norm at most
Bw. With this algorithm, one can prove regret bounds with respect to any w ∈ W.

A “folklore” result about this algorithm is that in fact, we do not need to update the predictor
by the gradient at each step. Instead, it is enough to update by some random vector of bounded
variance, which merely equals the gradient in expectation. This is a useful property in settings
where (xt, yt) is not revealed to the learner, and has been used before, such as in the online bandit
setting (see for instance [6, 8, 1]). Here, we will use this property in a new way, in order to devise
algorithms which are robust to noise. When the kernel and loss function are linear (e.g., Ψ(x) = x
and `(a) = ca+ b for some constants b, c), this property already ensures that the algorithm is robust
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to noise without any further changes. This is because the noise injected to each xt merely causes the
exact gradient estimate to change to a random vector which is correct in expectation: If we assume
` is a classification loss, then

E [`′(yt〈wt,Ψ(x̃t)〉)Ψ(x̃t)] = E [cx̃t] = xt.

On the other hand, when we use nonlinear kernels and nonlinear loss functions, using standard
online gradient descent leads to systematic and unknown biases (since the noise distribution is
unknown), which prevents the method from working properly. To deal with this problem, we now
turn to describe a technique for estimating expressions such as `′

(
yt〈wt,Ψ(xt)〉

)
in an unbiased

manner. In Subsection 3.3, we discuss how Ψ(xt) can be estimated in an unbiased manner.

3.2 Unbiased Estimators for Non-Linear Functions
Suppose that we are given access to independent copies of a real random variable X, with expectation
E[X], and some real function f , and we wish to construct an unbiased estimate of f(E[X]). If
f is a linear function, then this is easy: just sample x from X, and return f(x). By linearity,
E[f(X)] = f(E[X]) and we are done. The problem becomes less trivial when f is a general, non-
linear function, since usually E[f(X)] 6= f(E[X]). In fact, when X takes finitely many values and f is
not a polynomial function, one can prove that no unbiased estimator can exist (see [14], Proposition 8
and its proof). Nevertheless, we show how in many cases one can construct an unbiased estimator of
f(E[X]), including cases covered by the impossibility result. There is no contradiction, because we
do not construct a “standard” estimator. Usually, an estimator is a function from a given sample to
the range of the parameter we wish to estimate. An implicit assumption is that the size of the sample
given to it is fixed, and this is also a crucial ingredient in the impossibility result. We circumvent
this by constructing an estimator based on a random number of samples.

Here is the key idea: suppose f : R → R is any function continuous on a bounded interval.
It is well known that one can construct a sequence of polynomials (Qn(·))∞n=1, where Qn(·) is a
polynomial of degree n, which converges uniformly to f on the interval. If Qn(x) =

∑n
i=0 γn,ix

i, let
Q′n(x1, . . . , xn) =

∑n
i=0 γn,i

∏i
j=1 xj . Now, consider the estimator which draws a positive integer N

according to some distribution P(N = n) = pn, samples X for N times to get x1, x2, . . . , xN , and
returns 1

pN

(
Q′N (x1, . . . , xN )−Q′N−1(x1, . . . , xN−1)

)
, where we assume Q′0 = 0. The expected value

of this estimator is equal to:

EN,x1,...,xN

[
1
pN

(
Q′N (x1, . . . , xN )−Q′N−1(x1, . . . , xN−1)

)]
=
∞∑
n=1

pn
pn

Ex1,...,xn

[
Q′n(x1, . . . , xn)−Q′n−1(x1, . . . , xn−1)

]
=
∞∑
n=1

(
Qn(E[X])−Qn−1(E[X])

)
= f(E[X]).

Thus, we have an unbiased estimator of f(E[X]).
This technique appeared in a rather obscure early 1960’s paper [16] from sequential estimation

theory, and appears to be little known, particularly outside the sequential estimation community.
However, we believe this technique is interesting, and expect it to have useful applications for other
problems as well.

While this may seem at first like a very general result, the variance of this estimator must be
bounded for it to be useful. Unfortunately, this is not true for general continuous functions. More
precisely, let N be distributed according to pn, and let θ be the value returned by the estimator. In
[2], it is shown that if X is a Bernoulli random variable, and if E[θNk] <∞ for some integer k ≥ 1,
then f must be k times continuously differentiable. Since E[θNk] ≤ (E[θ2] + E[N2k])/2, this means
that functions f which yield an estimator with finite variance, while using a number of queries with
bounded variance, must be continuously differentiable. Moreover, in case we desire the number of
queries to be essentially constant (i.e. choose a distribution for N with exponentially decaying tails),
we must have E[Nk] < ∞ for all k, which means that f should be infinitely differentiable (in fact,
in [2] it is conjectured that f must be analytic in such cases).

Thus, we focus in this paper on functions f which are analytic, i.e., they can be written as
f(x) =

∑∞
i=0 γix

i for appropriate constants γ0, γ1, . . .. In that case, Qn can simply be the truncated
Taylor expansion of f to order n, i.e., Qn =

∑n
i=0 γix

i. Moreover, we can pick pn ∝ 1/pn for
any p > 1. So the estimator becomes the following: we sample a nonnegative integer N according
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to P(N = n) = (p − 1)/pn+1, sample X independently N times to get x1, x2, . . . , xN , and return
θ = γN

pN+1

p−1 x1x2 · · ·xN where we set θ = p
p−1γ0 if N = 0.1 We have the following:

Lemma 1. For the above estimator, it holds that E[θ] = f(E[X]). The expected number of samples
used by the estimator is 1/(p− 1), and the probability of it being at least z is p−z. Moreover, if we
assume that f+(x) =

∑∞
n=0 |γn|xn exists for any x in the domain of interest, then

E[θ2] ≤ p

p− 1
f2

+

(√
pE[X2]

)
.

Proof. The fact that E[θ] = f(E[X]) follows from the discussion above. The results about the
number of samples follow directly from properties of the geometric distribution. As for the second
moment, E[θ2] equals

EN,x1,...,xN

[
γ2
N

p2(N+1)

(p− 1)2
x2

1x
2
2 · · ·x2

N

]
=

∞∑
n=0

(p− 1)p2(n+1)

(p− 1)2pn+1
γ2
nEx1,...,xn

[
x2

1x
2
2 · · ·x2

n

]
=

p

p− 1

∞∑
n=0

γ2
np
n
(
E[X2]

)n
=

p

p− 1

∞∑
n=0

(
|γn|

(√
pE[X2]

)n)2

≤ p

p− 1

( ∞∑
n=0

|γn|
(√

pE[X2]
)n)2

=
p

p− 1
f2

+

(√
pE[X2]

)
.

The parameter p provides a tradeoff between the variance of the estimator and the number of
samples needed: the larger is p, the less samples do we need, but the estimator has more variance.
In any case, the sample size distribution decays exponentially fast, so the sample size is essentially
bounded.

It should be emphasized that the estimator associated with Lemma 1 is tailored for generality, and
is suboptimal in some cases. For example, if f is a polynomial function, then γn = 0 for sufficiently
large n, and there is no reason to sample N from a distribution supported on all nonnegative integers
- it just increases the variance. Nevertheless, in order to keep the presentation unified and general,
we will always use this type of estimator. If needed, the estimator can always be optimized for
specific cases.

We also note that this technique can be improved in various directions, if more is known about
the distribution of X. For instance, if we have some estimate of the expectation and variance of X,
then we can perform a Taylor expansion around the estimated E[X] rather than 0, and tune the
probability distribution of N to be different than the one we used above. These modifications can
allow us to make the variance of the estimator arbitrarily small, if the variance of X is small enough.
Moreover, one can take polynomial approximations to f which are perhaps better than truncated
Taylor expansions. In this paper, for simplicity, we will ignore these potential improvements.

Finally, we note that a related result in [2] implies that it is impossible to estimate f(E[X]) in an
unbiased manner when f is discontinuous, even if we allow a number of queries and estimator values
which are infinite in expectation. Therefore, since the derivative of the hinge loss is not continuous,
estimating in an unbiased manner the gradient of the hinge loss with arbitrary noise appears to be
impossible. Thus, if online learning with noise and hinge loss is at all feasible, a rather different
approach than ours will need to be taken.

3.3 Unbiasing Noise in the RKHS
The third component of our approach involves the unbiased estimation of Ψ(xt), when we only
have unbiased noisy copies of xt. Here again, we have a non-trivial problem, because the feature
mapping Ψ is usually highly non-linear, so E[Ψ(x̃t)] 6= Ψ(E[x̃t]) in general. Moreover, Ψ is not a
scalar function, so the technique of Subsection 3.2 will not work as-is.

To tackle this problem, we construct an explicit feature mapping, which needs to be tailored to
the kernel we want to use. To give a very simple example, suppose we use the homogeneous 2nd-
degree polynomial kernel, k(r, s) = (〈r, s〉)2. It is not hard to verify that the function Ψ : Rd 7→ Rd2

,

1Admittedly, the event N = 0 should receive zero probability, as it amounts to “skipping” the sampling
altogether. However, setting P(N = 0) = 0 appears to improve the bound in this paper only in the smaller
order terms, while making the analysis in the paper more complicated.
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defined via Ψ(x) = (x1x1, x1x2, . . . , xdxd), is an explicit feature mapping for this kernel. Now, if we
query two independent noisy copies x̃, x̃′ of x, we have that the expectation of the random vector
(x̃1x̃

′
1, x̃1x̃

′
2, . . . , x̃dx̃

′
d) is nothing more than Ψ(x). Thus, we can construct unbiased estimates of

Ψ(x) in the RKHS. Of course, this example pertains to a very simple RKHS with a finite dimensional
representation. By a randomization trick somewhat similar to the one in Subsection 3.2, we can
adapt this approach to infinite dimensional RKHS as well. In a nutshell, we represent Ψ(x) as an
infinite-dimensional vector, and its noisy unbiased estimate is a vector which is non-zero on only
finitely many entries, using finitely many noisy queries. Moreover, inner products between these
estimates can be done efficiently, allowing us to implement the learning algorithms, and use the
resulting predictor on test instances.

4 Main Results

4.1 Algorithm

We present our algorithmic approach in a modular form. We start by introducing the main algorithm,
which contains several subroutines. Then we prove our two main results, which bound the regret of
the algorithm, the number of queries to the oracle, and the running time for two types of kernels:
dot product and Gaussian (our results can be extended to other kernel types as well). In itself, the
algorithm is nothing more than a standard online gradient descent algorithm with a standard O(

√
T )

regret bound. Thus, most of the proofs are devoted to a detailed discussion of how the subroutines
are implemented (including explicit pseudo-code). In this section, we just describe one subroutine,
based on the techniques discussed in Sec. 3. The other subroutines require a more detailed and
technical discussion, and thus their implementation is described as part of the proofs in Sec. 5. In
any case, the intuition behind the implementations and the techniques used are described in Sec. 3.

For simplicity, we will focus on a finite-horizon setting, where the number of online rounds T
is fixed and known to the learner. The algorithm can easily be modified to deal with the infinite
horizon setting, where the learner needs to achieve sub-linear regret for all T simultaneously. Also,
for the remainder of this subsection, we assume for simplicity that ` is a classification loss, namely
can be written as a function of `(y〈w,Ψ(x)〉). It is not hard to adapt the results below to the case
where ` is a regression loss (where ` is a function of 〈w,Ψ(x)〉 − y).

We note that at each round, the algorithm below constructs an object which we denote as Ψ̃(xt).
This object has two interpretations here: formally, it is an element of a reproducing kernel Hilbert
space (RKHS) corresponding to the kernel we use, and is equal in expectation to Ψ(xt). However,
in terms of implementation, it is simply a data structure consisting of a finite set of vectors from
Rd. Thus, it can be efficiently stored in memory and handled even for infinite-dimensional RKHS.

Algorithm 1 Kernel Learning Algorithm with Noisy Input
Parameters: Learning rate η > 0, number of rounds T , sample parameter p > 1.
Initialize:

αi = 0 for all i = 1, . . . , T .
Ψ̃(xi) for all i = 1, . . . , T

// Ψ̃(xi) is a data structure which can store a variable number of vectors in Rd
For t = 1 . . . T

Define wt =
∑t−1
i=1 αiΨ̃(xi)

Receive At, yt // The oracle At provides noisy estimates of xt
Let Ψ̃(xt) := Map Estimate(At, p) // Get unbiased estimate of Ψ(xt) in the RKHS
Let g̃t := Grad Length Estimate(At, yt, p) // Get unbiased estimate of `′(yt〈wt,Ψ(xt)〉)
Let αt := −g̃tη/

√
T // Perform gradient step

Let ñt :=
∑t
i=1

∑t
j=1 αt,iαt,jProd(Ψ̃(xi), Ψ̃(xj))

// Compute squared norm, where Prod(Ψ̃(xi), Ψ̃(xj)) returns 〈Ψ̃(xi), Ψ̃(xj)〉
If ñt > Bw // If norm squared is larger than Bw, then project

Let αi := αi
√
Bw

ñt
for all i = 1, . . . , t

Like Ψ̃(xt), wt+1 has also two interpretations: formally, it is an element in the RKHS, as defined
in the pseudocode. In terms of implementation, it is defined via the data structures Ψ̃(x1), . . . , Ψ̃(xt)
and the values of α1, . . . , αt at round t. To apply this hypothesis on a given instance x, we compute
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∑t
i=1 αt,iProd(Ψ̃(xi),x′), where Prod(Ψ̃(xi),x′) is a subroutine which returns 〈Ψ̃(xi),Ψ(x′)〉 (a

pseudocode is provided as part of the proofs later on).
We now turn to the main results pertaining to the algorithm. The first result shows what regret

bound is achievable by the algorithm for any dot-product kernel, as well as characterize the number
of oracle queries per instance, and the overall running time of the algorithm.

Theorem 1. Assume that the loss function ` has an analytic derivative `′(a) =
∑∞
n=0 γna

n for all
a in its domain, and let `′+(a) =

∑∞
n=0 |γn|an (assuming it exists). Assume also that the kernel

k(x,x′) can be written as Q(〈x,x′〉) for all x,x′ ∈ Rd. Finally, assume that E[‖x̃t‖2] ≤ Bx̃ for any
x̃t returned by the oracle at round t, for all t = 1, . . . , T . Then, for all Bw > 0 and p > 1, it is
possible to implement the subroutines of Algorithm 1 such that:

• The expected number of queries to each oracle At is p
(p−1)2 .

• The expected running time of the algorithm is O
(
T 3
(

1 + dp
(p−1)2

))
.

• If we run Algorithm 1 with η = Bw

/√
u`′+

(√
(p− 1)u

)
, where u = Bw

(
p
p−1

)2

Q(pBx̃), then

E

[
T∑
t=1

`(yt〈wt,Ψ(xt)〉)− min
w : ‖w‖2≤Bw

T∑
t=1

`(yt〈w,Ψ(xt)〉)

]
≤ `′+

(√
(p− 1)u

)√
uT .

The expectations are with respect to the randomness of the oracles and the algorithm throughout its
run.

We note that the distribution of the number of oracle queries can be specified explicitly, and
it decays very rapidly - see the proof for details. Also, for simplicity, we only bound the expected
regret in the theorem above. If the noise is bounded almost surely or with sub-Gaussian tails (rather
than just bounded variance), then it is possible to obtain similar guarantees with high probability,
by relying on Azuma’s inequality or variants thereof (see for example [4]).

We now turn to the case of Gaussian kernels.

Theorem 2. Assume that the loss function ` has an analytic derivative `′(a) =
∑∞
n=0 γna

n for all
a in its domain, and let `′+(a) =

∑∞
n=0 |γn|an (assuming it exists). Assume that the kernel k(x,x′)

is defined as exp(−‖x − x‖2/σ2). Finally, assume that E[‖x̃t‖2] ≤ Bx̃ for any x̃t returned by the
oracle at round t, for all t = 1, . . . , T . Then for all Bw > 0 and p > 1 it is possible to implement
the subroutines of Algorithm 1 such that

• The expected number of queries to each oracle At is 3p
(p−1)2 .

• The expected running time of the algorithm is O
(
T 3
(

1 + dp
(p−1)2

))
.

• If we run Algorithm 1 with η = Bw

/√
u`′+

(√
(p− 1)u

)
, where

u = Bw

(
p

p− 1

)3

exp
(√

pBx̃ + 2p
√
Bx̃

σ2

)
then

E

[
T∑
t=1

`(yt〈wt,Ψ(xt)〉)− min
w : ‖w‖2≤Bw

T∑
t=1

`(yt〈w,Ψ(xt)〉)

]
≤ `′+(

√
(p− 1)u)

√
uT .

The expectations are with respect to the randomness of the oracles and the algorithm throughout its
run.

As in Thm. 1, note that the number of oracle queries has a fast decaying distribution. Also, note
that with Gaussian kernels, σ2 is usually chosen to be on the order of the example’s squared norms.
Thus, if the noise added to the examples is proportional to their original norm, we can assume that
Bx̃/σ

2 = O(1), and thus u which appears in the bound is also bounded by a constant.
As previously mentioned, most of the subroutines are described in the proofs section, as part

of the proof of Thm. 1. Here, we only show how to implement Grad Length Estimate subroutine,
which returns the gradient length estimate g̃t. The idea is based on the technique described in
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Subsection 3.2. We prove that g̃t is an unbiased estimate of `′(yt〈wt,Ψ(xt)〉), and bound E[g̃2
t ]. As

discussed earlier, we assume that `′(·) is analytic and can be written as `′(a) =
∑∞
n=0 γna

n.

Subroutine 1 Grad Length Estimate(At, yt, p)
Sample nonnegative integer n according to P(n) = (p− 1)/pn+1

For j = 1, . . . , n
Let Ψ̃(xt)j := Map Estimate(At) // Get unbiased estimate of Ψ(xt) in the RKHS

Return g̃t := ytγn
pn+1

p−1

∏n
j=1

(∑t−1
i=1 αt−1,iProd(Ψ̃(xi), Ψ̃(xt)j)

)

Lemma 2. Assume that E[Ψ̃(xt)] = Ψ(xt), and that Prod(Ψ̃(x), Ψ̃(x′)) returns 〈Ψ̃(x), Ψ̃(x′)〉 for
all x,x′. Then for any given wt = αt−1,1Ψ̃(x1) + · · ·+ αt−1,t−1Ψ̃(xt−1) it holds that

Et[g̃t] = yt`
′(yt〈wt,Ψ(xt)〉) and Et[g̃2

t ] ≤ p

p− 1
`
′

+

(√
pBwBΨ̃(x)

)2

where the expectation is with respect to the randomness of Subroutine 1, and `′+(a) =
∑∞
n=0 |γn|an.

Proof. The result follows from Lemma 1, where g̃t corresponds to the estimator θ, the function f
corresponds to `′, and the random variable X corresponds to 〈wt, Ψ̃(xt)〉 (where Ψ̃(xt) is random
and wt is held fixed). The term E[X2] in Lemma 1 can be upper bounded as

Et
[(
〈wt, Ψ̃(xt)〉

)2] ≤ ‖wt‖2 Et
[
‖Ψ̃(xt)‖2

]
≤ BwBΨ̃(x) .

4.2 Loss Function Examples
Theorems 1 and 2 both deal with generic loss functions ` whose derivative can be written as∑∞
n=0 γna

n, and the regret bounds involve the functions `′+(a) =
∑∞
n=0 |γn|an. Below, we present a

few examples of loss functions and their corresponding `′+. As mentioned earlier, while the theorems
in the previous subsection are in terms of classification losses (i.e., ` is a function of y〈w,Ψ(x)〉),
virtually identical results can be proven for regression losses (i.e., ` is a function of 〈w,Ψ(x)〉 − y),
so we will give examples from both families. Working out the first two examples is straightforward.
The proofs of the other two appear in Sec. 5. The loss functions are illustrated graphically in Fig. 1.

Example 1. For the squared loss function, `(〈w,x〉, y) = (〈w,x〉− y)2, we have `′+
(√

(p− 1)u)
)

=
2
√

(p− 1)u.

Example 2. For the exponential loss function, `(〈w,x〉, y) = ey〈w,x〉, we have `′+
(√

(p− 1)u
)

=

e
√

(p−1)u.

Example 3. Consider a “smoothed” absolute loss function `σ(〈w,Ψ(x)〉 − y), defined as an an-
tiderivative of Erf(sa) for some s > 0 (see proof for exact analytic form). Then we have that
`′+
(√

(p− 1)u
)
≤ 1

2 + 1

s
√
π(p−1)u

(
es

2(p−1)u − 1
)

.

Example 4. Consider a “smoothed” hinge loss `(y〈w,Ψ(x)〉), defined as an antiderivative of
(Erf(s(a − 1)) − 1)/2 for some s > 0 (see proof for exact analytic form). Then we have that
`′+
(√

(p− 1)u
)
≤ 2

s
√
π(p−1)u

(
es

2(p−1)u−1
)

.

For any s, the loss function in the last two examples are convex, and respectively approximate
the absolute loss

∣∣〈w,Ψ(x)〉− y
∣∣ and the hinge loss max

{
0, 1− y〈w,Ψ(x)〉

}
arbitrarily well for large

enough s. Fig. 1 shows these loss functions graphically for s = 1. Note that s need not be large
in order to get a good approximation. Also, we note that both the loss itself and its gradient are
computationally easy to evaluate.

Finally, we remind the reader that as discussed in Subsection 3.2, performing an unbiased estimate
of the gradient for non-differentiable losses directly (such as the hinge loss or absolute loss) appears
to be impossible in general. On the flip side, if one is willing to use a random number of queries
with polynomial rather than exponential tails, then one can achieve much better sample complexity
results, by focusing on loss functions (or approximations thereof) which are only differentiable to a
bounded order, rather than fully analytic. This again demonstrates the tradeoff between the sample
size and the amount of information that needs to be gathered on each training example.
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Figure 1: Absolute loss, hinge loss, and smooth approximations

4.3 One Noisy Copy is Not Enough

The previous results might lead one to wonder whether it is really necessary to query the same
instance more than once. In some applications this is inconvenient, and one would prefer a method
which works when just a single noisy copy of each instance is made available. In this subsection
we show that, unfortunately, such a method cannot be found. Specifically, we prove that under
very mild assumptions, no method can achieve sub-linear regret when it has access to just a single
noisy copy of each instance. On the other hand, for the case of squared loss and linear kernels,
our techniques can be adapted to work with exactly two noisy copies of each instance,2 so without
further assumptions, the lower bound that we prove here is indeed tight. For simplicity, we prove
the result for linear kernels (i.e., where k(x,x′) = 〈x,x′〉). It is an interesting open problem to show
improved lower bounds when nonlinear kernels are used. We also note that the result crucially relies
on the learner not knowing the noise distribution, and we leave to future work the investigation of
what happens when this assumption is relaxed.

Theorem 3. Let W be a compact convex subset of Rd, and let `(·, 1) : R 7→ R satisfies the following:
(1) it is bounded from below; (2) it is differentiable at 0 with `′(0, 1) < 0. For any learning algorithm
which selects hypotheses from W and is allowed access to a single noisy copy of the instance at each
round t, there exists a strategy for the adversary such that the sequence w1,w2, . . . of predictors
output by the algorithm satisfies

lim sup
T→∞

max
w∈W

1
T

T∑
t=1

(
`(〈wt,xt〉, yt)− `(〈w,xt〉, yt)

)
> 0

with probability 1 with respect to the randomness of the oracles.

Note that condition (1) is satisfied by virtually any loss function other than the linear loss,
while condition (2) is satisfied by most regression losses, and by all classification calibrated losses,
which include all reasonable losses for classification (see [13]). The most obvious example where the
conditions are not satisfied is when `(·, 1) is a linear function. This is not surprising, because when
`(·, 1) is linear, the learner is always robust to noise (see the discussion at Sec. 3).

The intuition of the proof is very simple: the adversary chooses beforehand whether the examples
are drawn i.i.d. from a distribution D, and then perturbed by noise, or drawn i.i.d. from some
other distribution D′ without adding noise. The distributions D,D′ and the noise are designed so
that the examples observed by the learner are distributed in the same way irrespective to which
of the two sampling strategies the adversary chooses. Therefore, it is impossible for the learner
accessing a single copy of each instance to be statistically consistent with respect to both distributions
simultaneously. As a result, the adversary can always choose a distribution on which the algorithm
will be inconsistent, leading to constant regret. The full proof is presented in Section 5.3.

2In a nutshell, for squared loss and linear kernels, we just need to estimate 2(〈wt,xt〉 − yt)xt in an
unbiased manner at each round t. This can be done by computing 2(〈wt, x̃t〉 − yt)x̃

′
t, where x̃t, x̃

′
t are two

noisy copies of xt.
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5 Proofs

Due to the lack of space, some of the proofs are given in the [7].

5.1 Preliminary Result
To prove Thm. 1 and Thm. 2, we need a theorem which basically states that if all subroutines in
algorithm 1 behave as they should, then one can achieve an O(

√
T ) regret bound. This is provided

in the following theorem, which is an adaptation of a standard result of online convex optimization
(see, e.g., [18]). The proof is given in [7].

Theorem 4. Assume the following conditions hold with respect to Algorithm 1:

1. For all t, Ψ̃(xt) and g̃t are independent of each other (as random variables induced by the
randomness of Algorithm 1) as well as independent of any Ψ̃(xi) and g̃i for i < t.

2. For all t, E[Ψ̃(xt)] = Ψ(xt), and there exists a constant BΨ̃ > 0 such that E[‖Ψ̃(xt)‖2] ≤ BΨ̃.

3. For all t, E[g̃t] = yt`
′(yt〈wt,Ψ(xt)〉), and there exists a constant Bg̃ > 0 such that E[g̃2

t ] ≤ Bg̃.

4. For any pair of instances x,x′, Prod(Ψ̃(x), Ψ̃(x′)) = 〈Ψ̃(x), Ψ̃(x′)〉.

Then if Algorithm 1 is run with η =
√

Bw

Bg̃BΨ̃
, the following inequality holds

E

[
T∑
t=1

`
(
yt〈wt,Ψ(xt)〉

)
− min

w : ‖w‖2≤Bw

T∑
t=1

`
(
yt〈w,Ψ(xt)〉

)]
≤
√
BwBg̃BΨ̃T .

where the expectation is with respect to the randomness of the oracles and the algorithm throughout
its run.

5.2 Proof of Thm. 1
In this subsection, we present the proof of Thm. 1. We first show how to implement the subroutines
of Algorithm 1, and prove the relevant results on their behavior. Then, we prove the theorem itself.

It is known that for k(·, ·) = Q(〈x,x′〉) to be a valid kernel, it is necessary that Q(〈x,x′〉) can
be written as a Taylor expansion

∑∞
n=0 βn(〈x,x′〉)n, where βn ≥ 0 (see theorem 4.19 in [15]). This

makes these types of kernels amenable to our techniques.
We start by constructing an explicit feature mapping Ψ(·) corresponding to the RKHS induced

by our kernel. For any x,x′, we have that

k(x,x′) =
∞∑
n=0

βn(〈x,x′〉)n =
∞∑
n=0

βn

(
d∑
i=1

xix
′
i

)n

=
∞∑
n=0

βn

d∑
k1=1

· · ·
d∑

kn=1

xk1xk2 · · ·xkn
x′k1

x′k2
· · ·x′kn

=
∞∑
n=0

d∑
k1=1

· · ·
d∑

kn=1

(√
βnxk1xk2 · · ·xkn

)(√
βnx

′
k1
x′k2
· · ·x′kn

)
.

This suggests the following feature representation: for any x, Ψ(x) returns an infinite-dimensional
vector, indexed by n and k1, . . . , kn ∈ {1, . . . , d}, with the entry corresponding to n, k1, . . . , kn being√
βnxk1 · · ·xkn . The dot product between Ψ(x) and Ψ(x′) is similar to a standard dot product

between two vectors, and by the derivation above equals k(x,x′) as required.
We now use a slightly more elaborate variant of our unbiased estimate technique, to derive an

unbiased estimate of Ψ(x). First, we sample N according to P(N = n) = (p − 1)/pn+1. Then, we
query the oracle for x for N times to get x̃(1), . . . , x̃(N), and formally define Ψ̃(x) as

Ψ̃(x) =
√
βn

pn+1

p− 1

d∑
k1=1

· · ·
d∑

kn=1

x̃
(1)
k1
· · · x̃(n)

kn
en,k1,...,kn

(2)

where en,k1,...,kn represents the unit vector in the direction indexed by n, k1, . . . , kn as explained
above. Since the oracle queries are i.i.d., the expectation of this expression is
∞∑
n=0

p− 1
pn+1

√
βn

pn+1

p− 1

d∑
k1=1

· · ·
d∑

kn=1

E
[
x̃

(1)
k1
· · · x̃(n)

kn

]
en,k1,...,kn

=
∞∑
n=0

d∑
k1=1

· · ·
d∑

kn=1

√
βnx

(1)
k1
· · ·x(n)

kn
en,k1,...,kn

which is exactly Ψ(x). We formalize the needed properties of Ψ̃(x) in the following lemma.
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Lemma 3. Assuming Ψ̃(x) is constructed as in the discussion above, it holds that E[Ψ̃(x)] = Ψ(x)
for any x. Moreover, if the noisy samples x̃t returned by the oracle At satisfy E[‖x̃t‖2] ≤ Bx̃, then

E
[
‖Ψ̃(xt)‖2

]
≤ p

p− 1
Q(pBx̃)

where we recall that Q defines the kernel by k(x,x′) = Q(〈x,x′〉).

Proof. The first part of the lemma follows from the discussion above. As to the second part, note
that by (2),

E
[
‖Ψ̃(xt)‖2

]
= E

βn p2n+2

(p− 1)2

d∑
k1...,kn=1

(
x̃

(1)
t,k1
· · · x̃(N)

t,kn

)2

 = E

βn p2n+2

(p− 1)2

n∏
j=1

∥∥x̃(j)
t

∥∥2


=
∞∑
n=0

p− 1
pn+1

βn
p2n+2

(p− 1)2

(
E
[
x̃2
t

])n
=

p

p− 1

∞∑
n=0

βn
(
pE
[
x̃2
t

])n ≤ p

p− 1

∞∑
n=0

βn
(
pBx̃

)n =
p

p− 1
Q(pBx̃)

where the second-to-last step used the fact that βn ≥ 0 for all n.

Of course, explicitly storing Ψ̃(x) as defined above is infeasible, since the number of entries is
huge. Fortunately, this is not needed: we just need to store x̃(1)

t , . . . , x̃(N)
t . The representation above

is used implicitly when we calculate dot products between Ψ̃(x) and other elements in the RKHS,
via the subroutine Prod. We note that while N is a random quantity which might be unbounded,
its distribution decays exponentially fast, so the number of vectors to store is essentially bounded.

After the discussion above, the pseudocode for Map Estimate below should be self-explanatory.

Subroutine 2 Map Estimate(At, p)
Sample nonnegative integer N according to P(N = n) = (p− 1)/pn+1

Query At for N times to get x̃(1)
t , . . . , x̃(N)

t

Return x̃(1)
t , . . . , x̃(N)

t as Ψ̃(xt).

We now turn to the subroutine Prod, which given two elements in the RKHS, returns their dot
product. This subroutine comes in two flavors: either as a procedure defined over Ψ̃(x), Ψ̃(x′) and
returning 〈Ψ̃(x), Ψ̃(x′)〉 (Subroutine 3); or as a procedure defined over Ψ̃(x),x′ (Subroutine 4, where
the second element is an explicitely given vector) and returning 〈Ψ̃(x),Ψ(x′)〉. This second variant
of Prod is needed when we wish to apply the learned predictor on a new given instance x′.

Subroutine 3 Prod(Ψ̃(x), Ψ̃(x′))

Let x(1), . . . ,x(n) be the index and vectors comprising Ψ(x)
Let x′(1), . . . ,x′(n

′) be the index and vectors comprising Ψ(x′)
If n 6= n′ return 0, else return βn

p2n+2

(p−1)2

∏n
j=1〈x̃(j), x̃′(j)〉

Lemma 4. Prod(Ψ̃(x), Ψ̃(x′)) returns 〈Ψ̃(x)Ψ̃(x′)〉.

Proof. Using the formal representation of Ψ̃(x), Ψ̃(x′) in (2), we have that 〈Ψ̃(x), Ψ̃(x′)〉 is 0 when-
ever n 6= n′ (because then these two elements are composed of different unit vectors with respect to
an orthogonal basis). Otherwise, we have that

〈Ψ̃(x)Ψ̃(x′)〉 = βn
p2n+2

(p− 1)2

d∑
k1,...,kn=1

x̃
(1)
k1
· · · x̃(n)

kn
x̃
′(1)
k1
· · · x̃′(n)

kn

= βn
p2n+2

(p− 1)2

(
d∑

k1=1

x̃
(1)
k1
x̃
′(1)
k1

)
· · ·

(
d∑

kN =1

x̃
(n)
kN
x̃
′(n)
kN

)
= βn

p2n+2

(p− 1)2

N∏
j=1

(
〈x̃(j), x̃′(j)〉

)
which is exactly what the algorithm returns, hence the lemma follows.
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The pseudocode for calculating the dot product 〈Ψ̃(x),Ψ(x′)〉 (where x′ is known) is very similar,
and the proof is essentially the same.

Subroutine 4 Prod(Ψ̃(x),x′)

Let n,x(1), . . . ,x(n) be the index and vectors comprising Ψ(x)
Return βn

pn+1

p−1

∏n
j=1〈x̃(j),x′〉

We are now ready to prove Thm. 1. First, regarding the expected number of queries, notice
that to run Algorithm 1, we invoke Map Estimate and Grad Length Estimate once at round t.
Map Estimate uses a random number B of queries distributed as P(B = n) = (p − 1)/pn+1, and
Grad Length Estimate invokes Map Estimate a random number C of times, distributed as P(C =
n) = (p − 1)/pn+1. The total number of queries is therefore

∑C+1
j=1 Bj , where Bj for all j are i.i.d.

copies of B. The expected value of this expression, using a standard result on the expected value
of a sum of a random number of independent random variables, is equal to (1 + E[C])E[Bj ], or(
1 + 1

p−1

)
1
p−1 = p

(p−1)2 .

In terms of running time, we note that the expected running time of Prod is O
(
1 + d

p−1

)
,

this because it performs N multiplications of inner products, each one with running time O(d),
and E[N ] = 1

p−1 . The expected running time of Map Estimate is O
(
1 + 1

p−1

)
. The expected

running time of Grad Length Estimate is O
(
1 + 1

p−1

(
1 + 1

p−1

)
+T

(
1 + d

p−1

))
, which can be written

as O
(

p
(p−1)2 + T

(
1 + d

p−1

))
. Since Algorithm 1 at each of T rounds calls Map Estimate once,

Grad Length Estimate once, Prod for O(T 2) times, and performs O(1) other operations, we get
that the overall runtime is

O

(
T

(
1 +

1
p− 1

+
p

(p− 1)2
+ T

(
1 +

d

p− 1

)
+ T 2

(
1 +

d

p− 1

)))
.

Since 1
p−1 ≤

p
(p−1)2 , we can upper bound this by

O

(
T

(
1 +

p

(p− 1)2
+ T 2

(
1 +

dp

(p− 1)2

)))
= O

(
T 3

(
1 +

dp

(p− 1)2

))
.

The regret bound in the theorem follows from Thm. 4, with the expressions for constants following
from Lemma 2, Lemma 3, and Lemma 4.

5.3 Proof Sketch of Thm. 3

To prove the theorem, we use a more general result which leads to non-vanishing regret, and then
show that under the assumptions of Thm. 3, the result holds. The proof of the result is given in [7].

Theorem 5. Let W be a compact convex subset of Rd and pick any learning algorithm which selects
hypotheses from W and is allowed access to a single noisy copy of the instance at each round t. If
there exists a distribution over a compact subset of Rd such that

argmin
w∈W

E
[
`(〈w,x〉, 1)

]
and argmin

w∈W
`
(
〈w,E[x]〉, 1

)
(3)

are disjoint, then there exists a strategy for the adversary such that the sequence w1,w2, · · · ∈ W of
predictors output by the algorithm satisfies

lim sup
T→∞

max
w∈W

1
T

T∑
t=1

(
`(〈wt,xt〉, yt)− `(〈w,xt〉, yt)

)
> 0

with probability 1 with respect to the randomness of the oracles.

Another way to phrase this theorem is that the regret cannot vanish, if given examples sampled
i.i.d. from a distribution, the learning problem is more complicated than just finding the mean of the
data. Indeed, the adversary’s strategy we choose later on is simply drawing and presenting examples
from such a distribution. Below, we sketch how we use Thm. 5 in order to prove Thm. 3. A full
proof is provided in [7].
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We construct a very simple one-dimensional distribution, which satisfies the conditions of Thm. 5:
it is simply the uniform distribution on {3x,−x}, where x is the vector (1, 0, . . . , 0). Thus, it is
enough to show that

argmin
w : |w|2≤Bw

`(3w, 1) + `(−w, 1) and argmin
w : |w|2≤Bw

`(w, 1) (4)

are disjoint, for some appropriately chosen Bw. Assuming the contrary, then under the assumptions
on `, we show that the first set in Eq. (4) is inside a bounded ball around the origin, in a way
which is independent of Bw, no matter how large it is. Thus, if we pick Bw to be large enough,
and assume that the two sets in Eq. (4) are not disjoint, then there must be some w such that both
`(3w, 1) + `(−w, 1) and `(w, 1) have a subgradient of zero at w. However, this can be shown to
contradict the assumptions on `, leading to the desired result.

6 Future Work

There are several interesting research directions worth pursuing in the noisy learning framework
introduced here. For instance, doing away with unbiasedness, which could lead to the design of
estimators that are applicable to more types of loss functions, for which unbiased estimators may
not even exist. Also, it would be interesting to show how additional information one has about the
noise distribution can be used to design improved estimates, possibly in association with specific
losses or kernels. Another open question is whether our lower bound (Thm. 3) can be improved
when nonlinear kernels are used.
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Abstract

We consider a stochastic extension of the loop-free shortest path problem with adversarial rewards.
In this episodic Markov decision problem an agent traverses through an acyclic graph with random
transitions: at each step of an episode the agent chooses an action, receives some reward, and
arrives at a random next state, where the reward and the distribution of the next state depend on
the actual state and the chosen action. We consider the bandit situation when only the reward of
the just visited state-action pair is revealed to the agent. For this problem we develop algorithms
that perform asymptotically as well as the best stationary policy in hindsight. Assuming that all
states are reachable with probabilityα > 0 under all policies, we give an algorithm and prove
that its regret isO(L2

√
T |A|/α), whereT is the number of episodes,A denotes the (finite) set of

actions, andL is the length of the longest path in the graph. Variants of the algorithm are given that
improve the dependence on the transition probabilities under specific conditions. The results are
also extended to variations of the problem, including the case when the agent competes with time
varying policies.

1 Introduction

Consider the problem of controlling an inventory so as to maximize the revenue. This is an optimal control
problem, where the state of the controlled system is the stock, the action is the amount of stock ordered.
The evolution of the stock is also influenced by the demand, which is assumed to be stochastic. Further,
the revenue depends on the prices at which products are bought and sold. By assumption, the prices are
not available at the time when the decisions are made. Since the prices can depend on many external, often
unobserved events, their evolution is often hard to model. Then, a better approach might be to view this
problem as an instance of robust control, which can be formulated as follows: Choose a sufficiently large class
of controllers so that no matter how the prices evolve, the class contains some controller whose performance is
acceptable. The problem is to design an algorithm that is able to perform almost as well as the best controller
in the chosen class, where the mentioned best controller is selected based on hindsight.

This problem formulation shares many similarities with the so-called expert framework, where the task
is to find an algorithm that can predict (almost) as well as the best amongst a fixed set of experts in an ar-
bitrary prediction environment (cf. Chapter 2 of Cesa-Bianchi and Lugosi, 2006 and the references therein).
However, the control problem is made more complicated by the fact that one must take into account that the
decisions of the controller influence future states and thus also future rewards. This, in fact, has two conse-
quences: Firstly, in order to perform well, the controller must plan ahead in time. That is, the controller must
address the usual temporal credit assignment problem. This is usually done by resorting to some form of
(approximate) dynamic programming to maintain computational efficiency (Bertsekas and Tsitsiklis, 1996;
Sutton and Barto, 1998). Secondly, the controller must also address the exploration-exploitation problem
which arises because only the rewards associated with the state-action pairs visited are available for measure-
ment. This is again made difficult by the fact that in order to be able to explore an action in a given state, the
state must first be visited, which requires some planning.

In this paper we consider a special case of this general problem, which we callthe online, loop-free
stochastic shortest-path (Online SSP, O-SSP) problem. This problem is a generalization of two previously
considered problems: it is an online extension of the (loop-free version of the) stochastic shortest-path prob-
lem (Bertsekas and Tsitsiklis, 1996) and a stochastic extension of the online shortest path problem (György
et al., 2007). The problem is defined as follows: The controlled dynamics is stochastic. It is assumed that
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Figure 1: Illustration of the general problem whose
special case is studied in the paper: The con-
trolled system has two components. One compo-
nent, whose state is controlled and observable and
is perfectly known, while the other component is
unknown and uncontrolled. The second component
influences the rewards received and the rewards
represent the only source of information about this
component. When the uncontrolled part has a com-
plex dynamics and/or a complex state, its identifica-
tion is hopeless and one might be better off with im-
plementing a robust optimal control strategy, such
as the one described in this paper.

the number of states and actions is finite. There is a distinguished initial state and terminal state amongst the
states and the state space has the structure of a layered graph: an action chosen at some state of some layer
of the graph leads to another state in the next layer. When the terminal state is reached, a new episode starts:
the state of the system is reset to the initial state. At the same time, a new reward function is chosen (since
no state is visited twice, there is no reason to change the reward function before the end of an episode). Note
that only the reward of the last state-action pair is made available to the algorithm, that is, we consider the
so-calledbandit setting. The class of controllers that our algorithm must compete with is selected to be the
class of state-feedback policies, that is, policies that select actions according to the actual state, or the class
of policies which switch between such state-feedback policies.

Clearly, the inventory management problem mentioned beforehand falls into this class provided that we
restrict our attention to its finite horizon variant when the stocks, orders and demand are measured in discrete
units, the size of the inventory is limited to lie between a maximum size and zero (excess demands are lost)
and where the demands are independent, identically distributed random variables. The O-SSP setup is also
particularly suited to address the problem of robust adaptive routing in virtual networks over some (possibly
wireless) base network with a fixed routing strategy. Other examples include machine maintenance, asset
pricing, or production planning. In general, our framework captures operations research problems, where the
control objective involves components which depend on some exogenously developing, hard to model prices.

The main results of this paper are as follows: Assuming that all states are reachable with probability
α > 0 under all policies, we give an algorithm and prove that its regret isO(L2

√
T |A|/α), whereL is

the number of layers,T is the number of episodes andA denotes the (finite) set of actions (Theorem 4).
Although the number of states in a given layer does not show up in the bound, the bound shows a scaling
that is at least linear with the number states sincemax1≤l≤L |Xl| ≤ 1/α, where|Xl| is the number of states
in the l-th layer. We also give a variant of this result that shows a possibly improved dependence on the
transition probabilities (sinceα can be exponentially small in the size of the number of states). This result
is given in Theorem 5. The results are also extended to compete with time-varying policies in Theorem 8.
A nice property of the algorithms proposed is that they use bandit algorithms developed for the prediction
(stateless) setting, the only requirement for the bandit algorithm being that it should return a probability
distribution over the actions. Hence, our algorithm can make use of specially tailored, improved bandit
algorithms, for example, algorithms with adaptive tuning that may achieve better performance (and bounds)
when the best action has very large gains (Auer et al., 2002b) or algorithms with improved performance when
manyactions have relatively good performance (Exercise 2.6 of Cesa-Bianchi and Lugosi 2006). Specifically,
when theExp3 algorithm of Auer et al. (2002a) is used, the dependence onα can be improved toO(1/

√
(α)

(Theorem 6). Finally, in this special case, under the less stringent assumption that for every state there is
some policy that reaches the state with positive probability we give an algorithm whose expected regret per
step vanishes over time (Theorem 7).

How do our results compare to those in earlier works in the online learning literature? As noted earlier,
our work can be viewed as a stochastic extension of works that considered online shortest path problems
in deterministic settings. Here, the closest to our ideas and algorithm is the paper by György et al. (2007).
One major difference between the algorithms is that our algorithm is based on direct estimates of thetotal
reward to go in every state-action pair, whereas the algorithm of György et al. (2007) estimates the reward
to go via estimating theimmediaterewards. Compared to the bound in György et al. (2007), our bounds are
slightly larger (and thus weaker). In earlier work, Awerbuch and Kleinberg (2004) gave anO(T 2/3) regret
bound, while McMahan and Blum (2004) gave anO(T 3/4) bound, building upon the exponentially weighted
average forecaster and, respectively, the follow the perturbed leader algorithm, both under the assumption
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that the only information received is the total reward at the end of the episodes. More recently, Dani et al.
(2008) proposed a generalization ofExp3 due to Auer et al. (1995), which can be applied to this setting and
which gives an expected regret ofO(|X |3/2T 1/2), where|X | is the size of the state space. More recently,
Bartlett et al. (2008) showed that the algorithm can be extended so that the bound holds with high probability.
We note in passing that Dani et al. (2008) suggest that their algorithm can be implemented efficiently for the
MDP setting. However, this is not clear at all: Although, conceptually, the algorithm can be applied to our
case, when policies are represented through the distributions that they induce over the state space, but this
does not seem to lead to an algorithm that can be implemented.

Another thread of work that is closely related to ours considers algorithms for learning and acting in
Markovian decision processes (MDPs) with arbitrary reward sequences. In fact, clearly, our framework is a
special case of this more general framework. The first work that considered this setting is due to Even-Dar
et al. (2005, 2009). In this work the restriction on the MDP is that it must beunichain(i.e., all stationary
policies must generate a unique stationary distribution) and it is assumed that the worst mixing time,τ , over
all policies is uniformly small (the mixing time appears in the bounds). This is similar to our assumption of
the MDP being episodic, with all policies terminating afterL steps (though strictly speaking, their assumption
does not hold true in our setting). However, the major difference between our work and that of Even-Dar et al.
(2005, 2009) is that they assume that the reward function is fully observable, whereas we consider the bandit
setting. They propose an algorithm, MDP-E, which is very similar to ours in that it uses some (optimized)
expert algorithm in every state which is fed with the action-values of the policy used in the last round (which,
in our case, corresponds to the total reward to go). They prove a bound on the expected regret of this algorithm
of the formO(τ2

√
T log |A|). The improved dependence on the action set (as compared to our bound stated

above) is the result of the assumption that the reward function is available at every step and not only the
reward of the last state-action pair visited, otherwise the bound shows a dependence somewhat similar to ours
in the main quantities. We actually prove a similar bound for our problem, just to fix some ideas, in Section 4.

More recently, Yu et al. (2009) proposed algorithms for the same (full information) problem and proved a
bound on the expected regret of orderO((τ + |A|+ |X |) τ |A|2T 3/4+ε logT ) for arbitraryε ∈ (0, 1/3).1 The
algorithm proposed (“Lazy FPL”) works with phases of lengthm1/3−ε and changes policies only at the end
of the phases. At the end of a phase the optimal (differential) value function corresponding to the sum of past
reward functions is first found. Within the phase, the action to be followed at some time step is then selected
as the one that maximizes the one-step lookahead action value computed with this value function but with
the immediate rewards perturbed randomly in an appropriate manner. The advantage of this algorithm to that
of Even-Dar et al. (2009) is that it is computationally less expensive, which, however, comes at the price of
an increased bound on the regret. Yu et al. (2009) introduced another algorithm (“Q-FPL”) which is shown
to enjoy a vanishing average regret over time (i.e., the algorithm is Hannan consistent). The major advance,
however, is that, for the first time, Yu et al. (2009) proposed an algorithm (“Exploratory FPL”) to address the
problem of learning in the bandit setting. This algorithm estimates the immediate rewards by appropriately
weighting the rewards received and in a phase either uses a uniformly exploring policy or that of underlying
their Lazy FPL algorithm. They prove that the average regret of this algorithm vanishes almost surely.

Yu and Mannor (2009a,b) considered the problem of on-line learning in MDPs where the transition prob-
abilities may also change arbitrarily after each transition. This problem is significantly more difficult than
the case where only the reward function is changed arbitrarily. In particular, as it is shown in these papers,
Hannan consistency cannot be achieved in this setting. Yu and Mannor (2009b) also considered the case
when rewards are only observed along the trajectory traversed by the agent. However, this paper seems to
have gaps: If the state space consists of a single state, the problem becomes identical to the non-stochastic
multi-armed bandit problem. Yet, from Theorem IV.1 of Yu and Mannor (2009b) it follows that the expected
regret of their algorithm isO(

√
log |A|T ), which contradicts the knownΩ(

√
|A|T ) lower bound on the

regret (Auer et al., 2002a).2

2 Problem definition

Formally, a Markovian Decision Process (MDP)M is defined by a state spaceX , an action setA, a transition
functionP : X × A × X → [0, 1], and a reward functionr : X × A → [0, 1]. In time stepk, knowing
the statexk ∈ X , a decision maker (or agent) acting in the MDPM , chooses an actionak ∈ A(x) where
A(x) ⊂ A is the set of admissible actions at statex. As a result the process moves to statexk+1 ∈ X with
probabilityP (xk+1|xk, ak) and the decision maker receives rewardr(xk , ak) (this implies that for anyx ∈ X

1The notion of mixing time in this paper is somewhat, but not essentially different than that of used by Even-Dar et al.
(2005, 2009).

2To show this contradiction note that the conditionT > N in the bound of Theorem IV.1 of Yu and Mannor (2009b)
can be traded for an extraO(1/T ) term in the regret bound. Then the said contradiction can be arrived at by lettingǫ, δ
converge to zero such thatǫ/δ3 → 0.
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anda ∈ A(x), P (·|x, a) defines a probability distribution overX ). The goal of the agent is to maximize its
average reward. In an episodic MDP there is a terminal statex ∈ X : if this state is reached, the episode is
ended and the whole process starts again with a designated starting state. For a more detailed introduction
the reader is referred to, for example, Puterman (1994).

The loop-free stochastic shortest path (SSP) problem is a special case of episodic MDPs. Informally,
given an acyclic directed graph an agent has to traverse repeatedly over paths between two given vertices of
the graph. At each vertex the agent makes a decision, and based on the decision it follows a random edge of
the graph to the next vertex and receives some reward. The goal of the agent is to maximize its average reward
received over the paths. More formally, we consider MDPs where the state spaceX consists of layers, that is,
X = ∪L

l=0Xl, whereXl is called thelth layer of the state space andXl ∩ Xk = ∅ for all l 6= k. The first and
last layers are singleton layers, that is,X0 = {x0} andXL = {xL}. The significance of the layers is given by
the fact that the state of the agent can only move between consecutive layers, that is, in each episode the agent
starts at layer0, and at time instantl it is at layerl until it reaches the terminal statexL. This assumption is
equivalent to assuming that each path in the graph is of equal length, and is reflected by the special structure
of the transition function: for anyxl ∈ Xl anda ∈ A(xl), P (xl+1|xl, al) = 0 if xl+1 6∈ Xl+1.3 For any state
x ∈ X we will uselx to denote the index of the layerx belongs to, that is,lx = l if x ∈ Xl.

In this paper we consider the online version of the loop-free SSP problem, in which case the reward
function is allowed to change between episodes, that is, instead of a single reward functionr, we are given
a sequence of rewards{rt} describing the rewards at episodet that is assumed to be an individual sequence
fixed in advance4, that is, no statistical assumption is made about the reward values. Note that the constraint
thatrt depends only on the current state and action is assumed only for simplicity: the results of the paper
can easily be extended to the situation wherert is allowed to depend on the next state as well (i.e., when the
reward function is of the formrt(xl, al, xl+1).

A stochastic stationary policy (or, in short: a policy) is a mappingπ : A × X → [0, 1], whereπ(a|x) ≡
π(a, x) is the probability of taking actiona in statex. The instantaneous value functionandaction-value
functionwith respect toπ at episodet are defined, respectively, as

vπt (xl) = E

[
L−1∑

k=l

rt(xk, ak)

∣∣∣∣xl = xl

]

qπt (xl, al) = E

[
L−1∑

k=lx

rt(xk, ak)

∣∣∣∣xl = xl, al = al

]
,

where the sequence(x0, a0), (x1, a1), . . . , (xL−1, aL−1) is generated by the policyπ and the MDP, and the
expectations are taken with respect toπ and the transition functionP . These values are equivalently defined
by the Bellman equations:

qπt (x, a) = rt(x, a) +
∑

x′

P (x′|x, a)vπt (x′)

vπt (x) =
∑

a

π(a|x)qπt (x, a),
(1)

with vπt (xL) = 0. Thecumulative action-valueandcumulative value functionsare defined, respectively, as

Qπ
t =

t∑

s=1

qπs and V π
t =

t∑

s=1

vπs .

Each policy generates a probability distributionµπ over each layerXl, l = 0, 1, . . . , L, that is,

µπ(xl) = P[xl = xl|x0 = x0].

The distributionµπ can be computed recursively as

µπ(xl) =
∑

xl−1,al−1

P (xl|xl−1, al−1)π(al−1|xl−1)µπ(xl−1), (2)

for l = 1, 2, . . . , L, with µπ(x0) = 1. Theexpected returnof a fixed policyπ for a time horizonT > 0 is
defined asRπ

T =
∑T

t=1 v
π
t = V π

T . The return of the best policy in hindsight is given by

R∗
T = sup

π

T∑

t=1

vπt (x0) = sup
π

V π
T (x0).

3Note that all loop-free state spaces can be transformed to one that satisfies our assumptions. A simple transformation
algorithm is given in Appendix A of György et al. (2007).

4That is, we assume that we are dealing with a so called oblivious opponent.
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It is known that there exists a stationary and deterministic policy π∗
T that achieves the above maximum

(Puterman, 1994, Theorem 4.4.2), and so we can usemax instead ofsup in the above equation. By a slight
abuse of the notation we will useπ∗

T (x) to denote the action for whichπ∗
T (a|x) 6= 0. The state distribution

generated by the optimal policy will be denoted asµ∗
T ≡ µπ∗

T
.

Our goal is to construct a sequential decision algorithm (agent) that asymptotically achieves the above
return averaged over the episodes. The decision algorithm may follow a different policyπt at each episode
t = 1, 2, . . . , T . This policy may be random, as it may depend on the previous states the agent visited and
the previous rewards it received. The random path traversed by the agent at episodet will be denoted by

ut =
{
x
(t)
0 , a

(t)
0 ,x

(t)
1 , a

(t)
1 , . . . ,x

(t)
L−1, a

(t)
L−1,x

(t)
L

}
,

and the path history up to episodet by

Ut = {u1,u2, . . . ,ut} ,
for all t = 1, 2, . . . , T with U0 = ∅. Note thatUt covers all the randomness in the problem (including the
random transitions and the possible randomness in the agent’s decisions). Thus,

πt(a|x) = P [a = a|x = x,Ut−1] .

The value function and the action-value function of policyπt are given, respectively, by

vt(xl) = E

[
L−1∑

k=lx

rt(xk, ak)

∣∣∣∣xl = xl,Ut−1

]

qt(xl, al) = E

[
L−1∑

k=lx

rt(xk, ak)

∣∣∣∣xl = xl, al = al,Ut−1

]

where the sequence(x0, a0), (x1, a1), . . . , (xL−1, aL−1) is generated by the policyπt (that is fully deter-
mined byUt−1). We will also useQt =

∑t
s=1 qs andVt =

∑t
s=1 vs. The state distribution generated by

πt is denoted byµt = µπt
, whereµπt

(x) = P[x ∈ ut|Ut−1].
The expected return accumulated by the agent in the firstT episodes is

R̂T =

T∑

t=1

E [vt(x0)] = E [VT (x0)] ,

and its relative loss with respect to the best fixed policyπ∗
T in hindsight, calledregret, is defined as

L̂T = R∗
T − R̂T = V ∗

T (x0)− E [VT (x0)] .

The following lemma will be a key to our main results. Note that a similar argument is used by Even-Dar
et al. (2009) to prove their main result about online learning in unichain MDPs in the full information case
(cf. Lemma 4.1). The benefit of this lemma is that the problem of bounding the regret is essentially reduced
to the problem of bounding the difference between action-valuesof the policy followed by the agent.

Lemma 1 For any time horizonT > 0, let the state distribution generated by the optimal policyπ∗
T be

denoted byµ∗
T , and define

V +
T (x) = E [QT (x, π

∗
T (x))] .

Then

V ∗
T (x0)− E [VT (x0)] =

L−1∑

l=0

∑

xl∈Xl

µ∗
T (xl)

(
V +
T (xl)− E [VT (xl)]

)
.

Proof:

V ∗
T (x0)− E [VT (x0)] = V ∗

T (x0)− V +
T (x0) + V +

T (x0)− E [VT (x0)]

= Q∗
T (x0, π

∗
T (x0)) − E [QT (x0, π

∗
T (x0))] + V +

T (x0)− E [VT (x0)]

=
∑

x1∈X1

P (x1|x0, π
∗
T (x0))

(
V ∗
T (x1)− E [VT (x1)]

)
+V +

T (x0)− E [VT (x0)]

= · · · =
L−1∑

l=0

∑

xl∈Xl

µ∗
T (xl)

(
V +
T (xl)− E [VT (xl)]

)
.
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3 Sequential prediction with expert advice

A widely studied special case of our setting where the state space consists of a single state is called sequential
prediction with expert advice (Cesa-Bianchi and Lugosi, 2006). In this context, actions are usually referred
to asexperts, and several algorithms have been developed that solve the many variants of the problem. Such
algorithmsE satisfy a regret bound of the form

L̂T ≤ ρE(T,A) (3)

whereρE(T,A) is a sublinear function ofT , and solimT→∞ L̂T /T → 0. Furthermore, we assume through-
out the paper thatρE(T,A) is a nondecreasing function ofT and|A|. As usually the regret scales linearly
with the range of the rewards, it is assumed above thatrt ∈ [0, 1]. In the course of solving our O-SSP problem
we are going to use such algorithms as basic building blocks. Note that depending on the actual form of the
algorithm,E may be universal in the sense that (3) is satisfied for allT , while several algorithms requireT -
dependent parameter settings. On the other hand, these methods can be changed to be universal (sometimes
at the price of slightly deteriorating the bounds) with either adaptively changing the parameters or simply by
resorting to the doubling trick.

The type of the sequential decision problem is usually classified based on the amount of information
available to the decision maker, the set of the reference experts and the way the rewards are generated. In the
basic setup, known as the case of theoblivious opponent, the reward functionsr1, r2, . . . are fixed in advance,
while in the more generalnon-oblivioussetup the rewards may depend on any quantity that is determined
before roundt. In the latter case, formally we havert = rt(Ut−1).

Luckily, the following lemma, which can be obtained as a special case of a slight generalization of the
first part of Lemma 4.1 of Cesa-Bianchi and Lugosi (2006), shows that algorithms that work in the oblivious
case also work in the non-oblivious setting:

Lemma 2 Consider a randomized algorithmE such that, for everyt = 1, 2, . . . , T ,πt is fully determined by
the historyUt−1 and the reward sequencer1, r2, . . . , rt−1. Assume that the regret of the algorithm satisfies
(3) in the oblivious case. Then(3) also holds in the non-oblivious case.

Note that the regret in the non-oblivious case is still defined asmaxa∈A
∑T

t=1 (rt(a)− rt(at)), where
r1, r2, . . . , rT : A → R are the reward functions that are obtained as a result of followingE andat is
the action taken byE at time stept. In particular, this definition does not take into account that the sequence
of reward functions would be different if actiona was followed from the beginning. Although this makes, in
general, questionable the meaningfulness of this regret definition, in our case this regret definition will still
be just good enough.

In the full informationcase the decision maker is informed about the rewards of all actions at the end of
each episode; while in thebandit settingonly the reward of the chosen action is revealed. Anoptimized best
expert algorithmin the full information case is an algorithm that attains an expected regret ofO(

√
T log |A|),

and similarly, anoptimized|A|-armed bandit algorithmis one that attains an expected regret ofO(
√
T |A|).

Optimized best expert algorithms include theexponentially weighted average forecaster(EWA) (a variant
of Littlestone and Warmuth’s (1994) weighted majority algorithm, and Vovk’s (1990) aggregating strategies,
also known as Hedge (Freund and Schapire, 1997)) and thefollow the perturbed leader(FPL) algorithm
(Kalai and Vempala, 2003). There exist a number of algorithms for the bandit case that attain regrets of
O(
√

T |A| log |A|), such asExp3 by Auer et al. (2002a) andGreen by Allenberg et al. (2006), while the
algorithm presented by Audibert and Bubeck (2009) achieves the optimal rateO(

√
T |A|).

4 Full information O-SSP

In this section we give an algorithm and a very short proof that bounds the algorithm’s regret in the full
information case. The purpose is mainly to fix some ideas that will be useful later on.

In the full information case the reward functionrt is completely revealed after each episodet. We will
use the value functions of the agent’s policy at each episodet to construct the policy in the next round. Note
that as we can exactly compute these value functions, the sequence of the agent’s policies does not depend
on previous decisions, that is, the policies and the value functions are fully determined by the algorithm.
Algorithm 1 uses an arbitrary (optimized) best expert algorithmE in each statex to predict the actions to
be taken at that state based on previous values ofqt(x, ·). (Thus, the algorithm is essentially the same as the
MDP-E algorithm of Even-Dar et al. 2009.)

In order to understand how the algorithm works, consider some fixed statex. By definition,πt+1(·|x) is
the distribution computed by the expert algorithmE(x) when used on a discrete prediction problem with the
“reward sequence”q1(x, ·), q2(x, ·), . . . and action setA(x). Sinceqt(x, ·) depends onπt, which depends on
the past rewards, the prediction problem is modeled as one with non-oblivious opponents. The cumulative
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Algorithm 1 Algorithm for the full information O-SSP.

1. Initialize an expert algorithmE(x), an instance of algorithmE, for all statesx ∈ X .

2. Fort = 1, 2, . . . , T , repeat

(a) For allx ∈ X and alla ∈ A, letπt(a|x) be the probability that algorithmE(x) chooses actiona.
(b) Traverse a pathut following the policyπt.
(c) Observe the reward functionrt.
(d) Computeqt using the Bellman equations (1) forπt andrt.
(e) For all statesx ∈ X , feed the algorithmE(x) with qt(x, ·).

expectedreward of the algorithm up to episodeT isVT (x) and the reward of a constant actiona isQT (x, a).
Let E be a best expert algorithm with regret boundρE(T,A). By Lemma 2, for any actiona at statex, we
get

QT (x, a)−VT (x) ≤ (L− lx)ρE(T,A),

where we used that0 ≤ qt(x, a) ≤ L − lx. Since in this caseQT is non-random,V +
T (x) = QT (x, π

∗
T (x))

and thus
V +
T (x) −VT (x) ≤ (L− lx)ρE(T,A). (4)

Based on this bound and Lemma 1, we immediately obtain a performance bound on this algorithm for our
original problem:

Proposition 3 LetE be an expert algorithm with regret boundρE(T,A). Then the regret of Algorithm 1 can
be bounded as

L̂T ≤ L(L+ 1)

2
ρE(T,A)

Remark: Applying EWA with (time-horizon dependent) optimized parameters as the expert algorithmE,
the above bound becomes5

L̂T ≤ L(L+ 1)

2

√
T log |A|

2
.

Proof: By Lemma 1, we have

L̂T =

L−1∑

l=0

∑

xl∈Xl

µ∗
T (xl)

(
V +
T (xl)− E[VT (xl)]

)
.

Using (4) to bound the terms on the right hand side yields the desired bound.

5 Bandit O-SSP

In the bandit case, the rewards are only observed on the paths that the agent traverses at each episodet. In
this section we give an algorithm and analyze its performance for this case.

First, we define conditionally unbiased estimates ofqt andvt givenUt−1 as follows:

q̂t(xl, al) =





∑
L−1
k=l

rt
(

x
(t)
k

,a
(t)
k

)

πt(al|xl)µt(xl)
if (xl, al) =

(
x
(t)
l , a

(t)
l

)
;

0 otherwise.
(5)

v̂t(xl) =
∑

a

πt(a|xl)q̂t(xl, a) . (6)

Indeed, it is easy to check thatE[q̂t(x, a)|Ut−1] = qt(x, a) andE[v̂t(x)|Ut−1] = vt(x). Note that the
estimateŝqt and v̂t can only be computed after the end of episodet. We will also use the following key
property of this estimate:

E[q̂t(x, a)− v̂t(x)|Ix∈ut
,Ut−1] = Ix∈ut

qt(x, a)− vt(x)

µt(x)
. (7)

5See Theorem 2.2 in Cesa-Bianchi and Lugosi (2006).
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Similarly to the full information case, Algorithm 2 given below employs an|A(x)|-armed bandit algo-
rithm B in each statex to choose actions using the observations from the previous paths that includex. The
only assumption that we make aboutB is that it works with unbiased estimates of the rewards of the form (5),
and its regret scales linearly with the range of the rewards. Note that algorithms likeExp3 can be redefined
to receive unbiased estimates of this form instead of the actual rewards. In the following, we use all bandit
algorithms with these updates.

Algorithm 2 Algorithm for the bandit O-SSP.

1. Initialize an|A(x)|-armed bandit algorithmB(x), an instance ofB, for all statesx ∈ X .

2. Fort = 1, 2, . . . , T , repeat

(a) For allx ∈ X and alla ∈ A, letπt(a|x) be the probability that algorithmB(x) chooses actiona.
(b) Computeµt(x) for all x ∈ X using (2) recursively.
(c) Traverse a pathut following the policyπt.

(d) Observe rewardsrt(ut) =
{
rt

(
x
(t)
0 , a

(t)
0

)
, . . . , rt

(
x
(t)
L−1, a

(t)
L−1

)}
.

(e) Construct estimateŝqt using equation (5).
(f) For all statesx ∈ X , feed the algorithmB(x) with q̂t(x, ·)

Theorem 4 Let B be an multi-armed bandit algorithm with regret boundρB(T,A). Assume that there exists
someα > 0 for whichµπ(x) ≥ α holds for allx ∈ X and all stationary policiesπ. Then the regret of
Algorithm 2 can be bounded as

L̂T ≤ L(L+ 1)

2α
ρB(T,A).

Remark: For example, using the algorithm of Audibert and Bubeck (2009) with appropriate parameters as
the base bandit algorithmB yields

L̂T ≤ 15L(L+ 1)

2α

√
T |A|.

Also note that the conditions of the proposition are satisfied if, for example,

min
x∈Xl,a∈A,x′∈Xl+1,l∈1:L−1

P (x′|x, a) > 0.

In fact, our assumption ofα being positive is closely related to the uniform mixing assumption used generally
in the literature considering online learning in MDPs.
Proof: The set of episodes when statex is visited will be denoted byTx = {1 ≤ t ≤ T |x ∈ ut}. By
Lemma 1, we have

L̂T =

L−1∑

l=0

∑

xl∈Xl

µ∗
T (xl)

[
V +
T (xl)− E [VT (xl)]

]
. (8)

On the other hand, we have, for any fixedx,

V +
T (x) − E [VT (x)] = E

[
T∑

t=1

E

[
q̂t(x, π

∗
T (x)) − v̂t(x)

∣∣∣Ut−1

]]

=

T∑

t=1

E [q̂t(x, π
∗
T (x)) − v̂t(x)] . (9)
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Therefore, by (7) we obtain

V +
T (x)− E [VT (x)] = E

[
T∑

t=1

q̂t(x, π
∗
T (x)) − v̂t(x)

]

= E

[
T∑

t=1

E

[
q̂t(x, π

∗
T (x)) − v̂t(x)

∣∣∣ Ix∈ut
,Ut−1

]]

= E

[
T∑

t=1

Ix∈ut

qt(x, π
∗
T (x)) − vt(x)

µt(x)

]

= E

[
∑

t∈Tx

qt(x, π
∗
T (x)) − vt(x)

µt(x)

]
. (10)

As for everyxwe are using an independent|A(x)|-armed bandit algorithmB with regret boundρB(T,A(x))
that is fed with valueŝqt(x, ·) which are conditionally unbiased estimates of values that belong to[0, (L −
lx)/α], by Lemma 2 we have the following for any fixeda:

E

[
∑

t∈Tx

qt(x, a)− vt(x)

µt(x)

]
≤ 1

α
(L− lx)ρB(T,A(x)) ≤ 1

α
(L− lx)ρB(T,A).

Combining this bound with (8)-(10) finishes the proof.

A problem with the above theorem is that the bound scales with1/α, but in certain casesα can be
exponentially small. On the other hand, if the minimal probability of visiting a state is exponentially small
then the maximal probability of visiting the same state may often be also exponentially small (clearly this is
the case in the grid-world example considered in the simulations in Section 6, see Figure 2). The following
theorem can be very useful in these situations.

Theorem 5 LetB be a multi-armed bandit algorithm with regret boundρB(T,A), and define

α(x) = min
π

µπ(x) and β(x) = max
π

µπ(x).

Assume thatκ = maxx∈X
β(x)
α(x) < ∞. Then the regret of Algorithm 2 can be bounded as

L̂T ≤ κL|X |ρB(T,A).

Proof: Following the proof of Theorem 4 we obtain, for anyl,

∑

xl∈Xl

µ∗
T (xl)

(
V +
T (xl)− E [VT (xl)]

)
=

∑

xl∈Xl

µ∗
T (xl)E


 ∑

t∈Tx
l

qt(xl, π
∗
T (xl))− vt(xl)

µt(xl)




≤
∑

xl∈Xl

β(xl)
1

α(xl)
(L− l)ρB(T,A)

≤ |Xl|κLρB(T,A).

Summing up for alll finishes the proof.

In particular, if we useExp3 (as described in Section 6.8 of Cesa-Bianchi and Lugosi 2006) as the
bandit algorithmB, we can prove regret bounds that have slightly better dependence onα. The proof of the
results, given in the following theorem, follows closely the derivation of the original regret bound of theExp3
algorithm (Auer et al., 2002a) and will be given in details in an extended version of this paper.

Theorem 6 Assume that the conditions of Theorem 4 hold and the bandit algorithmB is theExp3 algorithm
with parameters0 < γ ≤ 1 and0 < η ≤ αγ

|A|(L−lx)
. Then, if Algorithm 2 is used, for each statex ∈ X we

have

E [QT (x, a)−VT (x)] ≤
(
γ + (e− 2)η

L− lx
α

|A|
)
(L− lx)T +

ln |A|
η

.

Anoptimal choice ofγ andη yields the following bound on the regret:

L̂T ≤ L(L+ 1)

2

√
T |A| ln |A|(e − 2)

α
.
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Furthermore, letκ′ = maxx∈X
β(x)√
α(x)

< ∞ whereα(x) andβ(x) are defined in Theorem 5. Then

L̂T ≤ κ′ L|X |
√
T |A| ln |A|(e− 2).

In the above results we used the assumption that any stationary policy induces a distribution that visits each
state with positive probability. However, this assumption may be too restrictive in many situations. If we only
require that each state is reachable with positive probability for an adequately chosen policy, then usingExp3
in our algorithm with differentγ at each layer yields a consistent strategy with sublinear regret, although the
convergence rate becomes very slow.

Theorem 7 Let
pmin = min

x∈Xl,a∈A,x′∈Xl+1,1≤l≤L−1,P (x′|x,a)>0
P (x′|x, a)

and assume that for each statex there is a policyπ such thatµπ(x) > 0. If Algorithm 2 is run with theExp3

algorithm with parametersγl = T−2−l−1

andηl =
γl

∏
l−1
i=1(pminγi/|A|)
|A|(L−l) for each statexl ∈ Xl, then

L̂T /T ≤ L(L+ 1)

2

(
(e− 1) +

|A|L+1 ln |A|
pLmin

)
T−2−L−1

Proof: For anyl our assumptions implyµt(xl) ≥ ∏l−1
i=0(pminγi/|A|). Therefore, similarly to the first

statement of Theorem 6, for allx anda we have

E [QT (x, a)−VT (x)] ≤
(
γlx +

(e − 2)ηlx(L− lx)|A|
∏lx−1

i=0 (pminγi/|A|)

)
(L− lx)T +

ln |A|
ηlx

=

(
(L− lx)(e− 1) +

(L− lx)|A|lx+1 ln |A|
plxmin

)
T 1−2−lx−1

by straightforward calculations. Summing up the above formula forlx = 0, . . . , L− 1 proves the proposition
by Lemma 1.

So far the regret of our algorithm was measured relative to the best fixed policy. On the other hand, in
our motivating examples it may be the case that the best policy changes over time, and hence it is natural
to compare our performance to the best time varying policy. Letπ1:T = (π1, π2, . . . , πT ) be a sequence of
policies, and letRT (π1:T ) denote the expected return, afterT episodes, of the algorithm that applies policy
πt at episodet. Our goal is to minimize the expected lossRT (π1:T )− R̂T relative toπ1:T .

Clearly, it is not possible to provide a uniform bound on this loss, as, in general, it is harder to achieve
the performance of an algorithm that changes the employed policy more often (the extreme situation is when
the policy changes in each time instant). In the following we will give an algorithm that bounds the tracking
regret with the help of the complexity ofπ1:T that can be defined as

C(π1:T ) = 1 + |{t : πt 6= πt+1, 1 ≤ t ≤ T − 1}|.
That isC(π1:T ) is the number of times the employed policy changes between consecutive episodes.

While this problem seems much harder than the ones considered before, the tracking algorithms for the
prediction framework help us in solving it. Several algorithms are known for the full information case with
vanishing tracking regret under various conditions and with different rewards, see, for example, Willems
(1996); Helmbold and Warmuth (1998); Shamir and Merhav (1999); Vovk (1999); György et al. (2008).
These methods can be extended to the bandit case as well, see, for example, Auer et al. (2002a). Assume that
we have an algorithmBT for the bandit sequential prediction problem (that is, when there is only one state)
that satisfies, for every policy sequenceπ1:T ,

RT (π1:T )− R̂T ≤ ρBT (T,A, C(π1:T )) (11)

with some functionρBT (T,A, C(π1:T )) that is a nondecreasing function ofT , A, andC(π1:T ). Then using
such an algorithm as the expert algorithmB in Algorithm 2 solves the tracking problem in the following
sense.

Theorem 8 Assume thatBT is a multi-armed bandit algorithm that satisfies the regret bound(11). If κ,
defined in Theorem 5, is finite and Algorithm 2 is used with the bandit algorithmBT , then the regret relative
to any fixed sequence of policiesπ1:T can be bounded as

RT (π1:T )− R̂T ≤ κL|X |ρBT (T,A, C(π1:T )).
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Remark: In particular, if theExp3.Salgorithm of Auer et al. (2002a) is used, then ifT is known in advance
and is used optimally in setting the parameters of the algorithm, we obtain

RT (π1:T )− R̂T ≤ κL|X |
(
C(π1:T )

√
|A|T ln(|A|T ) + 2e

√
|A|T

ln(|A|T )

)
.

Furthermore, if a boundC on the complexity ofπ1:T is known in advance (this is useful, if the complexity of
the optimalπ1:T is bounded), then using this value in setting the parameters ofExp3.S, we obtain

RT (π1:T )− R̂T ≤ κL|X |
√
e− 1

√
|A|T (C ln(|A|T ) + e).

Proof: A simple generalization of Lemma 1 yields

RT (π1:T )− R̂T = V π1:T

T (x0)− E [VT (x0)] =

T∑

t=1

vπt

t (x0)− E [VT (x0)]

=
L−1∑

l=0

∑

xl∈Xl

T∑

t=1

µt(xl)E [qt(xl, πt(xl))− vt(xl)]

Now we have, for anyx, similarly to (9),

E [qt(x, πt(x))− vt(x)] = E [q̂t(x, πt(x)) − v̂t(x)] .

Therefore, similarly to (10), we obtain

T∑

t=1

µt(x)E [qt(x, πt(x)) − vt(x)] =

T∑

t=1

µt(x)E

[
qt(x, πt(x))− vt(xl)

µt(x)

]

≤ β(x)E

[
∑

t∈Tx

qt(x, πt(x)) − vt(x)

µt(x)

]

Finally, (11) and Lemma 2 yields, as at the end of the proof of Theorem 4,

E

[
∑

t∈Tx

qt(x, πt(x)) − vt(x)

µt(x)

]
≤ L

α(x)
ρBT (T,A, C(π1:T ))

sinceρBT (T,A, C) is an increasing function ofC by assumption. Combining the above results finishes the
proof.

6 Simulations

We have run our experiments on a grid world of size10 × 10, where in each episode the agent has to find
the shortest path from the lower left corner to the upper right corner. The agent has two actions: Both make
the agent move right or up, the “right” (“up”) action makes the agent move right (respectively, “up”) with
probability0.7, while it makes it move “up” (respectively, “right”) with probability0.3. That is, we have
L = 20, |X | = 100, α = 0.310, κ = (0.7/0.3)10 (the values ofα andκ correspond to the top-left and
bottom-right corners). The experiment is run withT = 100, 000, rewards are set randomly 20 times at
episodest = 1, 5000, 10000, . . . for all x, a, and change linearly in between. We have simulated the policies
generated by EWA for the full information case, and the policies generated byExp3 for the bandit case. An
example of the grid-world (of smaller size) and the results of a typical simulation are shown in Figure 2.

7 Conclusions and future work

In this paper we considered the problem of online learning in loop-free stochastic-shortest path problems
in a bandit setting when only the reward of the current transitions is available for measurement. The per
episode complexity of our algorithm isO(|A| |X |2) and the algorithm is easy to implement. According to
our knowledge, ours is the first algorithm that can be implemented efficiently and which is known to achieve
anO(

√
T |A|) regret in the bandit setting, under the assumption that every policy reaches every state with

positive probability. Unfortunately, the regret bound scales with the inverse of the minimal such probability,
which is clearly undesirable in many situations. To alleviate this problem, variants of the original bound have
been developed that may be preferred in certain specific cases. For the case when this latter condition does
not hold, we proposed an algorithm whose expected average expected regret vanishes over time. We view our
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Figure 2: (a) An example of a grid-world. (b) The average regret in an episode of the proposed algorithms as
the function of the number of episodes in a simple MDP.

results as a step towards algorithms that work efficiently and which can be implemented efficiently. However,
much work remains to be done.

As for immediate future work, obvious directions include extending our results to the case of unichain
MDPs setting, or, less ambitiously, to the case when the stochastic shortest-path problem may have loops.
Although one can construct an unbiased estimate of the action values by plugging in an unbiased estimate of
the rewards, these estimates are not of the form (5), thus our analysis does not apply. It is nontrivial whether
a proper estimate of the action values can be found; even with a positive answer there are further obstacles
to eliminate (e.g., the change rate of the distributions generated by the applied bandit algorithm has to be
controlled in order to be able to apply the analysis of Even-Dar et al., 2009). Alternate directions to extend
our results include the case of unknown transition probabilities, partial monitoring, high probability bounds,
or when the state and action space are too large to keep a value for each of them, in which case one must
resort to some form of function approximation, just to mention a few.
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Abstract

We introduce a new online convex optimization algorithm that adaptively chooses its regulariza-
tion function based on the loss functions observed so far. This is in contrast to previous algo-
rithms that use a fixed regularization function such as L2-squared, and modify it only via a single
time-dependent parameter. Our algorithm’s regret bounds are worst-case optimal, and for certain
realistic classes of loss functions they are much better than existing bounds. These bounds are
problem-dependent, which means they can exploit the structure of the actual problem instance.
Critically, however, our algorithm does not need to know this structure in advance. Rather, we
prove competitive guarantees that show the algorithm provides a bound within a constant factor of
the best possible bound (of a certain functional form) in hindsight.

1 Introduction

We consider online convex optimization in the full information feedback setting. A closed, bounded convex
feasible set F ⊆ Rn is given as input, and on each round t = 1, . . . , T , we must pick a point xt ∈ F . A
convex loss function ft is then revealed, and we incur loss ft(xt). Our regret at the end of T rounds is

Regret ≡
T∑
t=1

ft(xt)−min
x∈F

T∑
t=1

ft(x). (1)

Existing algorithms for online convex optimization are worst-case optimal in terms of certain fundamental
quantities. In particular, online gradient descent attains a bound of O(DM

√
T ) where D is the L2 diameter

of the feasible set and M is a bound on L2-norm of the gradients of the loss functions. This bound is tight in
the worst case, in that it is possible to construct problems where this much regret is inevitable. However, this
does not mean that an algorithm that achieves this bound is optimal in a practical sense, as on easy problem
instances such an algorithm is still allowed to incur the worst-case regret. In particular, although this bound
is minimax optimal when the feasible set is a hypersphere (Abernethy et al., 2008), we will see that much
better algorithms exist when the feasible set is the hypercube.

To improve over the existing worst-case guarantees, we introduce additional parameters that capture
more of the problem’s structure. These parameters depend on the loss functions, which are not known in
advance. To address this, we first construct functional upper bounds on regret BR(θ1, . . . , θT ; f1, . . . , fT )
that depend on both (properties of) the loss functions ft and algorithm parameters θt. We then give algorithms
for choosing the parameters θt adaptively (based only on f1, f2, . . . , ft−1) and prove that these adaptive
schemes provide a regret bound that is only a constant factor worse than the best possible regret bound of the
form BR. Formally, if for all possible function sequences f1, . . . fT we have

BR(θ1, . . . , θT ; f1, . . . , fT ) ≤ κ inf
θ′1,...,θ

′
T∈ΘT

BR(θ′1, . . . , θ
′
T ; f1, . . . , fT )

for the adaptively-selected θt, we say the adaptive scheme is κ-competitive for the bound optimization prob-
lem. In Section 1.2, we provide realistic examples where known bounds are much worse than the problem-
dependent bounds obtained by our algorithm.
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1.1 Follow the proximally-regularized leader
We analyze a follow the regularized leader (FTRL) algorithm that adaptively selects regularization functions
of the form

rt(x) =
1
2
‖(Q

1
2
t (x− xt)‖22

where Qt is a positive semidefinite matrix. Our algorithm plays x1 = 0 on round 1 (we assume without loss
of generality that 0 ∈ F), and on round t+ 1, selects the point

xt+1 = arg min
x∈F

(
t∑

τ=1

(
rτ (x) + fτ (x)

))
. (2)

In contrast to other FTRL algorithms, such as the dual averaging method of Xiao (2009), we center the ad-
ditional regularization at the current feasible point xt rather than at the origin. Accordingly, we call this
algorithm follow the proximally-regularized leader (FTPRL). This proximal centering of additional regular-
ization is similar in spirit to the optimization solved by online gradient descent (and more generally, online
mirror descent, (Cesa-Bianchi & Lugosi, 2006)). However, rather than considering only the current gradient,
our algorithm considers the sum of all previous gradients, and so solves a global rather than local optimization
on each round. We discuss related work in more detail in Section 4.

The FTPRL algorithm allows a clean analysis from first principles, which we present in Section 2. The
proof techniques are rather different from those used for online gradient descent algorithms, and will likely
be of independent interest.

We write ~QT as shorthand for (Q1, Q2, . . . , QT ), with ~gT defined analogously. For a convex set F , we
define Fsym = {x− x′ | x, x′ ∈ F}. Using this notation, we can state our regret bound as

Regret ≤ BR( ~QT , ~gT ) ≡ 1
2

T∑
t=1

max
ŷ∈Fsym

(
ŷ>Qtŷ

)
+

T∑
t=1

g>t Q
−1
1:t gt (3)

where gt is a subgradient of ft at xt and Q1:t =
∑t
τ=1Qτ . We prove competitive ratios with respect to this

BR for several adaptive schemes for selecting the Qt matrices. In particular, when the FTPRL-Diag scheme
is run on a hyperrectangle (a set of the form {x | xi ∈ [ai, bi]} ⊆ Rn), we achieve

Regret ≤
√

2 inf
~Q∈QTdiag

BR( ~QT , ~gT )

where Qdiag = {diag(λ1, . . . , λn) | λi ≥ 0}. When the FTPRL-Scale scheme is run on a feasible set of the
form F = {x | ‖Ax‖2 ≤ 1} for A ∈ Sn++, it is competitive with arbitrary positive semidefinite matrices:

Regret ≤
√

2 inf
~Q∈(Sn+)T

BR( ~QT , ~gT ) .

Our analysis of FTPRL reveals a fundamental connection between the shape of the feasible set and the
importance of choosing the regularization matrices adaptively. When the feasible set is a hyperrectangle,
FTPRL-Diag has stronger bounds than known algorithms, except for degenerate cases where the bounds
are identical. In contrast, when the feasible set is a hypersphere, {x | ‖x‖2 ≤ 1}, the bound BR is always
optimized by choosing Qt = λtI for suitable λt ∈ R. The FTPRL-Scale scheme extends this result to
hyperellipsoids by applying a suitable transformation. These results are presented in detail in Section 3.

1.2 The practical importance of adaptive regularization
In the past few years, online algorithms have emerged as state-of-the-art techniques for solving large-scale
machine learning problems (Bottou & Bousquet, 2008; Zhang, 2004). Two canonical examples of such large-
scale learning problems are text classification on large datasets and predicting click-through rates for ads on
a search engine. For such problems, extremely large feature sets may be considered, but many features only
occur rarely, while few occur very often. Our diagonal-adaptation algorithm offers improved bounds for
problems such as these.

As an example, suppose F = [− 1
2 ,

1
2 ]n (so D =

√
n). On each round t, the ith component of Oft(xt)

(henceforth gt,i) is 1 with probability i−α, and is 0 otherwise, for some α ∈ [1, 2). Such heavy-tailed
distributions are common in text classification applications, where there is a feature for each word. In this
case, gradient descent with a global learning rate1 obtains an expected regret bound of O(

√
nT ). In contrast,

1The O(DM
√

T ) bound (mentioned in the introduction) based on a 1/
√

t learning rate gives O(n
√

T ) here; to get
O(
√

nT ) a global rate based on ‖g2
t ‖ is needed, e.g., Corollary 8.
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the algorithms presented in this paper will obtain expected regret on the order of

E

 n∑
i=1

√√√√ T∑
t=1

g2
t,i

 ≤ n∑
i=1

√√√√ T∑
t=1

E
[
g2
t,i

]
=

n∑
i=1

√
Ti−α = O(

√
T · n1−α2 )

using Jensen’s inequality. This bound is never worse than the O(
√
nT ) bound achieved by ordinary gradient

descent, and can be substantially better. For example, in problems where a constant fraction of examples
contain a new feature, n is Ω(T ) and the bound for ordinary gradient descent is vacuous. In contrast, the
bound for our algorithm is O(T

3−α
2 ), which is sublinear for α > 1.

This performance difference is not merely a weakness in the regret bounds for ordinary gradient descent,
but is a difference in actual regret. In concurrent work (Streeter & McMahan, 2010), we showed that for
some problem families, a per-coordinate learning rate for online gradient descent provides asymptotically
less regret than even the best non-increasing global learning rate (chosen in hindsight, given the observed
loss functions). This construction can be adapted to FTPRL as:

Theorem 1 There exists a family of online convex optimization problems, parametrized by the number of
rounds T , where online subgradient descent with a non-increasing learning rate sequence (and FTPRL with
non-decreasing coordinate-constant regularization) incurs regret at least Ω(T

2
3 ), whereas FTPRL with ap-

propriate diagonal regularization matrices Qt has regret O(
√
T ).

In fact, any online learning algorithm whose regret isO(MD
√
T ) (whereD is the L2 diameter of the feasible

region, and M is a bound on the L2 norm of the gradients) will suffer regret Ω(T
2
3 ) on this family of

problems. Note that this does not contradict the O(MD
√
T ) upper bound on the regret, because in this

family of problems D = T
1
6 (and M = 1).

1.3 Adaptive algorithms and competitive ratios
In Section 3, we introduce specific schemes for selecting the regularization matricesQt for FTPRL, and show
that for certain feasible sets, these algorithms provide bounds within a constant factor of those for the best
post-hoc choice of matrices, namely

inf
~QT∈QT

BR( ~QT , ~gT ) (4)

where Q ⊆ Sn+ is a set of allowed matrices; Sn+ is the set of symmetric positive semidefinite n× n matrices,
with Sn++ the corresponding set of symmetric positive definite matrices. We consider three different choices
for Q: the set of coordinate-constant matrices Qconst = {αI | α ≥ 0}; the set of non-negative diagonal
matrices,

Qdiag = {diag(λ1, . . . , λn) | λi ≥ 0} ;

and, the full set of positive-semidefinite matrices, Qfull = Sn+.
We first consider the case where the feasible region is an Lp unit ball, namely F = {x | ‖x‖p ≤ 1}. For

p ∈ [1, 2], we show that a simple algorithm (an analogue of standard online gradient descent) that selects
matrices fromQconst is

√
2-competitive with the best post-hoc choice of matrices from the full set of positive

semidefinite matrices Qfull = Sn+. This algorithm is presented in Corollary 8, and the competitive ratio is
proved in Theorem 13.

In contrast to the result for p ∈ [1, 2], we show that for Lp balls with p > 2 a coordinate-independent
choice of matrices (Qt ∈ Qconst) does not in general obtain the post-hoc optimal bound (see Section 3.3),
and hence per-coordinate adaptation can help. The benefit of per-coordinate adaptation is most pronounced
for the L∞-ball, where the coordinates are essentially independent. In light of this, we develop an efficient
algorithm (FTPRL-Diag, Algorithm 1) for adaptively selecting Qt from Qdiag, which uses scaling based on
the width of F in the coordinate directions (Corollary 9). In this corollary, we also show that this algorithm√

2-competitive with the best post-hoc choice of matrices fromQdiag when the feasible set is a hyperrectangle.
While per-coordinate adaptation does not help for the unit L2-ball, it can help when the feasible set is

a hyperellipsoid. In particular, in the case where F = {x | ‖Ax‖2 ≤ 1} for A ∈ Sn++, we show that an
appropriate transformation of the problem can produce significantly better regret bounds. More generally,
we show (see Theorem 12) that if one has a κ-competitive adaptive FTPRL scheme for the feasible set
{x | ‖x‖ ≤ 1} for an arbitrary norm, it can be extended to provide a κ-competitive algorithm for feasible sets
of the form {x | ‖Ax‖ ≤ 1}. Using this result, we can show FTPRL-Scale is

√
2-competitive with the best

post-hoc choice of matrices from Sn+ when F = {x | ‖Ax‖2 ≤ 1} and A ∈ Sn++; it is
√

2-competitive with
Qdiag when F = {x | ‖Ax‖p ≤ 1} for p ∈ [1, 2).
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Of course, in many practical applications the feasible set may not be so nicely characterized. We empha-
size that our algorithms and analysis are applicable to arbitrary feasible sets, but the quality of the bounds
and competitive ratios will depend on how tightly the feasible set can be approximated by a suitably cho-
sen transformed norm ball. In Theorem 10, we show in particular that when FTPRL-Diag is applied to an
arbitrary feasible set, it provides a competitive guarantee related to the ratio of the widths of the smallest
hyperrectangle that contains F to the largest hyperrectangle contained in F .

1.4 Notation and technical background

We use the notation g1:t as a shorthand for
∑t
τ=1 gτ . Similarly we write Q1:t for a sum of matrices Qt, and

f1:t to denote the function f1:t(x) =
∑t
τ=1 fτ (x). We write x>y or x · y for the inner product between

x, y ∈ Rn. The ith entry in a vector x is denoted xi ∈ R; when we have a sequence of vectors xt ∈ Rn
indexed by time, the ith entry is xt,i ∈ R. We use ∂f(x) to denote the set of subgradients of f evaluated at x.

Recall A ∈ Sn++ means ∀x 6= 0, x>Ax > 0. We use the generalized inequality A � 0 when A ∈ Sn++,
and similarly A ≺ B when B − A � 0, implying x>Ax < x>Bx. We define A � B analogously for
symmetric positive semidefinite matrices Sn+. ForB ∈ Sn+, we writeB1/2 for the square root ofB, the unique
X ∈ Sn+ such that XX = B (see, for example, Boyd and Vandenberghe, (2004, A.5.2)). We also make use
of the fact that any A ∈ Sn+ can be factored as A = PDP> where P>P = I and D = diag(λ1, . . . , λn)
where λi are the eigenvalues of A.

Following the arguments of Zinkevich (2003), for the remainder we restrict our attention to linear func-
tions. Briefly, the convexity of ft implies ft(x) ≥ g>t (x − xt) + ft(xt), where gt ∈ ∂f(xt). Because this
inequality is tight for x = xt, it follows that regret measured against the affine functions on the right hand
side is an upper bound on true regret. Furthermore, regret is unchanged if we replace this affine function
with the linear function g>t x. Thus, so long as our algorithm only makes use of the subgradients gt, we may
assume without loss of generality that the loss functions are linear.

Taking into account this reduction and the functional form of the rt, the update of FTPRL is

xt+1 = arg min
x∈F

(
1
2

t∑
τ=1

(x− xτ )>Qτ (x− xτ ) + g1:t · x

)
. (5)

2 Analysis of FTPRL
In this section, we prove the following bound on the regret of FTPRL for an arbitrary sequence of regulariza-
tion matrices Qt. In this section ‖ · ‖ always means the L2 norm, ‖ · ‖2.

Theorem 2 Let F ⊆ Rn be a closed, bounded convex set with 0 ∈ F . Let Q1 ∈ Sn++, and Q2, . . . , QT ∈
Sn+. Define rt(x) = 1

2‖Q
1
2
t (x − xt)‖22, and At = (Q1:t)

1
2 . Let ft be a sequence of loss functions, with

gt ∈ ∂ft(xt) a sub-gradient of ft at xt. Then, the FTPRL algorithm that that faces loss functions f , plays
x1 = 0, and uses the update of Equation (5) thereafter, has a regret bound

Regret ≤ r1:T (̊x) +
T∑
t=1

‖A−1
t gt‖2

where x̊ = arg minx∈F f1:T (x) is the post-hoc optimal feasible point.

To prove Theorem 2 we will make use of the following bound on the regret of FTRL, which holds
for arbitrary (possibly non-convex) loss functions. This lemma can be proved along the lines of (Kalai &
Vempala, 2005); for a complete proof see (McMahan & Streeter, 2010, Appendix A).

Lemma 3 Let r1, r2, . . . , rT be a sequence of non-negative functions. The regret of FTPRL (which plays xt
as defined by Equation (2)) is bounded by

r1:T (̊x) +
T∑
t=1

(ft(xt)− ft(xt+1))

where x̊ is the post-hoc optimal feasible point.

Once Lemma 3 is established, to prove Theorem 2 it suffices to show that for all t,

ft(xt)− ft(xt+1) ≤ ‖A−1
t gt‖2. (6)
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To show this, we first establish an alternative characterization of our algorithm as solving an unconstrained
optimization followed by a suitable projection onto the feasible set. Define the projection operator,

PF,A(u) = arg min
x∈F

‖A(x− u)‖

We will show that the following is an equivalent formula for xt:

ut+1 = arg min
u∈Rn

(r1:t(u) + g1:t · u)

xt+1 = PF,At (ut+1) . (7)

This characterization will be useful, because the unconstrained solutions depend only on the linear func-
tions gt, and the quadratic regularization, and hence are easy to manipulate in closed form.

To show this equivalence, first note that because Qt ∈ Sn+ is symmetric,

rt(u) =
1
2

(u− xt)>Qt(u− xt) =
1
2
u>Qtu− x>t Qtut +

1
2
x>t Qtxt.

Defining constants qt = Qtxt and kt = 1
2x
>
t Qtxt, we can write

r1:t(u) =
1
2
u>Q1:tu− q1:tu+ k1:t. (8)

The equivalence is then a corollary of the following lemma, choosing Q = Q1:t and h = g1:t− q1:t (note
that the constant term k1:t does not influence the argmin).

Lemma 4 Let Q ∈ Sn++ and h ∈ Rn, and consider the function

f(x) = h>x+
1
2
x>Qx.

Let ů = arg minu∈Rn f(u). Then, letting A = Q
1
2 , we have PF,A(̊u) = arg minx∈F f(x).

Proof: Note that Ouf(u) = h+Qu, implying that ů = −Q−1h. Consider the function

f ′(x) =
1
2
‖Q 1

2 (x− ů)‖2 =
1
2

(x− ů)>Q(x− ů).

We have

f ′(x) =
1
2

(
x>Qx− 2x>Qů+ ů>Qů

)
(because Q is symmetric)

=
1
2

(
x>Qx+ 2x>Q(Q)−1h+ ů>Qů

)
=

1
2

(
x>Qx+ 2x>h+ ů>Qů

)
= f(x) +

1
2
ů>Qů .

Because 1
2 ů
>Qů is constant with respect to x, it follows that

arg min
x∈F

f(x) = arg min
x∈F

f ′(x) = PF,A(̊u),

where the last equality follows from the definition of the projection operator.

We now derive a closed-form solution to the unconstrained problem. It is easy to show Ort(u) = Qtu−
Qtxt, and so

Or1:t(u) = Q1:tu−
t∑

τ=1

Qτxτ .

Because ut+1 is the optimum of the (strongly convex) unconstrained problem, and r1:t is differentiable, we
must have Or1:t(ut+1) + g1:t = 0. Hence, we conclude Q1:tut+1 −

∑t
τ=1Qτxτ + g1:t = 0, or

ut+1 = Q−1
1:t

(
t∑

τ=1

Qτxτ − g1:t

)
. (9)

This closed-form solution will let us bound the difference between ut and ut+1 in terms of gt. The next
Lemma relates this distance to the difference between xt and xt+1, which determines our per round regret
(Equation (6)). In particular, we show that the projection operator only makes ut and ut+1 closer together, in
terms of distance as measured by the norm ‖At · ‖. We defer the proof to the end of the section.
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Lemma 5 Let Q ∈ Sn++ with A = Q
1
2 . Let F be a convex set, and let u1, u2 ∈ Rn, with x1 = PF,A(u1)

and x2 = PF,A(u2). Then,
‖A(x2 − x1)‖ ≤ ‖A(u1 − u2)‖.

We now prove the following lemma, which will immediately yield the desired bound on ft(xt)−ft(xt+1).

Lemma 6 Let Q ∈ Sn++ with A = Q
1
2 . Let v, g ∈ Rn, and let u1 = −Q−1v and u2 = −Q−1(v+ g). Then,

letting x1 = PF,A(u1) and x2 = PF,A(u2),

g>(x1 − x2) ≤ ‖A−1g‖2.

Proof: The fact that Q = A>A � 0 implies that ‖A · ‖ and ‖A−1 · ‖ are dual norms (see for example (Boyd
& Vandenberghe, 2004, Sec. 9.4.1, pg. 476)). Using this fact,

g>(x1 − x2) ≤ ‖A−1g‖ · ‖A(x1 − x2)‖
≤ ‖A−1g‖ · ‖A(u1 − u2)‖ (Lemma 5)

= ‖A−1g‖ · ‖A(Q−1g)‖
= ‖A−1g‖ · ‖A(A−1A−1)g)‖ (Because Q−1 = (AA)−1)

= ‖A−1g‖ · ‖A−1g‖.

Proof of Theorem 2: First note that because rt(xt) = 0 and rt is non-negative, xt = arg minx∈F rt(x). For
any functions f and g, if x∗ = arg minx∈F f(x) and x∗ = arg minx∈F g(x), then

x∗ = arg min
x∈F

(f(x) + g(x)) .

Thus we have

xt = arg min
x∈F

(g1:t−1x+ r1:t−1(x))

= arg min
x∈F

(g1:t−1x+ r1:t(x)) (Because xt = arg min
x∈F

rt(x).)

= arg min
x∈F

(
hx+

1
2
x>Q1:tx

)

where the last line follows from Equation (8), letting h = g1:t−1−q1:t = g1:t−1−
∑t
τ=1Qτxτ , and dropping

the constant k1:t. For xt+1, we have directly from the definitions

xt+1 = arg min
x∈F

(g1:tx+ r1:t(x)) = arg min
x∈F

(
(h+ gt)x+

1
2
x>Q1:tx

)
.

Thus, Lemma 4 implies xt = PF,At(−(Q1:t)−1h) and similarly xt+1 = PF,At(−(Q1:t)−1(h+ gt)). Thus,
by Lemma 6, gt(xt − xt+1) ≤ ‖A−1

t gt‖2. The theorem then follows from Lemma 3.

Proof of Lemma 5: Define

B(x, u) =
1
2
‖A(x− u)‖2 =

1
2

(x− u)>Q(x− u),

so we can write equivalently
x1 = arg min

x∈F
B(x, u1).

Then, note that OxB(x, u1) = Qx−Qu1, and so we must have (Qx1−Qu1)>(x2−x1) ≥ 0; otherwise for
δ sufficiently small the point x1 + δ(x2 − x1) would belong to F (by convexity) and would be closer to u1

than x1 is. Similarly, we must have (Qx2 −Qu2)>(x1 − x2) ≥ 0. Combining these, we have the following
equivalent inequalities:

(Qx1 −Qu1)>(x2 − x1)− (Qx2 −Qu2)>(x2 − x1) ≥ 0

(x1 − u1)>Q(x2 − x1)− (x2 − u2)>Q(x2 − x1) ≥ 0

−(x2 − x1)>Q(x2 − x1) + (u2 − u1)>Q(x2 − x1) ≥ 0

(u2 − u1)>Q(x2 − x1) ≥ (x2 − x1)Q(x2 − x1).
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Letting û = u2 − u1, and x̂ = x2 − x1, we have x̂>Qx̂ ≤ û>Qx̂. Since Q is positive semidefinite, we have
(û− x̂)>Q(û− x̂) ≥ 0, or equivalently û>Qû+ x̂>Qx̂− 2x̂>Qû ≥ 0 (using the fact Q is also symmetric).
Thus,

û>Qû ≥ −x̂>Qx̂+ 2x̂>Qû ≥ −x̂>Qx̂+ 2x̂>Qx̂ = x̂>Qx̂,

and so
‖A(u2 − u1)‖2 = û>Qû ≥ x̂>Qx̂ = ‖A(x2 − x1)‖2.

3 Specific Adaptive Algorithms and Competitive Ratios
Before proceeding to the specific results, we establish several results that will be useful in the subsequent
arguments. In order to prove that adaptive schemes for selecting Qt have good competitive ratios for the
bound optimization problem, we will need to compare the bounds obtained by the adaptive scheme to the
optimal post-hoc bound of Equation (4). Suppose the sequence Q1, . . . , QT is optimal for Equation (4), and
consider the alternative sequence Q′1 = Q1:T and Q′t = 0 for t > 1. Using the fact that Q1:t � Q1:t−1

implies Q−1
1:t � Q

−1
1:t−1, it is easy to show the alternative sequence also achieves the minimum. It follows that

a sequence with Q1 = Q on the first round, and Qt = 0 thereafter is always optimal. Hence, to solve for the
post-hoc bound we can solve an optimization of the form

inf
Q∈Q

(
max
ŷ∈Fsym

(
1
2
ŷ>Qŷ

)
+

T∑
t=1

g>t Q
−1gt

)
. (10)

The diameter of F is D ≡ maxy,y′∈F ‖y − y′‖2, and so for ŷ ∈ Fsym, ‖ŷ‖2 ≤ D. When F is symmetric
(x ∈ F implies −x ∈ F), we have y ∈ F if and only if 2y ∈ Fsym, so (10) is equivalent to:

inf
Q∈Q

(
max
y∈F

(
2y>Qy

)
+

T∑
t=1

g>t Q
−1gt

)
. (11)

For simplicity of exposition, we assume g1,i > 0 for all i, which ensures that only positive definite matrices
can be optimal.2 This assumption also ensures Q1 ∈ Sn++ for the adaptive schemes discussed below, as
required by Theorem 2. This is without loss of generality, as we can always hallucinate an initial loss function
with arbitrarily small components, and this changes regret by an arbitrarily small amount. We will also use
the following Lemma (Auer & Gentile, 2000):

Lemma 7 For any non-negative real numbers x1, x2, . . . , xn,

n∑
i=1

xi√∑i
j=1 xj

≤ 2

√√√√ n∑
i=1

xi .

3.1 Adaptive coordinate-constant regularization
We derive bounds where Qt is chosen from the setQconst, and show that this algorithm comes within a factor
of
√

2 of using the best constant regularization strength λI . This algorithm achieves a bound of O(DM
√
T )

where D is the diameter of the feasible region and M is a bound on ‖gt‖2, matching the best possible bounds
in terms of these parameters (Abernethy et al., 2008). We will prove a much stronger competitive guarantee
for this algorithm in Theorem 13.

Corollary 8 Suppose F has L2 diameter D. Then, if we run FTPRL with diagonal matrices such that

(Q1:t)ii = ᾱt =
2
√
Gt
D

where Gt =
∑t
τ=1

∑n
i=1 g

2
τ,i, then

Regret ≤ 2D
√
GT .

If ‖gt‖2 ≤M , thenGT ≤M2T , and this translates to a bound ofO(DM
√
T ). WhenF = {x | ‖x‖2 ≤ D/2},

this bound is
√

2-competitive for the bound optimization problem over Qconst.
2In the case where F has 0 width in some direction, the infimum will not be attained by a finite Q, but by a sequence

that assigns 0 penalty (on the right-hand side) to the components of the gradient in the direction of 0 width, requiring
some entries in Q to go to ∞.
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Algorithm 1 FTPRL-Diag
Input: feasible set F ⊆ ×ni=1[ai, bi]
Initialize x1 = 0 ∈ F
(∀i), Gi = 0, qi = 0, λ0,i = 0, Di = bi − ai
for t = 1 to T do

Play the point xt, incur loss ft(xt)
Let gt ∈ ∂ft(xt)
for i = 1 to n do
Gi = Gi + g2

t,i

λt,i = 2
Di

√
Gi − λ1:t−1,i

qi = qi + xt,iλt,i
ut+1,i = (g1:t,i − qi)/λ1:t,i

end for
At = diag(

√
λ1:t,1, . . . ,

√
λ1:t,n)

xt+1 = ProjectF,At(ut+1)
end for

Algorithm 2 FTPRL-Scale
Input: feasible set F ⊆ {x | ‖Ax‖ ≤ 1},
with A ∈ Sn++

Let F̂ = {x | ‖x‖ ≤ 1}
Initialize x1 = 0, (∀i) Di = bi − ai
for t = 1 to T do

Play the point xt, incur loss ft(xt)
Let gt ∈ ∂ft(xt)
ĝt = (A−1)>gt
ᾱ =

√∑t
τ=1

∑n
i=1 ĝ

2
τ,i

αt = ᾱ− α1:t−1

qt = αtxt
ût+1 = (1/ᾱ)(q1:t − g1:t)
At = (ᾱI)

1
2

x̂t+1 = ProjectF̂,At(ût+1)
xt+1 = A−1x̂

end for

Proof: Let the diagonal entries ofQt all be αt = ᾱt−ᾱt−1 (with ᾱ0 = 0), so α1:t = ᾱt. Note αt ≥ 0, and so
this choice is feasible. We consider the left and right-hand terms of Equation (3) separately. For the left-hand
term, letting ŷt be an arbitrary sequence of points from Fsym, and noting ŷ>t ŷt ≤ ‖ŷt‖2 · ‖ŷt‖2 ≤ D2,

1
2

T∑
t=1

ŷ>t Qtŷt =
1
2

T∑
t=1

ŷ>t ŷtαt ≤
1
2
D2

T∑
t=1

αt =
1
2
D2ᾱT = D

√
GT .

For the right-hand term, we have
T∑
t=1

g>t Q
−1
1:t gt =

T∑
t=1

n∑
i=1

g2
t,i

α1:t
=

T∑
t=1

D

2

∑n
i=1 g

2
t,i√

Gt
≤ D

√
GT ,

where the last inequality follows from Lemma 7.
In order to make a competitive guarantee, we must prove a lower bound on the post-hoc optimal bound

function BR, Equation (10). This is in contrast to the upper bound that we must show for the regret of the
algorithm. When F = {x | ‖x‖2 ≤ D/2}, Equation (10) simplifies to exactly

min
α≥0

(
1
2
αD2 +

1
α
GT

)
= D

√
2GT (12)

and so we conclude the adaptive algorithm is
√

2-competitive for the bound optimization problem.

3.2 Adaptive diagonal regularization
In this section, we introduce and analyze FTPRL-Diag, a specialization of FTPRL that uses regularization
matrices from Qdiag. Let Di = maxx,x′∈F |xi − x′i|, the width of F along the ith coordinate. We construct
a bound on the regret of FTPRL-Diag in terms of these Di. The Di implicitly define a hyperrectangle that
contains F . When F is in fact such a hyperrectangle, our bound is

√
2-competitive with the best post-hoc

optimal bound using matrices from Qdiag.

Corollary 9 Let F be a convex feasible set of width Di in coordinate i. We can construct diagonal matrices
Qt such that the ith entry on the diagonal of Q1:t is given by:

λ̄t,i =
2
D i

√√√√ t∑
τ=1

g2
τ,i.

Then the regret of FTPRL satisfies

Regret ≤ 2
n∑
i=1

Di

√√√√ T∑
t=1

g2
t,i.
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When F is a hyperrectangle, then this algorithm is
√

2-competitive with the post-hoc optimal choice of Qt
from the Qdiag. That is,

Regret ≤
√

2 inf
Q∈Qdiag

(
max
ŷ∈Fsym

(
1
2
ŷ>Qŷ

)
+

T∑
t=1

g>t Q
−1gt

)
.

Proof: The construction of Q1:t in the theorem statement implies (Qt)ii = λt,i ≡ λ̄t,i − λ̄t−1,i. These
entries are guaranteed to be non-negative as λ̄t,i is a non-decreasing function of t.

We begin from Equation (3), letting ŷt be an arbitrary sequence of points from Fsym. For the left-hand
term,

1
2

T∑
t=1

ŷ>t Qtŷt =
1
2

T∑
t=1

n∑
i=1

ŷ2
t,iλt,i ≤

1
2

n∑
i=1

D2
i

T∑
t=1

λt,i =
1
2

n∑
i=1

D2
i λ̄T,i =

n∑
i=1

Di

√√√√ T∑
t=1

g2
t,i.

For the right-hand term, we have

T∑
t=1

g>t Q
−1
1:t gt =

T∑
t=1

n∑
i=1

g2
t,i

λ̄t,i
=

n∑
i=1

Di

2

T∑
t=1

g2
t,i√∑t
τ=1 g

2
τ,i

≤
n∑
i=1

Di

√√√√ T∑
t=1

g2
t,i,

where the last inequality follows from Lemma 7. Summing these bounds on the two terms of Equation (3)
yields the stated bound on regret.

Now, we consider the case where the feasible set is exactly a hyperrectangle, that is,F = {x | xi ∈ [ai, bi]}
where Di = bi − ai. Then, the optimization of Equation (10) decomposes on a per-coordinate basis, and in
particular there exists a ŷ ∈ Fsym so that ŷ2

i = D2
i in each coordinate. Thus, for Q = diag(λ1, . . . , λn), the

bound function is exactly
n∑
i=1

1
2
λiD

2
i +

1
λi

T∑
t=1

g2
t,i.

Choosing λi = 1
Di

√
2
∑T
t=1 g

2
t,i minimizes this quantity, producing a post-hoc bound of

√
2

n∑
i=1

Di

√√√√ T∑
t=1

g2
t,i,

verifying that the adaptive scheme is
√

2-competitive with matrices from Qdiag.

The regret guarantees of the FTPRL-Diag algorithm hold on arbitrary feasible sets, but the competitive
guarantee only applies for hyperrectangles. We now extend this result, showing that a competitive guarantee
can be made based on how well the feasible set is approximated by hyperrectangles.

Theorem 10 Let F be an arbitrary feasible set, bounded by a hyperrectangleHout of widthWi in coordinate
i; further, let H in be a hyperrectangle contained by F , of width wi > 0 in coordinate i. That is, H in ⊆ F ⊆
Hout. Let β = maxi Wi

wi
. Then, the FTPRL-Diag is

√
2β-competitive with Qdiag on F .

Proof: By Corollary 9, the adaptive algorithm achieves regret bounded by 2
∑n
i=1Wi

√∑T
t=1 g

2
t,i. We now

consider the best post-hoc bound achievable with diagonal matrices on F . Considering Equation (10), it is
clear that for any Q,

max
y∈Fsym

1
2
y>Qy +

T∑
t=1

g>t Q
−1gt ≥ max

y∈H in
sym

1
2
y>Qy +

T∑
t=1

g>t Q
−1gt,

since the feasible set for the maximization (Fsym) is larger on the left-hand side. But, on the right-hand
side we have the post-hoc bound for diagonal regularization on a hyperrectangle, which we computed in the

previous section to be
√

2
∑n
i=1 wi

√∑T
t=1 g

2
t,i. Because wi ≥ Wi

β by assumption, this is lower bounded by
√

2
β

∑n
i=1Wi

√∑T
t=1 g

2
t,i, which proves the theorem.

Having had success with L∞, we now consider the potential benefits of diagonal adaptation for other
Lp-balls.
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3.3 A post-hoc bound for diagonal regularization on Lp balls

Suppose the feasible set F is an unit Lp-ball, that is F = {x | ‖x‖p ≤ 1}. We consider the post-hoc bound
optimization problem of Equation (11) withQ = Qdiag. Our results are summarized in the following theorem.

Theorem 11 For p > 2, the optimal regularization matrix for BR in Qdiag is not coordinate-constant (i.e.,
not contained in Qconst), except in the degenerate case where Gi ≡

∑T
t=1 g

2
t,i is the same for all i. However,

for p ≤ 2, the optimal regularization matrix in Qdiag always belongs to Qconst.

Proof: Since F is symmetric, the optimal post-hoc choice will be in the form of Equation (11). Letting
Q = diag(λ1, . . . , λn), we can re-write this optimization problem as

max
y:‖y‖p≤1

(
2

n∑
i=1

y2
i λi

)
+

n∑
i=1

Gi
λi

. (13)

To determine the optimal λ vector, we first derive a closed form for the solution to the maximization problem
on the left hand side, assuming p ≥ 2 (we handle the case p < 2 separately below). First note that the
inequality ‖y‖p ≤ 1 is equivalent to

∑n
i=1 |yi|p ≤ 1. Making the change of variable zi = y2

i , this is

equivalent to
∑n
i=1 z

p
2
i ≤ 1, which is equivalent to ‖z‖ p

2
≤ 1 (the assumption p ≥ 2 ensures that ‖ · ‖ p

2
is a

norm). Hence, the left-hand side optimization reduces to

max
z:‖z‖ p

2
≤1

2
n∑
i=1

ziλi = 2‖λ‖q,

where q = p
p−2 , so that ‖ · ‖ p

2
and ‖ · ‖q are dual norms (allowing q = ∞ for p = 2). Thus, for p ≥ 2, the

above bound simplifies to

B(λ) = 2‖λ‖q +
n∑
i=1

Gi
λi
. (14)

First suppose p > 2, so that q is finite. Then, taking the gradient of B(λ),

∇B(λ)i =
2
q

(
n∑
i=1

λqi

) 1
q−1

· qλq−1
i − Gi

λ2
i

= 2
(

λi
‖λ‖q

)q−1

− Gi
λ2
i

,

using 1
q − 1 = − 1

q (q − 1). If we make all the λi’s equal (say, to λ1), then for the left-hand side we get

(
λi
‖λ‖q

)q−1

=

(
λ1

(nλq1)
1
q

)q−1

=
(

1

n
1
q

)q−1

= n
1
q−1 .

Thus the ith component of the gradient is 2n
1
q−1 − Gi

λ2
1

, and so if not all the Gi’s are equal, some component
of the gradient is non-zero. Because B(λ) is differentiable and the λi ≥ 0 constraints cannot be tight (recall
g1 > 0), this implies a constant λi cannot be optimal, hence the optimal regularization matrix is not inQconst.

For p ∈ [1, 2], we show that the solution to Equation (13) is

B∞(λ) ≡ 2‖λ‖∞ +
n∑
i=1

Gi
λi
. (15)

For p = 2 this follows immediately from Equation (14), because when p = 2 we have q =∞. For p ∈ [1, 2),
the solution to Equation (13) is at least B∞(λ), because we can always set yi = 1 for whatever λi is largest
and set yj = 0 for j 6= i. If p < 2 then the feasible set F is a subset of the unit L2 ball, so the solution to
Equation (13) is upper bounded by the solution when p = 2, namely B∞(λ). It follows that the solution is
exactly B∞(λ). Because the left-hand term of B∞(λ) only penalizes for the largest λi, and on the right-hand
we would like all λi as large as possible, a solution of the form λ1 = λ2 = · · · = λn must be optimal.
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3.4 Full matrix regularization on hyperspheres and hyperellipsoids
In this section, we develop an algorithm for feasible sets F ⊆ {x | ‖Ax‖p ≤ 1}, where p ∈ [1, 2] and
A ∈ Sn++. When F = {x | ‖Ax‖2 ≤ 1}, this algorithm, FTPRL-Scale, is

√
2-competitive with arbitrary

Q ∈ Sn+. For F = {x | ‖Ax‖p ≤ 1} with p ∈ [1, 2) it is
√

2-competitive with Qdiag.
First, we show that rather than designing adaptive schemes specifically for linear transformations of norm

balls, it is sufficient (from the point of view of analyzing FTPRL) to consider unit norm balls if suitable
pre-processing is applied. In the same fashion that pre-conditioning may speed batch subgradient descent
algorithms, we show this approach can produce significantly improved regret bounds when A is poorly con-
ditioned (i.e., the ratio of the largest to smallest eigenvalue is large).

Theorem 12 Fix an arbitrary norm ‖·‖, and define an online linear optimization problem I = (F , (g1, . . . , gT ))
where F = {x | ‖Ax‖ ≤ 1} with A ∈ Sn++. We define the related instance Î = (F̂ , (ĝ1, . . . , ĝT )), where
F̂ = {x̂ | ‖x̂‖ ≤ 1} and ĝt = A−1gt. Then:

• If we run any algorithm dependent only on subgradients on Î, and it plays x̂1, . . . , x̂T , then by playing
the corresponding points xt = A−1x̂t on I we achieve identical loss and regret.

• The post-hoc optimal bound over arbitrary Q ∈ Sn++ is identical for these two instances.

Proof: First, we note that for any function h where minx:‖Ax‖≤1 h(x) exists,

min
x:‖Ax‖≤1

h(x) = min
x̂:‖x̂‖≤1

h(A−1x̂), (16)

using the change of variable x̂ = Ax. For the first claim, note that ĝ>t = g>t A
−1, and so for all t, ĝ>t x̂t =

g>t A
−1Axt = g>t xt, implying the losses suffered on Î and I are identical. Applying Equation (16), we have

min
x:‖Ax‖≤1

g>1:tx = min
x̂:‖x̂‖≤1

g>1:tA
−1x̂ = min

x̂:‖x̂‖≤1
ĝ>1:tx̂,

implying the post-hoc optimal feasible points for the two instances also incur identical loss. Combining these
two facts proves the first claim. For the second claim, it is sufficient to show for any Q ∈ Sn++ applied to the
post-hoc bound for problem I, there exists a Q̂ ∈ Sn++ that achieves the same bound for Î (and vice versa).
Consider such a Q for I. Then, again applying Equation (16), we have

max
y:‖Ay‖p≤1

(
2y>Qy

)
+

T∑
t=1

g>t Q
−1gt = max

ŷ:‖ŷ‖≤1

(
2ŷ>A−1QA−1ŷ

)
+

T∑
t=1

ĝ>t AQ
−1Aĝt.

The left-hand side is the value of the post-hoc bound on I from Equation (11). Noting that (A−1QA−1)−1 =
AQ−1A, the right-hand side is the value of the post hoc bound for Î using Q̂ = A−1QA−1. The fact A−1

and Q are in Sn++ guarantees Q̂ ∈ Sn++ as well, and the theorem follows.

We can now define the adaptive algorithm FTPRL-Scale: given a F ⊆ {x | ‖Ax‖p ≤ 1}, it uses the
transformation suggested by Theorem 12, applying the coordinate-constant algorithm of Corollary 8 to the
transformed instance, and playing the corresponding point mapped back into F .3 Pseudocode is given as
Algorithm 2.

Theorem 13 The diagonal-constant algorithm analyzed in Corollary 8 is
√

2-competitive with Sn+ when
F = {x | ‖x‖p ≤ 1} for p = 2, and

√
2-competitive against Qdiag when p ∈ [1, 2). Furthermore, when

F = {x | ‖Ax‖p ≤ 1} with A ∈ Sn++, the FTPRL-Scale algorithm (Algorithm 2) achieves these same
competitive guarantees. In particular, when F = {x | ‖x‖2 ≤ 1}, we have

Regret ≤
√

2 inf
Q∈Sn+

(
max
y∈F

(
2y>Qy

)
+

T∑
t=1

g>t Q
−1gt

)
.

Proof: The results for Qdiag with p ∈ [1, 2) follow from Theorems 11 and 12 and Corollary 8. We now
consider the case p = 2. Consider a Q ∈ Sn++ for Equation (11) (recall only a Q ∈ Sn++ could be optimal
since g1 > 0). We can write Q = PDP> where D = diag(λ1, . . . , λn) is a diagonal matrix of positive
eigenvalues and PP> = I . It is then easy to verify Q−1 = PD−1P>.

3By a slightly more cumbersome argument, it is possible to show that instead of applying this transformation, FTPRL
can be run directly on F using appropriately transformed Qt matrices.
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When p = 2 and F = {x | ‖x‖p ≤ 1}, Equation (15) is tight, and so the post-hoc bound for Q is

2 max
i

(λi) +
T∑
t=1

g>t (PD−1P>)gt.

Let zt = P>gt, so each right-hand term is
∑n
i=1

z2t,i
λi

. It is clear this quantity is minimized when each λi is
chosen as large as possible, while on the left-hand side we are only penalized for the largest eigenvalue of Q
(the largest λi). Thus, a solution where D = αI for α > 0 is optimal. Plugging into the bound, we have

B(α) = 2α+
T∑
t=1

g>t

(
P

(
1
α
I

)
P>
)
gt = 2α+

1
α

T∑
t=1

g>t gt = 2α+
GT
α

where we have used the fact that PP> = I . Setting α =
√
GT /2 produces a minimal post-hoc bound of

2
√

2GT . The diameter D is 2, so the coordinate-constant algorithm has regret bound 4
√
GT (Corollary 8),

proving the first claim of the theorem for p = 2. The second claim follows from Theorem 12.

Suppose we have a problem instance where F = {x | ‖Ax‖2 ≤ 1} where A = diag(1/a1, . . . , 1/an)
with ai > 0. To demonstrate the advantage offered by this transformation, we can compare the regret bound
obtained by directly applying the algorithm of Corollary 8 to that of the FTPRL-Scale algorithm. Assume
WLOG that maxi ai = 1, implying the diameter of F is 2. Let g1, . . . , gT be the loss functions for this
instance. Recalling Gi =

∑T
t=1 g

2
t,i, applying Corollary 8 directly to this problem gives

Regret ≤ 4

√√√√ n∑
i=1

Gi. (17)

This is the same as the bound obtained by online subgradient descent and related algorithms as well.
We now consider FTPRL-Scale, which uses the transformation of Theorem 12. Noting D = 2 for the

hypersphere and applying Corollary 8 to the transformed problem gives an adaptive scheme with

Regret ≤ 4

√√√√ n∑
i=1

T∑
t=1

ĝ2
t,i = 4

√√√√ n∑
i=1

a2
i

T∑
t=1

g2
t,i = 4

√√√√ n∑
i=1

a2
iGi.

This bound is never worse than the bound of Equation (17), and can be arbitrarily better when many of the ai
are much smaller than 1.

4 Related work
In the batch convex optimization setting, it is well known that convergence rates can often be dramatically
improved through the use of preconditioning, accomplished by an appropriate change of coordinates taking
into account both the shape of the objective function and the feasible region (Boyd & Vandenberghe, 2004).
To our knowledge, this is the first work that extends these concepts (necessarily in a quite different form) to
the problem of online convex optimization, where they can provide a powerful tool for improving regret (the
online analogue of convergence rates).

Perhaps the closest algorithms in spirit to our diagonal adaptation algorithm are confidence-weighted
linear classification (Drezde et al., 2008) and AROW (Crammer et al., 2009), in that they make different-sized
adjustments for different coordinates. Unlike our algorithm, these algorithms apply only to classification
problems and not to general online convex optimization, and the guarantees are in the form of mistake bounds
rather than regret bounds.

FTPRL is similar to the lazily-projected gradient descent algorithm of (Zinkevich, 2004, Sec. 5.2.3), but
with a critical difference: the latter effectively centers regularization outside of the current feasible region
(at ut rather than xt). As a consequence, lazily-projected gradient descent only attains low regret via a re-
starting mechanism or a constant learning rate (chosen with knowledge of T ). It is our technique of always
centering additional regularization inside the feasible set that allows us to make guarantees for adaptively-
chosen regularization.

Most recent state-of-the-art algorithms for online learning are in fact general algorithms for online convex
optimization applied to learning problems. Many of these algorithms can be thought of as (significant) exten-
sions of online subgradient descent, including (Duchi & Singer, 2009; Do et al., 2009; Shalev-Shwartz et al.,
2007). Apart from the very general work of (Kalai & Vempala, 2005), few general follow-the-regularized-
leader algorithms have been analyzed, with the notable exception of the recent work of Xiao (2009).

255



The notion of proving competitive ratios for regret bounds that are functions of regularization parameters
is not unique to this paper. Bartlett et al. (2008) and Do et al. (2009) proved guarantees of this form, but for
a different algorithm and class of regularization parameters.

In concurrent work (Streeter & McMahan, 2010), the authors proved bounds similar to those of Corol-
lary 9 for online gradient descent with per-coordinate learning rates. These results were significantly less
general that the ones presented here, and in particular were restricted to the case where F was exactly a
hyperrectangle. The FTPRL algorithm and bounds proved in this paper hold for arbitrary feasible sets, with
the bound depending on the shape of the feasible set as well as the width along each dimension. Some re-
sults similar to those in this work were developed concurrently by Duchi et al. (2010), though for a different
algorithm and using different analysis techniques.

5 Conclusions
In this work, we analyzed a new algorithm for online convex optimization, which takes ideas both from
online subgradient descent as well as follow-the-regularized-leader. In our analysis of this algorithm, we
show that the learning rates that occur in standard bounds can be replaced by positive semidefinite matrices.
The extra degrees of freedom offered by these generalized learning rates provide the key to proving better
regret bounds. We characterized the types of feasible sets where this technique can lead to significant gains,
and showed that while it does not help on the hypersphere, it can have dramatic impact when the feasible set
is a hyperrectangle.

The diagonal adaptation algorithm we introduced can be viewed as an incremental optimization of the
formula for the final bound on regret. In the case where the feasible set really is a hyperrectangle, this allows
us to guarantee our final regret bound is within a small constant factor of the best bound that could have
been obtained had the full problem been known in advance. The diagonal adaptation algorithm is efficient,
and exploits exactly the kind of structure that is typical in large-scale real-world learning problems such as
click-through rate prediction and text classification.

Our work leaves open a number of interesting directions for future work, in particular the development of
competitive algorithms for arbitrary feasible sets (without resorting to bounding norm-balls), and the devel-
opment of algorithms that optimize over richer families of regularization functions.
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Abstract

We present a new family of subgradient methods that dynamically incorporate knowledge of the
geometry of the data observed in earlier iterations to perform more informative gradient-based
learning. The adaptation, in essence, allows us to find needles in haystacks in the form of very
predictive yet rarely observed features. Our paradigm stems from recent advances in online learning
which employ proximal functions to control the gradient steps of the algorithm. We describe and
analyze an apparatus for adaptively modifying the proximal function, which significantly simplifies
the task of setting a learning rate and results in regret guarantees that are provably as good as the
best proximal function that can be chosen in hindsight. We corroborate our theoretical results with
experiments on a text classification task, showing substantial improvements for classification with
sparse datasets.

1 Introduction
In many applications of online and stochastic learning, the input instances are of very high dimension, yet
within any particular instance only a few features are non-zero. It is often the case, however, that the in-
frequently occurring features are highly informative and discriminative. The informativeness of rare features
has led practitioners to craft domain-specific feature weightings, such as TF-IDF (Salton and Buckley, 1988),
whichpre-emphasize infrequently occurring features. We use this old idea as a motivation for applying mod-
ern learning-theoretic techniques to the problem of online and stochastic learning, focusing specifically on
(sub)gradient methods.

Standard stochastic subgradient methods largely follow a predetermined procedural scheme that is obliv-
ious to the characteristics of the data being observed. In contrast, our algorithms dynamically incorporate
knowledge of the geometry of the data from earlier iterations to perform more informative gradient-based
learning. Informally, our procedures associate frequently occurring features with low learning rates and in-
frequent features high learning rates. This construction prompts the learner to “take notice” each time an
infrequent feature is observed. Thus, the adaptation facilitates identification and adaptation of highly predic-
tive but comparatively rare features.

1.1 The Adaptive Gradient Algorithm

For simplicity, consider the basic online convex optimization setting. The algorithm iteratively makes a
predictionxt ∈ X , whereX ⊆ R

d is a closed convex set, and then receives a convex loss functionft. Define
the regret with respect to the (optimal) predictorx∗ ∈ X as

R(T ) ,
T∑

t=1

[ft(xt)− ft(x
∗)] .

To achieve low regret, standard subgradient algorithms move the predictorxt in the opposite direction of
the subgradientgt ∈ ∂ft(xt) of the loss via the projected gradient update (e.g.Zinkevich, 2003)

xt+1 = ΠX (xt − ηgt) .

Our algorithm, called ADAGRAD, makes a second-order correction to the predictor using the previous loss
functions. Denote the projection of a pointy ontoX by ΠAX (y) = argminx∈X ‖x− y‖A (where‖x‖A =√
〈x,Ax〉). In this notation, our adaptation of gradient descent employs the update

xt+1 = Π
G

1/2

t

X

(
xt − ηG

−1/2
t gt

)
, (1)
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where the matrixGt =
∑t
τ=1 gτgτ

⊤ is the outer product of all previous subgradients. The above algorithm
may be computationally impractical in high dimensions since it requires computation of the matrix square
root ofGt, the outer product matrix. We therefore also analyze a version in which we usediag(Gt), the
diagonal of the outer product matrix, instead ofGt:

xt+1 = Π
diag(Gt)

1/2

X

(
xt − η diag(Gt)

−1/2gt

)
. (2)

This latter update rule can be computed in linear time. Moreover, as we discuss later, when the vectorsgt are
sparse the update can often be performed in time proportional to the support of the gradient.

Let us compare the regret bounds attained by both variants of gradient descent. Let the diameter ofX
be bounded, sosupx,y∈X ‖x− y‖2 ≤ D2. Then Zinkevich’s analysis of online gradient descent—with the
optimal choice inhindsightfor the stepsizeη—achieves regret

R(T ) ≤
√
2D2

√√√√
T∑

t=1

‖gt‖22 . (3)

WhenX is bounded viasupx,y∈X ‖x− y‖∞ ≤ D∞, the following corollary is a consequence of our main
Theorem5.

Corollary 1 Let the sequence{xt} ⊂ R
d be generated by the update in Eq. (6) and letmaxt ‖x∗ − xt‖∞ ≤

D∞. Then with stepsizeη = D∞/
√
2, for anyx∗,

R(T ) ≤
√
2dD∞

√√√√ inf
s�0,〈1,s〉≤d

T∑

t=1

‖gt‖2diag(s)−1 =
√
2D∞

d∑

i=1

‖g1:T,i‖2 .

The important parts of the bound are the infimum under the root, which allows us to perform better than using
the identity matrix, and the fact that the stepsize is easy to set a priori. For example, ifX = {x : ‖x‖∞ ≤ 1},
thenD2 = 2

√
d whileD∞ = 2. In the case of learning a dense predictor over a box, the bound in Corollary1

is thus better than Eq. (3) as the identity matrix belongs to the set over which we take theinfimum.

1.2 Improvement and Motivating Examples

In Section6, we give empirical evidence in favor of adaptive algorithms. Herewe give a few theoretical
examples that show that for sparse data—input sequences wheregt has low cardinality—the adaptive methods
are likely to perform better than non-adaptive methods. In all the cases we consider in this section we use the
hinge loss,ft(x) = [1− yt 〈zt, x〉]+, whereyt is the label of examplet andzt ∈ R

d is a data vector.
To begin, consider the following example of sparse random data. Assume that at each roundt, feature

i appears with probabilitypi = min{1, ci−α} for someα ≥ 2 and a constantc. Suppose also that with
probability1, at least one feature appears, for instance by settingp = 1. Taking the expectation of the bound
in Corollary1, we have

E

d∑

i=1

‖g1:T,i‖2 =
d∑

i=1

E

√
|{t : |gt,i| = 1}| ≤

d∑

i=1

√
E|{t : |gt,i| = 1}| =

d∑

i=1

√
piT

whereto obtain the inequality above we used Jensen’s inequality. Now, notice that for the rightmost sum,
we havec

∑d
i=1 i

−α/2 = O(log d) sinceα ≥ 2. If the domain is a hypercube,X = {x : ‖x‖∞ ≤ 1}, then
D∞ = 2. Thus, the regret bound of ADAGRAD is R(T ) = O(log d

√
T ). In contrast, the standard regret

boundfrom Eq. (3) hasD2 = 2
√
d, and we know that‖gt‖22 ≥ 1, yielding a regret boundR(T ) = O(

√
dT ).1

Thus, ADAGRAD ’s regret guarantee is exponentially smaller than the non-adaptive regret bound as a function
of dimension for this sparse data setting.

Next we give two concrete examples for which the adaptive methods learn a perfect predictor afterd
iterations, while standard online gradient descent (Zinkevich, 2003) suffers much higher loss. We assume the
domainX is compact and thus for online gradient descent we setηt = 1/

√
t, which givesO(

√
T ) regret.

Diagonal Adaptation In this first example, we consider the diagonal version of our proposed update in
Eq. (2) withX = {x : ‖x‖∞ ≤ 1}. Evidently, this choice results in the updatext+1 = xt−η diag(Gt)−1/2gt
followed by projection ontoX . Let ei denote theith unit basis vector, and assume that for eacht, zt = ±ei
for somei. Also letyt = sign(〈11, zt〉) so that there exists a perfect classifierx∗ = 1 ∈ X . We initializex1

1 Forα ∈ (1, 2), ADAGRAD has regretR(T ) = O(d1−α/2
√
T ) = o(

√
dT ).
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to be the zero vector. On roundst = 1, . . . , d, we setzt = ±et, selecting the sign at random. It is clear that
both diagonal adaptive descent and online gradient descent suffer a unit loss on each of the firstd examples.
However, the updates to parameterxi on iterationi differ and amount to

xt+1 = xt + et (ADAGRAD) xt+1 = xt +
1√
t
et (Gradient Descent) .

After the firstd rounds, the adaptive predictor hasxd+1 = xd+τ = 11 for all τ ≥ 1 and suffers no fur-
ther losses. The magnitude of the majority of the coordinates for gradient descent, though, is bounded by∑t
i=1

1√
d/2+id

≤ 2
√
t√
d

after td iterations. Hence, forΩ(
√
d) iterations, the loss suffered per coordinate is

boundedfrom zero, for a total loss ofΩ(d
√
d) (compared withO(d) for ADAGRAD). With larger stepsizes

η/
√
t, gradient descent may suffer lower loss; however, an adversary can playzt = e1 indefinitely, forcing

online gradient descent to sufferΩ(d2) loss while ADAGRAD suffers constant regret per dimension.

Full Matrix Adaptation The above construction applies to the full matrix algorithm of Eq. (1) as well,
but in more general scenarios, as per the following example. When using full matrix proximal functions
we setX = {x : ‖x‖2 ≤

√
d}. Let V = [v1 . . . vd] ∈ R

d×d be an orthonormal matrix. Instead ofzt
cycling through the unit vectors, we havezt cycle through thevi so thatzt = ±v(t mod d)+1. We let the

labelyt = sign(
〈
11, V ⊤zt

〉
) = sign(

∑d
i=1 〈vi, zt〉). We provide an elaborated explanation in the full version

of this paper (Duchi et al.,2010a). Intuitively, ADAGRAD needs to observe each orthonormal vectorvi only
once while stochastic gradient descent’s loss is againΩ(d

√
d).

1.3 Framework and Outline of Results

Before describing our results formally, let us establish notation. Vectors and scalars are lower case italic
letters, such asx ∈ X . We denote a sequence of vectors by subscripts, i.e.xt, xt+1, . . ., and entries of each
vector by an additional subscript, e.g.xt,j . The subdifferential set of a functionf evaluated atx is denoted
∂f(x), and a particular vector in the subdifferential set is denoted byf ′(x) ∈ ∂f(x) or gt ∈ ∂ft(xt). We
use〈x, y〉 to denote the inner product betweenx andy. The Bregman divergence associated with a strongly
convex and differentiable functionψ is

Bψ(x, y) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉 .

For a matrixA ∈ R
d×d, diag(A) ∈ R

d denotes its diagonal, while for a vectors ∈ R
d, diag(s) denotes

the diagonal matrix withs as its diagonal. We also make frequent use of the following two matrices. Let
g1:t = [g1 · · · gt] denote the matrix obtained by concatenating the subgradient sequence. We denote theith
row of this matrix, which amounts to the concatenation of theith component of each subgradient we observe,
by g1:t,i. Lastly, we define the outer product matrixGt =

∑t
τ=1 gτgτ

⊤.
We describe and analyze several different online learning algorithms and their stochastic convex opti-

mization counterparts. Formally, we consider online learning with a sequence of composite functionsφt.
Each function is of the formφt(x) = ft(x) + ϕ(x) whereft andϕ are (closed) convex functions. In the
learning settings we study,ft is either an instantaneous loss or a stochastic estimate of the objective function.
The functionϕ serves as a fixed regularization function and is typically used to control the complexity ofx.
At each round the algorithm makes a predictionxt ∈ X , whereX ⊆ R

d is a closed convex set, and then
receives the functionft. We define the regret with respect to the (optimal) predictorx∗ ∈ X as

Rφ(T ) ,

T∑

t=1

[φt(xt)− φt(x
∗)] =

T∑

t=1

[ft(xt) + ϕ(xt)− ft(x
∗)− ϕ(x∗)] . (4)

Our analysis applies to multiple methods for minimizing the regret defined in Eq. (4). The first is Nes-
terov’s primal-dual subgradient method (Nesterov,2009), and in particularXiao’s2009extension, regularized
dualaveraging (RDA) (Xiao, 2009), and the follow-the-regularized-leader (FTRL) family of algorithms(e.g.
Kalai and Vempala, 2003;Hazan et al.,2006). In the primal-dual subgradient method the algorithm makes a
predictionxt onroundt using the average gradientḡt = 1

t

∑t
τ=1 gτ . The update encompasses a trade-off be-

tween a gradient-dependent linear term, the regularizerϕ, and a strongly-convex termψt for well-conditioned
predictions. Hereψt is theproximalterm. The update amounts to solving the problem

xt+1 = argmin
x∈X

{
η 〈ḡt, x〉+ ηϕ(x) +

1

t
ψt(x)

}
, (5)

whereη is a step-size. The second method also has many names, such as proximal gradient, forward-
backward splitting, and composite mirror descent (Tseng,2008;Duchi and Singer, 2009;Duchi et al.,2010b).
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We use the term composite mirror descent. The composite mirrordescent method employs a more immediate
trade-off between the current gradientgt, ϕ, and staying close toxt using the proximal functionψ,

xt+1 = argmin
x∈X

{η 〈gt, x〉+ ηϕ(x) +Bψt
(x, xt)} . (6)

Our work focuses on temporal adaptation of the proximal function in a data driven way, while previous work
simply setsψt ≡ ψ, ψt(·) =

√
tψ(·), orψt(·) = tψ(·) for some fixedψ.

We provide formal analyses equally applicable to the above two updates and show how to automatically
choose the functionψt so as to achieve asymptotically small regret. We describe and analyze two algorithms.
Both algorithms use squared Mahalanobis norms as their proximal functions, settingψt(x) =

1
2 〈x,Htx〉 for

a symmetric matrixHt � 0. The first uses diagonal matrices while the second constructs full dimensional
matrices. Concretely, we set

Ht = diag(Gt)
1/2 (Diagonal) and Ht = G

1/2
t (Full) . (7)

Plugging the appropriate matrix from the above equation intoψt in Eq. (5) or Eq. (6) gives rise to our
ADAGRAD family of algorithms. Informally, we obtain algorithms similar to second-order gradient descent
by constructing approximations to the Hessian of the functionsft. These approximations are conservative
since we rely on the root of the gradient matrices.

We now outline our results, deferring formal statements of the theorems to later sections. Recall the
definitions ofg1:t as the matrix of concatenated subgradients andGt as the outer product matrix in the
prequel. When the proximal functionψt(x) =

〈
x,diag(Gt)

1/2x
〉
, the ADAGRAD algorithm has bounds

attainable in time at most linear in the dimensiond of the problem of

Rφ(T ) = O
(
‖x∗‖∞

d∑

i=1

‖g1:T,i‖2
)

and Rφ(T ) = O
(
max
t≤T

‖xt − x∗‖∞
d∑

i=1

‖g1:T,i‖2
)
.

We also show that

d∑

i=1

‖g1:T,i‖2 = d1/2

√√√√inf
s

{
T∑

t=1

〈gt, diag(s)−1gt〉 : s � 0, 〈11, s〉 ≤ d

}
.

The ADAGRAD algorithm with full matrix divergences entertains bounds of the form

Rφ(T ) = O
(
‖x∗‖2 tr(G

1/2
T )

)
and Rφ(T ) = O

(
max
t≤T

‖xt − x∗‖2 tr(G
1/2
T )

)
.

Similar to the diagonal proximal function case, we further show that

tr
(
G

1/2
T

)
= d1/2

√√√√inf
S

{
T∑

t=1

〈gt, S−1gt〉 : S � 0, tr(S) ≤ d

}
.

We formally state the above regret bounds in Theorems5 and8, respectively, and we give further discus-
sionin their corollaries. Essentially, the theorems give oracle inequalities for online optimization. Though the
specific sequence of gradientsgt received by the algorithm changes when there is adaptation, the inequalities
say that our regret bounds are as good as the best quadratic proximal function in hindsight.

1.4 Related Work

The idea of adaptation in first order (gradient) methods is by no means new and can be traced back at least to
the 1970s. There, we findShor’s work on space dilation methods (1972) as well as variable metric methods,
suchas the BFGS family of algorithms (e.g.Fletcher, 1970). This older work usually assumes that the func-
tion to be minimized is differentiable and, to our knowledge, did not consider stochastic, online, or composite
optimization. More recently,Bordes et al.(2009) proposed carefully designed Quasi-Newton stochastic gra-
dientdescent, which is similar in spirit to our methods. However, their convergence results assume a smooth
objective function whose Hessian is strictly positive definite and bounded away from0. Our results are ap-
plicable in more general settings. In the online learning literature, there are results on adaptively choosing a
learning rateηt based on data seen so far (Auer et al.,2002;Bartlett et al.,2007). We, in contrast, actively
adaptthe proximal functionψ itself.

The framework that is most related to ours is probably confidence weighted learning, whose most recent
success is the adaptive regularization of weights algorithm (AROW) ofCrammer et al.(2009).Crammer et al.
give a mistake-bound analysis for online binary classification,which is similar in spirit to the second-order
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Perceptron (Cesa-Bianchi et al.,2005). AROW maintains a mean prediction vectorµt ∈ R
d anda covariance

matrixΣt ∈ R
d×d overµt as well. At every step of the algorithm, the learner receives a pair(zt, yt) where

zt ∈ R
d is thetth example andyt ∈ {−1,+1} is the label. Whenever the predictorµt has margin less than

1, AROW performs the update

βt =
1

〈zt,Σtzt〉+ λ
, αt = [1− yt 〈zt, µt〉]+ , µt+1 = µt+αtΣtytzt, Σt+1 = Σt−βtΣtxtx⊤t Σt. (8)

In the above, one can setΣt to be diagonal, which reduces run-time and storage requirements but still gives
good performance (Crammer et al.,2009). In contrast to AROW, the ADAGRAD family uses theroot of a
covariance-like matrix, a consequence of our formal analysis.Crammer et al.’s algorithm and our algorithms
have similar run times—linear in the dimensiond—when using diagonal matrices. However, when using full
matrices the runtime of their algorithm isO(d2), which is faster than ours.

Our approach differs from previous approaches since instead of focusing on a particular loss function
or mistake bound, we view the problem of adapting the proximal function as an online (meta) learning
problem. We then obtain bounds comparable to the bound obtained using the best proximal function chosen
in hindsight. Our bounds are applicable to any convex Lipschitz loss and composite objective functions.

2 Adaptive Proximal Functions

In this section we give the template regret bounds for the family of subgradient algorithms we consider. Exam-
ining several well-known optimization bounds (e.g.Beck and Teboulle, 2003;Nesterov, 2009;Duchi et al.,
2010b), we see that we can bound the regret as

Rφ(T ) ≤
1

η
Bψ(x

∗, x1) +
η

2

T∑

t=1

‖f ′t(xt)‖
2
∗ . (9)

Most of the regret depends on dual-norms off ′t(xt), where the dual norm in turn depends on the choice of
ψ. This naturally leads to the question of whether we can modify the proximal termψ along the run of the
algorithm in order to lower the contribution of the aforementioned norms. We achieve this goal by keeping
second order information about the sequenceft.

We begin by providing two corollaries based on previous work that give the regret of our base algorithms
when the proximal functionψt is allowed to change. We assume thatψt is monotonically non-decreasing,
that is,ψt+1(x) ≥ ψt(x). We also assume thatψt is 1-strongly convex with respect to a time-dependent
seminorm‖·‖ψt

. Formally,

ψt(y) ≥ ψt(x) + 〈∇ψt(x), y − x〉+ 1

2
‖x− y‖2ψt

.

Strongconvexity is guaranteed if and only ifBψt
(x, y) ≥ 1

2 ‖x− y‖2ψt

. We also denote the dual norm of
‖·‖ψt

by ‖·‖ψ∗

t

. For completeness, we provide the proofs of following two corollaries in the long version of
this paper (Duchi et al.,2010a), though they build straightforwardly onDuchi et al.(2010b) andXiao (2009).
For the primal-dual subgradient update of Eq. (5), the following regret bound holds.

Corollary 2 Let the sequence{xt} be defined by the update in Eq. (5). Then for anyx∗, wehave

Rφ(T ) ≤
1

η
ψT (x

∗) +
η

2

T∑

t=1

‖f ′t(xt)‖
2
ψ∗

t−1

. (10)

For composite mirror descent algorithms (Eq. (6)), under the assumption w.l.o.g. thatϕ(x1) = 0, we have

Corollary 3 Let the sequence{xt} be defined by the update in Eq. (6). Then for anyx∗,

Rφ(T ) ≤
1

η
Bψ1

(x∗, x1) +
1

η

T−1∑

t=1

[
Bψt+1

(x∗, xt+1)−Bψt
(x∗, xt+1)

]
+
η

2

T∑

t=1

‖f ′t(xt)‖
2
ψ∗

t

. (11)

The above corollaries allow us to prove regret bounds for a family of algorithms that iteratively modify
the proximal functionsψt.
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Algorithm 1 ADAGRAD with Diagonal Matrices

Input: η > 0, δ ≥ 0. Initializex1 = 0, g1:0 = []
for t = 1 to T do

Suffer lossft(xt), receive subgradientgt ∈ ∂ft(xt) of ft atxt
Updateg1:t = [g1:t−1 gt], st,i = ‖g1:t,i‖2
SetHt = δI + diag(st), ψt(x) = 1

2 〈x,Ht x〉
Primal-Dual Subgradient Update (Eq. (5)):

xt+1 = argmin
x∈X

{
η

〈
1

t

t∑

τ=1

gτ , x

〉
+ ηϕ(x) +

1

t
ψt(x)

}
.

CompositeMirror Descent Update (Eq. (6)):

xt+1 = argmin
x∈X

{η 〈gt, x〉+ ηϕ(x) +Bψt
(x, xt)} .

end for

3 Diagonal Matrix Proximal Functions

Fornow we restrict ourselves to using diagonal matrices to define matrix proximal functions and (semi)norms.
This restriction serves a two-fold purpose. First, the analysis for the general case is somewhat complicated
and thus the analysis of the diagonal case serves as a proxy for better understanding. Second, in problems with
high dimension where we expect this type of modification to help, maintaining more complicated proximal
functions is likely to be prohibitively expensive. A benefit of the adaptive algorithms is that there is no need to
keep track of a learning rate as in previous algorithms, as it is implicitly given by the growth of the proximal
function. To remind the reader,g1:t,i is theith row of the matrix obtained by concatenating the subgradients
from iteration1 throught in the online algorithm.

To provide some intuition for Alg.1, let us find the retrospectively optimal proximal function. Ifthe
proximal function chosen isψ(x) = 1

2 〈x,diag(s)x〉 for somes � 0, then the associated norm is‖x‖2 =

〈x, diag(s)x〉 and the dual norm is‖x‖2∗ =
〈
x,diag(s)−1x

〉
. Recalling Eq. (9), we consider the problem

min
s

T∑

t=1

〈
g, diag(s)−1g

〉
s.t. s � 0, 〈11, s〉 ≤ c .

This problem is solved by settingsi = ‖g1:T,i‖2 and scalings so that〈s, 11〉 = c. To see this, we can write
the Lagrangian of the minimization problem by introducing multipliersλ � 0 andθ ≥ 0 to get

L(s, λ, θ) =
d∑

i=1

‖g1:T,i‖22
si

− 〈λ, s〉+ θ(〈1, s〉 − c).

Taking derivatives to find the infimum ofL, we see that−‖g1:T,i‖22 /s2i−λi+θ = 0, and the complementarity
conditions (Boyd and Vandenberghe, 2004) onλisi imply thatλi = 0. Thus we havesi = θ−

1

2 ‖g1:T,i‖2,

and normalizing usingθ givessi = c ‖g1:T,i‖2 /
∑d
j=1 ‖g1:T,j‖2. As a final note, pluggingsi in gives

inf
s

{
T∑

t=1

d∑

i=1

g2t,i
si

: s � 0, 〈1, s〉 ≤ c

}
=

1

c

(
d∑

i=1

‖g1:T,i‖2

)2

. (12)

It is natural to suspect that if we use a proximal function similar toψ(x) = 1
2 〈x,diag(s)x〉, we should do

well lowering the gradient terms in the regret in Eq. (10) and Eq. (11).
To prove a regret bound for our Alg.1, we note that both types of updates have regret bounds includinga

term dependent solely on the gradients obtained along the algorithm’s run. Thus, the following lemma, which
says that the choice ofψt in Alg. 1 is optimal up to a multiplicative factor of 2, is applicable to both.

Lemma 4 Letgt = f ′t(xt) andg1:t andst be defined as in Alg.1. Then

T∑

t=1

〈
gt, diag(st)

−1gt
〉
≤ 2

d∑

i=1

‖g1:T,i‖2 .
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Proof: We prove the lemma by considering an arbitraryR-valued sequence{ai} and its vector representation
a1:i = [a1 · · · ai]. We are going to show that (where we set0/0 = 0)

T∑

t=1

a2t
‖a1:t‖2

≤ 2 ‖a1:T ‖2 . (13)

We use induction onT . ForT = 1, the inequality trivially holds. Assume Eq. (13) holds true forT − 1, then

T∑

t=1

a2t
‖a1:t‖2

=
T−1∑

t=1

a2t
‖a1:t‖2

+
a2T

‖a1:T ‖2
≤ 2 ‖a1:T−1‖2 +

a2T
‖a1:T ‖2

,

wherethe inequality follows from the inductive hypothesis. We now definebT =
∑T
t=1 a

2
t and use first-order

inequality for concavity to obtain that so long asbT − a2T ≥ 0, we have
√
bT − a2T ≤

√
bT − a2T

1
2
√
bT

(we
usean identical technique in the full-matrix case; see Lemma10). Thus

2 ‖a1:T−1‖2 +
a2T

‖a1:T ‖2
= 2
√
bT − a2T +

a2T√
bT

≤ 2
√
bT = 2 ‖a1:T ‖2 .

Having proved Eq. (13), we note that by constructionst,i = ‖g1:t,i‖2, thus,

T∑

t=1

〈
gt, diag(st)

−1gt
〉
=

T∑

t=1

d∑

i=1

g2t,i
‖g1:t,i‖2

≤ 2

d∑

i=1

‖g1:T,i‖2 .

To get a regret bound, we consider the terms consisting of the dual-normof the subgradients in Eq. (10)
andEq. (11). Whenψt(x) = 〈x, (δI + diag(st))x〉, the associated dual-norm is‖g‖2ψ∗

t

=
〈
g, (δI + diag(st))

−1g
〉
.

From the definition ofst in Alg. 1, we clearly have‖f ′t(xt)‖
2
ψ∗

t

≤
〈
gt, diag(st)

−1gt
〉
. We replace the inverse

with a pseudo-inverse if needed, which is well defined sincegt is always in the column-space ofdiag(st).
Thus, Lemma4 gives

T∑

t=1

‖f ′t(xt)‖
2
ψ∗

t

≤ 2
d∑

i=1

‖g1:T,i‖2 .

To obtain a bound for a primal-dual subgradient method, we setδ ≥ maxt ‖gt‖∞, in which case‖gt‖2ψ∗

t−1

≤
〈
gt, diag(st)

−1gt
〉
, and follow the same lines of reasoning.

It remains to bound the various Bregman divergence terms in Corollary3 and the termψT (x∗) in Corol-
lary 2. We focus first on composite mirror-descent updates. ExaminingEq. (11) and Alg.1, we notice that

Bψt+1
(x∗, xt+1)−Bψt

(x∗, xt+1) =
1

2
〈x∗ − xt+1, diag(st+1 − st)(x

∗ − xt+1)〉

≤ 1

2
max
i

(x∗i − xt+1,i)
2 ‖st+1 − st‖1 .

Since‖st+1 − st‖1 = 〈st+1 − st, 1〉 and〈sT , 1〉 =
∑d
i=1 ‖g1:T,i‖2, we have

T−1∑

t=1

Bψt+1
(x∗, xt+1)−Bψt

(x∗, xt+1) ≤ 1

2

T−1∑

t=1

‖x∗ − xt+1‖2∞ 〈st+1 − st, 11〉

≤ 1

2
max
t≤T

‖x∗ − xt‖2∞
d∑

i=1

‖g1:T,i‖2 −
1

2
‖x∗ − x1‖2∞ 〈s1, 11〉 . (14)

We also have

ψT (x
∗) = δ ‖x∗‖22 + 〈x∗, diag(sT )x∗〉 ≤ δ ‖x∗‖22 + ‖x∗‖2∞

d∑

i=1

‖g1:T,i‖2 .

Combining the above arguments with Corollaries2and3, and combining Eq. (14) with the fact thatBψ1
(x∗, x1) ≤

1
2 ‖x∗ − x1‖2∞ 〈1, s1〉, we have proved the following theorem.
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Theorem 5 Let the sequence{xt} be defined by Algorithm1. If we generatext using the primal-dual
subgradient update of Eq. (5) andδ ≥ maxt ‖gt‖∞, then for anyx∗ ∈ X we have

Rφ(T ) ≤
δ

η
‖x∗‖22 +

1

η
‖x∗‖2∞

d∑

i=1

‖g1:T,i‖2 + η
d∑

i=1

‖g1:T,i‖2 . (15)

If we use Algorithm1 with the composite mirror-descent update of Eq. (6), then for anyx∗ ∈ X

Rφ(T ) ≤
1

2η
max
t≤T

‖x∗ − xt‖2∞
d∑

i=1

‖g1:T,i‖2 + η
d∑

i=1

‖g1:T,i‖2 . (16)

The above theorem is a bit unwieldy. We thus perform a few algebraic simplifications to get the next corollary.
Let us assume thatX is compact and setD∞ = supx∈X ‖x− x∗‖∞. Furthermore, define

γ
T
=

d∑

i=1

‖g1:T,i‖2 =

√√√√inf
s

{
T∑

t=1

〈gt, diag(s)−1gt〉 : 〈1, s〉 ≤
d∑

i=1

‖g1:T,i‖2 , s � 0

}
.

The following corollary is immediate.

Corollary 6 Assume thatD∞ andγ
T

are defined as above. If we generate the sequence{xt} be given by
Algorithm1 using the primal-dual subgradient update Eq. (5) withη = ‖x∗‖∞, thenfor anyx∗ ∈ X

Rφ(T ) ≤ 2 ‖x∗‖∞
d∑

i=1

‖g1:T,i‖2 + δ
‖x∗‖22
‖x∗‖∞

≤ 2 ‖x∗‖∞ γ
T
+ δ ‖x∗‖1 .

Usingthe composite mirror descent update of Eq. (6) to generate{xt} andsettingη = D∞/
√
2, we have

Rφ(T ) ≤
√
2D∞

d∑

i=1

‖g1:T,i‖2 =
√
2D∞γT

.

Wecan also prove Corollary1.
Proof of Corollary 1: The proof simply uses Theorem5, Corollary6, and the fact that

inf
s

{
T∑

t=1

d∑

i=1

g2t,i
si

: s � 0, 〈1, s〉 ≤ d

}
=

1

d

(
d∑

i=1

‖g1:T,i‖2

)2

as in Eq. (12) in the beginning of this section. Plugging theγT termin from Corollary6 and multiplyingD∞
by

√
d completes the proof.

Intuitively, as discussed in the introduction, Alg.1 should have good properties on sparse data. For
example,suppose that our gradient terms are based on 0/1-valued features for a logistic regression task. Then
the gradient terms in the bound

∑d
i=1 ‖g1:t,i‖2 should all be much smaller than

√
T . If we assume that

somefeatures appear much more frequently than others, then the infimal representation ofγT and the infimal
equality in Corollary1 show that we can have much lower learning rates on commonly appearingfeatures
and higher rates on uncommon features, and this will significantly lower the bound on the regret. Further, if
we are constructing a relatively dense predictorx—as is often the case in sparse prediction problems—then
‖x∗‖∞ is the bestp-norm we can have in the regret.

4 Full Matrix Proximal Functions

In this section we derive and analyze new updates when we estimate a full matrix for the proximal function
ψt instead of a diagonal one. In this generalized case, the algorithm uses the the square-root of the matrix of
outer products of the gradients that observed to update the parameters. As in the diagonal case, we build on
intuition garnered from an optimization problem. We seek a matrixS that solves the minimization problem

min
S

T∑

t=1

〈
gt, S

−1gt
〉

s.t. S � 0, tr(S) ≤ c .

The solution is obtained by definingGt =
∑t
τ=1 gτgτ

⊤, and then settingS to be a normalized version of the

root ofGT , that is,S = cG
1/2
T / tr(G

1/2
T ). The next proposition formalizes this statement, and also shows

that whenGT is not full rank we can instead use its pseudo-inverse. The proof is inDuchi et al.(2010a).
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Algorithm 2 ADAGRAD with Full Matrices
Inputη > 0, δ ≥ 0. Initializex = 0, S0 = 0,H0 = 0,G0 = 0
for t = 1 to T do

Suffer lossft(xt), receive subgradientgt ∈ ∂ft(xt) of ft atxt.

UpdateGt = Gt−1 + gtg
⊤
t , St = G

1

2

t .
LetHt = δI + St, ψt(x) = 1

2 〈x,Htx〉
Primal-Dual Subgradient Update (Eq. (5))

xt+1 = argmin
x∈X

{
η

〈
1

t

t∑

τ=1

gt, x

〉
+ ηϕ(x) +

1

t
ψt(x)

}

CompositeMirror Descent Update (Eq. (6))

xt+1 = argmin
x∈X

{η 〈gt, x〉+ ηϕ(x) +Bψt
(x, xt)}

end for

Proposition 7 Considerthe following minimization problem:

min
S

tr(S−1A) subject to S � 0, tr(S) ≤ c whereA � 0 . (17)

If A is of full rank, then the minimizer of Eq. (17) isS = cA
1

2 / tr(A
1

2 ). If A is not of full rank, then setting
S = cA

1

2 / tr(A
1

2 ) gives

tr(S†A) = inf
S

{
tr(S−1A) : S � 0, tr(S) ≤ c

}
.

In either case,tr(S†A) = tr(A
1

2 )2/c.

If we iteratively use proximal functions of the formψt(x) = 〈x,G1/2
t x〉, we hope as earlier to attain

low regret and collect gradient information. We achieve our low regret goal by employing a similar doubling
lemma to Lemma4. The resulting algorithm is given in Alg.2, and the next theorem provides a quantitative
analysisof the motivation above.

Theorem 8 Let Gt be the outer product matrix defined above. If we generatext using the primal-dual
subgradient update of Eq. (5) andδ ≥ maxt ‖gt‖2, then for anyx∗ ∈ X

Rφ(T ) ≤
δ

η
‖x∗‖22 +

1

η
‖x∗‖22 tr(G

1/2
T ) + η tr(G

1/2
T ). (18)

If we use Algorithm2 with the composite mirror-descent update of Eq. (6), then for anyx∗ andδ ≥ 0

Rφ(T ) ≤
δ

η
‖x∗‖22 +

1

2η
max
t≤T

‖x∗ − xt‖22 tr(G
1/2
T ) + η tr(G

1/2
T ). (19)

Proof: To begin, we consider the difference between the divergence terms at timet + 1 and timet from
Eq. (11) in Corollary3. Letλmax(M) denote the largest eigenvalue of a matrixM . We have

Bψt+1
(x∗, xt+1)−Bψt

(x∗, xt+1) =
1

2

〈
x∗ − xt+1, (Gt+1

1/2 −Gt
1/2)(x∗ − xt+1)

〉

≤ 1

2
‖x∗ − xt+1‖22 λmax(G

1/2
t+1 −G

1/2
t ) ≤ 1

2
‖x∗ − xt+1‖22 tr(G

1/2
t+1 −G

1/2
t ) .

For the last inequality we used the fact that the trace of a matrix is equal to the sum of its eigenvalues
along with the propertyGt+1

1/2 − Gt
1/2 � 0 (Davis,1963, Example 3) and thereforetr(G1/2

t+1 − G
1/2
t ) ≥

λmax(G
1/2
t+1 −G

1/2
t ). Thus, we get

T−1∑

t=1

Bψt+1
(x∗, xt+1)−Bψt

(x∗, xt+1) ≤
1

2

T−1∑

t=1

‖x∗ − xt+1‖22
(
tr(G

1/2
t+1)− tr(G

1/2
t )

)

≤ 1

2
max
t≤T

‖x∗ − xt‖22 tr(GT 1/2)− 1

2
‖x∗ − x1‖22 tr(G

1/2
1 ) . (20)

For the last inequality we used the fact thatG1 is a rank1 PSD matrix with non-negative trace. What remains
is to bound the gradient terms common to both updates. The following lemma is directly applicable.
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Lemma 9 LetSt = Gt
1/2 be as defined in Alg.2. Then, using the pseudo-inverse when necessary,

T∑

t=1

〈
gt, S

−1
t gt

〉
≤ 2

T∑

t=1

〈
gt, S

−1
T gt

〉
= 2 tr(GT

1/2) .

Before we prove the lemma, we state two linear-algebraic lemmas that make its proof and that of the
theorem much more straightforward. The lemmas are quite technical, so we prove them in the long version
of this paper (Duchi et al.,2010a). The first auxiliary lemma is the matrix-analogue of the fact thatfor
nonnegativex, y with x ≥ y,

√
x− y ≤ √

x− y/(2
√
x), a consequence of the concavity of

√·.
Lemma 10 LetB � 0 andB−1/2 denote the root of the inverse (or pseudo-inverse) ofB. For anyc such
thatB − cgg⊤ � 0, the following inequality holds:

2 tr((B − cgg⊤)1/2) ≤ 2 tr(B1/2)− c tr(B−1/2gg⊤) .

Lemma 11 Let δ ≥ ‖g‖2 andA � 0. Then
〈
g, (δI +A1/2)−1g

〉
≤
〈
g,
(
(A+ gg⊤)†

)1/2
g
〉

.

Proof of Lemma 9: We prove the lemma by induction. The base case is immediate, since〈g1, G−1/2
1 g1〉 =

〈g1,g1〉
‖g1‖2

= ‖g1‖2 ≤ 2 ‖g1‖2. Now, assume the lemma is true forT − 1, so from the inductive assumption

T∑

t=1

〈
gt, S

−1
t gt

〉
≤ 2

T−1∑

t=1

〈
gt, S

−1
T−1gt

〉
+
〈
gT , S

−1
T gT

〉
.

SinceST−1 does not depend ont,
∑T−1
t=1

〈
gt, S

−1
T−1gt

〉
= tr

(
S−1
T−1

∑T−1
t=1 gtg

⊤
t

)
= tr(G

−1/2
T−1 GT−1), where

the right-most equality follows from the definitions ofSt andGt. Therefore, we get
T∑

t=1

〈
gt, S

−1
t gt

〉
≤ 2 tr(G

−1/2
T−1 GT−1) +

〈
gT , G

−1/2
T gT

〉
= 2 tr(G

1/2
T−1) +

〈
gT , G

−1/2
T gT

〉
.

Lemma10, which also justifies the use of pseudo-inverses, lets us exploitthe concavity of the function
tr(A1/2) to bound the above sum by2 tr(G1/2

T ). N

We can now finalize our proof of the theorem. As in the diagonal case, we have that the squared dual
norm (seminorm whenδ = 0) associated withψt is

‖x‖2ψ∗

t

=
〈
x, (δI + St)

−1x
〉
.

Thus it is clear that‖gt‖2ψ∗

t

≤
〈
gt, S

−1
t gt

〉
. For the dual-averaging algorithms, we use Lemma11 to see

that ‖gt‖2ψ∗

t−1

≤
〈
gt, S

−1
t gt

〉
so long asδ ≥ ‖gt‖2. The doubling inequality from Lemma9 implies that

∑T
t=1 ‖f ′t(xt)‖

2
ψ∗

t

≤ 2 tr(G
1/2
T ) for mirror-descent algorithms and that

∑T
t=1 ‖f ′t(xt)‖

2
ψ∗

t−1

≤ 2 tr(G
1/2
T ) for

primal-dual subgradient algorithms.
Note thatBψ1

(x∗, x1) ≤ 1
2 ‖x∗ − x1‖22 tr(G

1/2
1 ) whenδ = 0. Combining the first of the last bounds in

the previous paragraph with this and the bound on
∑T−1
t=1 Bψt+1

(x∗, xt+1) − Bψt
(x∗, xt+1) from Eq. (20),

we see that Corollary3 gives the bound for the mirror-descent family of algorithms. Combiningthe second
of the bounds in the previous paragraph and Eq. (20) with Corollary2 gives the desired bound onRφ(T ) for
theprimal-dual subgradient algorithms, which completes the proof of the theorem.

As before, we give a corollary that clarifies the bound implied byTheorem8. The infimal equalities in
the corollary use Proposition7. The corollary suggests that if there is a rotation of the spacein which the
gradient vectorsgt have small inner products—a sparse basis for the subgradientsgt—then using full-matrix
proximal functions can significantly lower the regret.

Corollary 12 The sequence{xt} generated by Alg.2 with the primal-dual update andη = ‖x∗‖2 satisfies

Rφ(T ) ≤ 2 ‖x∗‖2 tr(G
1/2
T )+δ ‖x∗‖2 = 2

√
d ‖x∗‖2

√√√√inf
S

{
T∑

t=1

〈gt, S−1gt〉 : S � 0, tr(S) ≤ d

}
+δ ‖x∗‖2 .

LetX be compact so thatsupx∈X ‖x− x∗‖2 ≤ D2. Letη = D2/
√
2 and{xt} be generated by Alg.2 using

thecomposite mirror descent update withδ = 0. Then

Rφ(T ) ≤
√
2D2 tr(G

1/2
T ) =

√
2dD2

√√√√inf
S

{
T∑

t=1

〈gt, S−1gt〉 : S � 0, tr(S) ≤ d

}
.
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5 Lowering the Regret for Strongly Convex Functions

It is now well established that strong convexity of the functionsft can give significant improvements in the
regret of online convex optimization algorithms (Hazan et al.,2006;Shalev-Shwartz and Singer, 2007). We
canlikewise derive lower regret bounds in the presence of strong convexity. We assume that our functions
ft + ϕ are strongly convex with respect to a norm‖·‖. For simplicity, we assume that each has the same
strong convexity parameterλ,

ft(y) + ϕ(y) ≥ ft(x) + ϕ(x) + 〈f ′t(x), y − x〉+ 〈ϕ′(x), y − x〉+ λ

2
‖x− y‖2 .

We focus on composite mirror descent algorithms, as the analysis of strongly convex variants of primal-dual
subgradient algorithms does not seem to lend itself to dynamic learning rate adaptation. The tightest analysis
of the primal-dual method for strongly-convex functions keeps the functionψ intact rather than growing it
at a rate of

√
t, as in standard RDA (Xiao,2009). Allowing ψ to grow makes attaining the stronger regret

bound impossible. It may be possible to analyze RDA when theregularizationfunctionϕ is time-dependent,
but we leave this topic to future research. Without loss of generality letϕ(x1) = 0 andx1 = 0. Rather than
give the proof of the lower regret, we simply state the result, as it is not difficult to prove using techniques
of Hazan et al.(2006), though we include the proof in the full version of this paper (Duchi et al.,2010a).

Theorem 13 Assume thatϕ is λ-strongly convex with respect to‖·‖22 over the setX . Assume further that
‖g‖∞ ≤ G∞ for all g ∈ ∂ft(x) for x ∈ X . Let{xt} be the sequence of vectors generated by Algorithm1

with the diagonal proximal functionψt(x) = 〈x, (δI + diag(st))x〉 andst,i = ‖g1:t,i‖22. Settingη ≥ G2

∞

λ ,
theregret is bounded by

Rφ(T ) ≤
2G2

∞δ

λ
‖x1 − x∗‖22 +

G2
∞
λ

d∑

i=1

log

(
‖g1:T,i‖22

δ
+ 1

)
= O

(
dG2

∞
λ

log(TG∞)

)
.

6 Experiments

In this section, we present the results of experiments with natural datasets that suggest that adaptive methods
significantly outperform related non-adaptive methods. We focus on the fully stochastic optimization setting,
in which at each iteration the learning algorithm receives a single example. We measure performance using
two metrics: the online loss or error and the test set performance of the predictor the learning algorithm
outputs at the end of a single pass through the training data. We also give some results that show how im-
posing sparsity constraints (in the form ofℓ1 and mixed-norm regularization) affects the learning algorithm’s
performance. One benefit of the ADAGRAD framework is its ability to straightforwardly generalize to do-
main constraintsX 6= R

d and arbitrary regularization functionsϕ, in contrast to previous adaptive online
algorithms. SeeDuchi et al.(2010a) for a more complete experimental evaluation.

We experiment with RDA (Xiao, 2009), FOBOS (Duchi and Singer, 2009), adaptive RDA, adaptive FO-
BOS, the Passive-Aggressive (PA) algorithm (Crammer et al.,2006), and AROW (Crammer et al.,2009). To
remindthe reader, PA is an online learning procedure with the update

xt+1 = argmin
x

[1− yt 〈zt, x〉]+ +
λ

2
‖x− xt‖22 ,

whereλ is a regularization parameter. PA’s update is similar to the update employed by AROW (see Eq. (8)),
but the latter maintains second order information onx. Using the representer theorem, it is also possible to
derive efficient updates for PA and AROW for the logistic loss,log(1+exp(−yt 〈zt, xt〉)). We thus compare
the above six algorithms using both hinge and logistic loss.

The Reuters RCV1 dataset is a collection of approximately 800,000 text articles, each of which is as-
signed multiple labels. There are 4 high-level categories—Economics, Commerce, Medical, and Government
(ECAT, CCAT, MCAT, GCAT)—and multiple more specific categories. We focus on training binary classi-
fiers for each of the four major categories. The input features we use are 0/1 bigram features, which (post
word stemming) yield a representation of approximately 2 million dimensions. The feature vectors are very
sparse, however, and most examples have fewer than 5000 non-zero features.

We compare the twelve different algorithms mentioned in the prequel as well as variants of FOBOS and
RDA with ℓ1-regularization. We summarize the results of theℓ1-regularized runs as well as AROW and PA in
Table1. We found the results for both the hinge loss and the logistic lossto be qualitatively and quantitatively
very similar. We thus report results only for training with the hinge loss in Table1. Each row in the table
representsthe average of four different experiments in which we hold out 25% of the data for test and perform
a single online learning pass on the remaining 75% of the data. For RDA and FOBOS, we cross-validate the
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RDA FB ADAGRAD-RDA ADAGRAD-FB PA AROW
ECAT .051 (.099) .058 (.194) .044 (.086) .044 (.238) .059 .049
CCAT .064 (.123) .111 (.226) .053 (.105) .053 (.276) .107 .061
GCAT .046 (.092) .056 (.183) .040 (.080) .040 (.225) .066 .044
MCAT .037 (.074) .056 (.146) .035 (.063) .034 (.176) .053 .039

Table 1: Test set error rates and proportion non-zero weights (inparenthesis) on Reuters RCV1.

stepsize parameterη by running multiple passes and then choosing the output of the learner that had the
fewest mistakes during training. For PA and AROW we chooseλ using the same approach. We use the
same regularization multiplier for theℓ1 term to execute RDA and FOBOS. The regularization multiplier was
selected so that RDA yielded a weight vector with approximately 10% non-zero components.

It is evident from the results presented in Table1 that the adaptive algorithms (AROW and ADAGRAD)
are far superior to non-adaptive algorithms in terms of error rate on test data. In addition, the ADAGRAD
algorithms naturally incorporate sparsity since they were run withℓ1-regularization, though RDA obtained
significantly higher sparsity levels while the solutions of PA and AROW are dense. Furthermore, although
omitted from the table for brevity, ineverytest with the RCV1 corpus, the adaptive algorithms outperformed
the non-adaptive algorithms. Moreover, both ADAGRAD-RDA and ADAGRAD-Fobos outperform AROW
on all the classification tasks. Unregularized RDA and FOBOS attained similar results to theℓ1-regularized
variants, though of course the solution of the former versions were not sparse.

7 Conclusions

We presented a paradigm that adapts subgradient methods to the geometry of the problem at hand. The
adaptation allows us to derive strong regret guarantees, which for some natural data distributions achieve
better performance guarantees than previous algorithms. Our online convergence results can be naturally
converted into rate of convergence and generalization bounds (Cesa-Bianchi et al.,2004). The ADAGRAD
family of algorithms incorporates regularization throughϕ and can thus easily generate sparse or otherwise
structured solutions. Our algorithms are straightforward to implement and can be easily specialized to many
useful constraint setsX and regularization termsϕ. We conducted comprehensive experiments showing that
adaptive methods clearly outperform their non-adaptive counterparts. These results are available in the long
version of this paper (Duchi et al.,2010a). We believe that there are a few theoretical questions that arestill
unanswered in this line of work. The first is whether we canefficientlyuse full matrices in the proximal
functions, as in Section4, or whether a different algorithm is necessary. A second open issueis whether it
is possible to use non-Euclidean proximal functions. For example, is it possible to adapt the KL divergence
between distributions to characteristics of the problem at hand? We hope to investigate such extensions in the
near future.
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Abstract

Clustering is a central unsupervised learning task with a wide variety of applications. Not surpris-
ingly, there exist many clustering algorithms. However, unlike classification tasks, in clustering,
different algorithms may yield dramatically different outputs for the same input sets. A major chal-
lenge is to develop tools that may help select the more suitable algorithm for a given clustering task.
We propose to address this problem by distilling abstract properties of clustering functions that dis-
tinguish between the types of input-output behaviors of different clustering paradigms. In this paper
we make a significant step in this direction by providing such property based characterization for
the class of linkage based clustering algorithms.
Linkage-based clustering is one the most commonly used and widely studied clustering paradigms.
It includes popular algorithms like Single Linkage and enjoys simple efficient algorithms.
On top of their potential merits for helping users decide when are such algorithms appropriate
for their data, our results can be viewed as a convincing proof of concept for the research on
taxonomizing clustering paradigms by their abstract properties.

1 Introduction
Having a clustering task at hand, a user needs to choose from a wide variety of clustering algorithms that,
when run on the same input data, often produce very different clusterings. In spite of the wide use of clustering
in many practical applications, the practices of choosing an algorithm for a given task are completely ad hoc
– currently, there exists no principled method to guide the selection of a clustering algorithm. The choice of
an appropriate clustering should, of course, be task dependent. A clustering that works well for one task may
be unsuitable for another. Even more than for supervised learning, for clustering, the choice of an algorithm
must incorporate domain knowledge. A major challenge that has hardly been addressed is how to turn domain
knowledge into useful guidance to the clustering algorithm designer. One approach to providing guidance
to clustering users in the selection of a clustering algorithm is to identify significant properties of clustering
functions that, on one hand distinguish between different clustering paradigms, and on the other hand are
relevant to the domain knowledge that a user might have. Based on domain expertise users could then choose
which properties they want an algorithm to satisfy, and determine which algorithms satisfy each of these
properties.

Ultimately, there would be a sufficiently rich set of properties that would provide detailed, property based,
taxonomy of clustering methods, that could, in turn, be used as guidelines for a wide variety of clustering
users.

One of the most basic challenges along this line is to find abstract properties of clustering functions that
distinguish between the major families of common clustering algorithms, such as linkage based algorithms,
center based algorithms and spectral clustering algorithms. Bosagh Zadeh and Ben-David [2] made progress
in this direction by providing a set of abstract properties that characterize the single linkage clustering method.

In this paper we succeed in making the next major step by distilling a set of abstract properties that distin-
guish between linkage based clustering to any other type of clustering paradigm. Linkage-based clusterings
is a family of clustering methods that include some of the most commonly-used and widely-studied clustering
paradigms. We provide a surprisingly simple set of properties that, on one hand is satisfied by all the algo-
rithm in that family, while on the other hand, no algorithm outside that family satisfies (all of) the properties
in that set. Our characterization highlights the way in which the clusterings that are output by linkage-based
algorithms are different from the clusterings output by other clustering algorithms.
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On top of the importance of understanding linkage based clustering, we hope that this analysis will serve
as a proof of concept to the research direction of distilling clustering properties towards providing useful
guidelines for selecting clustering algorithms in practical applications.

2 Previous Work
Our work follows a theoretical study of clustering that began with Kleinberg’s impossibility result [7], in
which he proposes three axioms of clustering and shows that no clustering function can simultaneously satisfy
these three axioms. Ackerman and Ben-David [1] subsequently showed these axioms to be consistent in
the setting of clustering quality measures. Additionally, they discuss the distinction between axioms and
properties, addressing the question of when a property is an axiom. In particular, while a property may be
satisfied by some, but not all, objects of a class, an axiom is a property that is satisfied by all objects of the
class. In the current paper we propose variations of some of Kleinberg’s axioms and use these variations in
our characterization of linkage-based clustering.

There are a couple of previous characterizations of the single-linkage algorithm. In 1975, Jardine and
Sibson [6] gave a characterization of single linkage. More recently, Bosagh Zadeh and Ben-David [2] char-
acterize single-linkage within Kleinberg’s framework of clustering functions. To the best of our knowledge,
ours is the first characterization of a commonly used class of clustering algorithms. We note that although
single-linkage is a linkage-based algorithm, our characterization doesn’t build upon the previous characteri-
zations mentioned.

3 Preliminaries and Notation
Clustering is a very wide and heterogenous domain. We choose to focus on a basic sub-domain where the
(only) input to the clustering function is a finite set of points endowed with a between-points distance (or
similarity) function, and the output is a partition of that domain. This sub-domain is rich enough to capture
many of the fundamental issues of clustering, while keeping the underlying structure as succinct as possible.

A distance function is a symmetric function d : X ×X → R+, such that d(x, x) = 0 for all x ∈ X .

The objects that we consider are pairs (X, d), where X is some finite domain set and d is a distance
function d over X . These are the inputs for clustering functions.

At times we consider a domain subset with the distance induced from the full domain set. We let
(X ′, d′) ⊆ (X, d) denote X ′ ⊆ X and d′ = d/X ′, is defined by restricting the distance function d to
(X ′)2.

We say that a distance function d over X extends distance function d′ over X ′ ⊆ X if d′ ⊆ d.
A k-clustering C = {c1, c2, . . . , ck} of data set X is a partition of X into k disjoint subsets of X (so,⋃

i

ci = X). A clustering of X is a k-clustering of X for some 1 ≤ k ≤ |X|.

For a clustering C, let |C| denote the number of clusters in C. For x, y ∈ X and clustering C of X , we
write x ∼C y if x and y belong to the same cluster in C and x 6∼C y, otherwise.

Definition 1 (Isomorphisms between domain sets) Two notions of isomorphism of structures are relevant
to our discussion.

1. We say that (X, d) and (X ′, d′) are isomorphic domains, denoting it by (X, d) ∼ (X ′, d′), if there exists
a bijection φ : X → X ′ so that d(x, y) = d′(φ(x), φ(y)) for all x, y ∈ X .

2. We say that to clusterings (or partitions) C = (c1, . . . ck) of some domain (X, d) and C ′ = (c′1, . . . c
′
k)

of some domain (X ′, d′) are isomorphic clusterings, denoted (C, d) ∼= (C ′, d′), if there exists a bijection
φ : X → X ′ such that for all x, y ∈ X , d(x, y) = d′(φ(x), φ(y)) and, on top of that, x ∼C y if and
only if φ(x) ∼C′ φ(y). Note that this notion depends on both the underlying distance functions and the
clusterings.

Definition 2 (Clustering functions) A clustering function is a function that takes as input a pair (X, d) and
a parameter 1 ≤ k ≤ |X| and outputs a k-clustering of the domain X . We require such a function, F , to
satisfy the following:

1. Representation Independence: Whenever (X, d) ∼ (X ′, d′), then, for every k, F (X, d, k) andF (X ′, d′, k)
are isomorphic clusterings.

2. Scale Invariance: For any domain set X and any pair of distance functions d, d′ over X , if there exists
c ∈ R+ such that d(a, b) = c · d′(a, b) for all a, b ∈ X , then F (X, d, k) = F (X, d′, k).

271



4 Defining Linkage-Based Clustering
A linkage-based algorithm begins by placing every element of the input data set into its own cluster, and
then repeatedly merging the “closest” clusters. What distinguishes different linkage-based algorithms from
each other is the definition of between-cluster distance, which is used to determine the closest clusters. For
example, single linkage defines cluster distance by the shortest edge between members of the clusters, while
complete linkage uses the longest between cluster edge to define the distance between clusters.

Between-cluster distance has been formalized in a variety of ways. It has been called a “linkage function,”
(see, for example, [3] and [5]). Everitte et al. [4] call it “inter-object distance.” Common to all these
formalisms is function that maps pairs of clusters to real numbers. No further detailing of the concept has
been previously explored. In this paper, we zoom in on the concept of between-cluster distance and provide
a rigorous, general definition.

Definition 3 (Linkage function) A linkage function is a function

` : {(X1, X2, d) | d is a distance function over X1 ∪X2} → R+

such that,

1. ` is representation independent: For all (X1, X2) and (X ′1, X
′
2), if (X1, X2, d) ∼= (X ′1, X

′
2, d
′) (i.e.,

they are clustering-isomorphic), then `(X1, X2, d) = `(X ′1, X
′
2, d
′).

2. ` is monotonic: For all (X1, X2, d) if d′ is a distance function overX1∪X2 such that for all x ∼{X1,X2}
y, d(x, y) = d′(x, y) and for all x 6∼{X1,X2} y, d(x, y) ≤ d′(x, y) then `(X1, X2, d

′) ≥ `(X1, X2, d).

3. Any pair of clusters can be made arbitrarily distant: For any pair of data sets (X1, d1), (X2, d2), and
any r in the range of `, there exists a distance function d that extends d1 and d2 such that `(X1, X2, d) >
r.

For technical reasons, we shall assume that a linkage function has a countable range. Say, the set of non-
negative algebraic real numbers1.

Note that a linkage function is only given the data for two clusters, as such, the distance between two
clusters does not depend on data that is outside these clusters. Condition (1) formalizes the requirement that
the distance does not depend on the labels (or identities) of domain points. The between-cluster distance is
fully determined by the matrix of between-points distances. Conditions (2) and (3) relate the linkage function
to the input distance function, and capture the intuition that pulling the points of one cluster further apart
from those of another cluster, would not make the two clusters closer. Property (4) captures the intuition that
by pulling two clusters away from each other they can be made arbitrarily ”unlinked”.

We now define linkage-based clustering functions.

Definition 4 (linkage-based clustering function) A clustering function F is linkage-based if there exists a
linkage function ` so that

• F (X, d, |X|) = {{x} | x ∈ X}
• For 1 ≤ k < |X|, F (X, d, k) is constructed by merging the two clusters in F (X, d, k+1) that minimize

the value of `. Formally,

F (X, d, k) = {c | c ∈ F (X, d, k + 1), c 6= ci, c 6= cj} ∪ {ci ∪ cj},
such that {ci, cj} = argmin{ci,cj}⊆F (X,d,k+1)`(ci, cj , d).

Here are examples of linkage functions used in the most common linkage-based algorithms.

• Single linkage: `SL(A,B, d) = mina∈A,b∈B d(a, b).

• Average linkage: `AL(A,B, d) =
∑

a∈A,b∈B d(a,b)

|A|·|B|

• Complete linkage: `CL((A,B, d) = maxa∈A,b∈B d(a, b).

Note that `SL, `AL, and `CL satisfy the conditions of Definition 3 and as such are linkage functions2.
1Imposing this restriction simplifies our main proof, while not having any meaningful impact on the scope of cluster-

ings considered
2A tie breaking mechanism is often used to apply such linkage functions in practice. For simplicity, we assume

in this discussion that no ties occur. in other words, we assume that the linkage function is one-to-one on the set of
isomorphism-equivalence classes of pairs of clusters.
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5 Properties of Clustering Functions
We now introduce properties of clustering functions that we use to characterize linkage-based clustering.

5.1 Hierarchical clustering
The term Hierarchical clustering is a widely used to denote clustering algorithms that operate in a ”bottom
up” manner, starting from singleton clusters and creating coarser and coarser clusterings by merging clusters.
Sometimes, it is also used to denote the more specific family of linkage-based clustering algorithms. Here
we offer a precise formalization on what makes a clustering algorithm hierarchical.

Definition 5 (Clustering Refinement) A clustering C of X is a refinement of clustering C ′ of X if every
cluster in C is a subset of some cluster in C ′, or, equivalently, if every cluster of C ′ is a union of clusters of
C.

Definition 6 (Hierarchical Functions) A clustering function is hierarchical if for every 1 ≤ k ≤ k′ ≤ |X|,
F (X, d, k′) is a refinement of F (X, d, k).

5.2 Locality
We now introduce a new property of clustering algorithms that we call “locality”. Intuitively, a clustering
function is local if its behavior on a union of a subset of the clusters (in a clustering it outputs) depends only
on distances between elements of that union, and is independent of the rest of the domain set.

Definition 7 (Locality) A clustering function F is local if for any clustering C output by F and every subset
of clusters, C ′ ⊆ C,

F (
⋃
C ′, d, |C ′|) = C ′.

In other words, for every domain (X, d) and number of clusters, k, if X ′ is the union of k′ clusters in
F (X, d, k) for some k′ ≤ k, then, applying F to (X ′, d) and asking for a k′-clustering, will yield the same
clusters that we started with.

To better understand locality, consider two runs of a clustering algorithm. In the first run, the algorithm is
called on some data setX and returns a k-clustering C. We then select some clusters c1, c2, . . . , ck′ of C, and
run the clustering algorithm on the points that the selected clusters consist of, namely, c1∪c2∪. . .∪ck′ asking
for k′ clusters. If the algorithm is local, then on the second run of the algorithm it will output {c1, c2, . . . , ck′}.

5.3 Consistency
Consistency, introduced by Kleinberg [7], requires that the output of a clustering function,

be invariant to shrinking within-cluster distances, and stretching between-cluster distances.

Definition 8 (consistency) Given a clustering C of some domain (X, d), we say that a distance function d′
over X , is C, d-consistent if

1. d′X(x, y) ≤ dX(x, y) whenever x ∼C y, and

2. d′X(x, y) ≥ dX(x, y) whenever x 6∼C y.

A clustering function F is consistent if for every X, d, k, if d′ is (F (X, d, k), d)-consistent then F (X, dk) =
F (X, d′, k).

We introduce two relaxations of consistency.

Definition 9 (outer-consistency) Given a clustering C of some domain (X, d), we say that a distance func-
tion d′ over X , is (C, d)-outer consistent if

1. d′X(x, y) = dX(x, y) whenever x ∼C y, and

2. d′X(x, y) ≥ dX(x, y) whenever x 6∼C y.

A clustering function F is outer consistent if for every X, d, k, if d′ is (F (X, d, k), d)-outer consistent then
F (X, d, k) = F (X, d′, k).

Definition 10 (inner-consistency)
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Given a clustering C of some domain (X, d), we say that a distance function d′ over X , is (C, d)-inner
consistent if

1. d′X(x, y) ≤ dX(x, y) whenever x ∼C y, and

2. d′X(x, y) = dX(x, y) whenever x 6∼C y.

A clustering function F is inner consistent if for every X, d, k, if d′ is (F (X, d, k), d)- inner consistent then
F (X, d, k) = F (X, d′, k).

Clearly, consistency implies both outer-consistency and inner-consistency.
Outer-consistency is satisfies by many common clustering functions. In Lemma 26, we will show that

any linkage-based clustering function is outer-consistent. We also show below that the average-linkage and
complete linkage clustering functions are not inner consistent, and therefore (since they satisfy the other two
of Kleinberg’s axioms, and no function satisfies all three axioms) they are not consistent.

5.4 Richness
Kleinberg introduced a Richness property as one of his axioms. A clustering function is rich if by modifying
the distances any output can be obtained.

Definition 11 (Richness) A clustering function F satisfies richness if for any domain set X partition of that
set,X = X1∪X2, . . . ,∪Xn, there exists a distance function d overX so thatF (X, d, n) = {X1, X2, . . . , Xn}.

We propose an extension on richness. A clustering function satisfies extended richness if for every finite
collection of disjoint domain sets (each with its own distance function), by setting the distances between the
data sets, we can get F to output each of these data sets as a cluster. This corresponds to the intuition that if
groups of points are moved sufficiently far apart, then they will be placed in separate clusters.

Definition 12 (Extended Richness) For every set of domains, {(X1, d1), . . . (Xn, dn)}, there exists a dis-
tance function d̂ over

⋃n
i=1Xi that extends each of the di’s (for i ≤ n), such that F (

⋃n
i=1Xi, d̂, n) =

{X1, X2, . . . , Xn}.

6 Main result
Our main result specifies properties of clustering functions that uniquely identify linkage-based clustering
functions.

Theorem 13 A clustering function is linkage based if and only if it is hierarchical and it satisfies: Outer
Consistency, Locality and Extended Richness.

We divide the proof into the following two sub-sections (one for each direction of the ”if and only if”).

6.1 The clustering function properties imply that the function is linkage-based
We show that if F satisfies the prescribed properties, then there exists a linkage function that, plugged into
the procedure in the definition of a linkage-based function, will yield the same output as F (for every input
(X, d) and k).

Lemma 14 If a clustering function F is hierarchical and it satisfies Outer Consistency, Locality and Ex-
tended Richness, then F is linkage-based.

The proof comprises the rest of this section.
Proof:

Since F is hierarchical, for every 1 ≤ k < |X|, F (X, d, k) can be constructed from F (X, d, k + 1) by
merging two clusters in F (X, d, k+1). It remains to show that there exists a linkage function that determines
which clusters to merge.

Due to the Isomorphism Invariance of F , one can assume. w.l.o.g., that the domain sets over which F is
defined are (finite) subsets of the set of natural numbers, N .

We define a relation over pairs of pairs of subsets <F and later prove that it is a (partial) ordering.
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Definition 15 (The (pseudo-) partial ordering <F ) <F is a binary relation over equivalence classes, with
respect to clustering-isomorphism. Namely (A,B, d) ' (A′, B′, d′) if the two pairs are isomorphic as
clusters (see definition in the Preliminary section). We denote equivalence classes by square brackets. So,
the domain of <F is

{[A,B, d] : A ⊆ N , B ⊆ N , A ∩B = ∅ and d is a distance function overA ∪B}.

We define it by: [(A,B, d)] <F [(A′, B′, d′)] if there exists a distance function d∗ over X = A∪B∪A′∪B′
that extends both d and d′ (namely, d ⊆ d∗ and d′ ⊆ d∗), and there exists k ∈ {2, 3} such that

1. A,B,A′, B′ ∈ F (X, d∗, k + 1)
2. A ∪B ∈ F (X, d∗, k)
3. For all D ∈ {A,B,A′, B′}, either D ⊆ A ∪B or D ∈ F (X, d∗, k).

Intuitively, (A,B, d) <F (A′, B′, d′), if there is an input for which F creates the clusters A,B,A′, B′ as
members of some clustering F (X, d∗, k + 1), then F (X, d∗, k) merges A with B (before it merges A′ and
B′). The relation is well defined thanks to the assumption that F is isomorphism invariant. For the sake of
simplifying notation, we will omit the square brackets in the following discussion.

To show that for <F can be extended to a partial ordering, we first prove the following property.
Cycle freeness: Given a clustering function F that is outer-consistent, hierarchical, local and satisfies ex-
tended richness, there exists no finite sequence (A1, B1, d1)....(An, Bn, dn), where n > 2, such that for all
1 ≤ i < n,

1. Ai ∩Bi = ∅,

2. di is a distance function over Ai ∪Bi and

3. (Ai, Bi, di) <F (Ai+1, Bi+1, di+1)

and (A1, B1, d1) = (An, Bn, dn).
This is shown in Lemma 17.
Next, we wish to show that for singleton sets <F respects the input distance function, d.

Lemma 16 For every x, y, x′, y′, such that x 6= y and x′ 6= y′, every value d1(x, y) and d2(x′, y′), and every
clustering function F ,

({x}, {y}, d1) <F ({x′}, {y′}, d2) if and only if d1(x, y) < d2(x′, y′)

Proof:
Consider a data set on 4 points, S = {x, y, x′, y′}. Let a = d1(x, y), b = d2(x′, y′). We construct a

distance function d over S. Set d(x, y) = b and d(p, q) = a for all {p, q} 6= {x, y}.
Then either ({x}, {y}, d1) <F ({x′}, {y′}, d2) or ({x′}, {y′}, d2) <F ({x}, {y}, d1). Assume by way of

contradiction that d(x, y) < d′(x′, y′) but ({x′}, {y′}, d2) <F ({x}, {y}, d1). Then since ({x′}, {y′}, d) <F

({x}, {y}, d), F (S, d, 3) = {{x, y}, {x′}, {y′}}.
Set c = b/a. Note that c > 1. Let d′ be such that d′(x, y) = b, d′(x′, y′) = cb, d′(p, q) = a for

all other pairs of elements in S. Then d′ is an (F (S, d, 3), d)-outer-consistent variant. Since F is outer-
consistent, F (S, d′, 3) = F (S, d, 3).Next, consider the distance function d′′ so that d′′(p, q) = (1/c)·d′(p, q)
for all p, q ∈ S. Since F is scale invariant, by condition 2 of Definition 2, F (S, d′′, 3) = F (S, d, 3).
Finally, let d′′′ be such that d′′′(x′, y′) = b, and d′′′(p, q) = a for all {p, q} 6= {x′, y′}. Note that d′′′ is
an (F (S, d′′, 3), d′′)-outer-consistent variant. Therefore, F (S, d′′′, 3) = F (S, d, 3) = {{x, y}, {x′}, {y′}}.
However, since `(X1, X2, d2) < `(X1, X2, d1), F (S, d′′′, 3) = {{x′, y′}, {x}, {y}} - a contradiction.

Lemma 17 Given a clustering function F that is outer-consistent, hierarchical, local and satisfies extended
richness, there exists no finite sequence (A1, B1, d1)....(An, Bn, dn), where n > 2, such that for all 1 ≤ i <
n,

1. Ai ∩Bi = ∅,
2. di is a distance function over Ai ∪Bi and

3. (Ai, Bi, di) <F (Ai+1, Bi+1, di+1)

and (A1, B1, d1) = (An, Bn, dn).
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Proof:
Assume that such a sequence exists. Let Ci = Ai ∪Bi. and X =

⋃n
i=1Ai ∪Bi.

Using extended richness, we can construct d̂ from the given set of domains (Ci, di), for all 1 ≤ i ≤ n,
that extends all of the distances, such that F (X, d̂, n) = {C1, C2, . . . , Cn}.

Let us consider what happens for F (X, d̂, n + 1). Since F is hierarchical, the (n + 1)-clustering must
split one of the Ci’s. Given 1 ≤ i < n, we will show that you cannot split Ci without causing a contradiction.

Recall that (Ai, Bi, di) <F (Ai+1, Bi+1, di+1), and thus there exists a distance function d′ over X ′ =
Ai ∪ Bi ∪ Ai+1 ∪ Bi+1, and k ∈ {2, 3}, such that Ai, Bi, Ai+1, Bi+1 ∈ F (X ′, d′, k + 1) , Ai ∪ Bi ∈
F (X ′, d′, k) and for all D ∈ {Ai, Bi, Ai+1, Bi+1}, either D ⊆ Ai ∪Bi or D ∈ F (X ′, d′, k).

First, we will show that Ci must be split into Ai and Bi. Consider F (Ci, di, 2). Since (Ai, Bi, di) <F

(Ai+1, Bi+1, di+1), we know that F (Ci, di, 2) = {Ai, Bi}, by locality.
Now we will show that splitting Ci into Ai and Bi violates (Ai, Bi, di) <F (Ai+1, Bi+1, di+1). Using

locality, we focus on the data points in Ci ∪ Ci+1. By locality, for some k ∈ {2, 3}, Ai, Bi ∈ F (Ci ∪
Ci+1, d̂/Ci ∪Ci+1, k). At this point, the distances defined by d̂ between Ci and Ci+1 may be different from
those defined in d′.

Using outer consistency, we define distance function d̃ over X ′ that is both a (F (Ci ∪ Ci+1, d̂/Ci ∪
Ci+1, k), d̂/Ci ∪ Ci+1)-outer consistent variant, and a (F (Ci ∪ Ci+1, d

′, k), d′)-outer consistent variant.
First, let m1 = max {d̂(x, y) | x, y ∈ Ci ∪ Ci+1} and let m2 = max {d′(x, y) | x, y ∈ Ci ∪ Ci+1}.

Finally, let m∗ = max {m1,m2}. Now, we defined d̃ as follows:

d̃(x, y) =
{
d̂(x, y) if x, y ∈ Cior x, y ∈ Ci+1

m∗ otherwise

It is clear that d̃meets our requirements. By outer consistency, F (Ci∪Ci+1, d̃, k) = F (Ci∪Ci+1, d̂/Ci∪
Ci+1, k), in which we showed that Ai and Bi are separate clusters. Also by outer consistency, F (Ci ∪
Ci+1, d̃, k) = F (Ci∪Ci+1, d

′, k), in whichAi andBi are part of the same cluster by the ordering<F . Thus,
we have a contradiction because Ci 6= Ci+1.

Lemma 18 If R( , ) is a binary relation over some domain D that satisfies antisymmetry and cycle-freeness
then there exists a partial ordering R∗( , ) over D that extends R (i.e., for every a, b ∈ D, if R(a, b) holds
then so does R∗(a, b)). In fact, the transitive closure of R is such an extension.

Let <∗F be the transitive closure of <F . Applying the above lemma it is a partial ordering. The next
step is to use the partial ordering <∗F to define a linkage function that demonstrates that F is a linkage-based
clustering.

We shall apply the following basic universality result for partial orderings:

Lemma 19 Let≺ be a partial ordering over some finite or countable set D, and let h be an order preserving
mapping of some D′ ⊆ D into the positive reals3, then there exist an extension of h, ĥ : D → R+ that is
order preserving.

Finally, we define the embedding

`F : {[(A,B, d)] : A ⊆ N , B ⊆ N , A ∩B = ∅ and d is a distance function over A ∪B} → R+

by applying Lemma 19 to <∗F .
There is one potential inconsistency between `F and property 2 in Definition 3. We now show how we

can modify `F so that property 2 is satisfied. Say that there exists some d1 over X1 ∪ X2 where d2 is an
({X1, X2}, d1)-outer-consistent variant so that `F (X1, X2, d2) < `F (X1, X2, d1). That is, if we move X1

and X2 further from each other then the `F value decreases. By Lemma 20, there does not exist (Y1, Y2, d3)
that is assigned an `F value that is strictly between `F (X1, X2, d1) and `F (X1, X2, d2). In addition,<F does
not specify a relationship between (X1, X2, d2) and (X1, X2, d1) by definition of<F , since a function cannot
extend both d1 and d2 simultaneously unless d1 = d2. Therefore, we can modify `F so that `(X1, X2, d1) ≤
`(X1, X2, d2) and so property 2 of Definition 3 holds.

Lemma 20 Let X1 and X2 be some domains, distance d1 over X1 ∪X2, and d2 an ({X1, X2}, d1)-outer-
consistent variant so that `F (X1, X2, d2) < `F (X1, X2, d1). Then there do not exist Y1, Y2, and d3 so that
`F (X1, X2, d2) < `F (Y1, Y2, d3) < `F (X1, X2, d1).

3any dense linear ordering with no first element and no last element has the same universality property
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Proof:Assume by way of contradiction that such Y1, Y2, and d3 exist. Then there exists a distance function
d∗ over X∗ = X1 ∪X2 ∪ Y1 ∪ Y2, d1, d3 ⊆ d∗, so that F on (X∗, d∗) merges Y1 and Y2 before X1, X2. If
we move X1 and X2 away from each other, so that d2 would describe the distances in X1 ∪X2, then X1 and
X2 would be merged before Y1 and Y2. This contradicts outer consistency. Therefore, there are no values of
`F between `F (X1, X2, d2) and `F (X1, X2, d1).

Lemma 21 The function `F is a linkage function for any hierarchical function F that satisfies locality, outer-
consistency, and extended richness.

Proof: `F satisfies condition 1 of Definition 3 since it is defined on equivalence classes of isomorphic sets.
The function `F satisfies condition 2 of Definition 3 by construction (by the modification explained above).
By Lemma 22 `F satisfied condition 3 in Definition 3.

Claim 22 The function `F , for any hierarchical function F that satisfies locality, outer-consistency, and
extended richness, satisfies condition 3 of Definition 3.

Proof: Let r be in the range of `F . Then there exist data sets (X3, d3) and (X4, d4), X3 ∩ X4 = ∅, and
distance d′ over X3 ∪ X4, such that `F (X3, X4, d

′) ≥ r. Let (X1, d1), (X2, d2) be a pair of data sets as
defined above. If {X1, X2} = {X3, X4} then we are done, so assume that {X1, X2} 6= {X3, X4}.

By extended richness, there exists a distance function d̂ over X =
⋃
Xi that extends d1, d2, d3, d4 such

that F (X, d̂, 4) = {X1, X2, X3, X4}. We define d̃ to be an (F (X, d̂, 4), d̂)-outer consistent variant defined
as follows:

d̃(x, y) = max {d̂(x, y), d′(x, y)} when x ∈ X3, y ∈ X4 or x ∈ X4, y ∈ X3 and d̃(x, y) = d̂(x, y)
otherwise.

Notice that d̃/X3 ∪X4 is an (F (X3 ∪X4, d
′, 2), d′)-outer consistent variant. Thus, `F (X3, X4, d̃/X3 ∪

X4) ≥ r.
Also by extended richness, there exists a distance function d̂′ overX that extends d1, d2, d̃/X3∪X4 such

that F (X, d̂′, 3) = {X1, X2, X3 ∪ X4}. Using outer consistency, we can find d̃′ that is an (F (X, d̃, 4), d̃)-
outer consistent variant and an F (X, d̂′, 3), d̂′)-outer consistent variant by just increasing distances between
Xi and Xj , where i 6= j and {i, j} 6= {3, 4}. Thus, F (X, d̃′, 4) = {X1, X2, X3, X4} and F (X, d̃′, 3) =
{X1, X2, X3 ∪X4}. Therefore, `F (X1, X2, d̃

′) > `F (X3, X4, d̃
′) ≥ r.

Claim 23 For every clustering function F , the linkage-based clustering that `F defines agrees with F on any
input data set.

Proof: For every (X, d), the linkage based clustering that `F defines starts with the clusters consisting of all
singletons, and at each step merges two clusters. Thus, for all 2 ≤ k ≤ |X|, we have a k-clustering C and the
k−1 clustering merges someC1, C2 ∈ C, whereC1∪C2 = C or `F (C1, C2) < `F (C3, C4), for allC3, C4 ∈
C, {C3, C4} 6= {C1, C2}. Therefore, for all 2 ≤ k ≤ |X|, (C1, C2, d/C1 ∪ C2) <F (C3, C4, d/C3 ∪ C4),
for all C3, C4 as described, by our construction of `F . Therefore, F would merge the same clusters to obtain
the k− 1 clustering, and so `F agrees with F for any input (X, d) on all k-clusterings, 2 ≤ k ≤ |X|. Clearly
they also agree when k = 1.

This concludes the proof of Lemma 14.

6.2 Every linkage-based clustering function is hierarchical, local, and outer-consistent
If a clustering function is linkage-based, then by construction it is hierarchical.

Lemma 24 Every linkage-based clustering function is hierarchical.

Proof: For every 1 ≤ k′ ≤ k ≤ |X|, by definition of linkage based, F (X, d, k) can be constructed from
F (X, d, k′) by continually merging clusters until k′ clusters remain.

Lemma 25 Every linkage-based clustering function F is local.
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Proof: Let k′-clustering C be a subset of F (X, d, k). Let X ′ =
⋃
c∈C

c.

We will show that for all k′ ≤ i ≤ |X ′|, F (X ′, d/X ′, i) is a subset of F (X, d, j) for some j. After,
we conclude our proof using the following argument: F (X ′, d/X ′, k′) has k′ clusters, F (X ′, d/X ′, k′) is a
subset of F (X, d, j) for some j, and since between F (X, d, j) and F (X, d, k) in the algorithm we cannot
merge clusters in C (as C would no longer be a subset of F (X, d, k)), this gives us that F (X ′, d/X ′, k′) is a
subset of F (X, d, k) and it is equal to C.

The base case follows from the observation that F (X ′, d/X ′, |X ′|) and F (X, d, |X|) both consist of
singleton clusters.

For some i > k′, assume that there exists a j such that F (X ′, d/X ′, i) is a subset of F (X, d, j). We need
to show that there exists a j′ such that F (X ′, d/X ′, i− 1) is a subset of F (X, d, j′).

Since F is linkage based, there exists a linkage function ` so that when ` is used in the algorithm in
Definition 4, the algorithm yields the same output as F .

Since F (X ′, d/X ′, i) ⊆ F (X, d, j), and C ⊆ F (X, d, k), there exists a j∗ so that F (X, d, j∗) can be
obtained from F (X, d, j∗+1) by merging two clusters in F (X, d, j)∩C. The pair of clusters with minimal `
value in F (X, d, j)∩C is the same as the pair of clusters with minimal ` value in F (X ′, d/X ′, i). Therefore,
j′ = j∗.

Lemma 26 Every linkage-based clustering function F is outer-consistent.

Proof: By the monotonicity condition in Definition 3, whenever two clusters are pulled further apart from
each other, the corresponding ` value does not decrease. Consider some data set (X, d) and d′ an (F (X, d, k), d)-
outer-consistent variant. We will show thatF (X, d, k) = F (X, d′, k) by induction on k. Clearly, F (X, d, |X|) =
F (X, d′, |X|). Assume that F (X, d, j) = F (X, d′, j) for some j > k. In order to obtain F (X, d′, j − 1), F
merges the pair of clusters c′1, c

′
2 ∈ F (X, d′, j) with minimal ` value. Similarly, to obtain F (X, d, j − 1), F

merges the pair c1, c2 ∈ F (X, d, j).
Suppose that {c1, c2} 6= {c′1, c′2}. Then `(c′1, c

′
2, d) ≤ `(c′1, c

′
2, d
′) < `(c1, c2, d′) = `(c1, c2, d),

where the first equality follows by monotonicity and the second inequality follows by the minimality of
`(c′1, c

′
2, d
′). Note that c1, c2 ⊆ Ck, where Ck ∈ F (X, d, k). That is, c1 and c2 are part of the same

cluster in F (X, d, k), and since d′ is an (F (X, d, k), d)-outer-consistent variant, the equality follows by
representation-independence. But `(c′1, c

′
2, d) < `(c1, c2, d) contradicts the minimality of `(c1, c2, d), so

{c1, c2} = {c′1, c′2}.

Lemma 27 Every linkage-based function satisfies extended richness.

Proof: Let (X1, d1), (X2, d2), . . . , (Xn, dn) be some data sets. We will show that there exists an extension
d of d1, d2, . . . , dn so that F (

⋃n
i=1Xi, d, n) = {X1, X2, . . . , Xn}.

To make F give this output, we design d in such a way that for any i, and A,B ⊆ Xi, and any C ⊆ Xi,
and D ⊆ Xj where i 6= j, `(A,B, d) < `(C,D, d).

Let r = maxi,A,B⊆Xi,i∈{1,2} `(A,B). Since ` satisfies property 4 of Definition 3, for any C ⊆ Xi,
D ⊆ Xj , for i 6= j, there exists a distance function dCD that extends di/C and dj/D so that `(C,D) > r.
Consider constructing such distance function dCD for every pair C ⊆ Xi and D ⊆ Xj , where i 6= j. Then,
let m = maxi6=j,C⊆Xi,D⊆Xj maxx∈C,y∈D dCD(x, y).

We define d as follows: d(x, y) = di(x, y) if x, y ∈ Xi for some i and d(x, y) = m otherwise. Since
` satisfies property 2 of Definition 3, `(C,D) > r for all C ∈ Xi, D ∈ Xj where i 6= j. On the other
hand, `(A,B) ≤ r for any A,B ⊆ Xi for some i. Therefore, the algorithm will not merge any C ⊆ Xi

with D ⊆ Xj where i 6= j, while there is any clusters A,B ⊆ Xi for some i remaining. This gives that
F (
⋃n

i=1Xi, d, n) = {X1, X2, . . . , Xn}.

Finally, we put our results together to conclude the main theorem.

Theorem 13 restated A clustering function is linkage based if and only if it is hierarchical and it satisfies:
Outer Consistency, Locality and Extended Richness.

Proof: By Theorem 4, if a clustering function is outer-consistent, hierarchical, and local, then it is linkage-
based. By Lemma 24, every linkage-based clustering function is hierarchical. By and Lemma 25 every
linkage-based clustering function is local. By Lemma 26, every linkage-based clustering function is outer-
consistent. Finally, by Lemma 27, every linkage based function satisfies extended richness.
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7 Relaxations of a Linkage Functions and Corresponding Characterizations
7.1 Simplified linkage function
Our proof also yields some insights about clustering that are defined by looser notions of linkage functions.
We describe the characterization of the class of clustering functions that are based of linkage functions that
are not required to obey the conditions of Definition 3.

Definition 28 (Simplified linkage function) A linkage function ` takes a data set (X, d) and a partition
(X1, X2) of the domain X .

We then define a simplified linkage-based function as in Definition 4, but with a simplified linkage func-
tion instead of the linkage function in Definition 3.

We obtain an interesting characterization of simplified linkage-based function that satisfy outer-consistency
and extended richness.

Theorem 29 A clustering function that satisfies outer-consistency and extended richness is simplified linkage-
based if and only if it hierarchical and local.

Proof: Since a linkage function is a simplified linkage function with additional constraints, by Theorem 14
we get that an outer-consistent, hierarchical and local clustering function is simplified linkage-based. The
results and proofs of Theorem 24 and Theorem 25 also apply for simplified linkage functions, thus showing
that simplified linkage-based functions are hierarchical and local.

7.2 General linkage function
Unlike linkage-based clustering functions defined in Definition 4 or simplified linkage-based functions, a
general linkage-based clustering function might use a different linkage procedure on every data set.

This results from a modification on the definition of a linkage function, allowing the function to have
access to the entire data set, outside the two clusters under comparison.

Definition 30 (General linkage function) A general linkage function is given a data set (X, d) and A,B ⊆
X , and outputs a real number.

Note that in the above definition,A andB need not partitionX . As such, the function may use information
outside of bothA andB to determine what value to assign to this pair of clusters. We define a general linkage-
based clustering function as in Definition 4, except using a general linkage function instead of the linkage
function in definition 3.

Definition 31 (general linkage-based clustering function) A clustering function F is linkage-based if there
exists a general linkage function ` so that

• F (X, d, |X|) = {{x} | x ∈ X}
• For 1 ≤ k < |X|, F (X, d, k) is constructed by merging the two clusters in F (X, d, k+1) that minimize

the value of d. Formally,

F (X, d, k) = {c | c ∈ F (X, d, k + 1), c 6= ci, c 6= cj} ∪ {ci ∪ cj},

such that {ci, cj} = argmin{ci,cj}⊆F (X,d,(k+1))`((X, d), ci, cj).

For example, a clustering function that uses single-linkage on data sets with an even number of points,
and maximal linkage on data sets with an odd number of points, is not linkage-based, but it is a general
linkage-based clustering function. Many other examples of general linkage-based functions are artificial, and
do not correspond to what is commonly thought of as linkage-based clustering. Yet general linkage-based
functions include linkage-based functions, and are actually easier to characterize.

Theorem 32 A clustering function is hierarchical if and only if it is a general linkage-based clustering func-
tion.

Proof: For every 1 ≤ k ≤ k′ ≤ |X|, by definition of a general linkage-based clustering function, F (X, dX , k)
can be constructed from F (X, dX , k

′) by continually merging clusters until k clusters remain. Therefore,
general linkage-based functions are hierarchical.

Assume that F hierarchical. Then whenever k′ > k, F (X, d, k) can be obtained from F (X, d, k′) by
merging clusters in F (X, dX , k

′). In particular, F (X, d, k) can be obtained from F (X, d, k+ 1) by merging
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a pair of clusters in F (X, d, k + 1). It remains to show that there exists a general linkage function ` that
defines which clusters are merged.

We now show how to construct the general linkage function. For every (X, d), and for every k, if
F (X, d, k) can be obtained from F (X, d, k + 1) by merging clusters a and b, then set `((X, d), (A,B)) =
|X| − k. For the remaining a, b ⊆ X , set `((X, d)(a, b)) = |X|.

Consider the the function resulting from using the general linkage function ` to determine which pair of
clusters to merge, until k clusters remain. Clearly, F ′(X, d, |X|) = F (X, d, |X|). Assume that F ′(X, d, k+
1) = F (X, d, k+1).We show that F ′(X, dX , k) = F (X, d, k). Since F ′ is a general linkage based clustering
function, it merges some clusters c1, c2 ∈ F ′(X, d, k + 1) to obtain F ′(X, d, k). Since F is hierarchical, it
merges some clusters c3, c4 ∈ F (X, d, k+1) to obtain F (X, d, k), therefore `((X, d)(c3, c4)) = |X|−k. For
any {c5, c6} ∈ F (X, d, k) so that {c5, c6} 6= {c3, c4}, either c5 and c6 are merged to obtain F (X, d, k′) for
some k′ < k and so `((X, d)(c5, c6)) = |X|−k′, or c5 and c6 are never merged directly (they are first merged
with other clusters), and so `((X, d)(c5, c6)) = |X|. In either case, `((X, d)(c3, c4)) < `((X, d)(c5, c6)).
Since ` defines F ′, F ′ merges c1, c2 ∈ F ′(X, d, k + 1) = F (X, d, k + 1) to obtain F ′(X, d, k). Therefore,
{c1, c2} = {c3, c4} and so F ′(X, d, k) = F (X, d, k).

8 Conclusions
We address the task of understanding the consequences of choosing one clustering algorithm over another.
As we have argued in the introduction, we view it as a very important task, if only to help users make better
educated choices about the clustering algorithms that they apply to their data. In spite of its importance, very
little has been previously done along these lines.

In any attempt to taxonomize clusterings, a natural family of clustering that one needs to distinguish is
the class of linkage based clustering. In this work we succeeded in characterizing this rich and popular class
by a relatively small set of intuitive abstract properties. We sincerely believe that these results will encourage
other researchers to follow up this ambitious task of providing guidelines in the zoo of clustering algorithms.
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10 Appendix: spectral clustering does not satisfy locality
In this appendix we show that spectral clustering does not satisfy locality. This illustrates that locality is a
property of clustering functions (one that is satisfied by some, but not all, reasonable clustering functions),
and not an axiom (which is satisfied by all reasonable clustering functions).

We discuss two clustering functions from spectral clustering: ratio-cut and normalized-cut. For more on
spectral clustering, see a tutorial by Luxburg [8].

In spectral clustering we assume that there is an underlying similarity function s, instead of a distance
function. The only difference between a distance functions and a similarity functions is that higher values of
represent greater similarity when using similarity functions, while the opposite holds for distance functions.
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Figure 1: A data set used to illustrate that Ratio-Cut does not satisfy locality.

Figure 2: A data set used to illustrate that Ratio-Cut does not satisfy locality.

Let |c| denote the number of elements in cluster c. c̄ denotes the data set X without the points in c. For
c1, c2 ⊆ X , let cut(c1, c2) =

∑
a∈c1,b∈c2

s(a, b).

Definition 33 (ratio-cut clustering function) Given a data set (X, d) and an integer 1 ≤ k ≤ |X|, the
ratio-cut clustering function finds a k-clustering {c1, c2, . . . , ck} that minimizes

k∑
1

cut(ci, c̄)
|ci|

.

The normalized-cut clustering function takes into account within-cluster similarity. Let vol(ci) =
∑

a,b∈ci
s(a, b).

Definition 34 (normalized-cut clustering function) Given a data set (X, d) and an integer 1 ≤ k ≤ |X|,
the normalized-cut clustering function finds a k-clustering {c1, c2, . . . , ck} that minimizes

k∑
1

cut(ci, c̄i)
vol(ci)

.

Theorem 35 Ratio-Cut is not local.

Proof:
Figure 1 illustrates a data set (with the similarity indicated on the arrows) where the optimal ratio-cut

3-clustering is {{A}, {B,C}, {D}}. However, on data set {B,C,D} (with the same pairwise similarities as
in Figure 1), the clustering {{B}, {C,D}} has lower ratio-cut than {{B,C}, {D}}.

We now show that normalized-cut is not local.

Theorem 36 Normalized-Cut is not local.

Proof: Figure 2 illustrates a data set with the similarities indicated on the arrows - a missing arrow in-
dicates a similarity of 0. The optimal normalized-cut 3-clustering is {{A,A′}, {B,B′, C, C ′}, {D,D′}}.
However, on data set {B,B′, C, C ′, D,D′} (with the same pairwise similarity as in Figure 2), the clustering
{{B,B′}, {C,C ′, D,D′}} has lower normalized-cut than
{{B,B′, C, C ′}, {D,D′}}.
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Abstract

One of the most widely used techniques for data clustering is agglomerative clustering. Such
algorithms have been long used across many different fields ranging from computational
biology to social sciences to computer vision in part because their output is easy to interpret.
Unfortunately, it is well known, however, that many of the classic agglomerative clustering
algorithms are not robust to noise [14]. In this paper we propose and analyze a new robust
algorithm for bottom-up agglomerative clustering. We show that our algorithm can be
used to cluster accurately in cases where the data satisfies a number of natural properties
and where the traditional agglomerative algorithms fail. We also show how to adapt our
algorithm to the inductive setting where our given data is only a small random sample of
the entire data set.

1 Introduction

Many data mining and machine learning applications ranging from computer vision to biology prob-
lems have recently faced an explosion of data. As a consequence it has become increasingly important
to develop effective, accurate, robust to noise, fast, and general clustering algorithms, accessible to
developers and researchers in a diverse range of areas.

One of the oldest and most commonly used methods for clustering data, widely used in many
scientific applications, is hierarchical clustering [5, 6, 8, 10, 7, 11, 12, 14, 9, 13, 15]. In hierarchical
clustering the goal is not to find a single partitioning of the data, but a hierarchy (generally repre-
sented by a tree) of partitions which may reveal interesting structure in the data at multiple levels of
granularity. The most widely used hierarchical methods are the agglomerative clustering techniques;
most of these techniques start with a separate cluster for each point and then progressively merge
the two closest clusters until only a single cluster remains. In all cases, we assume that we have a
measure of similarity between pairs of objects, but the different schemes are distinguished by how
they convert this into a measure of similarity between two clusters. For example, in single linkage
the similarity between two clusters is the maximum similarity between points in these two different
clusters. In complete linkage, the similarity between two clusters is the minimum similarity between
points in these two different clusters. Average linkage has various variants, for example, a common
one defines the similarity between two clusters as the average similarity between points in these two
different clusters [7, 12].

Such algorithms have been used in a wide range of application domains ranging from biology
applications to social sciences to computer vision applications mainly because they are quite fast
and the output is quite easy to interpret. It is well known, however, that one of the main limitations
of the agglomerative clustering algorithms is that they are not robust to noise [14]. In this paper
we propose and analyze a robust algorithm for bottom-up agglomerative clustering. We show that
our algorithm satisfies formal robustness guarantees and it will be successful in cases where the
traditional agglomerative algorithms fail.

In order to formally analyze correctness of our algorithm we use the framework introduced by
Balcan et. al [2]. In this framework, we assume there is some target clustering (much like a k-class
target function in the multi-class learning setting) and we say that an algorithm correctly clusters
data satisfying property P if on any data set having property P , the algorithm produces a tree such
that the target is some pruning of the tree. For example if all points are more similar to points
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in their own target cluster than to points in any other cluster (this is called the strict separation
property), then any of the standard agglomerative algorithms will succeed. See Figure 1. However,
with just tiny bit of noise, for example if each point has even just one point from a different cluster
that it is similar too, then the standard algorithms will all fail (we elaborate on this in Section 2.2).
See Figure 2. This brings up the question: is it possible to design an agglomerative algorithm that is
robust to these types of situations and can tolerate a substantial degree of noise? The contribution
of our paper is to provide a positive answer to this question; we develop a robust, linkage based
algorithm that will succeed in interesting cases where standard agglomerative algorithms will fail.

At a high level, our new algorithm is robust to noise in two different and important ways. First,
it uses more global information for creating an interesting starting point for a linkage procedure, a
set of not too small, but also not too large blobs that are mostly “pure” (these blobs are created
by grouping together vertices with a lot of neighbors in common); second, it uses a robust linkage
procedure (which is based on a score involving the median) for merging large enough blobs. Using
blobs and the median lend the robustness, since, roughly speaking, noisy similarities are outvoted.

1.1 Our Results

We present a new and robust algorithm for agglomerative clustering and we show that our algorithm
will be successful in many cases where standard agglomerative algorithms will fail.

In particular, we show that if the data satisfies a natural good neighborhood property, then our
algorithm can be used to cluster well in the tree model (i.e., to output a hierarchy such that the
target clustering is a pruning of that hierarchy). The good neighborhood property roughly says
after a small number of malicious points have been removed, for the remaining points, most of their
nearest neighbors are from their target cluster. We also show how to adapt our algorithm to the
inductive setting, where our given data is only a small random sample of the entire data set. Based
on such a sample, our algorithm outputs an implicit hierarchy of clusterings of the full domain, that
is evaluated with respect to the underlying distribution. A nice property of the condition and of the
algorithm we analyze is that they are insensitive to any monotone transformation of the similarities.

It is worth noting that the good neighborhood property is much broader than the ν-strict sepa-
ration property, a generalization of the simple strict separation property discussed above, requiring
that after a small number of outliers have been removed all points are strictly more similar to points
in their own cluster than to points in other clusters. Balcan et. al [2] also analyzed the ν-strict
separation condition and provided an algorithm for producing a hierarchy with the desired property,
but via a much more computationally expensive (non-agglomerative) algorithm. Our algorithm is
simpler, faster, and much more generally applicable compared to the algorithm in [2] specifically
designed for ν-strict separation.

1.2 Related Work

In agglomerative hierarchical clustering [8, 7, 11, 12] the goal is not to find a single partitioning of the
data, but a hierarchy (generally represented by a tree) of partitionings which may reveal interesting
structure in the data at multiple levels of granularity. Traditionally, only clusterings at a certain
level are considered, but as we argue in Section 2 it is more desirable to consider all the prunings of
the tree, since this way we can then handle much more general situations. As mentioned above, it is
well known that standard agglomerative hierarchical clustering techniques are not tolerant to noise.

2 Definitions. A Formal Setup

We consider a clustering problem (S, ℓ) specified as follows. Assume we have a data set S of n
objects. Each x ∈ S has some (unknown) “ground-truth” label ℓ(x) in Y = {1, . . . , k}, where we
will think of k as much smaller than n. We let Ci = {x ∈ S : ℓ(x) = i} denote the set of points of
label i (which could be empty), and denote the target clustering as C = {C1, . . . , Ck}. Given another
proposed clustering h, h : S → Y , we define the error of h with respect to the target clustering to
be the the fraction of points on which h and C disagree under the optimal matching of clusters in h
to clusters in C; i.e.,

err(h) = min
σ∈Sk

[
Pr
x∈S

[σ(h(x)) 6= ℓ(x)]

]
,

where Sk is the set of all permutations on {1, . . . , k}. Equivalently, the error of a clustering C′ =
{C′

1, . . . , C
′
k} can be expressed as

min
σ∈Sk

1

n

∑

i

|Ci − C′
σ(i)|.
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Figure 1: Consider a document clustering problem. Assume that data lies in multiple regions
Algorithms, Complexity, Learning, Planning, Squash, Billiards, Football, Baseball. Suppose that
K(x, y) = 0.999 if x and y belong to the same inner region; K(x, y) = 3/4 if x ∈ Algorithms and
y ∈ Complexity, or if x ∈ Learning and y ∈ Planning, or if x ∈ Squash and y ∈ Billiards, or if
x ∈ Football and y ∈ Baseball; K(x, y) = 1/2 if x is in (Algorithms or Complexity) and y is in
(Learning or Planning), or if x is in (Squash or Billiards) and y is in (Football or Baseball); define
K(x, y) = 0 otherwise. Both clusterings {Algorithms∪Complexity ∪ Learning∪ Planning, Squash ∪
Billiards,Football∪Baseball} and {Algorithms∪Complexity,Learning∪Planning, Squash∪Billiards∪
Football ∪ Baseball} satisfy the strict separation property.

We will be considering clustering algorithms whose only access to their data is via a pairwise
similarity function K(x, x′) that given two examples outputs a number in the range [−1, 1]. We will
say that K is a symmetric similarity function if K(x, x′) = K(x′, x) for all x, x′. In this paper we
assume that the similarity function K is symmetric. For A ⊆ S, we denote by nA the number of
points in A.

Our goal is to produce a hierarchical clustering that contains a pruning that is close to the
target clustering. Formally, the goal of the algorithm is to produce a hierarchical clustering: that
is, a tree on subsets such that the root is the set S, and the children of any node S′ in the tree
form a partition of S′. The requirement is that there must exist a pruning h of the tree (not
necessarily using nodes all at the same level) that has error at most ǫ. Balcan et. al [2] have shown
that this type of output is necessary in order to be able to analyze non-trivial properties of the
similarity function. For example, even if the similarity function satisfies the requirement that all
points are more similar to all points in their own cluster than to any point in any other cluster (this
is called the strict separation property) and even if we are told the number of clusters, there can
still be multiple different clusterings that satisfy the property. In particular, one can show examples
of similarity functions and two significantly different clusterings of the data satisfying the strict
separation property. See Figure 1 for an example. However, under the strict separation property,
there is a single hierarchical decomposition such that any consistent clustering is a pruning of this
tree. This motivates clustering in the tree model and this is the model we consider in this work as
well.

Given a similarity function satisfying the strict separation property (see Figure 1 for an exam-
ple), we can efficiently construct a tree such that the ground-truth clustering is a pruning of this
tree [2]. Moreover, almost any of the standard linkage based algorithms (e.g., single linkage, average
linkage, or complete linkage) would work well under this property. However, one can show that if
the similarity function slightly deviates from the strict separation condition, then all the standard
agglomerative algorithms will fail (we elaborate on this in section 2.2). In this context, the main
question we address in this work is: Can we develop other more robust, linkage based algorithms
that will succeed under more realistic and yet natural conditions on the similarity function?

Note: Note that strict separation does not guarantee that all the cutoffs for different points x are
the same, so single linkage would not necessarily have the right clustering if just stopped once it has
k clusters; however the target clustering will provably be a pruning of the final single linkage tree;
this is why we define success based on prunings.

284



2.1 Properties of the similarity function

We describe here some natural properties of the similarity functions that we analyze in this paper.
We start with a noisy version of the simple strict separation property (mentioned above) which was
introduced in [2] and we then define an interesting and natural generalization of it.

Property 1 The similarity function K satisfies ν-strict separation for the clustering problem
(S, ℓ) if for some S′ ⊆ S of size (1 − ν)n, K satisfies strict separation for (S′, ℓ). That is, for all
x, x′, x′′ ∈ S′ with x′ ∈ C(x) and x′′ 6∈ C(x) we have K(x, x′) > K(x, x′′).

So, in other words we require that the strict separation is satisfied after a number of bad points
have been removed. A somewhat different condition is to allow each point to have some bad imme-
diate neighbors as long as most of its immediate neighbors are good. Formally:

Property 2 The similarity function K satisfies α-good neighborhood property for the clustering
problem (S, ℓ) if for all points x we have that all but αn out of their nC(x) nearest neighbors belong

to the cluster C(x).1

Note that α-good neighborhood property is different from the ν-strict separation property. For
the ν-strict separation property we can have up to νn bad points that can misbehave; in particular,
these νn bad points can have similarity 1 to all the points in S; however, once we remove these
points the remaining points are more similar to points in their own cluster than to points in other
cluster. On the other hand, for the α-good neighborhood property we require that for all points x all
but αn out of their nC(x) nearest neighbors belong to the cluster C(x). (So we cannot have a point
that has similarity 1 to all the points in S.) Note however that different points might misbehave on
different αn neighbors. We can also consider a property that generalizes both the ν-strict separation
property and the α-good neighborhood. Specifically:

Property 3 The similarity function K satisfies (α, ν)-good neighborhood property for the clus-
tering problem (S, ℓ) if for some S′ ⊆ S of size (1 − ν)n, K satisfies α-good neighborhood property
for (S′, ℓ). That is, for all for all points x ∈ S′ we have that all but αn out of their nC(x)∩S′ nearest
neighbors in S′ belong to the cluster C(x).

It is easy to see that:

Fact 1 If the similarity function K satisfies the α-good neighborhood property for the clustering
problem (S, ℓ), then K also satisfies the (α, 0)-good neighborhood property for the clustering problem
(S, ℓ).

Fact 2 If the similarity function K satisfies the ν-strict separation property for the clustering prob-
lem (S, ℓ), then K also satisfies the (0, ν)-good neighborhood property for the clustering problem
(S, ℓ).

Balcan et. al [2] have shown that if K satisfies the strict separation property with respect to
the target clustering, then as long as the smallest target cluster has size 5νn, one can in polynomial
time construct a hierarchy with the guarantee that the ground-truth is ν-close to a pruning of
the hierarchy. Unfortunately the algorithm presented in [2] is computationally very expensive: it
first generate a large list of Ω(n2) candidate clusters and repeatedly runs pairwise tests in order to
laminarize these clusters; its running time is a large unspecified polynomial. Our new robust linkage
algorithm can be used to get a simpler and much faster algorithm for clustering accurately under
the ν-strict separation property. Additionally, our algorithm is much more general as well.

As shown in [2], the (2, ǫ) BBG-condition for k-median implies the ν-strict separation condi-
tion [1], for ν = 5ǫ. One can show a similar result for the (ν, c, ǫ)-condition for k-median introduced
by [3], and so the condition we analyze is strictly more general than these conditions.

As we show below, if the data satisfies the good neighborhood property, then most of the standard
linkage based algorithms will fail. The contribution of our paper is to develop a robust, linkage
based algorithm that will succeed under these natural conditions.
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Figure 2: Same as Figure 1 except let us match each point in Algorithms with a point in Squash,
each point in Complexity with a point in Billiards, each point in Learning with a point in Football,
and each point in Planning with a point in region Baseball. Define the similarity measure to be the
same as in Figure 1 except that we let K(x, y) = 1 if x and y are matched. Note that for α = 1/n the
similarity function satisfies the α-good neighborhood property with respect to any of the prunings
of the tree above. However, single linkage, average linkage, and complete linkage would initially link
the matched pairs and produce clusters with very high error with respect to any such clustering.

2.2 Standard linkage based algorithms are not robust

We can show an example where simple linkage based algorithm would perform very badly, but
where our algorithm would work well. In particular, if we slightly modify the example in Figure 1,
by adding a little bit of noise, to form links of high similarity between points in different inner blobs,
we can show that many of the classic linkage based algorithms will perform poorly2. See Figure 2
for a precise description of the similarity measure.

In particular, the single linkage algorithm, the average linkage algorithm, and the complete
linkage algorithm, would in the first n/2 stages merge the matched pairs of points. From that
moment on, no matter how they perform, none of the natural and desired clusterings will be even
1/2 close to any of the prunings of the hierarchy produced. Notice however, that the similarity K
satisfies α-good neighborhood property with respect to any of the desired clusterings (for α = 1/n),
and that our algorithm will be successful on this instance. The ν-strict separation is not satisfied in
this example either, for any constant ν.

3 Robust Hierarchical Clustering

In this section we describe an algorithm that we prove is successful if the data satisfies the good
neighborhood property. This procedure has two phases: first, it uses somewhat more global infor-
mation for creating an interesting starting point for a linkage procedure – a set of not too small, but
also not too large blobs that are mostly “pure”. In a second phase, it runs robust linkage procedure
on this set of blobs. Both steps have to be done with care and we will describe in detail in the fol-
lowing sections both steps of our algorithm. In particular, in section 3.1 we describe the procedure
for generating a set of interesting blobs and in section 3.2 we describe the linkage procedure.

We start with a useful definition.

Definition 1 For A ⊆ S, B ⊆ S we define Kmedian(A,B) = median{K(x, x′);x ∈ A, x′ ∈ B} and
we call this the median similarity of A to B.

For simplicity we denote Kmedian({x}, B) as Kmedian(x,B).

Notation: For the rest of this section we assume that the similarity function K satisfies the (α, ν)–
good neighborhood property for the clustering problem (S, ℓ). Let S′ ⊆ S be the set of (1 − ν)n

1Note that we assume that for any given point we have a canonical order for its neighbors, and so the
set of t nearest neighbors of a given point is always well defined.

2Since, usually, the similarity function between pairs of objects is constructed based on heuristics, this
can easily happen; for example we could have a similarity measure that puts a lot of weight on features such
as date or names, and so we could easily have a document about Learning being more similar to a document
about Football than to other documents about Learning.
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Algorithm 1 Robust Agglomerative Hierarchical Clustering

Input: Similarity function K, set of points S, ν > 0, α > 0.

1. Run Algorithm 2 with parameters ν, α to generate an interesting list L of blobs that partitions
the whole set S.

2. Run the linkage Algorithm 3 on these blobs to get the tree T .

Output: Tree T on subsets of S.

points such that K satisfies α–good neighborhood property with respect to S′. We call the points
in S′ good points and the points in S \ S′ bad points. Let Gi = Ci ∩ S′ be the good set of label
i. Let G = ∪Gi the whole set of good points; so G = S′. Clearly |G| ≥ n− νn. Denote by CG the
restriction of the target clustering to the set G.

Note that the following is a useful consequence of the definition.

Claim 2 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood property
for the clustering problem (S, ℓ). As long as t is smaller than nCi

for any good point x ∈ Ci all but
at most (ν + α)n out of its t nearest neighbors lie in its good set Ci(x) ∩G.

3.1 Generating an interesting starting point

In this section we describe our procedure for generating a set of interesting blobs, i.e., a set of not
too small, but also not too large blobs that are almost pure.

Algorithm 2 Generate interesting blobs

Input: similarity function K, set of points S, ν > 0, α > 0.

Let the initial threshold t = 6(ν + α)n+ 1. Let L be empty. Let AS = S.

Step 1 Construct the graph Ft where we connect points x and y in AS if they share at least
t− 2(ν + α)n points in common out of their t nearest neighbors with respect to the whole
set of points S.

Step 2 Construct the graph Ht by connecting points x and y if they share at least 3(ν + α)n
neighbors in the graph Ft.

Step 3 (i) Add to L all the components C of Ht with |C| ≥ 3(ν+α)n and remove from AS all the
points in all these components.

(ii) For all points x in AS check if (ν + α)n out of their 5(ν + α)n nearest neighbors are in
L. If so, then assign point x to any of the blobs in L of highest median. Remove the
points in all these components from AS .

Step 4 While |AS | ≥ 3(ν + α)n and t < n, increase the critical threshold and go to Step 1.

Step 5 Assign all points x that do not belong to any of the blobs in L arbitrarily to one of the
blobs.

Output: A list of blobs which form a partition of S.

We can show the following:

Theorem 3 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood prop-
erty for the clustering problem (S, ℓ). So long as the smallest target cluster has size greater than
9(ν + α)n, then we can use Algorithm 2 to create a list L of blobs each of size at least 3(ν + α)n
such that:

• The blobs in L form a partition of S.

• Each blob in the list L contains good points from only one good set; i.e., for any C ∈ L,
C ∩G ⊆ Gi for some i ≤ k.

Proof: In the following we denote by nCi
the number of points in the target cluster i. Without loss

of generality assume that nC1
≤ nC2

≤ ... ≤ nCk
. We will show by inductions on i ≤ k that:

287



(a) For any t ≤ nCi
, any blob in the list L only contains good points from a single good set Gi; all

blobs have size at least 3(ν + α)n.

(b) At the beginning of the iteration t = nCi
+ 1, any good point x ∈ Cj ∩ G, j ∈ {1, 2, . . . , i} has

already been assigned to a blob in the list L that contains points only from Cj ∩ G and has
more good points than bad points.

These two claims clearly imply that each blob in the list we output contains good points from only
one good set. Moreover at t = nCk

all good points have been assigned to one of the blobs in L.
Since we assign the remaining points x that do not belong to any of the blobs in L (these can only
be bad points) arbitrarily to one of the blobs, we also get that the blobs in L form a partition of S,
as desired.

Claims (a) and (b) are clearly both true initially. We show now that as long as t ≤ nC1
, the

graphs Ft and Ht have the following properties:

(1) No good point in cluster i is connected in Ft to a good point in a different cluster j, for i, j ≥ 1,
i 6= j. Since K satisfies the (α, ν)-good neighborhood property for the clustering problem (S, ℓ),
by Claim 2, we know that as long as t is smaller than nCi

for any good point x ∈ Ci all but
at most (ν + α)n out of its t nearest neighbors lie in its good set, i.e., Ci(x) ∩ G; similarly,
as long as t is smaller than nCj

for any good point y ∈ Cj , all but at most (ν + α)n out of
its t nearest neighbors lie in its good set, i.e., |Cj(x) ∩ G|; so it cannot be the case that for
6(ν+α)n ≤ t ≤ nC1

two good points in two different clusters i, j ≥ 1 share t− 2(ν+α)n points
in common out of their t nearest neighbors.

(2) No bad point is connected in Ft to both a good point in cluster i and a good point in different
cluster j, for i, j ≥ 1, i 6= j. This again follows from the fact that since t ≤ nCi

for all i, for any
good point x all but at most (ν+α)n out of its t nearest neighbors lie in its good set Ci(x)∩G
(by Claim 2); so for a bad point z to share t − 2(ν + α)n points out of its t nearest neighbors
in common with the t nearest neighbors of a good point x in Gi it must be the case that z has
t− 3(ν + α)n points out of its t nearest neighbors in Gi; but that means that there cannot be
other good point y in Gj , where j 6= i such that z and y share t− 2(ν+α)n points among their
t nearest neighbors, because we would need to have that t − 3(ν + α)n of points out of z’s t
nearest neighbors lie in Gi and t− 3(ν +α)n of points out of z’s t nearest neighbors in Gj ; but
this cannot happen if t > 6(ν + α)n since 2(t− 3(ν + α)n) > t for t > 6(ν + α)n.

(3) All the components of Ht of size at least 3(ν + α)n will only contain good points from one
cluster. Since in Ft bad points can only connect to one good set, we get that no two good
points in the different clusters connect in Ht.

We can use (1), (2), and (3) to argue that as long as t ≤ nC1
, each blob in L contains good

points from at most one target cluster. This is true at the beginning and by (3), for any t ≤ nC1
,

anytime we insert a whole new blob in L in Step 3(i), that blob must contain good points from at
most one target cluster. We now argue that this property is never violated as we assign points to
blobs already in L based on the median test in Step 3(ii). Note that at all time steps all the blobs
in L have size at least 3(ν + α)n. Assume that a good point x has more than (ν + α)n out of its
5(ν + α)n nearest neighbors in S in the list L. By Lemma 5, there must exist a blob in L that
contains only good points from C(x). By Lemma 4, if we assign x based on the median test in Step
3(ii), then we will add x to a blob containing good points only from C(x), and so we maintain the
invariant that each blob in L contains good points from at most one target cluster.

We now show that at the beginning of the iteration t = nC1
+ 1, all the good points in C1 have

already been assigned to a blob in the list L that only contains good points from C1 ∩G. There are
a few cases. First, if prior to t = nC1

we did not yet extract in the list L a blob with good points
from C1, then it must be the case that all good points in C1 connect to each other in the graph
Ft; so there will be a component of Ht that will contain all good points from C1 and potentially
bad points, but no good points from another target cluster; moreover this |C1| ≥ 9(ν + α)n, this
component will be output in Step 3(i). Second, if prior to t = nC1

we did extract some, but still,
more than 3(ν + α)n points from the good set G1 do not belong to blobs in the list L, then more
than 3(ν + α)n of good points will connect to each other in Ft, and then in Ht, so we will add one
blob to L containing these good points (plus at most νn bad points). Finally, it could be that by
the time we reach t = nC1

all but l < 3(ν + α)n good points in C1 have been assigned to a blob
in the list L that has good points only from C1. Since |C1| ≥ 9(ν + α)n we must have assigned at
least 9(ν + α)n− 3(ν + α)− νn ≥ 5(ν + α)n good points from C1 to the list L. This together with
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the (α, ν)-good neighborhood property implies that the good points in C1 that do not belong to the
list L yet, must have (ν + α)n out of their 5(ν + α)n nearest neighbors in S in the list L (at most
ν out of the 5(ν + α)n nearest neighbors can be bad points, at most αn can be good points from a
different cluster, and at most 3(ν + α)n can be good points in C1 that do not yet belong to L ). So
we will assign these points to blobs in L based on the median test in Step 3(ii). By Lemma 4, when
we assign them based on the median test in Step 3(ii), we will add them to a blob containing good
points from C1 and no good points from other cluster Cj , as desired.

We then iterate the argument on the remaining set AS . The key point is that for t ≥ ni, i > 1,
once we start analyzing good points in Cni+1 we have that all the good points in Cni

, Cni−1
, ...,

Cn1
have already been assigned to blobs in L.

We prove below two useful lemmas used in the above proof.

Lemma 4 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood property
for the clustering problem (S, ℓ). Assume that L is a list of disjoint clusters each of size at least
3(ν+α)n. Assume also that each cluster in L intersects at most a good set; i.e., for any C in L, we
have C ∩G ⊆ Gi for some i. Consider x ∈ G such that there exist C in L with C ∩G ⊆ C(x) ∩G.

Let C̃ be the blob in L of highest median similarity to x. Then C̃ ∩G ⊆ C(x) ∩G.

Proof: Let us fix a good point x. Let C′ and C′′ be such that C′∩G ⊆ C(x)∩G and C′′∩G ⊆ Ci∩G,
for Ci 6= C(x). Since K is a symmetric similarity function satisfying the (α, ν)-good neighborhood
property, by Claim 2, we have that x can be more similar to at most νn + αn points in C′′ than
with any point in C′ ∩G. Since |C′| ≥ 3(ν + α)n and |C′′| ≥ 3(ν + α)n we get that

Kmedian(x,C
′) ≥ Kmedian(x,C

′′).

This then implies that the blob C̃ in L of highest median similarity to xmust satisfy C̃∩G ⊆ C(x)∩G,
as desired.

Lemma 5 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood property
for the clustering problem (S, ℓ). Assume that L is a list of clusters each of size at least 3(ν + α)n.
Assume also that each cluster in L intersects at most a good set; i.e., for any C in L, we have
C ∩G ⊆ Gi for some i. Consider x ∈ G such that there is no cluster C in L with C ∩G ⊆ C(x)∩G.
Then at most (α+ ν)n of its t nearest neighbors for any t ≤ nC(x) can be in L and all the rest are
outside.

Proof: Since K satisfies the (α, ν)-good neighborhood property, by Claim 2, for all x ∈ G, for all
t ≤ nC(x) at most (α + ν)n of its t nearest neighbors are not from C(x). Consider x ∈ G such that
there is no cluster C in L with C ∩ G ⊆ C(x) ∩ G. So, the list L contains no good points from C,
which implies that at most (α+ ν)n of its t nearest neighbors for any t ≤ nC(x) can be in L.

3.2 A robust linkage procedure

Our linkage procedure is given by Algorithm 3.

Algorithm 3 A robust linkage procedure

Input: A list L of blobs; similarity function K on pairs of points.

• Repeat till only one cluster remains in L:

(a) Find clusters C,C′ in the current list which maximize score(C,C′)
(b) Remove C and C′ from L merge them into a single cluster and add that cluster to L.

• Let T be the tree with single elements as leaves and internal nodes corresponding to all the
merges performed.

Output: Tree T on subsets of S.

We describe in the following the notion of similarity between pairs of blobs used in Algorithm 3.

Definition 6 Let L = {A1, . . . , Al} be a list of disjoint subsets of S. For each i, for each point x
in Ai we compute Kmedian({x}, Aj), j 6= i, sort them in increasing order, and define rank(x,Aj) as
the rank of Aj in the order induced by x. We define

rank(Ai, Aj) = medianx∈Ai
[rank(x,Aj)].

289



For example, if Aj1 is the subset of highest median similarity to x out of all Aj , j 6= i, then
rank(x,Aj1 ) = l. Similarly, if Aj2 is the subset of smallest median similarity to x out of all Aj , j 6= i,
then rank(x,Aj2 ) = 1.

Definition 7 Let L = {A1, . . . , Al} be a list of disjoint subsets of S. We define the score between
Ai and Aj as

score(Ai, Aj) = min[rank(Ai, Aj), rank(Aj , Ai)].

Note that while the rank(·, ·) might be asymmetric, score(·, ·) is designed to be symmetric. We
now present a useful lemma.

Lemma 8 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood property
for the clustering problem (S, ℓ). Let L be a list of disjoint clusters, all of size at least 2(α + ν)n.
Assume that B ∩G ⊆ Gi, B

′ ∩G ⊆ Gi, and (B′′ ∩G) ∩Gi = ∅. Then we have both

score(B,B′) < score(B,B′′) and score(B,B′) < score(B′, B′′).

Proof: Let x be a good point. The (α, ν)-good neighborhood property implies that there exists cx
such that at most αn points z ∈ G, z /∈ C(x) can have similarity K(x, z) greater or equal to cx and
at most αn points y ∈ G ∩ C(x) can have similarity K(x, z) strictly smaller than cx. Since each of
the blobs has size at least 2(α + ν)n and since each blob contains at most νn bad points, we get
that for all blobs B′ and B′′ such that B′ ∩G ⊆ C(x) ∩G and (B′′ ∩G) ∩ (C(x) ∩G) = ∅ we have

Kmedian({x}, B′) > Kmedian({x}, B′′).

So a good point x will rank blobs B′ s.t. B′ ∩ G ⊆ C(x) ∩ G later than blobs B′′ such that
(B′′∩G)∩ (C(x)∩G) = ∅ in the order it induces. Assume that there are exactly r blobs B in L such
that (B∩G)∩ (C(x)∩G) = ∅ . Since there are at most νn bad points and each of the blobs has size
at least 2(α+ ν)n, we obtain that for all B, B′ in L such that B ∩G ⊆ Ci ∩G and B′ ∩G ⊆ Ci ∩G,
and for all B′′ in L with (B′′ ∩G) ∩ (Ci ∩G) = ∅ we have both

rank(B,B′) > r ≥ rank(B,B′′) and rank(B′, B) ≥ r ≥ rank(B′, B′′).

This then implies that

score(B,B′) = score(B′, B) = min[rank(B,B′), rank(B′, B)] > r.

Similarly,
score(B,B′′) = score(B′′, B) = min[rank(B,B′′), rank(B′′, B)] > r.

Finally, we have

score(B′, B′′) = score(B′′, B′) = min[rank(B′, B′′), rank(B′′, B′)] ≤ r.

These imply:

score(B,B′) > score(B,B′′) and score(B,B′) > score(B′, B′′),

as desired.

We now show that is the similarity function we have satisfies the good neighborhood property,
given a good starting point, Algorithm 3 will be successful in outputting a good hierarchy.

Theorem 9 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood prop-
erty for the clustering problem (S, ℓ). Assume that L is a list of clusters each of size at least 3(ν+α)n
that partition the entire set of points. Assume also that each cluster in L intersects at most a good
set; i.e., for any C in L, we have C ∩ G ⊆ Gi for some i. Then Algorithm 3 constructs a binary
tree such that the ground-truth clustering is ν-close to a pruning of this tree.

Proof: First note that at each moment the list L of clusters is a partition of the whole dataset and
that all clusters in L have size at least 3(ν +α)n. We prove by induction that at each time step the
list of clusters restricted to G is laminar w.r.t. CG.

In particular, assume that our current list of clusters restricted to G is laminar with respect to
CG (which is true at the start). This implies that for each cluster C in our current clustering and
each Cr in the ground truth, we have either

C ∩G ⊆ G(Cr) or G(Cr) ⊆ C ∩G or (C ∩G) ∩G(Cr) = ∅.
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Now, consider a merge of two clusters C and C′. The only way that laminarity could fail to be
satisfied after the merge is if for one of the two clusters, say, C′, we have that C′ ∩ G is strictly
contained inside Cr′∩G, for some ground-truth cluster Cr′ (so, (Cr′∩G)\(C′∩G) 6= ∅, (C′∩G) ⊂ Cr′)
and yet C ∩G is disjoint from Cr′ ∩G. But there must exist C′′ in the list L such that

(C′′ ∩G) ⊂ Cr′ \ (C′ ∩G), |C′′| ≥ 3(ν + α)n.

By Lemma 8 we know that

score(C′, C′′) > score(C′, C).

However, this contradicts the specification of the algorithm, since by definition it merges the pair
C, C′ such that score(C′, C) is greatest.

3.3 The Main Result

Our main result is the following:

Theorem 10 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood
property for the clustering problem (S, ℓ) As long as the smallest target cluster has size greater than
9(ν+α)n, then we can use Algorithm 1 in order to produce a tree such that the ground-truth clustering
is ν-close to a pruning of this tree in O(nω+1) time, where O(nω) is the state of the art for matrix
multiplication.

Proof: The correctness follows immediately from Theorems 3 and 9. For a proof of the running
time see the full version of the paper [4].

3.4 The Inductive Setting

In this section we consider an inductive model in which S is merely a small random subset of points
from a much larger abstract instance space X . Based on such a sample, our algorithm outputs a
hierarchy over the sample, which also implicitly represents a hierarchy of the whole space which is
evaluated with respect to the underlying distribution. Let us assume for simplicity that X is finite
and that the underlying distribution is uniform over X .

Our goal is to design an algorithm that based on the sample produces a tree of small error
with respect to the whole distribution. Formally, we assume that each node in the tree derived
over the sample S induces a cluster (a subset of X) which is implicitly represented as a function
f : X → {0, 1}. For a fixed tree T and a point x, we define T (x) as the subset of nodes in T that
contain x (the subset of nodes f ∈ T with f(x) = 1). We say that a tree T has error at most ǫ if
T (X) has a pruning f1, ..., fk′ of error at most ǫ.

Algorithm 4 Inductive Robust Agglomerative Hierarchical Clustering

Input: Similarity function K, parameters α, ν, k ∈ Z+, δ; n = n(α, ν, k, δ);

• Pick a set S = {x1, . . . , xn} of n random examples from X .

• Run Algorithm 1 with parameters 2α, 2ν on the set S and obtain a tree T on the subsets of S.
Let Q be the set of leaves of this tree.

• Associate each node u in T a function fu (which induces a cluster) specified as follows:

Consider x ∈ X , and let q(x) ∈ Q be the leaf given by argmaxq∈QKmedian(x, q); if u appears on
the path from q(x) to the root, then set fu(x) = 1, otherwise set fu(x) = 0.

• Output the tree T .

Let N = |X |. For the rest of this section we assume that the similarity function K satisfies
the (α, ν)–good neighborhood property for the clustering problem (X, ℓ). Let S′ ⊆ S be the set of
(1− ν)N points such that K satisfies α–good neighborhood property with respect to S′. We call the
points in S′ good points and the points in S \ S′ bad points. Let Gi = Ci ∩ S′ be the good set of
label i. Let G = ∪Gi the whole set of good points; so G = S′.

Our main result in this section is the following:
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Theorem 11 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood
property for the clustering problem (X, ℓ). As long as the smallest target cluster has size greater than

18(ν + α)N , then using Algorithm 4 with parameters α, ν, k, δ, and n = Θ
(

1
min(α,ν) ln

k
δ·min(α,ν)

)
,

we can produce a tree with the property that the ground-truth is ν + δ-close to a pruning of this tree

with probability 1− δ. Moreover, the size of this tree is O
(

1
min(α,ν) ln

k
δ·min(α,ν)

)
.

Proof: Note that n is large enough so that with probability at least 1−δ/2 we have that S contains
at most 2νn bad points and K satisfies the (2α, 2ν)-good neighborhood property with respect to the
clustering induced over the sample (by Lemma 12) and each target cluster has at least 9(ν + α)n
points in the sample (by Chernoff bounds).

Assume below that this happens. So, by Theorem 10 we get that the tree T induced over the
sample has error at most 2ν over the sample. Let L be the list of leaves of T . By Theorem 3, we
know that L forms a partition of S and that each element of L has size at least 6(ν + α)n and it
contains good points from only one good set i.e., for any C ∈ L, C ∩ G ⊆ Gi for some i ≤ k. Let
us fix a good point x. By Lemma 13, with probability at least 1− δ2/2 at most 2αn of the nC̃G(x)

nearest points to x from G ∩ S can be outside C(x) ∩ G, where nC̃G(x) is |C(x) ∩ G ∩ S|. We can

show that C̃, the blob in L of highest median similarity to x, satisfies C̃ ∩ G ⊆ C(x) ∩ G. To see
this, let C′ and C′′ in L be such that C′ ∩G ⊆ C(x) ∩G and C′′ ∩G ⊆ Ci ∩G, for Ci 6= C(x). By
the above facts we know that x can be more similar to at most 2νn+ 2αn points in C′′ than with
any point in C′ ∩G. Since |C′| ≥ 6(ν + α)n and |C′′| ≥ 6(ν + α)n we get that

Kmedian(x,C
′) ≥ Kmedian(x,C

′′).

This then implies that the blob C̃ in L of highest median similarity to xmust satisfy C̃∩G ⊆ C(x)∩G,
as desired. So, for any given point x, with probability 1− δ2/2 over the draw of the random sample,
the leaf in T of highest median similarity to x has the property that all its good points are from
C(x). Since this is true for any x, by Markov inequality, we get that with probability 1− δ/2 a 1− δ
fraction of the good points connect to a leaf that contain good points from their own cluster only.

Adding back the δ/2 chance of failure due to either K not satisfying the (2α, 2ν)-good neighbor-
hood property or having more than 2νn bad points in S, we get that with probability 1− δ the the
error rate of the hierarchy implied by T over the whole set X is at most ν + δ.

Lemma 12 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood prop-

erty for the clustering problem (X, ℓ). If we draw a set S of n = Θ
(

1
min(α,ν) ln

1
δmin(α,ν)

)
, then

with probability 1− δ, S contains at most 2νn bad points and the similarity function K satisfies the
(2α, 2ν)-good neighborhood property with respect to the target clustering restricted to the sample S.

Proof: Since n ≥ 3
ν ln 2

δ , by Chernoff bounds, we have that with probability 1 − δ/2 at most 2νn
bad points fall into the sample. Let us fix a good point x in S and let us denote by nC̃G(x) the

number of points in C(x) ∩G ∩ S. By Lemma 13 we have that for n = Θ
(
1
α ln n

δ

)
, with probability

at least 1− δ/(2n) (over the draw of the other points in the sample) we have that all but 2αn of the
nC̃G(x) nearest neighbors of x from S ∩ G are points from the set C(x) ∩ G. By union bound over

all points x in S we have that simultaneously for all good points x in S, all but 2αn of their nC̃G(x)

nearest neighbors in S ∩G come from C(x) ∩G.

These together imply that if n = Θ
(

1
min(α,ν) ln

n
δ

)
, then with probability 1− δ at most 2νn bad

points fall into the sample and the similarity function K satisfies the (2α, 2ν)-good neighborhood
property with respect to the target clustering restricted to the sample S. Using the inequality

lnx ≤ αx− lnα− 1

for α, x > 0, we then get the desired result.

Lemma 13 Let K be a symmetric similarity function satisfying the (α, ν)-good neighborhood prop-
erty for the clustering problem (X, ℓ). Consider x ∈ G. If we draw a set S of n = Θ

(
1
α ln 1

δ

)
random

points from X, then with probability at most 1 − δ we have that at most 2αn of the nC̃G(x) nearest

points to x from G ∩ S can be outside C(x) ∩G, where nC̃G(x) is |C(x) ∩G ∩ S|.
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Proof: Let CG(x) denote C(x) ∩G and let

nCG(x) = |C(x) ∩G|.
Let us define NN(x) to be the nearest nCG(x) points to x in G. Since K satisfies the (α, ν)-good
neighborhood property for the clustering problem (X, ℓ) we have:

Prz∼X [z ∈ NN(x) \ CG(x)] ≤ α.

Since NN(x) and CG(x) have the same size, this is equivalent to the statement:

Prz∼X [z ∈ CG(x) \NN(x)] ≤ α.

So, by Chernoff bounds applied to both of the above, with probability at most 1 − δ we have that
at 2αn points are in (NN(x) \ CG(x)) ∩ S and at most 2αn points are in (CG(x) \NN(x)) ∩ S.

We now argue that at most 2αn of the nC̃G(x) nearest points to x in G∩S can be outside C(x)∩G,

where nC̃G(x) = |C(x) ∩G ∩ S|. Let
n1 = |(NN(x) \ CG(x)) ∩ S|,
n2 = |(CG(x) \NN(x)) ∩ S|,
n3 = |(CG(x) ∩NN(x)) ∩ S|.

By construction, we have
nC̃G(x) = n2 + n3,

and we are given that n1, n2 ≤ 2αn. We now distinguish two cases.
The first case is n1 ≥ n2. In this case we have

n1 + n3 ≥ n2 + n3 = nC̃G(x).

This implies that the nearest nC̃G(x) points to x in G∩S all lie inside NN(x), since by definition all

points inside NN(x) are closer to x than any point in G outside NN(x). Since we are given that
at most n1 ≤ 2αn of them can be outside CG(x), we get that at most 2αn of the nC̃G(x) nearest

neighbors of x are not from CG(x), as desired.
The second case is n1 ≤ n2. This implies that the nearest nC̃G(x) good points to x in the sample

include all the points in NN(x) in the sample, plus possibly some others too. But this implies in
particular that it includes all the n3 points in CG(x) ∩NN(x) in the sample. So, it can include at
most

nC̃G(x) − n3 ≤ 2α · n
points not in CG(x) ∩ NN(x), and even if all those are not in CG(x), it is still ≤ 2αn; so at most
2αn of the nC̃G(x) nearest neighbors of x are not from CG(x), as desired.

Note: Note that if we are willing to lose a bit in the accuracy the analysis in this section allows
us to speed up the algorithm in Theorem 10.

4 Discussion and Open Questions

In this paper we propose and analyze a new robust algorithm for hierarchical clustering. We show
that our algorithm can be used to cluster accurately in interesting cases where traditional agglom-
erative algorithms fail. In particular, we show that our algorithm is provably correct if the data
satisfies a natural good neighborhood property, a relaxation of the strict separation property that
allows for substantial degrees of noise.3 We also show how to adapt our algorithm to the inductive
setting where our given data is only a small random sample of the entire data set.

The running time of our algorithm is currently O(nω+1), where O(nω) is the state of the art
for matrix multiplication and n is either the size of the dataset or the size of the sample in the
inductive case. It would be interesting to develop even faster algorithms achieving the same accuracy
guarantees.

It would also be interesting to see if our algorithmic approach can be shown to work for other
natural properties. For example, it would be particularly interesting to analyze a noisy versions of
the max stability property in [2] which was shown to be a necessary and sufficient condition for
single linkage to succeed, or of the average stability property which was shown to be a sufficient
condition for average linkage to succeed.

3As mentioned in the introduction, most of the traditional agglomerative algorithms would succeed under
the strict separation property with no noise, but even tiny amount of noise would cause them to fail badly.
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Abstract
There are common intuitions about how social graphs are generated (for example, it is common to
talk informally about nearby nodes sharing a link). There are also common heuristics for predicting
whether two currently unlinked nodes in a graph should be linked (e.g. for suggesting friends in an
online social network or movies to customers in a recommendation network). This paper provides
what we believe to be the first formal connection between these intuitions and these heuristics. We
look at a familiar class of graph generation models in which nodes are associated with locations in a
latent metric space and connections are more likely between closer nodes. We also look at popular
link-prediction heuristics such as number-of-common-neighbors and its weighted variants (Adamic
& Adar, 2003) which have proved successful in predicting missing links, but are not direct deriva-
tives of latent space graph models. We provide theoretical justifications for the success of some
measures as compared to others, as reported in previous empirical studies. In particular we present
a sequence of formal results that show bounds related to the role that a node’s degree plays in its
usefulness for link prediction, the relative importance of short paths versus long paths, and the ef-
fects of increasing non-determinism in the link generation process on link prediction quality. Our
results can be generalized to any model as long as the latent space assumption holds.

1 Introduction
Link prediction is a key problem in graph mining. It underlies recommendation systems (e.g., movie rec-
ommendations in Netflix, music recommendation engines like last.fm), friend-suggestions in social net-
works, market analysis, and so on. As such, it has attracted a lot of attention in recent years, and several
heuristics for link prediction have been proposed (Adamic & Adar, 2003). In-depth empirical studies com-
paring these heuristics have also been conducted (Liben-Nowell & Kleinberg, 2003) and (Brand, 2005), and
two observations are made consistently: (1) a simple heuristic, viz., predicting links between pairs of nodes
with the most common neighbors, often outperforms more complicated heuristics, (2) a variant of this heuris-
tic that weights common neighbors using a carefully chosen function of their degrees (Adamic & Adar, 2003)
performs even better on many graphs and (3) heuristics which use an ensemble of short paths between two
nodes (Katz, 1953) often perform better than those which use longer paths. However, there has been little
theoretical work on why this should be so. We present, to our knowledge, the first theoretical analysis of link
prediction on graphs. We show how various heuristics compare against each other, and under what conditions
would one heuristic be expected to outperform another. We are able to provide theoretical justifications for
all of the empirical observations mentioned above.

We define the link prediction problem as follows. There is a latent space in which the nodes reside, and
links are formed based on the (unknown) distances between nodes in this latent space. Individual differences
between nodes can also be modeled with extra parameters. The quality of link prediction now depends on
the quality of estimation of distance between points. We show how different estimators provide bounds on
distance. Clearly, the tighter the bounds, the better we can distinguish between pairs of nodes, and thus the
better the quality of link prediction.

While any latent space model can be used, we extend a model by (Raftery et al., 2002) due to two
characteristics: (1) it is simple to state and analyze, (2) yet, it is powerful enough to show all of the effects
that affect estimation, such as node degree, lengths of paths, etc. Our results do not assume any degree
distribution on the graph; in fact, they depend on very simple properties that should be generalizable to other
models as well.

Our primary contributions are as follows:

• We formulate the link prediction problem as a problem of estimating distances between pairs of nodes,
where the nodes lie at unknown positions in some latent space and the observed presence or absence of
links between nodes provides clues about their distances.

295



• We show that the number of common neighbors between a pair of nodes gives bounds on the distance
between them, with the upper bound on distance decreasing quickly as the count of common neighbors
increases. This justifies the popular heuristic of predicting links simply by picking node pairs with the
maximum number of common neighbors.

• Empirical studies (Liben-Nowell & Kleinberg, 2003) have shown that another popular heuristic (Adamic
& Adar, 2003) that uses a carefully weighted count of common neighbors often outperforms the un-
weighted count. We present theoretical justification for this, and generalize it to other possible weighting
schemes that should be similarly useful.

• Finally, another set of heuristics consider longer paths between pairs of nodes, e.g., hitting-time and
other measures based on random walks. Our results here are twofold. (1) We show that while the
number of long paths can, indeed, provide bounds on distance, these are looser than the bounds obtained
if enough short paths (or ideally, common neighbors) exist. Thus, longer paths are more useful if shorter
paths are rare or non-existent. (2) We also show that the bounds obtained from long paths can get much
tighter given just the knowledge of existence of a short path. Thus, even the existence of a single short
path can improve bounds obtained from long paths.

• Our results can be applied to any social network model where: nodes are distributed independently
in some latent metric space; probability of a link satisfies homophily; given the positions links are
independent of each other.

This paper is organized as follows. In section 2 we introduce related work and background on link pre-
diction and latent space models. Sections 3 and 4 consist of a formal relationship between popular heuristics
like common neighbors and our graph model with same and distinct radii. In section 5, we analyze the impli-
cation of paths of length ` > 2. Section 6 shows how to extend the analysis to handle non-determinism in the
link generation process. In section 7, we summarize this paper and discuss several implications of our work.

2 Review of Previous Empirical Studies
We will briefly describe the link prediction problem, and the observations from previous empirical studies.
Then we will describe the latent space model we use, and conclude with the relation of this model to link
prediction.

2.1 Link Prediction
Many real world graph-mining problems can be framed as link prediction. Popular applications include
suggesting friends on Facebook, recommending movies (Netflix, MovieLens) or music (last.fm, Pandora)
to users. Link prediction on informal office-network has been shown to be useful for suggesting potential
collaborators (Raghavan, 2002). Also in intelligence analysis (Schroeder et al., 2003), link-prediction can
suggest potential involvement between a group of individuals, who do not have prior records of interaction.

In general popular graph-based proximity measures like personalized pagerank (Jeh & Widom, 2002),
hitting and commute times (Aldous & Fill, 2001), Adamic/Adar (Adamic & Adar, 2003) are used for link
prediction on graphs. The experimental setup varies from predicting all absent links at once (Liben-Nowell
& Kleinberg, 2003) to predicting the best link for a given node (Brand, 2005),(Sarkar & Moore, 2007).

These papers mostly use co-authorship graphs and movie-recommendation networks. We will sketch a
few of the observations from earlier empirical evaluation. We would divide heuristics into roughly two parts,
simple variants of the number of common neighbors (Adamic/Adar, Jaccard etc.), and measures based on
ensemble of paths. Here is a summary of the most interesting observations from (Liben-Nowell & Kleinberg,
2003; Brand, 2005), and (Sarkar & Moore, 2007).

1. The number of common neighbors performs surprisingly well on most data-sets, and in many cases
beats more complex measures (Liben-Nowell & Kleinberg, 2003).

2. Adamic/Adar, which is analogous to common neighbors with a skewed weighting scheme mostly
outperforms number of common neighbors (Liben-Nowell & Kleinberg, 2003).

3. Shortest path performs consistently poorly (Liben-Nowell & Kleinberg, 2003) and (Brand, 2005). We
have also noted this behavior.

4. Ensemble of paths which looks at long paths (hitting and commute times) does not perform very
well (Liben-Nowell & Kleinberg, 2003) and (Brand, 2005).

5. Ensemble of paths which down-weights long paths exponentially (e.g. Katz, personalized pagerank)
perform better than those which are sensitive to long paths (Liben-Nowell & Kleinberg, 2003) and (Brand,
2005).

While these are interesting results, there has not been any work which theoretically justifies this behavior
of different heuristics for link prediction on social networks. In our work, we analyze a simple social network
model to justify these empirical results.
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2.2 Latent Space Models for Social Network Analysis

Social network analysis has been an active area of research in sociology and statistics for a long time. One
important assumption in social networks is the notion of homophily. (McPherson et al., 2001) write in their
well-known paper, “Similarity breeds connection. This principle-the homophily principle-structures network
ties of every type, including marriage, friendship, work, advice, support, information transfer, exchange,
comembership, and other types of relationship.” More formally, there is a higher probability of forming a
link, if two nodes have similar characteristics. These characteristics can be thought of as different features of
a node, i.e. geographic location, college/university, work place, hobbies/interests etc. This notion of social
space has been examined by (McFarland & Brown, 1973) and (Faust, 1988).

In 2002, (Raftery et al., 2002) introduced a statistical model which explicitly associates every node with
locations in a D-dimensional space; links are more likely if the entities are close in latent space. In the
original model, the probability of a link between two nodes is defined as a logistic function of their distance.
All the pairwise events are independent, conditioned on their latent positions, i.e. distances in the latent space.
We alter this model to incorporate radius r in the exponent (for the RHH model r = 1). r can be interpreted
as the sociability of a node. We name this model- the non-deterministic model (section 6).

RHH model: P (i ∼ j|dij) =
1

1 + eα(dij−1)
Our model: P (i ∼ j|dij) =

1

1 + eα(dij−r)

The model has two parameters α and r. Parameter α ≥ 0 controls the sharpness of the function whereas r
determines the threshold. Setting α = ∞ in our model, yields a simple deterministic model, on which we
build our analysis. It may be noted that given the distances the links are deterministic; but given the links,
inferring the distances is an interesting problem. In section 6, we show how this analysis can be carried over
to the non-deterministic case with large but finite α. This assumption is reasonable, because low values of α
leads to a random graph; α = 0 is exactly the GN,1/2 random graph model. Clearly, it is impossible to perform
better than a random predictor in a random graph. With distinct radii for each node, the deterministic model
can be used for generating both undirected and directed graphs; however for simplicity we use a realistic
directed graph model (section 4).

We assume that the nodes are uniformly distributed in a D dimensional Euclidian space. Hence P (dij ≤
x) = V (1)xD, where V (1) is the volume of a unit radius hypersphere. This uniformity assumption has been
made in earlier social network models, e.g. by (Kleinberg, 2000), where the points are assumed to lie on
a two dimensional grid. In order to normalize the probabilities, we assume that all points lie inside a unit
volume hypersphere in D dimensions. The maximum r satisfies V (r) = V (1)rD = 1.

Connection to the Link Prediction Problem. A latent space model is well-fitted for link prediction because,
for a given node i, the most likely node it would connect to is the non-neighbor at the smallest distance. The
measure of distance comes from the definition of the model, which could be:

1. Undirected graph with identical r. Here distance from node i to j is simply dij .
2. Directed graph where i connects with j if dij is smaller than radius of j (or smaller that radius of i)

leading to a distance of dij − rj (or dij − ri).
In all these cases, the predicting distances between a pair of nodes is the key. While this can be obtained

by maximizing the likelihood of the underlying statistical model, we show that one can obtain high probability
bounds on distances from graph based heuristics. In fact we show that the distance to the node picked using a
popular heuristic is within a small factor of the true distance. This factor quickly goes to zero as N becomes
large. Although our analysis uses an extension of the RHH model to actually obtain the bounds on distances,
the only property we use is of homophily in a latent metric space, i.e. if two nodes are close in some social
space, then they are likely to form a link. Hence this idea should carry over to other social network models
as well.

3 Deterministic Model with Identical Radii

Consider a simple version of the RHH model where all radii are equal to r, and α→∞. This implies that two
nodes i and j share a link (henceforth, i ∼ j) iff the distance dij between them is constrained by dij < r.
Thus, given node positions, links are deterministic; however the node positions are still non-deterministic.
While this might appear to be a strong constraint, we will show later in Section 6 that similar results are
applicable even for finite but large α. We now analyze the simplest of heuristics: counting the common
neighbors of i and j. Let there be N nodes in total.

Let N (i) be the set of neighbors of node i. Let Yk be a random variable which is 1 if k ∈ N (i) ∩ N (j),
and 0 otherwise. Given dij , for all k /∈ {i, j}, the Yk’s are independent since they only depend on the position
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Figure 1: Common neighbors of two nodes must lie in the intersection A(r, r, dij).

of point k. Hence, we have

E[Yk|dij ] = P (i ∼ k ∼ j|dij) =

∫
dik,djk

P (i ∼ k|dik)P (j ∼ k|djk)P (dik, djk|dij)d(dij) (1)

In the deterministic model, this quantity is exactly equal to the volume of intersection of two balls of radius r
centered at i and j (see Figure 1). Denote this volume by A(r, r, dij). Also, the observed value of

∑
k Yk is

simply the number of common neighbors η. From now on we will drop the dij part when we write expectation
for notational convenience. However any expectation in terms of area of intersection is obviously computed
given the pairwise distance dij . Thus by using empirical Bernstein bounds (Maurer & Pontil, 2009), we have:

P

[∣∣∣∣∣∑
k

Yk/N − E[Yk]

∣∣∣∣∣ ≥
√

2varN (Y ) log 2/δ

N
+

7 log 2/δ

3(N − 1)

]
≤ 2δ

(2)

varN (Y ) is the sample variance of Y , i.e.
η(1− η/N)

N − 1
. Setting ε =

√
2varN (Y ) log 2/δ

N
+

7 log 2/δ

3(N − 1)

P
[ η
N
− ε ≤ A(r, r, dij) ≤

η

N
+ ε
]
≥ 1− 2δ (3)

A(r, r, dij) is twice the volume of a spherical cap whose base is dij/2 distance away from the center:

A(r, r, dij) = 2
π
D−1

2 rD

Γ
(
D+1
2

)
cos−1

(
dij
2r

)∫
0

sinD(t)dt (4)

Given the above bounds on A(r, r, dij), we can obtain bounds on dij by solving eq. (4) numerically. How-
ever, weaker analytic formulas can be obtained by using hyperspheres bounding this intersection, as shown
in Figure 1. V (r) is the volume of a D dimensional hypersphere of radius r.(

1− dij
2r

)D
≤ A(r, r, dij)

V (r)
≤

(
1−

(
dij
2r

)2
)D/2

(5)

Using this in eq. (3) gives us bounds on dij :

2r

(
1−

(
η/N + ε

V (r)

)1/D
)
≤ dij ≤ 2r

√
1−

(
η/N − ε
V (r)

)2/D

Using common neighbors in link prediction. Let us recall that in link prediction, we want to pick the node
which is most likely to be a neighbor of i, and is not currently a neighbor (call this OPT). If we knew the
positions, we would pick the non-neighbor with the minimum distance (dOPT ). However, since positions
in latent space are unknown, we instead predict a link to the node that shares the most common neighbors
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with i (call this MAX). Here we will show that (Lemma 3.2) the distance to the node with largest common
neighbors (dMAX ) is within an additive factor of dOPT . This factor goes to zero as N increases. This again
shows that, as N increases, link prediction using the number of common neighbors converges to the optimal
prediction.

Let the number of common neighbors between i and OPT be ηOPT , and between i and MAX be ηMAX .
Now we will try to relate dOPT with dMAX . Note that both these distances are larger than r. Denote the area
of intersections of these two nodes with i as AOPT and AMAX respectively. Then, we have:

Lemma 3.1 Define εo =

√
2varN (YOPT ) log 2/δ

N
+

7 log 2/δ

3(N − 1)
and εm =

√
2varN (YMAX) log 2/δ

N
+

7 log 2/δ

3(N − 1)
,

where YOPT and YMAX denote the random variable for common neighbors between i and OPT, and i and
MAX respectively.

AOPT ≥ AMAX P [AMAX ≥ AOPT − εo − εm] ≥ 1− 2δ

Proof: Using the high probability bounds from eq. (3) we have (w.h.p),

AMAX −AOPT ≥
ηMAX

N
− εm − (

ηOPT
N

+ εo)

By definition, ηMAX ≥ ηOPT . This and the high probability empirical Bernstein bound on AOPT yield the
result.

This means that as N becomes large, the node with the highest number of common neighbors will be the
optimal node for link prediction. Now we will give a bound on how far dOPT is from dMAX .

Theorem 3.2 Define εo =

√
2varN (YOPT ) log 2/δ

N
+

7 log 2/δ

3(N − 1)
, εm =

√
2varN (YMAX) log 2/δ

N
+

7 log 2/δ

3(N − 1)
,

and εf = εo + εm.

dOPT ≤ dMAX

w.h.p

≤ dOPT + 2r

(
εf
V (r)

)1/D

≤ dOPT + 2

(
εf
V (1)

)1/D

4 Deterministic Model with Distinct Radii
Until now our model has used the same r for all nodes. The degree of a node is distributed as Bin(N,V (r)),
where V (r) is the volume of a radius r. Thus r determines the degree of a node in the graph, and identical r
will lead to a roughly regular graph. In practice, social networks are far from regular. In order to accommodate
complex networks we will now allow a different radius (ri) for node i. For this section, we will assume
that these radii are given to us. The new connectivity model is: i → j iff dij ≤ rj , where i → j now
represents a directed edge from i to j. While variants of this are possible, this is similar in spirit to a citation
network, where a paper i tends to cite a well-cited paper j (with larger number of in-neighbors) than another
infrequently cited paper on the same topic; here, rj can be thought of as the measure of popularity of node j.
Under this model, we will show why some link prediction heuristics work better than others.

As in the previous section, we can use common neighbors to estimate distance between nodes. We can
count common neighbors in 4 different ways as follows:

(Type-1) All k, s.t. k → i and k → j: all nodes which point to both i and j. The probability of this given dij is
P (dik ≤ ri ∩ djk ≤ rj |dij), which can be easily shown to be A(ri, rj , dij).

(Type-2) All k, s.t. i → k and j → k: all nodes to which both i and j point. The probability of this given dij is
A(rk, rk, dij).

(Type-3) All k, s.t. i→ k and k → j: all directed paths of length 2 from i to j. The probability of this given dij
is given by A(rk, rj , dij).

(Type-4) All k, s.t. j → k and k → i: all directed paths of length 2 from j to i. The probability of this given dij
is given by A(ri, rk, dij).

If we count type-1 nearest neighbors, the argument from section 3 carries over, and if there are enough
common neighbors of this type, we can estimate dij by computing A(ri, rj , dij). However, if both ri and rj
are small, there might not be many common neighbors; indeed, if dij > ri + rj , then there will be no type-1
common neighbors. In such cases, we consider type-2 neighbors, i.e. the ones which both i and j point to.
The analysis for type-3 and type-4 neighbors is very similar to that for type-2, and hence we do not discuss
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these any further. In the type-2 case, the radii rk of the common neighbors play an important role. Intuitively,
if both i and j point to a very popular node (high radius rk), then that should not give us a lot of information
about dij , since it is not very surprising. In particular, any type-2 common neighbor k leads to the following
constraint: dij ≤ dik + djk ≤ 2rk. Obviously, the bound is stronger for small values of rk. This argues for
weighting common neighbors differently, depending on their radii. We formalize this intuition using a toy
example now. The analysis in the following section can be generalized to graphs, where the radii of the nodes
form a finite set.

Recall that common neighbors can be expressed as a sum of random variables Yk, which is 1, if k is a
common neighbor of i and j.

Motivating Example. Take a toy network where the nodes can have two different radii R and R′, with
R < R′. The total number of low radii nodes is NR, whereas that of large radii nodes is NR′ .

The expectation of the number of type-2 common neighbors will now have a mixture of A(R,R, dij)
and A(R′, R′, dij). One solution is to estimate high probability bounds on distances from the two different
classes of common neighbors separately, and then examine the intersection of these bounds. We will discuss
a new estimator based on this intuition at the end of this section. The other solution is to look at weighted
combinations of common neighbors from different radii. The weights will reflect how important one common
neighbor is relative to another. For example, consider a pair of papers which both cite a book on introduction
to algorithms (cited by 5000 other papers, e.g. higher radius), and a specific article on randomized algorithms
(cited by 30 other papers, e.g. lower radius). The second article gives more evidence on the “closeness” or
similarity of the pair. We will consider this approach next.

Suppose we observe ηR common neighbors of NR nodes of small radius, and ηR′ common neighbors of
NR′ nodes of large radius, between pair of nodes i, j. The likelihood of these observations, given the pairwise
distance dij is:

P (ηR, NR, ηR′ , NR′ |dij) =
∏

r∈{R,R′}

(
Nr
ηr

)
A(r, r, dij)

ηr (1−A(r, r, dij))
Nr−ηr (6)

We want to rank pairs of nodes using the distance estimate d∗, which maximizes the likelihood of this partial
set of observations. However, if ηR > 0, the logarithm of the above is defined only when dij ≤ 2R. To
make the likelihood well-behaved, we introduce a small noise parameter β: node i connects to node j with
probability 1 − β (if dij ≤ rj), or with probability β (otherwise). Now, the probability of having a type-2
common neighbor of radius r will be β + A(r, r, dij)(1 − β). For ease of exposition we will denote this by
Aβ(r, r, dij). The new likelihood will be exactly as in eq. (6), except we will use Aβ instead of A. Setting
the derivative of the logarithm yields:

w(R, d∗)NRAβ(R,R, d∗) + w(R′, d∗)NR′Aβ(R′, R′, d∗) = w(R, d∗)ηR + w(R′, d∗)ηR′ (7)

where, w(R, d∗) =
− dAβ(R,R,dij)

dij

∣∣∣
d∗

Aβ(R,R, d∗)(1−Aβ(R,R, d∗))
. Note that the negative sign is only to make both sides

positive, since Aβ decreases with distance.
Using Leibnitz’s rule on eq. 4, the derivative of A w.r.t dij can be written as:

A′(R,R, dij) =
dA(R,R, dij)

dij
=

−CDrD−1
(

1− d2ij
4r2

)D−1
2

If dij ≤ 2r

0 Otherwise
(8)

A′β(R,R, dij) =
dAβ(R,R, dij)

dij
= (1− β)A′(R,R, dij)

Suppose we could approximate w(R, dij) with some wR that depends only on R and not on dij . Then, the
RHS of eq. (7) can be obtained from the data alone. Also, it can be shown that the L.H.S. of eq. (8) is a
monotonically decreasing function of d∗. Hence, a pair of nodes with higher RHS will have lower distance
estimate, implying that ranking based on the RHS will be equivalent to ranking based on distance. All that
remains is finding a good approximation wR.

We start by bounding A′(R,R, dij) in terms of A(R,R, dij). Consider D > 11. Combining eq. (8) with
eq. (5) yields a lower bound: A′(R,R, d) ≥ c′D

A√
r2−d2/4

. For the upper bound, we note that the volume of

the spherical cap can be lower bounded by the volume of a sphere inD−1 dimensions of radius
√
r2 − d2/4,

1When D = 1, A′ is constant, and A(r, r, d) = 2r − d.
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Figure 2: For a given distance d, we plot w(r, d), Adamic/Adar and 1/r with increasing r. Note that both
axes are scaled to a maximum of 1. Note that 1/r closely matches w(r, d) for a wide range of radii.

times the height d − 2r, times a constant depending only on D: A(r, r, d) ≥ kD

(
r2 − d2

4

)D−1
2 (

r − d
2

)
Combining with eq. (8) gives: −A′(r, r, d) ≤ k′D A

r−d/2 . Given that β is extremely small, we have

1

r
c′′D

1√
1− d2

4r2

.
|A′β(r, r, d)|

Aβ(r, r, d)(1−Aβ(r, r, d))
≤ 1

r
k′′D

1

(1− V (r))(1− d
2r )

For a given distance d and increasing radius r, the weight w(r, d) first decreases sharply but increases
again once r becomes close to the maximum radius, i.e., V (r) ≈ 1 (see Figure 2). Thus, it is high for both
nodes of very low and very high radius. Clearly, the presence of a low-radius common neighbor gives strong
evidence that d is small. On the other hand, the absence of a very high degree node gives strong evidence that
d is very large. Note that, the presence of low radius common neighbors in the absence of very high radius
common neighbors is extremely unlikely. This is because, if a pair of nodes are close enough to connect to a
low radius node, they are also very likely to both be within the radius of some very high radius node.

SinceNV (r) is the expectation of the indegree of a node of radius r, such high-radius nodes are expected
to have extremely high degrees. However, high-degree nodes in real-world settings typically connect to no
more than 10− 20% of the set of nodes, which is why a practical weighting only needs to focus on situations
where 1 − V (r) ≈ 1. For relatively small d (which are the interesting candidates for link prediction), the
weights w(r, d) are then well approximated by w(r) = 1/r up to a constant. Note that this is identical to
weighting a node by 1/(NV (r))1/D, i.e., essentially weighting a common neighbor i by 1/deg(i)1/D.

Now we will discuss a popular weighting scheme, namely Adamic/Adar, which weights the common
neighbors by 1/ log(deg(i)).

Adamic/Adar: A popular link prediction heuristic. In practice, the radius of a node is analogous to its de-
gree, and hence it is natural to weight a node more if it has lower degree. The Adamic/Adar measure (Adamic
& Adar, 2003) was introduced to measure how related two home-pages are. The authors computed this by
looking at common features of the webpages, and instead of computing just the number of such features, they
weighted the rarer features more heavily. In our social networks context, this is equivalent to computing sim-
ilarity between two nodes by computing the number of common neighbors, where each is weighted inversely
by the logarithm of its degree.

Adamic/Adar =
∑

k∈N (i)∩N (j)

1

log(deg(k))

(Liben-Nowell & Kleinberg, 2003) have shown that this out-performs the number of common neighbors in a
variety of social and citation networks, confirming the positive effect of a skewed weighting scheme that we
observed in the motivating example. Adamic/Adar would be expected to perform relatively poorly only in
case (iv), but since the weighting factor for a node k is only 1/ log(d(k)), it takes exponentially high degrees
for the skew to have a significant negative impact on performance.
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We can analyze the Adamic/Adar measure as follows. In our model, the expected degree of a node k
of radius rk is simply NV (rk), so we set the weights as wk = 1/ log(NV (rk)). Let S =

∑
k wkYk,

where random variable Yk = 1 if k is a type-2 common neighbor of i and j, and zero otherwise. Clearly,
E[S] =

∑
k wkA(rk, rk, dij) =

∑
k A(rk, rk, dij)/ log(NV (rk)). Let the minimum and maximum radii be

rmin and rmax respectively. The following can be easily obtained from the Chernoff bound.

Lemma 4.1 S
N

(
1−

√
3 log(NV (rmax)) ln(1/δ)
N ·A(rmax,rmax,dij)

)
≤ E[S]

N ≤ S
N

(
1 +

√
3 log(NV (rmin)) ln(1/δ)
N ·A(rmin,rmin,dij)

)
Clearly, the error terms decay with increasing N , and for large N , we can tightly bound E[S]. Since E[S] is
monotonically decreasing function of dij , this translates into bounds on dij as well.

New estimators. Based on the analysis of the motivating example discussed before, we can get a lot of
intuition about a general graph. We have seen that low radius common neighbors imply that distance is small,
whereas fewer high degree common neighbors in the absence of any low degree common neighbors imply
that distance is large. Based on these observations, we will define the following two estimators.

Consider the estimateQR, which is simply the fraction of nodes with radius smaller thanR that are type-2
neighbors of i and j. Let NR be the number of nodes with radius less than R. We define QR as follows:

QR =

∑
rk≤R Yk

NR
→ E[QR] =

∑
rk≤RA(rk, rk, dij)

NR
< A(R,R, dij) (9)

QR is large when many low-radius nodes are type-2 common neighbors of i and j. Application of Hoeffding
bounds give:

P

[
QR ≤ E[QR] +

√
1

2NR
ln

(
1

δ

)]
≥ 1− δ

We pick R so that E[QR] is large enough. While iterative algorithms can give an exact value of the upper
bound on dij , we will also provide a simple intuitive bound:

QR ≤ A(R,R, dij) +

√
1

2NR
ln

(
1

δ

)
≤ V (R)

(
1−

d2ij
4R2

)D/2
+

√
1

2NR
ln

(
1

δ

)

⇒ dij ≤ 2R

√√√√1−

(
QR −

√
ln(1/δ)/2NR

V (R)

)2/D

If we observe a large QR for a small R, then this upper bound gets smaller. This shows that a large number
of neighbors of small degree gives a tighter upper-bound on dij . In the same spirit, we can define another
estimator TR′ , such that

TR′ =

∑
rk≥R′

Yk

NR′
→ E[TR′ ] =

∑
rk≤R′

A(rk, rk, dij)

NR′
≥ A(R′, R′, dij)

A similar analysis yields a high probability lower-bound on dij :

TR′ ≥ A(R′, R′, dij)−

√
1

2NR′
ln

(
1

δ

)
≥ V (R′)

(
1− dij

2R′

)D
−

√
1

2NR′
ln

(
1

δ

)

⇒ dij ≥ 2R′

1−

(
TR′ +

√
ln(1/δ)/2NR′

V (R′)

)1/D


Smaller values of TR′ yield tighter lower bounds. This tells us that if many high degree nodes are not
common neighbors of i and j then, we are more confident than i and j are far away.

While QR and TR′ could be used with any R and R′, we could also perform a sweep over the range of
possible radii, computing bounds on dij for each radius using both estimators, and then retaining the best.

5 Estimators using Longer Paths in the Deterministic Model
The bounds on the distance dij described in the previous sections apply only when i and j have common
neighbors. However, there will be no common neighbors if (for the undirected case) (a) dij > 2r , or (b) no
points fall in the intersection area A(r, r, dij) due to small sample size N . In such cases, looking at paths
of length ` > 2 between i and j can yield bounds on dij . Such bounds can be useful even when common
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Figure 3: Triangulation for bounding dij using `-hop paths.

neighbors exist; in fact, we show that the mere existence of one common neighbor leads to stronger bounds
for long paths.

We first discuss how dij can be upper-bounded using the observed number of simple `-hop paths for any
given ` > 2. A stronger upper bound and a lower bound can be derived when i and j are known to have at
least one common neighbor. We demonstrate this for ` = 3, with a similar technique being applicable for
longer paths as well. For the sake of simplicity, we restrict ourselves to the case of identical and known r.

An Upper Bound for ` > 2. Let Y (i, k1, . . . , k`−2, j) = 1 if there is a simple path of length ` such
that i ∼ k1 ∼ k2 ∼ . . . k`−2 ∼ j, with no node being repeated in the path. Let S(`) be the set of or-
dered sets of ` distinct elements from {1, . . . , N}; thus, S(`) represents all possible paths of length `. Let
η`(i, j|X1, . . . , XN ) be the number of paths of length ` between i and j, given the positions of all N points:

η`(i, j|X1, ...XN ) =
∑

k1,...k`−2∈S(`−2)

Y (i, k1, . . . , k`−2, j).

We need to infer bounds on dij given the observed number of simple paths η`(i, j). Our first step is to
bound the maximum degree ∆ of any graph generated by the RHH model. Next, we use ∆ to bound both
the maximum possible value of η`(i, j) and the change that can be induced in it by moving any one point.
Finally, we compute the expected value E[η`(i, j)]. Combining these will give us a bound linking dij to the
number of simple `-hop paths.

Under the assumption that the positions Xk are uniformly distribution in the unit hypersphere, we can
bound ∆, as follows:

Lemma 5.1 ∆ < NV

(
1 +

√
ln(N/δ)
2NV

)
with probability at least 1− δ.

Proof: The degree d(k) of any node k is a binomial random variable with expectationE[d(k)] = NV , where

V is the volume of a hypersphere of radius r. Thus, using the Chernoff bound, d(k) < NV

(
1 +

√
ln(N/δ)
2NV

)
holds with probability at least (1− δ/N). Applying the union bound on all nodes yields the desired proposi-
tion.

Lemma 5.2 For any graph with maximum degree ∆, we have: η`(i, j) ≤ ∆`−1.
Proof: This can be proved using a simple inductive argument. If the graph is represented by adjacency matrix
M, then the number of length ` paths between i and j is given by M`(i, j). Trivially M2

ij can be at most ∆.
This happens when both i and j have degree ∆, and their neighbors form a perfect matching. Assuming this
is true for all m < `, we have: M`(i, j) =

∑
pM(i, p)M`−1(p, j) ≤ ∆`−2∑

pM(i, p) ≤ ∆`−1

Lemma 5.3 For ` < ∆, |η`(i, j|X1, . . . , Xp, . . . , XN )− η`(i, j|X1, . . . , X̃p, . . . XN )| ≤ (`− 1) ·∆`−2

Proof: The largest change in η`(.) occurs when node p was originally unconnected to any other node, and is
moved to a position where it can maximally add to the number of `-hop paths between i and j (or vice versa).
Consider all paths where p is m hops from i (and hence ` −m hops from j. From Lemma 5.2, the number
of such paths can be at most ∆m−1 ·∆`−m−1 = ∆`−2. Since m ∈ {1, . . . , `− 1}, the maximum change is
(`− 1) ·∆`−2.

The bounds in both Lemma 5.2 and 5.3 are tight, as can be seen by considering a clique of i, j, and ∆−1
other nodes. Next, we compute the expected number of `-hop paths. Define A(r1, r2, d) as the volume of
intersection of two balls of radii r1 and r2, whose centers are distance d apart (as always, the dimension D is
implicit). Define Pr`(i, j) as the probability of observing an `-hop path between points i and j.
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Theorem 5.4 E[η`(i, j)] ≤ ∆`−1∏`−1
p=1A(r, p×r, (dij−(`−p−1)r)+), where x+ is defined as max(x, 0).

Proof: Consider an `-hop path between nodes i and j as in figure 3. The solid lines are the edges in the path,
whereas the dotted lines are the distance variables we will introduce in order to compute the probability of
this path. For clarity of notation, let us denote the distances dik1 , dik2 etc. by a1, a2, up to a`−1. These are
all less than r, since the corresponding edges are present. We also denote the distances djk1 , djk2 , etc. by
d1, d2, up to d`−1. From the triangle inequality, d`−2 ≤ a`−1 + a` ≤ 2r, and by induction, dk ≤ (` − k)r.
Similarly, d1 ≥ (dij − a1)+ ≥ (dij − r)+, and by induction, dk ≥ (dij − kr)+. We can now compute the
probability of observing an `-hop path:

Pr`(i, j) = P (i ∼ k1 ∼ . . . ∼ k`−1 ∼ j|dij)
= P (a1 ≤ r ∩ . . . ∩ a` ≤ r|dij)

=

∫
d1,...,d`−2

P (a1 ≤ r, . . . , a`−1 ≤ r, d1, . . . , d`−2|dij)

=

(`−1)r∫
d1=(dij−r)+

· · ·
2r∫

d`−2=(dij−(`−2)r)+

P (a`−1 ≤ r, a` ≤ r|dk−2)P (a`−2 ≤ r, d`−2|d`−3) . . . P (a1 ≤ r, d1|dij)

≤ A(r, r, (dij − (`− 2)r)+)×A(r, 2r, (dij − (`− 3)r)+)× . . .×A(r, (`− 1)r, dij)

≤
`−1∏
p=1

A(r, p× r, (dij − (`− p− 1)r)+) (10)

Since there can be at most ∆`−1 possible paths (from Lemma 5.2), the theorem statement follows.

Corollary 5.5 For 3-hop paths, we have:

Pr3(i, j) ≤ A(r, r, (dij − r)+)) ·A(r, 2r, dij) AND E[η3(i, j)] ≤ ∆2 ·A(r, r, (dij − r)+)) ·A(r, 2r, dij)

Theorem 5.6

η`(i, j) ≤ (NV )`−1


`−1∏
p=1

A(r, p× r, (dij − (`− p− 1)r)+) +
(`− 1)

√
1/δ

2

√
NV

(
1 +

√
ln(N/δ)

2NV

)

(

1 +

√
ln(N/δ)

2NV

)`−1

with probability at least (1− 2δ).

Proof: From McDiarmid’s inequality (McDiarmid, 1989), we have:

η`(i, j) ≤ E[η`(i, j)] + (`− 1)∆`−2

√
N ln(1/δ)

2

≤ ∆`−2

[
∆
∏`−1
p=1A(r, p× r, (dij − (`− p− 1)r)+) + (`− 1)

√
N ln(1/δ)

2

]

≤ (NV )`−1

∏`−1
p=1A(r, p× r, (dij − (`− p− 1)r)+) +

(`− 1)
√

ln(1/δ)
2

√
NV

(
1 +

√
ln(N/δ)
2NV

)
(1 +

√
ln(N/δ)
2NV

)`−1

where Theorem 5.4 is applied in the step 2, and Lemma 5.1 in step 3. Note that as N increases, the second
term in the summation decays, yielding tighter bounds.

Bounding dij . Theorem 5.6 yields an upper bound dij as follows. Only the first term in the summation
depends on dij , and this term decreases monotonically with increasing dij . Thus, a simple binary search can
give us the value of dij that achieves the equality in Theorem 5.6, and this is an upper bound on dij .
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A looser but analytic bound can be obtained by upper-bounding all but one of the A(.) terms by 1. For
example, using A(r, 2r, dij) ≤ 1 in Corollary 5.5 yields E[η3(i, j)] ≤ ∆2A(r, r, (dij − r)+). Using this in
McDiarmid’s inequality yields a bound of the form

A(r, r, (dij − r)+) ≥ η3(i, j)

c(N, δ)
− c′(N, δ)⇒ dij ≤ r + 2r

√
1−

(
η3(i, j)/c(N, δ)− c′(N, δ)

V (r)

)2/D

In general, bounds for `-hop paths are of the form dij ≤ `r(1−g(η`(i, j), ε)). Thus, for some `′ > `, η`′(i, j)
needs to be much larger than η`(i, j) for the bound using `′ to be stronger than that for `. In particular,
this shows that when enough common neighbors are present (i.e., 2-hop paths), looking at longer paths is
unlikely to improve bounds and help link prediction, thus theoretically confirming the empirical observations
of (Liben-Nowell & Kleinberg, 2003).

Better bounds when shorter paths exist. While the above applies in the general case, it suffers from two
weaknesses: (1) the upper bound on E[η`(i, j)] (and hence on dij) derived in Theorem 5.4 gets progressively
weaker as ` increases, and (2) we could not derive a useful lower bound onE[η`(i, j)] (the trivial lower bound
is zero, which is achieved when dij = `r). Both of these can be remedied if we know that at least one path of
length less than ` exists. We demonstrate the idea for ` = 3, but it can be used for larger ` in a similar fashion.
First, we prove two bounds on the probability Pr3(i, j) of observing a 3-hop path between two points whose
distance is dij .

Lemma 5.7 If there exists any 3-hop path between i and j, then, for any d′ ∈ [(dij − 2r)+, 2r],

A(r, d′, dij) ·A(r, r, d′) ≤ Pr3(i, j) ≤ [A(r, r, (dij − r)+)−A(r, r, d′)]A(r, d′, dij) +A(r, r, d′) ·A(r, 2r, dij)

Proof: Consider all points that are within distance r of point i, and within a distance range (x, x + ∆x) of
point j; here, ∆x refers to an infinitesimal change in x. Since these points are within r of i, they can be
the first hop in a 3-hop path from i to j. Also, since they are all equidistant from j, and the probability of
a common neighbor between two points depends only on their distance, all of these points have the same
probability A(r, x, dij) of forming a common neighbor with j. Let p(r, x, dij) denote the probability density
function for such points. Triangle inequalities imply that 2r ≥ x ≥ (dij − r)+ for any 3-hop path to exist.
Then,

Pr3(i, j) =

2r∫
(dij−r)+

p(r, x, dij) ·A(r, r, x)dx ≥
d′∫

(dij−r)+

p(r, x, dij) ·A(r, r, x)dx

≥ A(r, r, d′)

d′∫
(dij−r)+

p(r, x, dij)dx ≥ A(r, d′, dij) ·A(r, r, d′)

This proves the lower-bound on Pr3(i, j). The proof for the upper bound is similar:

Pr3(i, j) =

d′∫
(dij−r)+

p(r, x, dij) ·A(r, r, x)dx+

2r∫
d′

p(r, x, dij) ·A(r, r, x)dx

≤ A(r, r, (dij − r)+) ·A(r, d′, dij) +A(r, r, d′) · [A(r, 2r, dij)−A(r, d′, dij)]

≤ [A(r, r, (dij − r)+)−A(r, r, d′)]A(r, d′, dij) +A(r, r, d′) ·A(r, 2r, dij)

The difficulty in using these bounds arises from the fact that d′ ∈ [(dij − r)+, 2r], and dij is unknown.
When we only know that some 3-hop path exists, then dij ≤ 3r, and hence d′ = 2r is the only value of d′
that is guaranteed to lie within the required interval. In fact, using d′ = 2r yields exactly the statement of
Corollary 5.5. However, suppose we also knew that at least one 2-hop path exists. Then, dij ≤ 2r, and so
any d′ in the range r ≤ d′ ≤ 2r is valid. In particular, we can use d′ = r to get the following bounds.

Theorem 5.8 When dij ≤ 2r, then

A(r, r, dij) ·A(r, r, r) ≤ Pr3(i, j) ≤ [A(r, r, (dij − r)+)−A(r, r, r)]A(r, r, dij) +A(r, r, r) ·A(r, 2r, dij)
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Lemma 5.9 The upper bound in Theorem 5.8 is smaller (and hence, better) than the upper bound in Corol-
lary 5.5.

Proof: The proof follows from basic algebraic manipulations.

Thus, the presence of even one common neighbor between i and j offers better bounds using 3-hop
paths. In addition, we also have a lower bound that was unavailable in the general case. These translate to
sharper bounds on dij , which can be obtained via binary search as described previously. Similar results can
be obtained for paths of length ` > 3.

Observations. Our analysis of `-hop paths yields the following observations. (1) When short paths are non-
existent or rare, the bounds on dij that we obtain through them can be loose. Longer paths can be used to
yield better bounds in such cases. (2) As ` increases, more and more long paths need to be observed before
the corresponding bound on dij becomes comparable or better than bounds obtained via shorter paths. (3)
Even the existence of a short path can improve upper bounds obtained by all longer paths. In addition, lower
bounds on dij can also be obtained. (4) The number of paths is important to the bound. Link prediction
using the length of the shortest path ignores this information, and hence should perform relatively poorly, as
observed by (Liben-Nowell & Kleinberg, 2003; Brand, 2005) and (Sarkar & Moore, 2007).

6 The Non-deterministic Case

All of the previous sections have assumed that, given the positions of points, the corresponding graph could
be inferred exactly. In terms of the RHH model introduced in section 2, this corresponds to setting α → ∞.
In this section, we investigate the effects of finite α. Our analysis shows that while bounds become looser,
the results are still qualitatively similar.

The core idea underlying almost all of our previous results has been the computation of the probability
of two nodes i and j having a common neighbor. For the deterministic case, this is simply the area of
intersection of two hyperspheres, A(r, r, dij), for the case when all nodes have the same radius r. However,
in the non-deterministic case, this probability is hard to compute exactly. Instead, we can give the following
simple bounds on Pr2(i, j), which is the probability of observing a common neighbor between two nodes i
and j that are distance dij apart and have identical radius r.

Theorem 6.1

Pr2(i, j) >
1

4

(
A(r, r, dij) + 2e−αdij · (V (r)−A(r, r, dij))

)

Pr2(i, j) <


A(r, r, dij) + 2V (r) ·

[
1−

(
D
αr

)D]
αr
D − 1

(for αr > D)

A(r, r, dij) + 2D · V (r) (for αr = D)

A(r, r, dij) + 2V (D/α) ·

[
1−

(
αr
D

)D]
1− αr

D

(for αr < D)

Observations and Extensions. The importance of theorem 6.1 is that the probability of observing a common
neighbor is still mostly dependent on the area of intersection of two hyperspheres, i.e. A(r, r, dij). However,
there is a gap of a factor of 4 between the lower and upper bounds. This can still be used to obtain reasonable
bounds on dij when enough common neighbors are observed. However, when we consider longer paths, the
gap increases and we might no longer be able to get strong bounds.

The reason for this is that theorem 6.1 only uses the fact that probability of linking i and j is at least 1/2
when dij is less than r. This statement is applicable to all α. However, we typically want to perform link
prediction only when α is large, as small values of α yield graphs that are close to random and where no link
prediction methods would work. For the case of large α, we can get much stronger lower bounds and close
the factor-of-4 gap, as follows.

In order to compute the probability Pr2(i, j), we need to integrate the product of the link probabilities
over the intersection of the two hyperspheres of radius r around nodes i and j. Let this region be denoted
by S(i, j).Suppose that, instead of integrating over S(i, j), we integrate over a smaller subset S′(i, j). While
the volume of S′(i, j) would be smaller, the minimum probabilities inside that subset could be much higher,
leading to a better overall lower-bound. We consider S′(i, j) = {xk|dik < r′, djk < r′} to be the intersection
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of two hyperspheres of radius r′ < r, centered on i and j. Then, using eq. 4
Pr2(i, j, xk ∈ S′(i, j))
≥
(

1
1+eα(r′−r)

)2
· vol(S′(i, j))

≥
(

1
1+eα(r′−r)

)2
V (r′)

cos−1
(
dij
2r

)∫
0

sinD(t)dt

Ideally, we would like to pick r′ to maximize this, but vol(S′(i, j)) depends on dij as well. Noting that and
the effect of dij is restricted to the last term only, we propose the following formulation:

Pick r′ to maximize
(

1

1 + eα(r′−r)

)2

· V (r′) (11)

Lemma 6.2 If α > D/r, then r′ < r.

Thus, for large enough α, we can find a good r′ which can improve the gap between upper and lower bounds
of Pr2(i, j). The optimal r′ gets closer to r as α increases, but its exact value has to be obtained numerically.

7 Summary and Discussion
The paper presents, to our knowledge, the first theoretical study of link prediction and the heuristics com-
monly used for that purpose. We formalize the link prediction problem as one of estimating distances between
nodes in a latent space, where the observed graph structure provides evidence regarding the unobserved po-
sitions of nodes in this space. We present theoretical justifications of two common empirical observations:
(1) the simple heuristic of counting common neighbors often outperforms more complicated heuristics, (2)
a variant that weights common neighbors by the inverse of the logarithm of their degrees (Adamic & Adar,
2003) often performs better. We show that considering longer paths is useful only if shorter paths (especially,
common neighbors) are not numerous enough for the bounds obtained from them to be tight enough. How-
ever, the bounds obtained from longer paths can be made significantly tighter if even a single short path is
known to exist.
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The Convergence Rate of AdaBoost
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Abstract. We pose the problem of determining the rate of convergence at which AdaBoost mini-
mizes exponential loss.

Boosting is the problem of combining many “weak,” high-error hypotheses to generate a single “strong”
hypothesis with very low error. The AdaBoost algorithm of Freund and Schapire (1997) is shown in Figure 1.
Here we are given m labeled training examples (x1, y1), . . . , (xm, ym) where the xi’s are in some domain
X , and the labels yi ∈ {−1,+1}. On each round t, a distribution Dt is computed as in the figure over the
m training examples, and a weak hypothesis ht : X → {−1,+1} is found, where our aim is to find a weak
hypothesis with low weighted error εt relative toDt. In particular, for simplicity, we assume that ht minimizes
the weighted error over all hypotheses belonging to some finite class of weak hypothesesH = {~1, . . . , ~N}.

The final hypothesis H computes the sign of a weighted combination of weak hypotheses F (x) =∑T
t=1 αtht(x). Since each ht is equal to ~jt for some jt, this can also be rewritten as F (x) =

∑N
j=1 λj~j(x)

for some set of values λ = 〈λ1, . . . λN 〉. It was observed by Breiman (1999) and others (Frean & Downs,
1998; Friedman et al., 2000; Mason et al., 1999; Onoda et al., 1998; Rätsch et al., 2001; Schapire & Singer,
1999) that AdaBoost behaves so as to minimize the exponential loss

L(λ) =
1
m

m∑
i=1

exp

− N∑
j=1

λjyi~j(xi)


over the parameters λ. In particular, AdaBoost performs coordinate descent, on each round choosing a
single coordinate jt (corresponding to some weak hypothesis ht = ~jt ) and adjusting it by adding αt to it:
λjt ← λjt + αt. Further, AdaBoost is greedy, choosing jt and αt so as to cause the greatest decrease in the
exponential loss.

In general, the exponential loss need not attain its minimum at any finite λ (that is, at any λ ∈ RN ). For
instance, for an appropriate choice of data (with N = 2 and m = 3), we might have

L(λ1, λ2) = 1
3

(
eλ1−λ2 + eλ2−λ1 + e−λ1−λ2

)
.

The first two terms together are minimized when λ1 = λ2, and the third term is minimized when λ1 + λ2 →
+∞. Thus, the minimum of L in this case is attained when we fix λ1 = λ2, and the two weights together
grow to infinity at the same pace.

Let λ1,λ2, . . . be the sequence of parameter vectors computed by AdaBoost in the fashion described
above. It is known that AdaBoost asymptotically converges to the minimum possible exponential loss (Collins
et al., 2002). That is,

lim
t→∞

L(λt) = inf
λ∈RN

L(λ).

However, it seems that only extremely weak bounds are known on the rate of convergence, for the most
general case. In particular, Bickel, Ritov and Zakai (2006) prove a very weak bound of the formO(1/

√
log t)

on this rate. Much better bounds are proved by Rätsch, Mika and Warmuth (2002) using results from Luo and
Tseng (1992), but these appear to require that the exponential loss be minimized by a finite λ, and also depend
on quantities that are not easily measured. Shalev-Shwartz and Singer (2008) prove bounds for a variant of
AdaBoost. Zhang and Yu (2005) also give rates of convergence, but their technique requires a bound on the
step sizes αt. Many classic results are known on the convergence of iterative algorithms generally (see for
instance, Luenberger and Ye (2008), or Boyd and Vandenberghe (2004)); however, these typically start by
assuming that the minimum is attained at some finite point in the (usually compact) space of interest.

When the weak learning assumption holds, that is, when it is assumed that the weighted errors εt are
all upper bounded by 1/2 − γ for some γ > 0, then it is known (Freund & Schapire, 1997; Schapire &
Singer, 1999) that the exponential loss is at most e−2tγ2

after t rounds, so it clearly quickly converges to the
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Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}
spaceH = {~1, . . . , ~N} of weak hypotheses ~j : X → {−1,+1}

Initialize: D1(i) = 1/m for i = 1, . . . ,m.
For t = 1, . . . , T :
• Train weak learner using distribution Dt; that is, find weak hypothesis ht ∈ H that minimizes the

weighted error εt = Pri∼Dt [ht(xi) 6= yi].
• Choose αt = 1

2 ln ((1− εt)/εt).
• Update, for i = 1, . . . ,m: Dt+1(i) = Dt(i) exp(−αtyiht(xi))/Zt

where Zt is a normalization factor (chosen so that Dt+1 will be a distribution).
Output the final hypothesis: H(x) = sign

(∑T
t=1 αtht(x)

)
.

Figure 1: The boosting algorithm AdaBoost.

minimum possible loss in this case. However, here our interest is in the general case when the weak learning
assumption might not hold.

This problem of determining the rate of convergence is relevant in the proof of the consistency of Ada-
Boost given by Bartlett and Traskin (2007), where it has a direct impact on the rate at which AdaBoost
converges to the Bayes optimal classifier (under suitable assumptions).

We conjecture that there exists a positive constant c and a polynomial poly() such that for all training sets
and all finite sets of weak hypotheses, and for all B > 0,

L(λt) ≤ min
λ:‖λ‖1≤B

L(λ) +
poly(logN,m,B)

tc
.

Said differently, the conjecture states that the exponential loss of AdaBoost will be at most ε more than
that of any other parameter vector λ of `1-norm bounded by B in a number of rounds that is bounded by a
polynomial in logN , m, B and 1/ε. (We require logN rather than N since the number of weak hypotheses
N = |H| will typically be extremely large.) The open problem is to determine if this conjecture is true or
false, in general, for AdaBoost. The result should be general and apply in all cases, even when the weak
learning assumption does not hold, and even if the minimum of the exponential loss is not realized at any
finite vector λ. The prize for a new result proving or disproving the conjecture is US$100.
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Consider the following version of Talagrand’s probabilistic construction of a monotone functionf :
{0, 1}n → {0, 1}. Let f be ann-term monotone DNF formula where each term is selected independently
and uniformly at random (with replacement) from the set of allnΩ(log log n) possible terms of lengthlog(n)
over the firstlog2(n) variables. Let us call such a DNF formula aTalagrand DNF formula. This is a
scaled-down version of the construction by Talagrand (1996) which is defined over alln variables and has
subexponentially many terms. I am interested in the following problem:

Does there exist a polynomial-time algorithm for learning the class of Talagrand DNF formulas
over the uniform distribution on{0, 1}n given uniform random examples?

Ideally, I am looking for algorithms that will learn the class ofall possible Talagrand DNF formulas in the
worst-case. However, an average-case learning algorithm that succeeds with high probability over the choice
of the Talgrand DNF formula as described above would be of significant interest as well.

Motivation: This problem is of course a special case of the corresponding learning problem for general
polynomial-size DNF formulas. The problem of learning polynomial-size DNF formulaswithout queries has
been open for almost twenty years (Valiant, 1984) and there has been no significant progress on the question
until the last couple years.

Current Status: Recently,random DNF formulas were shown to be learnable in the following sequence
of work (Jackson & Servedio, 2006; Jackson et al., To appear; Sellie, 2008; Sellie, 2009). The algorithms for
learning random DNF formulas only work when the terms are well-separated,i.e., when the terms share very
few variables, which is clearly not the case for Talagrand DNF formulas.

Some Observations:

1. Unlike the class of all polynomial-size DNF formulas, the class of Talagrand DNF formulas as defined
above do not suffer from the “junta” problem (Blum, 2003). We know exactly which variables are
relevant.

2. The Talagrand functions are sensitive to noise as small as1/ log(n), i.e., Pr[f(x) 6= f(y)] ≥ Ω(1) where
y is x with each bit flipped independently with probability1/ log(n) (Mossel & O’Donnell, 2003). Thus,
any variant of the “low-degree algorithm” (Linial et al., 1993) is unlikely to work for this problem.

3. Unlike for the case of all polynomial-size DNF formulas, there are no known reasons for ruling out
statistical query (SQ) algorithms for this problem. (The algorithms for learning random DNF formulas
cited above can all be couched as SQ algorithms.) Strong SQ lower bounds are known for depth-3
monotone formulas (Feldman et al., 2010), but there are no known strong SQ lower bounds for any
subclass of monotone DNF formulas.

Rewards:
A hand shake: Demonstrate a uniform-distribution learning algorithm for Talagrand DNF formulas in the
average-case.
A hand shake and a pat on the back: Demonstrate a uniform-distribution learning algorithm for Talagrand
DNF formulas in the worst-case.
A surprised look: Prove a super-polynomial strong-SQ lower bound for the class of Talagrand DNF formu-
las.
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Abstract

Ant robots can repeatedly and robustly cover terrain by always moving away from the trails that they leave in
the terrain. This coverage strategy can be modeled with graph traversal strategies similar to real-time search
methods (such as Learning Real-Time A*) and reinforcement learning methods (such as Real-Time Dynamic
Programming). The resulting worst-case cover times are known to be exponential in the number of vertices
on both directed and undirected graphs in general. The known undirected graphs with large worst-case cover
times have unbounded degree vertices. However, existing ant robots navigate on grids, a special case of
undirected planar graphs with bounded degree vertices. Their experimental cover times appear to scale almost
identically to those of coverage strategies with polynomial worst-case cover times. However, it is an open
problem to prove whether the resulting worst-case cover times on grids are indeed polynomial in the number
of vertices.

Ant robots are robots that either 1) leave trails in the terrain and use them for navigation, similar to learning
graphs by dropping indistinguishable pebbles (Bender et al., 2002), and/or 2) use greedy navigation strategies
that depend only on local observations of the terrain and thus require only limited sensing, processing and
communication capabilities (Wagner & Bruckstein, 2001). Researchers have built actual ant robots that
fit both definitions and cover terrain repeatedly by always moving away from the trails that they leave in
the terrain, see Figure 1. Single ant robots (individually) and groups of ant robots (cooperatively) cover
terrain robustly even if they do not have any memory, do not know the terrain, cannot maintain maps of the
terrain nor plan complete paths. They cover terrain even if some ant robots fail, they are moved without
realizing this (say, by people running into them and pushing them accidentally to a different location), the
trails are of uneven quality or some trails are destroyed. Their coverage strategy can be modeled with Node
Counting (Koenig et al., 2001; Wagner et al., 1999), a graph traversal strategy similar to real-time search
methods (such as Learning Real-Time A* (Korf, 1990)) and reinforcement learning methods (such as Real-
Time Dynamic Programming (Barto et al., 1995)). Node Counting assigns an integer counteru(s) to every
vertex (= node)s of the graph, that represents the amount of trail in that location. All counters are initially
zero. Every ant robot always increments the counter of a vertex by one when it enters the vertex and then
moves to a successor vertex with the smallest counter (using an arbitrary tie breaking rule), see Figure 3.
Thus, it moves to a successor vertex that has been visited the least number of times by ant robots, with
the idea to quickly get to a vertex that has not yet been visited. Note that Step 3 of Node Counting is:
u(s) := 1 + u(s). For simplicity, we consider only a single ant robot in the following since it is easy to
generalize the results to groups of ant robots. Node Counting covers strongly connected graphs repeatedly,
which is why we assume in the following that the graphs are strongly connected. The worst-case cover
times of Node Counting are known to be exponential in the number of vertices on both directed graphs
(trivial proof for the graph topology shown in Figure 4 left) and undirected graphs (longer proof for the graph
topology shown in Figure 4 right) in general (Koenig et al., 2001). The known undirected graphs with large
worst-case cover times are thus (planar) trees with unbounded degree vertices. However, existing ant robots
navigate on grids with blocked and unblocked cells, which are special cases of undirected planar graphs with
bounded degree vertices, see Figure 2. The experimental cover times of Node Counting on grids appear to
scale almost identically to those of known coverage strategies with polynomial worst-case cover times on
all strongly connected graphs. These coverage strategies are similar to Node Counting but more difficult to
implement on actual ant robots (Koenig & Simmons, 1992), including Learning Real-Time A*. Step 3 of
Learning Real-Time A* is:u(s) := 1 + mina∈A(s) u(succ(s, a)). We now list interesting open problems for

∗This overview of open problems is based on (Svennebring & Koenig, 2003) and (Koenig et al., 2001) and the figures
contained therein. It was supported by, or in part by, NSF under contract/grant number 0413196, ARL/ARO under
contract/grant number W911NF-08-1-0468 and ONR under contract/grant number N00014-09-1-1031.
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Figure 1: Actual Ant Robot
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Figure 2: Coverage of Four-Neighbor Grid

We use the following notation:S denotes the finite set of vertices of the graph, andsstart ∈ S
denotes the start vertex of an ant robot.A(s) 6= ∅ is the finite, nonempty set of directed edges
that leave vertexs ∈ S . succ(s, a) denotes the successor vertex that results from the traversal
of edgea ∈ A(s) in vertexs ∈ S. We also use two operators with the following semantics:
Given a finite setX, the expression “one-ofX” returns an element ofX according to an arbitrary
rule. A subsequent invocation of “one-ofX” can return the same or a different element. The ex-
pression “argminx∈X f(x)” returns the elementsx ∈ X that minimizef(x), that is, the set
{x ∈ X|f(x) = min

x′
∈X

f(x′)}, wheref is a function fromX to the non-negative integers.
Initially, the valuesu(s) are zero for alls ∈ S.

Step 1: s := sstart.
Step 2: a := one-of argmina∈A(s) u(succ(s, a)).
Step 3: u(s) := 1 + u(s).
Step 4: (Traverse edgea.)
Step 5: s := succ(s, a).
Step 6: Go to Step 2.

Figure 3: Node Counting

start start

Figure 4: Graphs

Node Counting, the solutions of which would help to lay a solid theoretical foundation for ant robotics and
perhaps other kinds of simple agents (such as mobile code that has to explore computer networks): Prove
whether the cover times of Node Counting are polynomial in the number of vertices a) for undirected graphs
with bounded degree vertices or, if not, b) for grids (a subset of these graphs) if the worst case in both cases
is taken over all graphs with a given number of vertices, start vertices and equally good successor vertices (=
that is, successor vertices with the smallest counter) and thus tie breaking rules. If not, assume that the ant
robot uses the tie breaking rule to select randomly among all equally good successor vertices. Prove whether
the resulting cover times are polynomial if the worst case is taken over all graphs with a given number of
vertices and start vertices but the average case is taken over all equally good successor vertices. Of course,
it is also important to analyze more complex and thus more realistic versions of Node Counting, such as
versions that model the saturation of the terrain with trails or the clean-up of trails by the ant robot to avoid
such a saturation. For example, Step 3 of a version of Node Counting that models the saturation of the
terrain with trails is: with probability(k − u(s))/k executeu(s) := 1 + u(s) for a given positive integerk.
Additional information and related work are presented in (Svennebring & Koenig, 2003), in (Koenig et al.,
2001) and on the ant robotics web pages at idm-lab.org/antrobots.
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Consider the following canonical online learning problem with matrices [WK06]: In each trial t the
algorithm chooses a density matrix Wt ∈ Rn×n (i.e., a positive semi-definite matrix with trace one). Then
nature chooses a symmetric loss matrix Lt ∈ Rn×n whose eigenvalues lie in the interval [0, 1] and the
algorithms incurs loss tr(WtLt). The goal is to find algorithms that for any sequence of trials have small
regret against the best dyad chosen in hindsight. Here a dyad is an outer product uu> of a unit vector u in
Rn. More precisely the regret after T trials is defined as follows:

T∑
t=1

tr(WtLt)− L∗, where L∗ = inf
u:‖u‖=1

tr
(
uu>L≤T

)
with L≤T =

T∑
t=1

Lt.

Instead of choosing a density matrix Wt, the algorithm may eigendecompose Wt as
∑

i σiuiu
>
i and choose

the eigendyad1 uiu
>
i with probability σi. If the loss matrix Lt is a covariance matrix of a random variable,

then u>i Ltui is the variance in direction ui and tr(WtLt) the expected variance / loss with respect to Wt.
Good regret bounds are achieved by a matrix version of the Hedge algorithm [FS97] predicting with:

Wt = exp(−ηL<t) / tr(exp(−ηL<t)),

where exp() is the matrix exponential and η a nonnegative learning rate. When η is chosen as
√

2 lnn

L̂
, where

L̂ ≥ L∗, then the Matrix Hedge algorithm achieves a regret bound of
√
2
√
L̂ lnn + lnn and

√
2 is the best

known constant before the leading
√
L̂ lnn term.

Note that when the initial matrix W1 is the identity matrix and the loss matrices are all diagonal, then
Matrix Hedge maintains a distribution over the n unit dyads eie

>
i (often called “experts” in this case) and

becomes the original Hedge algorithm [FS97] written with diagonal matrices instead of probability and loss
vectors. The problem with Matrix Hedge is that it takes O(n3) time per trial, because the matrix exponential
is typically computed by decomposing the matrices and exponentiating the eigenvalues.

Open problem: Is there an O(n2) per trial algorithm with a regret bound of O(
√
L̂ lnn)?

Why is this a natural problem? Note that for the standard expert setting, the running time of the essentially
optimal Hedge algorithm is linear in the number of experts n. For the matrix version, the size of all matrices
involved is n2 and we want an O(n2) per trial algorithm.

An approach based on Follow the Perturbed Leader algorithm. For the original expert setting there is
an alternative algorithm to Hedge: Add a vector r ∈ Rn of perturbations to the current total loss `<t ∈
Rn
≥0 of all n experts and predicts at trial t with the expert argmini `<t,i + ri of minimum perturbed loss.

When ri is the log of a suitably chosen exponential random variable, then this Follow the Perturbed Leader
(FPL) algorithm simulates the Hedge algorithm for experts and thus obtains essentially the optimal regret
bound [KW05, Kal05].

It is natural to consider matrix versions of FPL for our matrix problem. Now the perturbation is an n× n
matrix Rt that is added to the loss matrix L<t. Computing a best expert corresponds to finding the minimum
eigendyad (i.e. the one corresponding to the minimum eigenvalue) of the perturbed matrix L<t + Rt, which
can be approximately done in O(n2) time. Thus Matrix FPL essentially takes O(n2) time provided that the
perturbation matrix at trial t can be sampled in O(n2) time. This speedup would be very important because it
would open the path for implementing the Matrix Exponentiated Gradient algorithm [TRW05] inO(n2) time,
∗Supported by NSF grant IIS-0917397
1A dyad uu>, where u is a unit eigenvector.
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bypassing the use of decompositions, and hence have other applications, such as the ones given in [AK07]
for efficiently approximating combinatorial problems.

If Rt is always set to a pre-selected random perturbation matrix R, and hence does not depend on the
current loss matrix L<t, and the adversary is non-adaptive, i.e. the sequence of loss matrices is fixed in
advance, then we can allow O(n3) time or greater for computing R, because this is only a preprocessing
step. In each round a minimum eigendyad can then be approximated in O(n2) time.

However if L<t and Rt do not have a similar eigensystem, then Rt may not perturb the top eigenvalues
of L<t very much. So for achieving good regret bounds it seems necessary that the perturbation matrix Rt

adapts to L<t. If we allow the algorithm ample O(n3) time for choosing its perturbation matrix Rt, then it
is trivial to simulate Matrix Hedge with FPL: Simply decompose L<t in O(n3) time per trial and then add
log exponential perturbations to the eigenvalues as done in [KW05, Kal05] (This corresponds to choosing Rt

to have the same eigenbasis as L<t with eigenvalues chosen from the log exponential distribution); finally,
predict with minimum eigendyad of the perturbed loss matrix. However, this O(n3) per trial implementation
of Matrix FPL is not interesting, because you might as well just use the original Matrix Hedge algorithm that
requires the same time.

If we ignore the optimum dependence on the dimension, then by choosing a fixed perturbation with an
exponential spectral perturbation and a randomly chosen eigenbasis, we can get an O(n2) per trial algorithm
and O(n3) preprocessing time. The following theorem can be proved along the same lines as in [HKW10]:

Theorem 1 For appropriately chosen ε, the expected regret of the algorithm given below is bounded by

O(

√
L̂r log n), where r is an upper bound on the rank of the loss matrices.

1: Sample n real numbers σ1, σ2, . . . , σn independently from the Laplace distribution with mean 0 and
scale 1/ε, i.e. the two-sided exponential probability density function f(x) = ε

2 exp(−ε|x|).
2: Sample a random orthogonal matrix U uniformly from the Haar measure.
3: Define R = UΣU>, where Σ = diag(σ1, σ2, . . . , σn).
4: for t = 1 to T do
5: Let Wt = utu

>
t , the minimum eigendyad of the matrix L<t + R.

6: Predict Wt and observe the actual loss matrix Lt. Incur loss tr(utu
>
t Lt).

7: end for

Notice that this already resolves the open problem for loss matrices of rank one (or constant rank). This
suggests the following direction: The so-called “unit rule” in the usual expert setting says that the worst
possible sequence of losses for the experts in a Hedge-type algorithm are the ones where only a single expert
incurs loss in each trial. If the analogous statement were true for the FPL-type algorithms suggested above, in
the sense that the worst sequence of loss matrices were all rank one, then our open problem would be solved.

Unfortunately, however, it is easy to concoct examples of matrices where for a fixed perturbation matrix,
the loss on a rank 2 loss matrix is more than the loss on a sequence of two rank 1 loss matrices. The unit-rule
might still be true in an expected sense, but we have been unable to prove such a statement.
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1 The Problem
The problem is finding a general, robust, and efficient mechanism for estimating a conditional probability
P (y|x) where robustness and efficiency are measured using techniques from learning reductions.

In particular, suppose we have access to a binary regression oracle B which has two interfaces—one
for specifying training information and one for testing. Training information is specified as B(x′, y′) where
x′ is an unspecified feature vector and y′ ∈ [0, 1] is a bounded range scalar with no value returned. This
operation is stateful, possibly altering the return value of the testing interface in arbitrary ways. Testing is
done according to B(x′) with a value in [0, 1] returned. The testing operation operation is stateless.

A learning reduction consists of two algorithms R and R−1.
The algorithm R takes as input a single example (x, y) where x is a feature vector and y ∈ {1, ..., k} is

a discrete variable. R then specifies a training example (x′, y′) for the oracle B. R can then create another
training example for B based on all available information. This process repeats some finite number of times
before halting without returning information.

A basic observation is that for any oracle algorithm, a distribution D(x, y) over multiclass examples and
a reduction R induces a distribution over a sequence (x′, y′)∗ of oracle examples. We collapse this into a
distribution D′(x′, y′) over oracle examples by drawing uniformly from the sequence.

The algorithm R−1 takes as input a single example (x, y) and returns a value v ∈ [0, 1] after using (only)
the testing interface of B zero or more times.

We measure the power of an oracle and a reduction according to squared-loss regret according to:

reg(D,R−1) = E(x,y)∼D[(R−1(x, y)−D(y|x))2]
and similarly letting µx′ = E(x′,y′)∼D′ [y′].

reg(D′, B) = E(x′,y′)∼D′(B(x′)− µx′)2

The open problem is to specify R and R−1satisfying the following theorem:

Theorem 1 For all multiclass distributionsD(x, y), for all binary oraclesB: The computational complexity
of R and R−1 are O(log k) and

reg(D,R−1) ≤ Creg(D′, B)
where C is a universal constant.

Alternatively, this open problem is satisfied by proving there exists no deterministic algorithms R,R−1 sat-
isfying the above theorem statement.

2 Motivation
The problem of conditional probability estimation is endemic to machine learning applications. In fact, in
some branches of machine learning, this is simply considered “the problem”. Typically conditional probabil-
ity estimation is done in situations where the conditional probability of only one bit is required, however there
are a growing number of applications where a well-estimated conditional probability over a more complex
object is required. For example, all known methods for solving contextual bandit algorithms over an arbitrary
policy class require knowledge of or good estimation of P (a | x) where a is an action.

There is a second intrinsic motivation which is matching the lower bound. No method faster thanO(log k)
can be imagined because the label y requires log2 k bits to specify and hence read. Similarly it’s easy to prove
no learning reduction can provide a regret ratio with C < 1.
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The motivation for using the learning reduction framework to specify this problem is a combination of
generality and the empirical effectiveness in application of learning reductions. Any solution to this will be
general because any oracleB can be plugged in, even ones which use many strange kinds of prior information,
features, and active multitask hierachical (insert your favorite adjective here) structure.

3 Related Results
The state of the art is summarized by [1] which shows it’s possible to have a learning reduction satisfying the
above theorem with either:

1. C replaced by log2
2 k (using a binary tree structure)

2. or the computational time increased to O(k) (using an error correcting code structure).

Hence, answering this open problem in the negative shows that there is an inherent computation vs. robustness
tradeoff.

There are two other closely related problems, where similar analysis can be done.

1. For multiclass classification, where the goal is predicting the most likely class, a result analogous to the
open problem is provable using error correcting tournaments [2].

2. For multiclass classification in a partial label setting, no learning reduction can provide a constant regret
guarantee [3].

4 Silly tricks that don’t work
Because Learning reductions are not familiar to everyone, we note certain tricks which do not work here to
prevent false leads and provide some intuition.

4.1 Ignore B’s predictions and use your favorite learning algorithm instead.
This doesn’t work, because the quantification is for allD. Any specified learning algorithm will have someD
on which it has nonzero regret. On the other hand, because R calls the oracle at least once, there is a defined
induced distribution D′. Since the theorem must hold for all D and B, it must hold for a D your specified
learning algorithm fails on and for a B for which reg(D′, B) = 0 implying the theorem is not satisfied.

4.2 Feed random examples into B and vacuously satisfy the theorem by making sure that the right
hand side is larger than a constant.

This doesn’t work because the theorem is stated in terms of squared loss regret rather than squared loss.
In particular, if the oracle is given examples of the form (x′, y′) where y′ ∈ {0, 1} is drawn uniformly at
random, any oracle specifying B(x′) = 0.5 has zero regret.

4.3 Feed pseudorandom examples into B and vacuously satisfy the theorem by making sure that the
right hand side is larger than a constant.

This doesn’t work, because the quantification is “for all binary oracles B”, and there exists one which,
knowing the pseudorandom seed, can achieve zero loss (and hence zero regret).

4.4 Just use Boosting to drive the LHS to zero.
Boosting theorems require a stronger oracle—one which provides an edge over some constant baseline for
each invocation. The oracle here is not limited in this fashion since it could completely err for a small fraction
of invocations.

4.5 Take an existing structure, parameterize it, randomize over the parameterization, and then
average over the random elements.

Employing this approach is not straightforward, because the average in D′ is over an increased number of
oracle examples. Hence, at a fixed expected (over oracle examples) regret, the number of examples allowed
to have a large regret is increased.
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1 Introduction

Betting is an important problem faced by millions of sports fans each day. Presented with an
upcoming matchup between team A and team B, and given the opportunity to place a 50/50 wager
on either, where should a gambler put her money? This decision is not, of course, made in isolation:
both teams will have played a number of decided matches with other teams throughout the season.
Furthermore, a reasonable assumption to make is that the relation “A tends to beat B” is transitive.
Under transitivity, the best prediction strategy is clearly to sort the teams by their abilities and
predict according to this ranking.

The obvious difficulty is that the best ranking of the teams is not known an advance. But there’s
a more subtle issue: even with knowledge of all match outcomes in advance, i.e. a list of items of
the form (team X < team Y ), it’s NP-hard to determine the best ranking of the teams when the
outcomes are noisy. This is exactly the infamous Minimum Feedback Arc Set problem.

The question we pose is as follows: can we design a non-trivial online prediction strategy in
this setting which achieves vanishing regret relative to the best ranking in hindsight, even when the
latter is computationally infeasible?

It is tempting to believe this is impossible, as competing with the best ranking would appear
tantamount to finding the best ranking. However, this assertion is false: the algorithm need not
learn a ranking explicitly, it must only output a prediction (X < Y ) or (Y < X) when presented
with a pair (X, Y ), and these predictions do not necessarily have to satisfy transitivity. Indeed,
consider the following simple algorithm: treat each team pair (X, Y ) as an independent learning
problem (ignoring all other matchups). In the long run, this will achieve vanishing regret with
respect to the best ranking. So why is this not desirable? The trivial approach unfortunately admits
a bad regret bound: the algorithm must see O(n) matches per team before it can start to make
decent predictions. On the other hand, there is an information-theoretic approach that requires
only O(log n) observations per team—the downside, unfortunately, is that this requires exponential
computation. We would like to achieve this rate with an efficient method.

2 Problem Setup

We have a set of n teams with indices i = 1, 2, . . . , n. A learner is presented with a sequence of
pairs (it, jt) for t = 1, . . . , T and must predict ŷt ∈ [−1, 1], where ŷt = 1 implies that the learner
believes that team it will beat team jt, and vice versa when ŷt = −1. After making her prediction,
the learner observes the outcome yt ∈ {−1, 1} and suffers loss `(ŷt, yt) := (1− ŷtyt)/2.

An online prediction algorithm A is a function that outputs predictions ŷt given input of the data
(i1, j1, y1), . . . , (it−1, jt−1, yt−1) and the current matchup (it, jt). We can compare such a prediction
algorithm to any offline comparator class F , which is any collection of “skew-symmetric” mappings
φ : [n] × [n] → {−1, 1}, namely those that satisfy φ(i, j) = −φ(j, i) for all i, j (required since if i
beats j then j doesn’t beat i). We’ll consider two such classes, the class Fall of all such mappings,
and the class Fperm of permutations, i.e. those mappings φ which satisfy the transitive property,
φ(i, j) = 1 and φ(j, k) = 1 implies φ(i, k) = 1. The regret of any algorithm A with respect to any F
is defined as

RegretF (A) :=
T∑

t=1

`(ŷt, yt)−min
φ∈F

T∑
t=1

`(φ(it, jt), yt)
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Lemma 1 For any algorithm A, RegretFperm
(A) ≤ RegretFall

(A).

Proof:[sketch] This follows trivially from the fact that Fperm ⊂ Fall

Lemma 2 There exists an inefficient algorithm A such that RegretFperm
(A) = O(

√
Tn log n).

Proof:[sketch] If we treat each permutation φ ∈ Fperm as an “expert” and run a standard experts
algorithm, then well-known results (see, e.g., Cesa-Bianchi and Lugosi [1]) imply that the regret
will scale as O(

√
T log(no. of experts)). The result follows since there are n! permutations, and

log n! = Θ(n log n).

Lemma 3 There exists an efficient algorithm A such that RegretFall
(A) = O(

√
Tn2).

Proof:[sketch] Let i and j be arbitrary and assume without loss of generality that i < j. If we treat
the problem “does i beat j?” as an independent learning problem, then we can imagine that we
have two experts: “i wins” and “j wins”. So if the matchup (i, j) occurs Ti,j times throughout the
season, then on only these particular events we are guaranteed to achieve O(

√
Ti,j) regret using a

standard experts algorithm. If we do this for every pair i, j independently, then we can achieve

RegretFall
= O

 ∑
(i,j):i<j

√
Ti,j

 .

Using the fact that, for any z1, . . . , zm ≥ 0,

m∑
j=1

√
zj ≤

√
m

√√√√ m∑
j=1

zj

and that
∑

(i,j):i<j Ti,j = T , immediately gives the desired bound.

This final Lemma suggests that sub-linear regret is not difficult for learning rankings. Unfortu-
nately, this bound scales quite poorly in n. This is precisely because this algorithm, when predicting
the outcome of a pair (X, Y ), does not leverage the information from any other matchups. For
example, when the biggest winner plays the biggest loser for the first time, this algorithm would
guess the outcome is a tossup.

Open Problem: Is it possible to find an efficient algorithm that closes the gap between the
O(
√

Tn2) bound and the information-theoretic O(
√

Tn log n) rate? Is it even possible to do any
better than O(

√
Tn2) efficiently?

Prior Work
While not stated as we do here, essentially the same open question was posed by Kleinberg et al [2]
in 2008. Their work also provides a very useful background on learning to rank.
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Nicolò Cesa-Bianchi
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Abstract

We investigate the problem of active learning on a given tree whose nodes are assigned binary
labels in an adversarial way. Inspired by recent results by Guillory and Bilmes, we characterize
(up to constant factors) the optimal placement of queries so to minimize the mistakes made on the
non-queried nodes. Our query selection algorithm is extremely efficient, and the optimal number of
mistakes on the non-queried nodes is achieved by a simple and efficient mincut classifier. Through
a simple modification of the query selection algorithm we also show optimality (up to constant
factors) with respect to the trade-off between number of queries and number of mistakes on non-
queried nodes. By using spanning trees, our algorithms can be efficiently applied to general graphs,
although the problem of finding optimal and efficient active learning algorithms for general graphs
remains open. Towards this end, we provide a lower bound on the number of mistakes made
on arbitrary graphs by any active learning algorithm using a number of queries which is up to a
constant fraction of the graph size.

1 Introduction

The abundance of networked data in various application domains (web, social networks, bioinformatics, etc.)
motivates the development of scalable and accurate graph-based prediction algorithms. An important topic in
this area is the graph binary classification problem: Given a graph with unknown binary labels on its nodes,
the learner receives the labels on a subset of the nodes (the training set) and must predict the labels on the
remaining vertices. This is typically done by relying on some notion of label regularity depending on the
graph topology, such as that nearby nodes are likely to be labeled similarly. Standard approaches to this
problem predict with the assignment of labels minimizing the induced cutsize (e.g., [4, 5]), or by binarizing
the assignment that minimizes certain real-valued extensions of the cutsize function (e.g., [10, 2, 3] and
references therein).

In the active learning version of this problem the learner is allowed to choose the subset of training nodes.
Similarly to standard feature-based learning, one expects active methods to provide a significant boost of
predictive ability compared to a noninformed (e.g., random) draw of the training set. The following simple
example provides some intuition of why this could happen when the labels are chosen by an adversary, which
is the setting considered in this paper. Consider a “binary star system” of two star-shaped graphs whose
centers are connected by a bridge, where one star is a constant fraction bigger than the other. The adversary
draws two random binary labels and assigns the first label to all nodes of the first star graph, and the second
label to all nodes of the second star graph. Assume that the training set size is two. If we choose the centers
of the two stars and predict with a mincut strategy,1 we are guaranteed to make zero mistakes on all unseen
vertices. On the other hand, if we query two nodes at random, then with constant probability both of them
will belong to the bigger star, and all the unseen labels of the smaller star will be mistaken. This simple
example shows that the gap between the performance of passive and active learning on graphs can be made
arbitrarily big.

In general, one would like to devise a strategy for placing a certain budget of queries on the vertices of a
given graph. This should be done so as to minimize the number of mistakes made on the non-queried nodes
by some reasonable classifier like mincut. This question has been investigated from a theoretical viewpoint

1A mincut strategy considers all labelings consistent with the labels observed so far, and chooses among them one
that minimizes the resulting cutsize over the whole graph.
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by Guillory and Bilmes [6], and by Afshani et al. [1]. Our work is related to an elegant result from [6] which
bounds the number of mistakes made by the mincut classifier on the worst-case assignment of labels in terms
of Φ/Ψ(L). Here Φ is the cutsize induced by the unknown labeling, and Ψ(L) is a function of the query (or
training) set L, which depends on the structural properties of the (unlabeled) graph. For instance, in the above
example of the binary system, the value of Ψ(L) when the query set L includes just the two centers is 1. This
implies that for the binary system graph, Guillory and Bilmes’ bound on the mincut strategy is Φ mistakes
in the worst case (note that in the above example Φ ≤ 1). Since Ψ(L) can be efficiently computed on any
given graph and query set L, the learner’s task might be reduced to finding a query set L that maximizes
Ψ(L) given a certain query budget (size of L). Unfortunately, no feasible general algorithm for solving this
maximization problem is known, and so one must resort to heuristic methods —see [6].

In this work we investigate the active learning problem on graphs in the important special case of trees.
We exhibit a simple iterative algorithm which, combined with a mincut classifier, is optimal (up to constant
factors) on any given labeled tree. This holds even if the algorithm is not given information on the actual
cutsize Φ. Our method is extremely efficient, requiring O(n lnQ) time for placing Q queries in an n-node
tree, and space linear in n. As a byproduct of our analysis, we show thatΨ can be efficiently maximized over
trees to within constant factors. Hence the bound minL Φ/Ψ(L) can be achieved efficiently.

Another interesting question is what kind of trade-off between queries and mistakes can be achieved if
the learner is not constrained by a given query budget. We show that a simple modification of our selection
algorithm is able to trade-off queries and mistakes in an optimal way up to constant factors.

Finally, we prove a general lower bound for predicting the labels of any given graph (not necessarily a
tree) when the query set is up to a constant fraction of the number of vertices. Our lower bound establishes
that the number of mistakes must then be at least a constant fraction of the cutsize weighted by the effective
resistances. This lower bound apparently yields a contradiction to the results of Afshani et al. [1], who
constructs the query set adaptively. This apparent contradiction is also obtained via a simple counterexample
that we detail in Section 5.

2 Preliminaries and basic notation

A labeled tree (T,y) is a tree T = (V,E) whose nodes V = {1, . . . , n} are assigned binary labels y =
(y1, . . . , yn) ∈ {−1,+1}n. We measure the label regularity of (T,y) by the cutsize ΦT (y) induced by y on
T , i.e., ΦT (y) =

∣∣{(i, j) ∈ E : yi �= yj}
∣∣. We consider the following active learning protocol: given a tree

T with unknown labeling y, the learner obtains all labels in a query set L ⊆ V , and is then required to predict
the labels of the remaining nodes V \ L. Active learning algorithms work in two-phases: a selection phase,
where a query set of given size is constructed, and a prediction phase, where the algorithm receives the labels
of the query set and predicts the labels of the remaining nodes. Note that the only labels ever observed by the
algorithm are those in the query set. In particular, no labels are revealed during the prediction phase.

We measure the ability of the algorithm by the number of prediction mistakes made on V \ L, where
it is reasonable to expect this number to depend on both the uknown cutsize ΦT (y) and the number |L| of
requested labels. A slightly different prediction measure is considered in Section 4.3.

Given a tree T and a query set L ⊆ V , a node i ∈ V \L is a fork node generated by L if and only if there
exist three distinct nodes i1, i2, i3 ∈ L that are connected to i through edge disjoint paths. Let FORK(L) be
the set of all fork nodes generated by L. Then L+ is the query set obtained by adding to L all the generated
fork nodes, i.e., L+ � L ∪ FORK(L). We say that L ⊆ V is 0-forked iff L+ ≡ L. Note that L+ is 0-forked.
That is, FORK(L+) ≡ ∅ for all L ⊆ V .

Given a node subset S ⊆ V , we use T \ S to denote the forest obtained by removing from the tree T
all nodes in S and all edges incident to them. Moreover, given a second tree T ′, we denote by T \ T ′ the
forest T \ V ′, where V ′ is the set of nodes of T ′. Given a query set L ⊆ V , a hinge-tree is any connected
component of T \ L+. We call connection node of a hinge-tree a node of L adjacent to any node of the
hinge tree. We distinguish between 1-hinge and 2-hinge trees. A 1-hinge-tree has one connection node only,
whereas a 2-hinge-tree has two (note that a hinge tree cannot have more than two connection nodes because
L+ is zero-forked, see Figure 1).

3 The active learning algorithm

We now describe the two phases of our active learning algorithm. For the sake of exposition, we call SEL
the selection phase and PRED the prediction phase. SEL returns a 0-forked query set L+

SEL ⊆ V of desired
size. PRED takes in input the query set L+

SEL and the set of labels yi for all i ∈ L
+
SEL. Then PRED returns a

prediction for the labels of all remaining nodes V \ L+
SEL.

In order to see the way SEL operates, we formally introduce the function Ψ∗. This is the reciprocal of the
Ψ function introduced in [6] and mentioned in Section 1.
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Figure 1: A tree T = (V,E) whose nodes are shaded (the query set L) or white (the set V \ L ). The shaded
nodes are also the connection nodes of the depicted hinge trees (not all hinge trees are contoured). The fork
nodes generated by L are denoted by double circles. The thick black edges connect the nodes in L.

Definition 1 Given a tree T = (V,E) and a set of nodes L ⊆ V ,

Ψ∗(L) � max
∅�≡V ′⊆V \L

|V ′|∣∣{(i, j) ∈ E : i ∈ V ′, j ∈ V \ V ′}
∣∣ .

In words, Ψ∗(L) measures the largest set of nodes not in L that share the least number of edges with nodes
in L. From the adversary’s viewpoint, Ψ∗(L) can be described as the largest return in mistakes per unit of
cutsize invested. We now move on to the description of the algorithms SEL and PRED.

The selection algoritm SEL greedily computes a query set that minimizes Ψ∗ to within constant factors.
To this end, SEL exploits Lemma 10 (a) (see Section 4.2) stating that, for any fixed query set L, the subset
V ′ ⊆ V maximizing |V ′|∣∣{(i,j)∈E:i∈V ′,j∈V \V ′}

∣∣ is always included in a connected component of T \ L. Thus

SEL places its queries in order to end up with a query set L+
SEL such that the largest component of T \ L+

SEL is
as small as possible.

SEL operates as follows. Let Lt ⊆ L be the set including the first t nodes chosen by SEL, T t
max be the

largest connected component of T \Lt−1, and σ(T ′, i) be the size (number of nodes) of the largest component
of the forest T ′ \ {i}, where T ′ is any tree. At each step t = 1, 2, . . . , SEL simply picks the node it ∈ T t

max
that minimizes σ(T t

max, i) over i and sets Lt = Lt−1 ∪ {it}. During this iterative construction, SEL also
maintains a set containing all fork nodes generated in each step by adding nodes it to the sets Lt−1.2 After
the desired number of queries is reached (also counting the queries that would be caused by the stored fork
nodes), SEL has terminated the construction of the query set LSEL. The final query set L

+
SEL, obtained by

adding all stored fork nodes to LSEL, is then returned.
The Prediction Algorithm PRED receives in input the labeled nodes of the 0-forked query set L+

SEL and
computes a mincut assignment. Since each component of T \ L+

SEL is either a 1-hinge-tree or a 2-hinge-tree,
PRED is simple to describe and is also very efficient. The algorithm predicts all the nodes of hinge-tree T
using the same label ŷT . This label is chosen according to the following two cases:

1. If T is a 1-hinge-tree, then ŷT is set to the label of its unique connection node;

2. If T is a 2-hinge-tree and the labels of its two connection nodes are equal, then ŷT is set to the label
of its connection nodes, otherwise ŷT is set as the label of the closer connection node (ties are broken
arbitrarily).

In Section 6 we show that SEL requires overall O(|V | logQ) time and O(|V |) memory space for selecting Q
query nodes. Also, we will see that the total running time taken by PRED for predicting all nodes in V \ L is
linear in |V |.

4 Analysis

For a given tree T , we denote bymA(L,y) the number of prediction mistakes that algorithm Amakes on the
labeled tree (T,y) when given the query set L. Introduce the function

mA(L,K) = max
y : ΦT (y)≤K

mA(L,y)

2In Section 6 we will see that during each step Lt−1 → Lt at most a single new fork node may be generated.
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Figure 2: The SEL algorithm at work. The upper pane shows the initial tree T = T 1
max (in the box tagged with

“1”), and the subsequent subtrees T 2
max, T

3
max, T

4
max, and T

5
max. The left pane also shows the nodes selected

by SEL in chronological order. The four lower panes show the connected components of T \ Lt resulting
from this selection. Observe that at the end of round 3, SEL detects the generation of fork node 3′. This node
gets stored, and is added to LSEL at the end of the selection process.

denoting the number of prediction mistakes made by A with query set L on all labeled trees with cutsize
bounded by K. We will also find it useful to deal with the “lower bound” function LB(L,K). This is the
maximum expected number of mistakes that any prediction algorithmA can be forced to make on the labeled
tree (T,y) when the query set is L and the cutsize is not larger thanK.

We show that the number of mistakes made by PRED on any labeled tree when using the query set L+
SEL

satisfies
mPRED(L

+
SEL,K) ≤ 10 LB(L,K)

for all query sets L ⊆ V of size up to 1
8 |L

+
SEL|. Though neither SEL nor PRED do know the actual cutsize of

the labeled tree (T,y), the combined use of these procedures is competitive against any algorithm that knows
the cutsize budgetK beforehand.

While this result implies the optimality (up to constant factors) of our algorithm, it does not relate the
mistake bound to the cutsize, which is a clearly interpretable measure of the label regularity. In order to
address this issue, we show that our algorithm also satisfies the bound

mPRED(L
+
SEL,y) ≤ 4Ψ∗(L)ΦT (y)

for all query sets L ⊆ V of size up to 1
8 |L

+
SEL|. The proof of these results needs a number of preliminary

lemmas.

Lemma 2 For any tree T = (V,E) it holds that min
v∈V

σ(T, v) ≤ 1
2 |V |.

Proof: Let i ∈ argminv∈V σ(T, v). For the sake of contradiction, assume there exists a component Ti =
(Vi, Ei) of T \ {i} such that |Vi| > |V |/2. Let s be the sum of the sizes all other components. Since
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|Vi| + s = |V | − 1, we know that s ≤ |V |/2 − 1. Now let j be the node adjacent to i which belongs to
Vi and Tj = (Vj , Ej) be the largest component of T \ {j}. There are only two cases to consider: either
Vj ⊂ Vi or Vj ∩ Vi ≡ ∅. In the first case, |Vj | < |Vi|. In the second case, Vj ⊆ {i} ∪

(
T \ Vi

)
, which

implies |Vj | ≤ 1 + s ≤ |V |/2 < |Vi|. In both cases, i �∈ argminv∈V σ(T, v), which provides the desired
contradiction.

Lemma 3 For all subsets L ⊂ V of the nodes of a tree T = (V,E) we have
∣∣L+

∣∣ ≤ 2|L|.

Proof: Pick an arbitrary node of T and perform a depth-first visit of all nodes in T . This visit induces an
ordering T1, T2, . . . of the connected components in T \L based on the order of the nodes visited first in each
component. Now let T ′

1 , T
′
2 , . . . be such that each T

′
i is a component of Ti extended to include all nodes of

L adjacent to nodes in Ti. Then the ordering implies that, for i ≥ 2, T ′
i shares exactly one node (which must

be a leaf) with all previously visited trees. Since in any tree the number of nodes of degree larger than two
must be strictly smaller than the number of leaves, we have |FORK(T ′

i )| < |Λi| where, with slight abuse of
notation, we denote by FORK(T ′

i ) the set of all fork nodes in subtree T ′
i . Also, we let Λi be the set of leaves

of T ′
i . This implies that, for i = 1, 2, . . . , each fork node in FORK(T ′

i ) can be injectively associated with one
of the |Λi| − 1 leaves of T ′

i that are not shared with any of the previously visited trees. Since |FORK(L)| is
equal to the sum of |FORK(Ti)| over all indices i, this implies that |FORK(L)| ≤ |L|.

Lemma 4 Let Lt−1 ⊆ LSEL be the set of the first t− 1 nodes chosen by SEL. Given any tree T = (V,E), the
largest subtree of T \ Lt−1 contains no more than 2

t
|V | nodes.

Proof: Recall that is denotes the s-th node selected by SEL during the incremental construction of the query
set LSEL, and that T s

max is the largest component of T \ Ls−1. The first t steps of the recursive splitting
procedure performed by SEL can be associated with a splitting tree T ′ defined in the following way. The
internal nodes of T ′ are T s

max, for s ≥ 1. The children of T s
max are the connected components of T

s
max \{is},

i.e., the subtrees of T s
max created by the selection of is. Hence, each leaf of T

′ is bijectively associated with
a tree in T \ Lt.

Let T ′
nol be the tree obtained from T

′ by deleting all leaves. Each node of T ′
nol is one of the t subtrees

split by SEL during the construction of Lt. As T t
max is split by it, it is a leaf in T

′
nol. We now add a second

child to each internal node s of T ′
nol having a single child. This second child of s is obtained by merging all

the subtrees belonging to leaves of T ′ that are also children of s. Let T ′′ be the resulting tree.
We now compare the cardinality of T t

max to that of the subtrees associated with the leaves of T
′′. Let Λ

be the set of all leaves of T ′′ and Λadd = T ′′ \ T ′
nol ⊂ Λ be the set of all leaves added to T ′

nol to obtain T
′′.

First of all, note that |T t
max| is not larger than the number of nodes in any leaf of T

′
nol. This is because the

selection rule of SEL ensures that T t
max cannot be larger than any subtree associated with a leaf in T

′
nol, since

it contains no node selected before time t. In what follows, we write |s| to denote the size of the forest or
subtree associated with a node s of T ′′. We now prove the following claim:

Claim. For all � ∈ Λ, |T t
max| ≤ |�|, and for all � ∈ Λadd, |T t

max| − 1 ≤ |�|.

Proof of Claim. The first part just follows from the observation that any � ∈ Λ was split by SEL before time
t. In order to prove the second part, pick a leaf � ∈ Λadd. Let �′ be its unique sibling in T ′′ and let p be
the parent of � and �′, also in T ′′. Lemma 2 applied to the subtree p implies |�′| ≤ 1

2 |p|. Moreover, since
|�| + |�′| = |p| − 1, we obtain |�| + 1 ≥ 1

2 |p| ≥ |�′| ≥ |T t
max|, the last inequality using the first part of the

claim. This implies |T t
max| − 1 ≤ |�|, and the claim is proven.

Let now N(Λ) be the number of nodes in subtrees and forests associated with the leaves of T ′′. With each
internal node of T ′′ we can associate a node of LSEL which does not belong to any leaf in Λ. Moreover, the
number |T ′′ \Λ| of internal nodes in T ′′ is bigger than the number |Λadd| of internal nodes of T ′

nol to which a
child has been added. Since these subtrees and forests are all distinct, we obtainN(Λ)+ |T ′′ \Λ| < N(Λ)+
|Λadd| ≤ |V |. Hence, using the above claim we can writeN(Λ) ≥

(
|Λ|−|Λadd|

)
|T t

max|+|Λadd|
(
|T t

max|−1
)
,

which implies |T t
max| ≤

(
N(Λ) + |Λadd|

)
/|Λ| ≤ |V |/|Λ|. Since each internal node of T ′′ has at least two

children, we have that |Λ| ≥ |T ′′|/2 ≥ |T ′
nol|/2 = t/2. Hence, we can conclude that |T t

max| ≤ 2|V |/t.

4.1 Lower bounds

We now state and prove a lower bound on the number of mistakes that any prediction algorithm (even knowing
the cutsize budget K) makes on any given tree, when the query set L is 0-forked. The bound depends on the
following quantity: Given a tree T (V,E), a node subset L ⊆ V and an integer K, the component function
Υ(L,K) is the sum of the sizes of theK largest components of T \ L, or |V \ L| if T \ L has less thanK
components.
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Theorem 5 For all trees T = (V,E), for all 0-forked subsets L+ ⊆ V , and for all cutsize budgets K =
0, 1, . . . , |V | − 1, we have that LB(L+,K) ≥ 1

2Υ(L+,K).

Proof: We describe an adversarial strategy causing any algorithm to make at least Υ(L+,K)/2 mistakes
even when the cutsize budget K is known beforehand. Since L+ is 0-forked, each component of T \ L+ is
a hinge-tree. Let Fmax be the set of the K largest hinge-trees of T \ L+, and E(T ) be the set of all edges
in E incident to at least one node of a hinge-tree T . The adversary creates at most one φ-edge3 in each edge
set E(T1) for all 1-hinge-trees T1 ∈ Fmax, exactly one φ-edge in each edge set E(T2) for all 2-hinge-trees
T2 ∈ Fmax, and no φ-edges in the edge set E(T ) of any remaining hinge-tree T �∈ Fmax. This is done as
follows. By performing a depth-first visit of T , the adversary can always assign disagreeing labels to the
two connection nodes of each 2-hinge-tree in Fmax, and agreeing labels to the two connection nodes of each
2-hinge-tree not in Fmax. Then, for each hinge-tree T ∈ Fmax, the adversary assigns a unique random label
to all nodes of T , forcing |T |/2 mistakes in expectation. The labels of the remaining hinge-trees not in Fmax

are chosen in agreement with their connection nodes.

Remark 1 Note that Theorem 5 holds for all query sets, not only those that are 0-forked, since any adver-
sarial strategy for a query set L+ can force at least the same mistakes on the subset L ⊆ L+. Note also
that it is not difficult to modify the adversarial strategy described in the proof of Theorem 5 in order to deal
with algorithms that are allowed to adaptively choose the query nodes in L depending on the labels of the
previously selected nodes. The adversary simply assigns the same label to each node in the query set and then
forces, with the same method described in the proof, 1

2Υ
(
L+, K

2

)
mistakes in expectation on the K

2 largest
hinge-trees. Thus there are at most two φ-edges in each edge set E(T ) for all hinge-trees T , yielding at most
K φ-edges in total. The resulting (slightly weaker) bound is LB(L+,K) ≥ 1

2Υ
(
L+, K

2

)
. Theorem 8 and

Corollary 9 can also be easily rewritten in order to extend the results in this direction.

4.2 Upper bounds

We now bound the total number of mistakes that PRED makes on any labeled tree when the queries are decided
by SEL. We use Lemma 2 and 3, together with the two lemmas below, to prove that mPRED(L

+
SEL,K) ≤

10 LB(L,K) for all cutsize budgets K and for all node subset L ⊆ V such that |L| ≤ 1
8 |L

+
SEL|.

Lemma 6 For all labeled trees (T,y) and for all 0-forked query sets L+ ⊆ V , the number of mistakes made
by PRED satisfiesmPRED(L

+,y) ≤ Υ
(
L+,ΦT (y)

)
.

Proof: As in the proof of Theorem 5, we first observe that each component of T \ L+ is a hinge-tree. Let
E(T ) be the set of all edges in E incident to nodes of a hinge-tree T , and Fφ be the set of hinge-trees such
that, for all T ∈ Fφ, at least one edge of E(T ) is a φ-edge. Since E(T )∩E(T ′) ≡ ∅ for all T , T ′ ∈ T \L+,
we have that |Fφ| ≤ ΦT (y). Moreover, since for any T �∈ Fφ there are no φ-edges in E(T ), the nodes of
T must be labeled as its connections nodes. This, together with the prediction rule of PRED, implies that
PRED makes no mistakes over any of the hinge-trees T �∈ Fφ. Hence, the number of mistakes made by PRED
is bounded by the sum of the sizes of all hinge-trees T ∈ Fφ, which (by definition of Υ) is bounded by
Υ

(
L+,ΦT (y)

)
.

The next lemma, whose proof is a bit involved, provides the relevant properties of the component function
Υ(·, ·). Figure 3 helps visualizing the main ingredients of the proof.

Lemma 7 Given a tree T = (V,E), for all node subsets L ⊆ V such that |L| ≤ 1
2 |LSEL| and for all integers

k, we have: (a) Υ(LSEL, k) ≤ 5Υ(L, k); (b) Υ(LSEL, 1) ≤ Υ(L, 1).

Proof: We prove part (a) by constructing, via SEL, three bijective mappings μ1, μ2, μ3 : PSEL → PL, where
PSEL is a suitable partition of T \LSEL, PL is a subset of 2V such that any S ∈ PL is all contained in a single
connected component of T \ L, and the union of the domains of the three mappings covers the whole set
T \ LSEL. The mappings μ1, μ2 and μ3 are shown to satisfy, for all forests4 F ∈ PSEL,

|F | ≤ |μ1(F )|, |F | ≤ 2|μ2(F )|, |F | ≤ 2|μ3(F )| .

Since each S ∈ PL is all contained in a connected component of T \ L, this we will enable us to conclude
that, for each tree T ′ ∈ T \L, the forest of all trees T \LSEL mapped (via any of these mappings) to any node
subset of T ′ has at most five times the number of nodes of T ′. This would prove the statement in (a).

3A φ-edge (i, j) is one where yi �= yj .
4In this proof, |μ(A)| denotes the number of nodes in the set (of nodes) μ(A). Also, with a slight abuse of notation,

for all forests F ∈ PSEL, we denote by |F | the sum of the number of nodes in all trees of F . Finally, whenever F ∈ PSEL

contains a single tree, we refer to F as it were a tree, rather than a (singleton) forest containing only one tree.
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Figure 3: The upper pane illustrates the different kinds of nodes chosen by SEL. Numbers in the square tags
indicate the first six subtrees T t

max, and their associated nodes it, selected by SEL. Node i1 is a [≥ 1;≥ 1]-
node, i2 is an initial [0;≥ 1]-node, i3 is a (noninitial) [0;≥ 1]-node, i4 is an initial collision node, i5 is a
(noninitial) collision node, and i6 is a [0; 0]-node. As in Figure 2, we denote by 3′ the fork node generated by
the inclusion of i3 into LSEL. Note that node i6 may be chosen arbitrarily among the four nodes in T 4

max \ i4.
The two black nodes are the set of nodes we are competing against, i.e., the nodes in the query set L. Forest
T \ L is made up of one large subtree and two small subtrees. In the lower panes we illustrate some steps
of the proof of Lemma 7, with reference to the upper pane. Time t = 2: Trees T 2

max and Ti2 are shown. As
explained in the proof, |Ti2 | ≤ |T 2

max \ Ti2 |. The circled black node is captured by i2. The nodes of tree
T 2

max \ Ti2 are shaded, and can be used for mapping any ζ-component through μ2. Time t = 3: Trees T 3
max

and Ti3 are shown. Again, one can easily verify that |Ti3 | ≤ |T 3
max \ Ti3 |. As before, the nodes of T

3
max \ Ti3

are shaded, and can be used for mapping any ζ-component via μ2. The reader can see that, according to the
injectivity of μ2, these grey nodes are well separated from the ones in T 2

max \ Ti2 . Time t = 4: T 4
max and the

initial collision node i4 are depicted. The latter is enclosed in a circled black node since it captures itself.
Time t = 5, 6: We depicted trees T 5

max and T
6
max, together with nodes i5 and i6. Node i5 is a collision node,

which is not initial since it was already captured by the [0;≥ 1]-node i2. Node i6 is a [0; 0] node, so that the
whole tree T 6

max is completely included in a component (the largest, in this case) of T \ L. Tree T 6
max can be

used for mapping via μ3 any ζ-component. The resulting forest T \L6 includes several single-node trees and
one two-node tree. If i6 is the last node selected by LSEL, then each component of T \ L6 can be exploited
by mapping μ1, since in this specific case none of these components contains nodes of L, i.e., there are no
ζ-components left.

The construction of these mappings requires some auxiliary definitions. We call ζ-component each con-
nected component of T \LSEL containing at least one node of L. Let it be the t-th node selected by SEL during
the incremental construction of the query set LSEL. We distinguish between four kinds of nodes chosen by
SEL—see Figure 3 for an example.
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Node it is:

1. A collision node if it belongs to LSEL ∩ L;

2. a [0; 0]-node if, at time t, the tree T t
max does not contain any node of L;

3. a [0;≥ 1]-node if, at time t, the tree T t
max contains k ≥ 1 nodes j1, . . . , jk ∈ L all belonging to the same

connected component of T t
max \ {it};

4. a [≥ 1;≥ 1]-node if it �∈ L and, at time t, the tree T t
max contains k ≥ 2 nodes j1, . . . , jk ∈ L, which do

not belong to the same connected component of T t
max \ {it}.

We now turn to building the three mappings.
μ1 simply maps each tree T ′ ∈ T \ LSEL that is not a ζ-component to the node set of T ′ itself. This

immediately implies |F | ≤ |μ1(F )| for all forests F (which are actually single trees) in the domain of μ1.
Mappings μ2 and μ3 deal with the ζ-components of T \LSEL. Let Z be the set of all such ζ-components, and
denote by V0;0, V0;1, and V1;1 the set of all [0; 0]-nodes, [0;≥ 1]-nodes, and [≥ 1;≥ 1]-nodes, respectively.
Observe that |V1;1| < |L|. Combined with the assumption |LSEL| ≥ 2|L|, this implies that |V0;0|+ |V0;1| plus
the total number of collision nodes must be larger than |L|; as a consequence, |V0;0| + |V0;1| > |Z|. Each
node it ∈ V0;1 chosen by SEL splits the tree T t

max into one component Tit
containing at least one node of L

and one or more components all contained in a single tree T ′
it
of T \L. Now mapping μ2 can be constructed

incrementally in the following way. For each [0;≥ 1]-node selected by SEL at time t, μ2 sequentially maps
any ζ-component generated to the set of nodes in T t

max \ Tit
, the latter being just a subset of a component of

T \ L. A future time step t′ > t might feature the selection of a new [0;≥ 1]-node within Tit
, but mapping

μ2 would cover a different subset of such component of T \ L. Now, applying Lemma 2 to tree T t
max, we

can see that |T t
max \ Tit

| ≥ |T t
max|/2. Since the selection rule of SEL guarantees that the number of nodes in

T t
max is larger than the number of nodes of any ζ-component, we have |F | ≤ 2|μ2(F )|, for any ζ-component
F considered in the construction of μ2.

Mapping μ3 maps all the remaining ζ-components that are not mapped through μ2. Let ∼ be an equiv-
alence relation over V0;0 defined as follows: i ∼ j iff i is connected to j by a path containing only [0; 0]-
nodes and nodes in V \ (LSEL ∪ L). Let it1 , it2 , . . . , itk

be the sequence of nodes of any given equivalence
class [C]∼, sorted according to SEL’s chronological selection. Lemma 4 applied to tree T t1

max shows that
|T tk

max| ≤ 2|T t1
max|/k. Moreover, the selection rule of SEL guarantees that the number of nodes of T

tk

max
cannot be smaller than the number of nodes of any ζ-component. Hence, for each equivalence class [C]∼
containing k nodes of type [0; 0], we map through μ3 a set Fζ of k arbitrarily chosen ζ-components to T t1

max.
Since the size of each ζ-component is ≤ |T tk

max|, we can write |Fζ | ≤ k|T tk

max| ≤ 2|T t1
max|, which implies

|Fζ | ≤ 2|μ3(Fζ)| for all Fζ in the domain of μ3. Finally, observe that the number of ζ-components that are
not mapped through μ2 cannot be larger than |V0;0|, thus the union of mappings μ2 and μ3 do actually map
all ζ-components. This, in turn, implies that the union of the domains of the three mappings covers the whole
set T \ LSEL, thereby concluding the proof of part (a).

The proof of (b) is built on the definition of collision nodes, [0; 0]-nodes, [0;≥ 1]-nodes and [≥ 1;≥ 1]-
nodes given in part (a). Let Lt ⊆ LSEL be the set of the first t nodes chosed by SEL. Here, we make a
further distinction within the collision and [0;≥ 1]-nodes. We say that during the selection of node it ∈ V0;1,
the nodes in L ∩ T t

max are captured by it. This notion of capture extends to collision nodes by saying that
a collision node it ∈ L ∩ LSEL just captures itself. We say that it is an initial [0;≥ 1]-node (resp., initial
collision node) if it is a [0;≥ 1]-node (resp., collision node) such that the whole set of nodes in L captured by
it contains no nodes captured so far. See Figure 3 for reference. The simple observation leading to the proof
of part (b) is the following. If it is a [0; 0]-node, then T t

max cannot be larger than the component of T \L that
contains T t

max, which in turn cannot be larger thanΥ(L, 1). This would already implyΥ(Lt−1, 1) ≤ Υ(L, 1).
Let now it be an initial [0;≥ 1]-node and Tit

be the unique component of T t
max \{it} containing one or more

nodes of L. Applying Lemma 2 to tree T t
max we can see that |Tit

| cannot be larger than |T t
max \ Tit

|,
which in turn cannot be larger than Υ(L, 1). If at time t′ > t the procedure SEL selects it′ ∈ Tit

then
|T t′

max| ≤ |Tit
| ≤ Υ(L, 1). Hence, the maximum integer q such that Υ(Lq, 1) > Υ(L, 1) is bounded by

the number of [≥ 1;≥ 1]-nodes plus the number of initial [0;≥ 1]-nodes plus the number of initial collision
nodes. We now bound this sum as follows. The number of [≥ 1;≥ 1]-nodes is clearly bounded by |L| − 1.
Also, any initial [0;≥ 1]-node or initial collision node selected by SEL captures at least a new node in L,
thereby implying that the total number of initial [0;≥ 1]-node or initial collision node must be ≤ |L|. After
q = 2|L| − 1 rounds, we are sure that the size of the largest tree of T q

max is not larger than the size of the
largest component of T \ L, i.e., Υ(L, 1) .

We now put the above lemmas together to prove our main result concerning the number of mistakes made
by PRED on the query set chosen by SEL.
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Theorem 8 For all trees T and all cutsize budgets K, the number of mistakes made by PRED on the query
set L+

SEL satisfies
mPRED(L

+
SEL,K) ≤ min

L⊆V : |L|≤
1
8 |L+

SEL|

10 LB
(
L,K

)
.

Proof: Pick any L ⊆ V such that |L| ≤ 1
8 |L

+
SEL|. Then

mPRED(L
+
SEL,K)

(Lem. 6)
≤ Υ(L+

SEL,K)
(A)
≤ Υ(LSEL,K)

(Lem. 7 (a))
≤ 5Υ(L+,K)

(Thm. 5)
≤ 10 LB(L+,K)

(B)
≤ 10 LB(L,K) .

Inequality (A) holds because LSEL ⊆ L
+
SEL, and thus T \ L+

SEL has connected components of smaller size than
LSEL. In order to apply Lemma 7 (a), we need the condition |L+| ≤ 1

2 |LSEL|. This condition is seen to hold
after combining Lemma 3 with our assumptions: |L+| ≤ 2|L| ≤ 1

4 |L
+
SEL| ≤

1
2 |LSEL|. Finally, inequality (B)

holds because any adversarial strategy using query set L can also be used with the larger query set L+ ⊇ L.

Note also that Theorem 5 and Lemma 6 imply the following statement about the optimality of PRED over
0-forked query sets.

Corollary 9 For all trees T , for all cutsize budgets K, and for all 0-forked query sets L+ ⊆ V , the number
of mistakes made by PRED satisfiesmPRED(L

+,K) ≤ 2LB
(
L+,K

)
.

In the rest of this section we derive a more intepretable bound on mPRED(L
+,y) based on the function Ψ∗

introduced in [6]. To this end, we prove that LSEL minimizes Ψ∗ up to constant factors, and thus is an optimal
query set according to the analysis of [6].

For any subset V ′ ⊆ V , let Γ(V ′, V \ V ′) be the number of edges between nodes of V ′ and nodes of
V \ V ′. Using this notation, we can write

Ψ∗(L) = max
∅�≡V ′⊆V \L

|V ′|

Γ(V ′, V \ V ′)
.

Lemma 10 For any tree T = (V,E) and any L ⊆ V the following holds.

(a) A maximizer of |V ′|
Γ(V ′,V \V ′) exists which is included in the node set of a single component of T \ L;

(b) Ψ∗(L) ≤ Υ(L, 1).

Proof: Let V ′
max be any maximizer of

|V ′|
Γ(V ′,V \V ′) . For the sake of contradiction, assume that the nodes of

V ′
max belong to k ≥ 2 components T1, T2, . . . , Tk ∈ T \ L. Let V ′

i ⊂ V ′
max be the subset of nodes included

in the node set of Ti, for i = 1, . . . , k. Then |V ′| =
∑

i≤k |V
′
i | and Γ(V ′, V \ V ′) =

∑
i≤k Γ(V ′

i , V \ V ′
i ).

Now let i∗ = argmaxi≤k|V
′
i |/Γ(V ′

i , V \ V ′
i ). Since

(∑
i ai

)/(∑
i bi

)
≤ maxi ai/bi for all ai, bi ≥ 0,

we immediately obtain Ψ(V ′
i∗) ≥ Ψ(V ′

max), contradicting our assumption. This proves (a). Part (b) is an
immediate consequence of (a).

Lemma 11 For any tree T = (V,E) and any 0-forked subset L+ ⊆ V we have Υ(L+, 1) ≤ 2Ψ∗(L+).

Proof: Let Tmax be the largest component of T \ L+ and Vmax be its node set. Since L+ is a 0-forked query
set, Tmax must be either a 1-hinge-tree or a 2-hinge-tree. Since the only edges that connect a hinge-tree to
external nodes are the edges leading to connection nodes, we find that Γ(Vmax, V \ Vmax) ≤ 2. We can now
write

Ψ∗(L+) = max
∅�≡V ′⊆V \L+

|V ′|

Γ(V ′, V \ V ′)
≥

|Vmax|

Γ(Vmax, V \ Vmax)
≥

|Vmax|

2
=

Υ(L+, 1)

2

thereby concluding the proof.

Lemma 12 For any tree T = (V,E) and any subset L ⊆ V we have Ψ∗(L+) ≤ Ψ∗(L).

Proof: Let V ′
max be any set maximizing Ψ∗(L+). Since V ′

max ∈ V \ L+, V ′
max cannot contain any node of

L ⊆ L+. Hence

Ψ∗(L) = max
∅�≡V ′⊆V \L

|V ′|

Γ(V ′, V \ V ′)
≥

|V ′
max|

Γ(V ′
max, V \ V ′

max)
= Ψ∗(L+)

which concludes the proof.

We now put together the previous lemmas to show that the query set LSEL minimizes Ψ∗ up to constant
factors.
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Theorem 13 For any tree T = (V,E) we have Ψ∗(LSEL) ≤ min
L⊆V : |L|≤

1
4 |LSEL|

2Ψ∗(L).

Proof: Let L be a query set such that |L| ≤ |LSEL|/4. Then we have the following chain of inequalities:

Ψ∗(LSEL)
(Lemma 10 (b))

≤ Υ(LSEL, 1)
(Lemma 7 (b))

≤ Υ(L+, 1)
(Lemma 11)

≤ 2Ψ∗(L+)
(Lemma 12)

≤ 2Ψ∗(L) .

In order to apply Lemma 7 (b), we need the condition |L+| ≤ 1
2 |LSEL|. This condition holds because, by

Lemma 3, |L+| ≤ 2|L| ≤ 1
2 |LSEL|.

Finally, as promised, the following corollary contains an interpretable mistake bound for PRED run with
a query set returned by SEL.

Corollary 14 For any labeled tree (T,y), the number of mistakes made by PRED when run with query set
L+
SEL satisfies

mPRED(L
+
SEL,y) ≤ 4 min

L⊆V : |L|≤
1
8 |L+

SEL|

Ψ∗(L)ΦT (y) .

Proof: Observe that PRED assigns labels to nodes in V \ L+
SEL so as to minimize the resulting cutsize given

the labels in the query set L+
SEL. We can then invoke [6, Lemma 1], which bounds the number of mistakes

made by the mincut strategy in terms of the functions Ψ∗ and the cutsize. This yields

mPRED(L
+
SEL,y)

[6, Lemma 1]
≤ 2Ψ∗(L+

SEL)ΦT (y)
(A)
≤ 2Ψ∗(LSEL)ΦT (y)

(Theorem 13)
≤ 4Ψ∗(L)ΦT (y) .

Inequality (A) holds because LSEL ⊆ L+
SEL, and thus T \ L+

SEL has connected components of smaller size
than LSEL. In order to apply Theorem 13, we need the conditon |L| ≤ 1

4 |LSEL|, which follows from a simple
combination of Lemma 3 and our assumptions: |L| ≤ 1

8 |L
+
SEL| ≤

1
4 |LSEL|.

Remark 2 A mincut algorithm exists which efficiently predicts even when the query set L is not 0-forked
(thereby gaining a factor of 2 in the cardinality of the competing query sets L – see Theorem 8 and Corol-
lary 14). This algorithm is a ”batch” variant of the TreeOpt algorithm analyzed in [7]. The algorithm can
be implemented in such a way that the total time for predicting |V | − |L| labels is O(|V |).

4.3 Automatic calibration of the number of queries

A key aspect to the query selection task is deciding when to stop asking queries. Since the more queries are
asked the less mistakes are made afterwards, a reasonable way to deal with this trade-off is to minimize the
number of queries issued during the selection phase plus the number of mistakes made during the prediction
phase. For a given pair A = 〈S, P 〉 of prediction and selection algorithms, we denote by [q+m]A the sum of
queries made by S and prediction mistakes made by P . Similarly to mA introduced in Section 4, [q +m]A
has to scale with the cutsize ΦT (y) of the labeled tree (T,y) under consideration.

As a simple example of computing [q + m]A, consider a line graph T = (V,E). Since each query set
on T is 0-forked, Theorem 5 and Corollary 9 ensure that an optimal strategy for selecting the queries in T is
choosing a sequence of nodes such that the distance between any pair of neighbor nodes in L is equal. The
total number of mistakes that can be forced on V \L is, up to a constant factor,

(
|V |/|L|

)
ΦT (y). Hence, the

optimal value of [q +m]A is about

|L| +
|V |

|L|
ΦT (y) . (1)

Minimizing the above expression over |L| clearly requires knowledge of ΦT (y), which is typically unavail-
able. In this section we investigate a method for choosing the number of queries when the labeling is known
to be sufficiently regular, that is when a bound K is known on the cutsize ΦT (y) induced by the adversarial
labeling.5

We now show that when a bound K on the cutsize is known, a simple modification of SEL(we call it
SEL�) exists which optimizes the [q+m]A criterion. This means that the combination of SEL� and PRED can
trade-off optimally (up to constant factors) queries against mistakes.

5In [1] a labeling y of a graph G is said to be α-balanced if, after the elimination of all φ-edges, each connected
component ofG is not smaller thanα|V | for some known constantα ∈ (0, 1). In the case of labeled trees, theα-balancing
condition is stronger than our regularity assumption. This is because any α-balanced labeling y implies ΦT (y) ≤
1/α − 1. In fact, getting back to the line graph example, we immediately see that, if y is α-balanced, then the optimal
number of queries |L| is order of

p
|V |(1/α − 1), which is also infA[q + m]A.
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Given a selection algorithm S and a prediction algorithm P , define [q +m]〈S,P 〉 by

[q +m]〈S,P 〉 = min
Q≥1

(
Q+mP (LS(Q),K)

)

where LS(Q) is the query set output by S given query budgetQ, andmP (LS(Q),K) is the maximum number
of mistakes made by P with query setLS(Q) on any labeling y withΦT (y) ≤ K—see definition in Section 4.
Define also [q + m]OPT = infS,P [q + m]〈S,P 〉, where OPT = 〈S∗, P ∗〉 is an optimal pair of selection and
prediction algorithms. If SEL knows the size of the query set L∗ selected by S∗, so that SEL can choose a
query budget Q = 8|L∗|, then a direct application of Theorem 8 guarantees that |L+

SEL| +mPRED(L
+
SEL,K) ≤

10 [q + m]OPT. We now show that SEL�, the announced modification of SEL, can efficiently search for a
query set size Q such that Q + mPRED(L

+
SEL(Q),K) = O

(
[q + m]OPT

)
when only K, rather than |L∗|, is

known. In fact, Theorem 5 and Corollary 9 ensure that mPRED(L
+
SEL,K) = Θ

(
Υ(L+

SEL,K)
)
. When K is

given as side information, SEL� can operate as follows. For each t ≤ |V |, the algorithm builds the query
set L+

t and computes Υ(L+
t ,K). Then it finds the smallest value t∗ minimizing t + Υ(L+

t ,K) over all
t ≤ |V |, and selects LSEL� ≡ Lt∗ . We stress that the above is only possible because the algorithm can
estimate within constant factors its own future mistake bound (Theorem 5 and Corollary 9), and because the
combination of SEL and PRED is competitive against all query sets whose size is a constant fraction of |L+

SEL|
—see Theorem 8. Putting together, we have shown the following result.

Theorem 15 For all trees (T,y), for all cutsize budgets K, and for all labelings y such that ΦT (y) ≤ K,
the combination of SEL� and PRED achieves |LSEL�| +mPRED(L

+
SEL�,K) = O

(
[q +m]OPT

)
whenK is given

to SEL� as input.

Just to give a few simple examples of how SEL� works, consider a star graph. It is not difficult to see that
in this case t∗ = 1 independent of K, i.e., SEL� always selects the center of the star, which is intuitively
the optimal choice. If T is the “binary system” mentioned in the introduction, then t∗ = 2 and SEL� always
selects the centers of the two stars, again independent of K. At the other extreme, if T is a line graph, then
SEL� picks the query nodes in such a way that the distance between two consecutive nodes of L in T is (up to
a constant factor) equal to

√
|V |/K. Hence |L| = Θ(

√
|V |K), which is the minimum of (1) over |L| when

ΦT (y) ≤ K.

5 On the prediction of general graphs

In this section we provide a general lower bound for prediction on arbitrary labeled graphs (G,y). We then
contrast this lower bound to some results contained in Afshani et al. [1].

Let ΦR
G(y) be the sum of the effective resistances (see, e.g., [9]) on the φ-edges of G = (V,E). The

theorem below shows that any prediction algorithm using any query set L such that |L| ≤ 1
4 |V | makes at

least order of ΦR
G(y) mistakes. This lower bound holds even if the algorithm is allowed to use a randomized

adaptive strategy for choosing the query set L, that is, a randomized strategy where the next node of the query
set is chosen after receiving the labels of all previously chosen nodes.

Theorem 16 Given a labeled graph (G,y), for all K ≤ |V |/2, there exists a randomized labeling strategy
such that for all prediction algorithms A choosing a query set of size |L| ≤ 1

4 |V | via a possibly randomized
adaptive strategy, the expected number of mistakes made by A on the remaining nodes V \L is at leastK/4,
while ΦR

G(y) ≤ K.

The above lower bound (whose proof is omitted) appears to contradict an argument by Afshani et al. [1,
Section 5]. This argument establishes that for any ε > 0 there exists a randomized algorithm using at most
K ln(3/ε) + K ln(|V |/K) + O(K) queries on any given graph G = (V,E) with cutsize K, and making
at most ε|V | mistakes on the remaining vertices. This contradiction is easily obtained through the following
simple counterexample: assume G is a line graph where all node labels are +1 but for K = o

(
|V |/ ln |V |

)
randomly chosen nodes, which are also given random labels. For all ε = o

(
K
|V |

)
, the above argument implies

that order ofK ln |V | = o(|V |) queries are sufficient to make at most ε|V | = o(K)mistakes on the remaining
nodes, among which Ω(K) have random labels —which is clearly impossible.

6 Efficient Implementation

In this section we describe an efficient implementation of SEL and PRED. We will show that the total time
needed for selecting Q queries is O(|V | logQ), the total time for predicting |V | − Q nodes is O(|V |), and
that the overall memory space is again O(|V |).
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In order to locate the largest subtree of T \Lt−1, the algorithmmaintains a priority deque [8]D containing
at most Q items. This data-structure enables to find and eliminate the item with the smallest (resp., largest)
key in time O(1) (resp., time O(logQ)). In addition, the insertion of a new element takes time O(logQ).

Each item inD has two records: a reference to a node in T and the priority key associated with that node.
Just before the selection of the6 t-th query node it, the Q references point to nodes contained in the Q largest
subtrees in T \ Lt−1, while the corresponding keys are the sizes of such subtrees. Hence at time t the item
top of D having the largest key points to a node in T t

max.
First, during an initialization step, SEL creates, for each edge (i, j) ∈ E, a directed edge [i, j] from i to

j and the twin directed edge [j, i] from j to i. During the construction of LSEL the algorithm also stores and
maintains the current size σ(D) of D, i.e., the total number of items contained in D. We first describe the
way SEL finds node it in T t

max. Then we will see how SEL can efficiently augment the query set LSEL to
obtain L+

SEL.
Starting from the node r of T t

max referred to by
7 D, SEL performs a depth-first visit of T t

max, followed by
the elimination of the item with the largest key in D. For the sake of simplicity, consider T t

max as rooted at
node r. Given any edge (i, j), we let Ti and Tj be the two subtrees obtained from T t

max after removing edge
(i, j), where Ti contains node i, and Tj contains node j. During each backtracking step of the depth-first visit
from a node i to a node j, SEL stores the number of nodes |Ti| contained in Ti. This number gets associated
with [j, i]. Observe that this task can be accomplished very efficiently, since |Ti| is equal to 1 plus the number
of nodes of the union of Tc(i) over all children c(i) of i. These numbers can be recursively calculated by
summing the size values that SEL associates with all direct edges [i, c(i)] in the previous backtracking steps.
Just after storing the value |Ti|, the algorithm also stores |Tj | = |T t

max| − |Ti| and associates this value with
the twin directed edge [i, j]. The size of T t

max is then stored in D as the key record of the pointer to node r.
It is now important to observe that the quantity σ(T t

max, i) used by SEL (see Section 3) is simply the
largest key associated with the directed edges [i, j] over all j such that (i, j) is an edge of T t

max. Hence, a new
depth-first visit is enough to find in time O(|T t

max|) the t-th node it = arg mini∈T t
max
σ(T t

max, i) selected by
SEL. Let N(it) be the set of all nodes adjacent to node it in T t

max. For all nodes i
′ ∈ N(it), SEL compares

|Ti′ | to the smallest key bottom stored in D. We have three cases:
1. If |Ti′ | ≤ bottom and σ(D) ≥ Q−t then the algorithm does nothing, since Ti′ (or subtrees thereof) will
never be largest in the subsequent steps of the construction of LSEL, i.e., there will not exist any node it′
with t′ > t such that it′ ∈ Ti′ .

2. If |Ti′ | ≤ bottom and σ(D) < Q− t, or if |Ti′ | > bottom and σ(D) < Q then SEL inserts a pointer to
i′ together with the associated key |Ti′ |. Note that, since D is not full (i.e., σ(D) < Q), the algorithm
need not eliminate any item inD.

3. If |Ti′ | > bottom and σ(D) = Q then SEL eliminates from D the item having the smallest key, and
inserts a pointer to i′, together with the associated key |Ti′ |.

Finally, SEL eliminates node it and all edges (both undirected and directed) incident to it. Note that this
elimination implies that we can easily perform a depth-first visit within T s

max for each s ≤ Q, since T
s
max is

always completely disconnected from the rest of the tree T .
In order to turnLSEL intoL

+
SEL, the algorithm proceeds incrementally, using a technique borrowed from [7].

Just after the selection of the first node i1, a depth-first visit starting from i1 is performed. During each back-
tracking step of this visit, the algorithm associates with each edge (i, j), the closer node to i1 between the two
nodes i and j. In other words, SEL assigns a direction to each undirected edge (i, j) so as to be able to effi-
ciently find the path connecting each given node i to i1. When the t-th node it is selected, SEL follows these
edge directions from it towards i1. Let us denote by π(i, j) the path connecting node i to node j. During the
traversal of π(i1, it), the algorithm assigns a special mark to each visited node, until the algorithm reaches the
first node j ∈ π(i1, it) which has already been marked. Let η(i, L) be the maximum number of edge disjoint
paths connecting i to nodes in the query set L. Observe that all nodes i for which η(i, Lt) > η(i, Lt−1) must
necessarily belong to π(it, j). We have η(it, Lt) = 1, and η(i, Lt) = 2, for all internal nodes i in the path
π(it, j). Hence, j is the unique node that we may need to add as a new fork node (if j �∈ FORK(Lt−1)).
In fact, j is the unique node such that the number of edge-disjoint paths connecting it to query nodes may
increase, and be actually larger than 2.

Therefore if j ∈ L+
t−1 we need not add any fork node during the incremental construction of L

+
SEL. On the

other hand, if j �∈ L+
t−1 then η(i, Lt−1) = 2, which implies η(i, Lt) = 3. This is the case when SEL views j

as new fork node to be added to the query set LSEL under consideration.
In order to bound the total time required by SEL for selecting Q nodes, we rely on Lemma 4, showing

that |T t
max| ≤ 2|V |/t. The two depth-first visits performed for each node it take O(|T t

max|) steps. Hence
the overall running time spent on the depth-first visits is O(

∑
t≤Q 2|V |/t) = O(|V | logQ). The total time

6If t = 1 the priority dequeD is empty.
7In the initial step t = 1 (i.e., when T t

max ≡ T ) node r can be chosen arbitrarily .
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spent for incrementally finding the fork nodes of LSEL is linear in the number of nodes marked by the algo-
rithm, which is equal to |V |. Finally, handling the priority deque D takes |V | times the worst-case time for
eliminating an item with the smallest (or largest) key or adding a new item. This is again O(|V | logQ).

We now turn to the implementation of the prediction phase. PRED operates in two phases. In the first
phase, the algorithm performs a depth-first visit of each hinge-tree T , starting from each connection node
(thereby visiting the nodes of all 1-hinge-tree once, and the nodes of all 2-hinge-tree twice). During these
visits, we add to the nodes a tag containing (i) the label of node iT from which the depth-first visit started,
and (ii) the distance between iT and the currently visited node. In the second phase, we perform a second
depth-first visit, this time on the whole tree T . During this visit, we predict each node i ∈ V \ L with the
label coupled with smaller distance stored in the tags of8 i. The total time of these visits is linear in |V | since
each node of T gets visited at most 3 times.

7 Conclusions and ongoing work

The results proven in this paper characterize, up to constant factors, the optimal algorithms for adversarial
active learning on trees in two main settings. In the first setting the goal is to minimize the number of mistakes
on the non-queried vertices under a certain query budget. In the second setting the goal is to minimize the
sum of queries and mistakes under no restriction on the number of queries.

An important open question is the extension of our results to the general case of active learning on graphs.
While a direct characterization of optimality on general graphs is likely to require new analytical tools, an
alternative line of attack is reducing the graph learning problem to the tree learning problem via the use of
spanning trees. Certain types of spanning trees, such as random spanning trees, are known to summarize
well the graph structure relevant to passive learning —see, e.g., [7]. In the case of active learning, however,
we want good query sets on the graph to correspond to good query sets on the spanning tree, and random
spanning trees may fail to do so in simple cases. For example, consider a set ofm cliques connected through
bridges, so that each clique is connected to, say, k other cliques. The breadth-first spanning tree of this graph
is a set of connected stars. This tree clearly reveals a query set (the star centers) which is good for regular
labelings (cfr., the binary system example of Section 1). On the other hand, for certain choices ofm and k a
random spanning tree has a good probability of hiding the clustered nature of the original graph, thus leading
to the selection of bad query sets.

In order to gain intuition about this phenomenon, we are currently running experiments on various real-
world graphs using different types of spanning trees, where we measure the number of mistakes made by our
algorithm (for various choices of the budget size) against common baselines.

We also believe that an extension to general graphs of our algorithm does actually exist. However, the
complexity of the methods employed in [6] suggests that techniques based on minimizing Ψ∗ on general
graphs are computationally very expensive.
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Abstract

Solving stochastic optimization problems under partial observability, where one needs to adaptively
make decisions with uncertain outcomes, is a fundamental but notoriously difficult challenge. In this
paper, we introduce the concept of adaptive submodularity, generalizing submodular set functions
to adaptive policies. We prove that if a problem satisfies this property, a simple adaptive greedy
algorithm is guaranteed to be competitive with the optimal policy. We illustrate the usefulness
of the concept by giving several examples of adaptive submodular objectives arising in diverse
applications including sensor placement, viral marketing and pool-based active learning. Proving
adaptive submodularity for these problems allows us to recover existing results in these applications
as special cases and leads to natural generalizations.

1 Introduction
In many natural optimization problems one needs to adaptively make a sequence of decisions, taking into
account observations about the outcome of past decisions. Often, these outcomes are uncertain, and one
may only know a probability distribution over them. Finding optimal policies for decision making in such
partially observable stochastic optimization problems is notoriously intractable. In this paper, we analyze a
particular class of partially observable stochastic optimization problems. We introduce the concept of adaptive
submodularity, and prove that if a problem satisfies this property, a simple adaptive greedy algorithm is
guaranteed to obtain near-optimal solutions. Adaptive submodularity generalizes the notion of submodular-
ity1, which has been successfully used to develop approximation algorithms for a variety of non-adaptive
optimization problems. Submodularity, informally, is an intuitive notion of diminishing returns, which states
that adding an element to a small set helps more than adding that same element to a larger (super-)set. A
celebrated result of Nemhauser et al. (1978) guarantees that for such submodular functions, a simple greedy
algorithm, which adds the element that maximally increases the objective value, selects a near optimal set of k
elements. The challenge in generalizing submodularity to adaptive planning is that feasible solutions are now
policies (decision trees) instead of subsets. We consider a natural analog of the diminishing returns property
for adaptive problems, which reduces to the classical notion of submodular set functions for deterministic
distributions. We show how the results of Nemhauser et al. generalize to the adaptive setting. We further
demonstrate the usefulness of the concept by showing how it captures known results in stochastic optimization
and active learning as special cases, and leads to natural generalizations.

As a first example, consider the problem of deploying a collection of sensors to monitor some spatial
phenomenon. Each sensor can cover a region depending on its sensing range. Suppose we would like to
find the best subset of k locations to place the sensors. In this application, intuitively, adding a sensor helps
more if we have placed few sensors so far and helps less if we have already placed many sensors. We can
formalize this diminishing returns property using the notion of submodularity – the total area covered by the
sensors is a submodular function defined over all sets of locations. Krause and Guestrin (2007) show that
many more realistic utility functions in sensor placement (such as the improvement in prediction accuracy
w.r.t. some probabilistic model) are submodular as well. Now consider the following stochastic variant: Instead
of deploying a fixed set of sensors, we deploy one sensor at a time. With a certain probability, deployed sensors
can fail, and our goal is to maximize the area covered by the functioning sensors. Thus, when deploying the
next sensor, we need to take into account which of the sensors we deployed in the past failed. This problem

1For an extensive treatment of submodularity, see the books of Fujishige (1991) and Schrijver (2003).
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Figure 1: Left: Example policy tree, with edges labelled by state and rewards at (potential) terminal nodes in
the rectangles. Middle and right: Prunings of policy trees T at layers 3 and 1.

has been studied by Asadpour et al. (2008) for the case where each sensor fails independently at random. In
this paper, we show that the coverage objective is adaptive submodular, and use this concept to handle more
general settings (where, e.g., rather than all-or-nothing failures there are different types of sensor failures of
varying severity).

As another example, consider a viral marketing problem, where we are given a social network, and we
want to influence as many people as possible in the network to buy some product. We do that by giving the
product for free to a subset of the people, and hope that they convince their friends to buy the product as well.
Formally, we have a graph, and each edge e is labeled by a number 0 ≤ pe ≤ 1. We “influence” a subset
of nodes in the graph, and for each influenced node, their neighbors get randomly influenced according to
the probability annotated on the edge connecting the nodes. This process repeats, until no further node gets
influenced. Kempe et al. (2003) show that the set function which quantifies the expected number of nodes
influenced is submodular. A natural stochastic variant of the problem is where we pick a node, get to see
which nodes it influenced, then adaptively pick the next node based on these observations and so on. We show
that a large class of such adaptive influence maximization problems satisfies adaptive submodularity.

Our third application is in pool-based active learning, where we are given an unlabeled data set, and we
would like to adaptively pick a small set of examples whose labels imply all other labels. Thus, we want to
pick examples to shrink the remaining version space (the set of consistent hypotheses) as quickly as possible.
Here, we show that the reduction in version space mass is adaptive submodular, and use that observation to
prove that the adaptive greedy algorithm is a near-optimal querying policy, recovering and generalizing results
by Kosaraju et al. (1999) and Dasgupta (2004). Our results for active learning are also related to recent results
of Guillory and Bilmes (2010) who study a generalization of submodular set cover to an interactive setting.
In contrast to our approach however, Guillory and Bilmes (2010) analyze worst-case costs, and use rather
different technical definitions and proof techniques.
In summary, our main contributions are:
• We consider a particular class of adaptive stochastic optimization problems, which we prove to be hard to

approximate in general.
• We introduce the concept of adaptive submodularity, and prove that if a problem instance satisfies this

property, a simple adaptive greedy policy performs near-optimally.
• We illustrate adaptive submodularity on several realistic problems, including Stochastic Maximum

Coverage, Adaptive Viral Marketing and Active Learning. For these applications, adaptive submodularity
allows us to recover known results and prove natural generalizations.

2 Adaptive Stochastic Optimization
Let E be a finite set of items. Each item e ∈ E is in a particular state Φ(e) ∈ O from a set O of possible states.
Hereby, Φ : E → O is a (random) realization of the ground set, indicating which state each item is in. We take
a Bayesian approach and assume that there is a (known) probability distribution P [Φ] over realizations. We
will consider the problem where we sequentially pick an item e ∈ E, get to see its state Φ(e), pick the next
item, get to see its state, and so on. After each pick, our observations so far can be represented as a partial
realization Ψ ⊆ E×O, a function from some subset of E (i.e., the set of items that we already picked) to their
states. A partial realization Ψ is consistent with a realization Φ if they are equal everywhere in the domain of
Ψ. In this case we write Φ ∼ Ψ. If Ψ and Ψ′ are both consistent with some Φ, and dom(Ψ) ⊂ dom(Ψ′), we
say Ψ is a subrealization of Ψ′.

We encode our adaptive strategy for picking items as a policy π, which is a function from a set of partial
realizations to E, specifying which item to pick next under a particular set of observations. If Ψ /∈ dom(π),
the policy terminates (stops picking items) upon observation of Ψ. Technically, we require that the domain of
π is closed under subrealizations. That is, if Ψ′ ∈ dom(π) and Ψ is a subrealization of Ψ′ then Ψ ∈ dom(π).
This condition simply ensures that the decision tree Tπ associated with π as described below is connected.
We define both E(π,Φ) and E(Tπ,Φ) as the set of items picked by π conditioned on realization Φ. We also
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allow randomized policies that are functions from a set of partial realizations to distributions on E.
Each deterministic policy π can be associated with a tree Tπ in a natural way (see Fig. 1 (left) for an

illustration). We create the root of Tπ , and label it with a tuple consisting of a partial realization ∅ and an item
π(∅). Then inductively for each node, if its label is (Ψ, e), we construct a child for it for each state x such that
Ψ ∪ {(e, x)} ∈ dom(π), labeled with (Ψ ∪ {(e, x)} , π(Ψ ∪ {(e, x)})). A missing child for state x simply
means that the policy terminates (stops picking items upon observing x). Thus, the first coordinate of the label
at a node indicates what is known when the policy reaches that node, and the second coordinate indicates what
it will do next. Similarly, randomized policies can be associated with distributions over trees in a natural way.

We wish to maximize, subject to some constraints, a utility function f : 2E ×OE → R≥0 that depends on
which items we pick and which state each item is in. Based on this notation, the expected utility of a policy
π is favg(π) := EΦ[f(E(π,Φ),Φ)]. The goal of the Adaptive Stochastic Maximization problem is to find a
policy π∗ such that

π∗ ∈ arg max
π

favg(π) subject to |E(π,Φ)| ≤ k for all Φ, (1)

where k is a budget on how many items can be picked.
Unfortunately, as we will show in §8, even for linear functions f , i.e., those where f(A,Φ) =

∑
e∈A we,Φ

is simply the sum of weights (depending on the realization Φ), Problems (1) is hard to approximate under
reasonable complexity theoretic assumptions. Despite the hardness of the general problem, in the following
sections we will identify conditions that are sufficient to allow us to approximately solve it.

Incorporating Item Costs. Instead of quantifying the cost of a set E(π,Φ) by the number of elements
|E(π,Φ)|, we can also consider the case where each item e ∈ E has a cost c(e). We show how to handle this
extension and give many other results in the extended version of this paper (Golovin & Krause, 2010).

3 Adaptive Submodularity
We first review the classical notion of submodular set functions, and then introduce the novel notion of adaptive
submodularity.

Submodularity. Let us first consider the simple special case where P [Φ] is deterministic or, equivalently,
|O| = 1. In this case, the realization Φ is known to the decision maker in advance, and thus there is no benefit
in adaptive selection. Thus, Problem (1) is equivalent to finding a set A∗ ⊆ E such that

A∗ ∈ arg max
A⊆E

f(A,Φ) such that |A| ≤ k. (2)

For most interesting classes of utility functions f , this is an NP-hard optimization problem. However, in many
practical problems, such as those mentioned in §1, f(A) = f(A,Φ) satisfies submodularity. A set function
f : 2E → R is called submodular if, whenever A ⊆ B ⊆ E and e ∈ E \B it holds that

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B), (3)

i.e., adding e to the smaller set A increases f at least as much as adding e to the superset B. Furthermore,
f is called monotone, if, whenever A ⊆ B it holds that f(A) ≤ f(B). A celebrated result by Nemhauser
et al. (1978) states that for monotone submodular functions with f(∅) = 0, a simple greedy algorithm that
starts with the empty set, A0 = ∅ and chooses Ai+1 = Ai ∪ {arg maxe∈E\Ai

f(Ai ∪ {e}) guarantees that
f(Ak) ≥ (1−1/e) max|A|≤k f(A). Thus, the greedy setAk obtains at least a (1−1/e) fraction of the optimal
value achievable using k elements. Furthermore, Feige (1998) shows that this result is tight if P 6= NP; under
this assumption no polynomial time algorithm can achieve a (1−1/e+ε)-approximation for any constant ε > 0,
even for the special case of Maximum k-Cover where f(A) is the cardinality of the union of sets indexed byA.

Now let us relax the assumption that P [Φ] is deterministic. In this case, we may still want to find a non-
adaptive solution (i.e., a constant policy πA that always picks set A independently of Φ) maximizing favg(πA).
If f is pointwise submodular, i.e., f(A,Φ) is submodular in A for any fixed Φ, the function f(A) = favg(πA)
is submodular, since nonnegative linear combinations of submodular functions remain submodular. Thus, the
greedy algorithm allows us to find a near-optimal non-adaptive policy.

However, in practice, we may be more interested in obtaining a non-constant policy π, that adaptively
chooses items based on previous observations. Thus, the question is whether there is a natural extension of
submodularity to policies. In the following, we will develop such a notion – adaptive submodularity.

Adaptive submodularity. The key challenge is to find an appropriate generalization of the diminishing
returns condition (3). Informally, our generalization will require that playing a layer k of a policy tree Tπ
earlier in the policy cannot decrease its marginal contribution to the objective. Since there are many more
nodes at layer k than at earlier layers, we consider playing an appropriate distribution at earlier layers to make
the comparison formal.
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We will now formalize the above intuition. Given a tree T = Tπ we define its level-k-pruning T[k] as the
subtree of T induced on all nodes of depth k or less, i.e., those that can be reached from the root via a path of
at most k − 1 edges. Tree pruning is illustrated in Fig. 1. Given two policies π1, π2 associated with trees T1

and T2 we define π1@π2 as the policy obtained by running π1 to completion, and then running policy π2 as if
from a fresh start, ignoring the information gathered during the running of π1. We let T1@T2 denote the tree
associated with policy π1@π2. This concept is illustrated in Fig. 2.

Fix any integers i and j so that 0 ≤ i < j, and any policy π. Define D(T,Ψ, j) to be the distribution on
E induced by executing T under a random realization which is consistent with Ψ, and then outputting the item
selected at depth j in T . For any node u of T = Tπ , let e(u) denote the item selected by u, and let Ψu be the
partial realization encoding all state observations known to T just as it reaches u. As illustrated in Fig. 3, let
Tπ[i]∪{j} be the (random) tree obtained as follows: Start with T[i] and for each of its leaves u and every possible
state o (i.e., those with P [Φ(e(u)) = o | Φ ∼ Ψu] > 0) connect u to a new node which plays a (random) item
e drawn from D(T,Ψu ∪ {(e(u), o)} , j). The new node’s corresponding partial realization, indicating what is
known when it is first reached, is Ψu ∪{(e(u), o)}. Note that if T terminates before selecting j items for some
realizations consistent with Ψ, then D(T,Ψ, j) will select nothing at all with the total conditional probability
mass of such realizations.

We now introduce our generalizations of monotonicity and submodularity to the adaptive setting:

Definition 1 (Adaptive Monotonicity) A function f : 2E × OE → R≥0 is adaptive monotone with re-
spect to distribution P [Φ] if for all policies π, π′ it holds that favg(π) ≤ favg(π′@π), where favg(π) :=
EΦ[f(E(π,Φ),Φ)] is defined w.r.t. P [Φ].

Definition 2 (Adaptive Submodularity) A function f : 2E × OE → R≥0 is adaptive submodular with
respect to distribution P [Φ] if for all policies π and for all 0 ≤ i < j

favg(Tπ[j])− favg(Tπ[j−1]) ≤ E
[
favg(Tπ[i]∪{j})− favg(Tπ[i])

]
(4)

where the expectation is over the random choice of Tπ[i]∪{j} and favg is defined w.r.t. P [Φ].

We will give concrete examples of adaptive monotone and adaptive submodular functions that arise in the
applications introduced in §1 in §5, §6 and §7. It turns out there is an equivalent characterization of adaptive
submodular functions in terms of derivatives of the expected value with respect to each item e, conditioned on
the states of the previously selected items. We denote this derivative by ∆Ψ(e), where Ψ is the current partial
realization. Formally,

∆Ψ(e) := EΦ[f(dom(Ψ) ∪ {e} ,Φ)− f(dom(Ψ),Φ) |Φ ∼ Ψ] . (5)

Proposition 3 A function f : 2E ×OE → R≥0 is adaptive submodular if and only if for all Ψ and Ψ′ such
that Ψ is a subrealization of Ψ′ (i.e., Ψ ⊆ Ψ′), and for all e, we have ∆Ψ′(e) ≤ ∆Ψ(e).

Proof: (⇒) To get from Eq. (4) to ∆Ψ′(e) ≤ ∆Ψ(e), generate an order ≺ for dom(Ψ′) such that each item in
dom(Ψ) is less than each item in dom(Ψ′) \ dom(Ψ). Let e1, e2, . . . , em be the items of dom(Ψ′) in order of
≺. Let em+1 := e. Define a policy tree T that is a path u1, u2, . . . , um, um+1 where each ui is labeled with
partial realization {(ej ,Ψ′(ej)) : j < i} and selects item ei. Then applying Eq. (4) with T and i = |dom(Ψ)|,
j = m+ 1 yields P [Ψ′|Ψ] ·∆Ψ′(e) ≤ P [Ψ′|Ψ] ·∆Ψ(e) and hence ∆Ψ′(e) ≤ ∆Ψ(e).
(⇐) Informally, if ∆Ψ′(e) ≤ ∆Ψ(e) for all Ψ ⊆ Ψ′ and e, then in any tree T moving items from layer j up
to layer i cannot decrease their marginal benefit. Since each item e in layer j of T is selected with the same
probability in Tπ[j] and in Tπ[i]∪{j}, this implies Eq. (4).

Properties of adaptive submodular functions. It can be seen that adaptive monotonicity and adaptive sub-
modularity enjoy similar closure properties as monotone submodular functions. In particular, if w1, . . . , wm ≥
0 and f1, . . . , fm are adaptive monotone submodular w.r.t. distribution P [Φ], then f(A,Φ) =

∑m
i=1 wifi(A,Φ)

is adaptive monotone submodular w.r.t. P [Φ]. Similarly, for a fixed constant c ≥ 0 and adaptive monotone
submodular function f , the function g(E,Φ) = min(f(E,Φ), c) is adaptive monotone submodular. Thus,
adaptive monotone submodularity is preserved by nonnegative linear combinations and by truncation.

4 Guarantee for the Greedy Policy
The greedy policy πgreedy at each time step tries to myopically increase the expected objective value, given its
current observations. That is, suppose f : 2E×OE → R≥0 is the objective, and and Ψ is the partial realization
indicating the states of items selected so far. Then the greedy policy will select the item e maximizing the
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Figure 2: Concatenation of policy trees.

Figure 3: The “collapsed” tree T[i]∪{j} which, speaking informally, plays layer j of T in its layer i + 1. Each leaf
of T[i]∪{j} is depicted as containing the set of items it samples from. The diminishing returns condition for adaptive
submodularity states that the marginal benefit of the jth layer in T may not exceed the marginal benefit of the (i + 1)th

layer in T[i]∪{j}. The latter quantity is the marginal benefit layer (i+ 1) would obtain if each layer (i+ 1) node u selected
its item from the distribution on items selected at layer j by executions of T that reach u. For example, if T has a 30%
chance of picking e as its last item, conditioned on it reaching the layer (i + 1) node labeled d, then the left-most leaf of
T[i]∪{j} picks e with 30% probability and picks c with 70% probability. Alternately, if we use the convention that left
edges correspond to the selected item being in state 0, and right edges correspond to the selected item being in state 1 (as
depicted in Fig. 1), and let Ψ = {(a, 0), (b, 0)}, then we may say that the left-most leaf of T[i]∪{j} picks an item from
distribution D(T,Ψ, j), so that it picks e with probability PΦ [T picks e in layer j | Φ ∼ Ψ] = 0.3, and picks c with
probability PΦ [T picks c in layer j | Φ ∼ Ψ] = 0.7.

expected increase in value, conditioned on the observed states of items it has already selected (i.e., conditioned
on Φ ∼ Ψ). That is, it will select e to maximize the quantity ∆Ψ(e) defined in Eq. (5).

In some applications, finding an item maximizing ∆Ψ(e) may be computationally intractable, and the
best we can do is find an α-approximation to the best greedy move. This means we find an e′ such that
∆Ψ(e′) ≥ 1

α maxe ∆Ψ(e). We call a policy which always selects such an item an α-approximate greedy policy.
In this section we establish that if the objective function is adaptive submodular with respect to the

distribution describing the environment in which we operate, then the greedy policy and any α-approximate
greedy policy inherit precisely the performance guarantees of the greedy and α-approximate greedy algorithms
for classic (nonadaptive) submodular maximization. We have the following result.

Theorem 4 Fix any α ≥ 1. If f is adaptive monotone and adaptive submodular with respect to the distribution
P [Φ], and π is an α-approximate greedy policy, then for all policies π∗ and positive integers `, k

favg(Tπ[`]) >
(

1− e−`/αk
)
favg(Tπ

∗

[k] ).

In particular, with ` = k this implies any α-approximate greedy policy achieves a
(
1− e−1/α

)
approximation

to the expected reward of the best policy, if both are terminated after running for an equal number of steps.

Proof: The proof goes along the lines of the performance analysis of the greedy algorithm for maximizing a
submodular function subject to a cardinality constraint found in Nemhauser et al. (1978). An extension of
that analysis to α-approximate greedy algorithms, which is analogous to ours but for the nonadaptive case, is
shown by Goundan and Schulz (2007). Let T = Tπ[`], T

∗ = Tπ
∗

[k] . Then for all i, 0 ≤ i < `

favg(T ∗) ≤ favg(T[i]@T
∗) (6)

= favg(T[i]) +
k∑
j=1

(
favg(T[i]@T

∗
[j])− favg(T[i]@T

∗
[j−1])

)
(7)

≤ favg(T[i]) +

k∑
j=1

E
[
favg

(
(T[i]@T

∗)[i]∪{i+j}
)
− favg(T[i])

]
(8)

≤ favg(T[i]) + α
k∑
j=1

(
favg(T[i+1])− favg(T[i])

)
(9)
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The first inequality is due to the adaptive monotonicity of f , from which we may infer favg(T2) ≤ favg(T1@T2)
for any T1 and T2. The second is a simple telescoping sum. The third is a direct application of the adaptive
submodularity guarantee of f with T[i]@T

∗
[j] at levels i and i + j, and the fourth is by the definition of

an α-approximate greedy policy. Now define ∆i := favg(T ∗) − favg(T[i]), so that Eq. (9) implies ∆i ≤
αk(∆i −∆i+1), from which we infer ∆i+1 ≤

(
1− 1

αk

)
∆i and hence ∆` ≤

(
1− 1

αk

)`
∆0 < e−`/αk∆0,

where for this last inequality we have used the fact that 1−x < e−x for all x > 0. Thus favg(T ∗)−favg(T[`]) <

e−`/αk
(
favg(T ∗)− favg(T[0])

)
≤ e−`/αkfavg(T ∗) so favg(T ) > (1− e−`/αk)favg(T ∗).

Note that if the greedy rule can be implemented only with small absolute error rather than small relative
error, i.e., ∆Ψ(e′) ≥ maxe ∆Ψ(e)− ε, a similar argument shows that

favg(Tπ[`]) ≥
(

1− e−`/k
)
favg(Tπ

∗

[k] )− `ε.

This is important, since small absolute error can always be achieved (with high probability) whenever f can be
evaluated efficiently, and sampling P (Φ | Ψ) is efficient. In this case, we can approximate

∆Ψ(e) ≈ 1

N

N∑
i=1

[
f(dom(Ψ) ∪ {e} ,Φi)− f(dom(Ψ),Φi)

]
,

where Φi are sampled i.i.d. from P (Φ | Ψ). Note that the characterization of adaptive submodularity in
Proposition 3 allows us to implement an “accelerated” version of the adaptive greedy algorithm using lazy
evaluations of marginal benefits as originally suggested for the nonadaptive case by Minoux (1978).

5 Application: Stochastic Submodular Maximization
As our first application, consider the sensor placement problem introduced in §1. Suppose we would like to
monitor a spatial phenomenon such as temperature in a building. We discretize the environment into a set E of
locations. We would like to pick a subset A ⊆ E of k locations that is most “informative”, where we use a set
function f̂(A) quantifying the informativeness of placement A. Krause and Guestrin (2007) show that many
natural objective functions (such as reduction in predictive uncertainty measured in terms of Shannon entropy)
are monotone submodular.

Now consider the problem, where sensors can fail or partially fail (e.g., be subject to some varying amount
of noise) after deployment. We can model this extension by assigning a state Φ(e) ∈ O to each possible
location, indicating the extent to which a sensor placed at location e is working. To quantify the value of a set
of sensor deployments under a realization Φ indicating to what extent the various sensors are working, we first
define (e, o) for each e ∈ E and o ∈ O, which represents the placement of a sensor in state o at location e.
We then suppose there is a function f̂ : 2E×O → R≥0 which quantifies the informativeness of a set of sensor
deployments in arbitrary states. The utility f(A,Φ) of placing sensors at the locations in A under realization
Φ then is

f(A,Φ) = f̂({(e,Φ(e)) : e ∈ A}).
We aim to adaptively place k sensors to maximize our expected utility. We assume that sensor failures at

each location are independent of each other, i.e., P [Φ] =
∏
e P [Φ(e)] , where P [Φ(e) = o] is the probability

that a sensor placed at location e will be in state o. Goemans and Vondrák (2006) studied a related problem
called Stochastic Covering where the goal is to achieve the maximum attainable objective value at minimum
cost, i.e., their problem generalizes Set Cover in the same way our problem generalizes Maximum k-Cover.
Asadpour et al. (2008) studied a special case of our problem, in which sensors either fail completely (in which
case they contribute no value at all) or work perfectly, under the name Stochastic Submodular Maximization.
They proved that the adaptive greedy algorithm obtains a constant fraction (1− 1/e) approximation to the
optimal adaptive policy, provided f̂ is monotone submodular. We extend their result to multiple types of failures
by showing that f(A,Φ) is adaptive submodular with respect to distribution P [Φ] and then invoking Theorem 4.

Theorem 5 Fix a prior such that P [Φ] =
∏
e∈E P [Φ(e)], and integer k and let the objective function

f̂ : 2E×O → R≥0 be monotone submodular. Let π be the adaptive greedy policy attempting to maximize f ,
and let π∗ be any policy. Then

favg(Tπ[k]) ≥
(

1− 1

e

)
favg(Tπ

∗

[k] ).

Proof: We prove Theorem 5 by first proving f is adaptive monotone and adaptive submodular in this model,
and then applying Theorem 4. Adaptive monotonicity is readily proven after observing that f(·,Φ) is monotone
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for each Φ, and noting that for any Φ, T1 and T2, we have E(T2,Φ) ⊆ E(T1@T2,Φ). Moving on to adaptive
submodularity, fix any T and i < j. We prove Eq. (4) using the alternate characterization of Proposition 3.
We use a coupled distribution over the realizations seen when running T[j] and T[i]∪{j}, such that the same
realization is sampled for both. For any partial realization Ψ encoding the observations made immediately
before reaching a level i + 1 node, and any ground set item e such that e is in the support of D(T,Ψ, j),
consider the expected marginal contribution of e to the objective conditioned on the fact that the policy has
observed Ψ for trees T and T[i]∪{j}. In both cases e is equally likely to be selected by the policy, and is equally
likely be in any given state, since Φ(e) is independent of {Φ(e′) : e′ ∈ E \ {e}}. However, its marginal
contribution under T[j] can be at most that under T[i]∪{j} by the submodularity of f̂ , since in the former case
there are potentially more items in the base set to which we add (e,Φ(e)) (namely, the realized versions
(e′,Φ(e′)) of those items e′ selected in layers i+ 1 through j − 1), but there are never fewer items in it.

6 Application: Adaptive Viral Marketing
For our next application, consider the following scenario. Suppose we would like to generate demand for a
genuinely novel product. Potential customers do not realize how valuable the new product will be in their lives,
and conventional advertisements are failing to induce them to try it. In this case, we may try to spur demand
by offering a special promotional deal to a select few people, and hope that demand builds virally, propagating
through the social network as people recommend the product to their friends and associates. Supposing we
know something about the structure of the social networks people inhabit, and how ideas, innovation, and new
product adoption diffuse through them, this begs the question: to which initial set of people should we offer
the promotional deal, in order to spur maximum demand for our product? We imagine there is a fixed budget
for the promotional campaign, which can be interpreted as a budget k indicating the maximum size of the
initial set of people.

This, broadly, is the viral marketing problem. In the adaptive variant, we may select a person to offer
the promotion to, make some observations about the resulting spread of demand for our product, and repeat.
The same problem arises in the context of spreading technological, cultural, and intellectual innovations,
broadly construed. In the interests of having unified terminology we follow Kempe et al. (2003) and talk of
spreading influence through the social network, where we say people are active if they have adopted the idea
or innovation in question, and inactive otherwise, and that a influences b if a convinces b to adopt the idea or
innovation in question.

There are many ways to model the diffusion dynamics governing the spread of influence in a social network.
We consider a basic and well-studied model, the independent cascade model, described in detail below. For
this model Kempe et al. (2003) obtained a very interesting result; they showed that the eventual spread of
the influence f (i.e., the ultimate number of customers that demand the product) is a monotone submodular
function of the seed set S of initial people. This, in conjunction with the results of Nemhauser et al. (1978)
implies that the natural greedy algorithm obtains at least

(
1− 1

e

)
of the value of the best feasible seed set,

arg maxS:|S|≤k f(S). In this section, we use the idea of adaptive submodularity to extend their results in
two directions simultaneously. First, we extend the guarantees to the adaptive version of the problem, and
show that the a greedy policy obtains at least

(
1− 1

e

)
of the value of the best policy. Second, we achieve this

guarantee not only for the case where our reward is simply the number of influenced people, but also for any
(nonnegative) monotone submodular function of the set of people influenced.

Independent Cascade Model. In this model, the social network is a directed graph G = (V,A) where each
vertex in V is a person, and each edge (u, v) ∈ A has an associated binary random variable Xuv indicating if
u will influence v. That is, Xuv = 1 if u will influence v once it has been influenced, and Xuv = 0 otherwise.
The random variables Xuv are independent, and have known means puv := E [Xuv]. We will call an edge
(u, v) with Xuv = 1 a live edge and an edge with Xuv = 0 a dead edge. When a node u is activated, the edges
Xuv to each neighbor v of u are sampled, and v is activated if (u, v) is live. Influence can then spread from
u’s neighbors to their neighbors, and so on, according to the same process. Once active, nodes remain active
throughout the process, however Kempe et al. (2003) show that this assumption is without loss of generality,
and can be removed.

The Feedback Model. In the Adaptive Viral Marketing problem under the independent cascades model, the
items correspond to people we can “activate” by, e.g., offering them the promotional deal. How we define the
states Φ(u) depends on what information we obtain as a result of activating u. Given the nature of the diffusion
process, activating u can have wide-ranging effects, so the state Φ(u) has more to do with the state of the social
network on the whole than with u in particular. Specifically, we model Φ(u) as a function Φu : A→ {0, 1, ?},
where Φu((u, v)) = 0 means that activating u has revealed that (u, v) is dead, Φu((u, v)) = 1 means that
activating u has revealed that (u, v) is live, and Φu((u, v)) = ? means that activating u has not revealed the
status of (u, v) (i.e., the value of Xuv). We require each realization to be consistent and complete. Consistency
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means that no edge should be declared both live and dead by any two states. That is, for all u, v ∈ V and
a ∈ A, (Φu(a),Φv(a)) /∈ {(0, 1), (1, 0)}. Completeness means that the status of each edge is revealed by
some activation. That is, for all a ∈ A there exists u ∈ V such that Φu(a) ∈ {0, 1}. A consistent and complete
realization thus encodes Xuv for each edge (u, v). Let A(Φ) denote the live edges as encoded by Φ. There are
several candidates for which edge sets we are allowed to observe when activating a node u. We consider the
following two concrete feedback models:

Myopic Feedback: After activating u we get to see the status (live or dead) of all edges exiting u in the social
network, i.e., ∂+(u) := {(u, v) : v ∈ V } ∩A.

Full-Adoption Feedback: After activating u we get to see the status (live or dead) of all edges exiting v, for
all nodes v reachable from u via live edges (i.e., reachable from u in (V,A(Φ)), where Φ is the true
realization.

The Objective Function. In the simplest case, the reward for influencing a set U ⊆ V of nodes is f̂(U) :=
|U |. Kempe et al. (2003) obtain an

(
1− 1

e

)
-approximation for the slightly more general case in which each

node u has a weight wu indicating its importance, and the reward is f̂(U) :=
∑
u∈U wu. We generalize this

result further, to include arbitrary nonnegative monotone submodular reward functions f̂ . This allows us, for
example, to encode a value associated with the diversity of the set of nodes influenced, such as the notion that
it is better to achieve 20% market penetration in five different (equally important) demographic segments than
100% market penetration in one and 0% in the others.

Comparison with Stochastic Submodular Maximization. It is worth contrasting the Adaptive Viral Mar-
keting problem with the Stochastic Submodular Maximization problem of §5. In the latter problem, we can
think of the items as being random independently distributed sets. In Adaptive Viral Marketing by contrast, the
random sets (of nodes influenced when a fixed node is selected) depend on the random status of the edges, and
hence may be correlated through them. Nevertheless, we can obtain the same

(
1− 1

e

)
approximation factor

for both problems.

We are now ready to formally state our result for this section.

Theorem 6 The greedy policy obtains at least
(
1− 1

e

)
of the value of the best policy for the Adaptive Viral

Marketing problem with arbitrary monotone submodular reward functions, in the independent cascade model,
in both feedback models discussed above. That is, if σ(S,Φ) is the set of all activated nodes when S is the
seed set of activated nodes and Φ is the realization, f̂ : 2V → R≥0 is an arbitrary monotone submodular
function indicating the reward for influencing a set, and the objective function is f(S,Φ) := f̂(σ(S,Φ)), then

favg(T greedy
[k] ) ≥

(
1− 1

e

)
favg(T[k])

for all k ∈ N, where T greedy is the policy tree of the greedy policy, and T is any policy tree.

Proof: It suffices to prove that f is adaptive submodular with respect to the probability distribution on
realizations P [Φ], in both feedback models, because then we can invoke Theorem 4 to complete the proof.

We will say we have observed an edge (u, v) if we know its status, i.e., if it is live or dead. We will actually
prove that f is adaptive submodular in any feedback model in which all observed edges (u, v) have u active (pre-
suming the algorithm is aware of this fact). This includes the feedback models described above. Fix any policy
tree T , and integers i < j. We aim to show Eq. (4) from the definition of adaptive submodularity holds, that is

favg(Tπ[j])− favg(Tπ[j−1]) ≤ E
[
favg(Tπ[i]∪{j})− favg(Tπ[i])

]
.

Fix a partial realization Ψ corresponding to the policy tree T ’s knowledge after making i selections, and
sample a node v ∈ V from the social network from D(T,Ψ, j), the distribution on nodes selected by T at
layer j conditioned on the realization being consistent with Ψ (i.e., Φ ∼ Ψ), as described in §3.

We claim that the marginal contribution of v cannot be larger in T[j] than in T[i]∪{j}, despite the fact that
when selecting v the former has observed more edges. We couple the distributions on the executions of T[j]

and T[i]∪{j} so that we can speak of a common Ψ between them. Let S be the random set of nodes activated
by selecting v in T[i]∪{j} conditioned on Ψ, and let S′ be the analogous set for T[j]. For two random subsets
A,B of V , we say A stochastically dominates B if for all U ⊆ V we have P [U ⊆ B] ≤ P [U ⊆ A]. Now fix
any B,B′ ⊆ V such that B ⊆ B′, and note that if S stochastically dominates S′ then for all Φ

ES′ [f(S′ ∪B′,Φ)− f(B′,Φ)] ≤ ES [f(S ∪B,Φ)− f(B,Φ)] (10)
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since S 7→ f(S,Φ) is monotone submodular for all realizations Φ. Let B be the set of nodes activated by the
first i nodes selected when executing T , and let B′ to be the set of nodes activated by the first j − 1 selected
nodes. Then if we take the expectation of Eq. (10) with respect to sampling Φ ∼ Ψ, we get the adaptive
submodularity condition for this i, j and T , conditioned on Φ ∼ Ψ. Taking an appropriate convex combination
of these inequalities over valid choices for Ψ yields the adaptive submodularity condition for our arbitrary
choices of i, j and T , and hence proves the overall adaptive submodularity of f .

We now show that S does in fact stochastically dominate S′. Intuitively, S stochastically dominates S′
because if an edge (v1, v2) has been observed while executing layers in [i+ 1, j − 1] then v1 is already active,
and so activating v cannot result in the activation of v1, i.e., v1 /∈ S′. Moreover if (v1, v2) is live, then v2 is also
already active, so v2 /∈ S′. On the other hand, if (v1, v2) is dead it makes it harder for v to spread influence than
if (v1, v2) is merely unobserved as yet. More formally, consider any v in the support of D(T,Ψ, j); here v can
depend on the partial realization seen by T[j] just before it makes a selection at layer j, which we denote by Ψ′.
Next, fix Φ ∼ Ψ′ and consider the graph (V,A(Φ)) of live edges. We argue that if we “remove” the elements
of dom(Ψ′) \ dom(Ψ) and their effects (i.e., we deactivate the nodes they influenced), then the set of nodes
influenced by playing v can only grow. Let S(Φ) denote the sets of nodes in influenced by playing v assuming
Φ is the true realization and we have already selected dom(Ψ). Let S′(Φ) denote the analogous set if we have
already selected dom(Ψ′). We aim to prove S′(Φ) ⊆ S(Φ). Note S(Φ) is the set of nodes reachable from v via
the live edges A(Φ), excluding already active nodes (i.e., excluding those reachable from any node in dom(Ψ)
via live edges). The analogous observation holds for S′(Φ), where the excluded nodes are those reachable
from any node in dom(Ψ′) via live edges. Since dom(Ψ) ⊂ dom(Ψ′) and the underlying graph (V,A(Φ))
is the same in both cases, we infer S′(Φ) ⊆ S(Φ). Hence conditioning on Ψ′, for all U ⊆ V we have

P [U ⊆ S′(Φ)|Φ ∼ Ψ′] ≤ P [U ⊆ S(Φ)|Φ ∼ Ψ′] .

Removing the conditioning on Ψ′ by taking the expectation over all Ψ′ consistent with Ψ, we infer S
stochastically dominates S′, which completes the proof.

7 Application: Active Learning
In pool-based active learning (McCallum & Nigam, 1998), we are given a set of hypotheses H , and a set of
unlabeled data points X where each x ∈ X is independently drawn from some distribution D. Let L be the set
of possible labels. The goal is to adaptively select points to query (i.e., to obtain labels for) until we can output
a hypothesis h that will have expected error at most ε with probability 1− δ, for some fixed ε, δ > 0. That
is, if h∗ is the target hypothesis (with zero error), and error(h) := Px∼D [h(x) 6= h∗(x)] is the error of h, we
require P [error(h) ≤ ε] ≥ 1− δ. The latter probability is taken with respect to D(X); the learned hypothesis
h and thus error(h) depend on it.

In the case of binary labels L = {−1, 1}, various authors have considered greedy policies which generalize
binary search (Garey & Graham, 1974; Loveland, 1985; Arkin et al., 1993; Kosaraju et al., 1999; Dasgupta,
2004; Guillory & Bilmes, 2009; Nowak, 2009). The simplest of these, called generalized binary search
(GBS) or the splitting algorithm, works as follows. Define the version space V to be the set of hypotheses
consistent with the observed labels (here we assume that there is no label noise). In the worst-case setting,
GBS selects a query x ∈ X that minimizes

∣∣∑
h∈V h(x)

∣∣. In the Bayesian setting we assume we are given
a prior pH over hypotheses; in this case GBS selects a query x ∈ X that minimizes

∣∣∑
h∈V pH(h) · h(x)

∣∣.
Intuitively these policies myopically attempt to shrink a measure of the version space (i.e., cardinality or the
probability mass) as quickly as possible. The former provides anO(log |H|)-approximation for the worst-case
number of queries (Arkin et al., 1993), and the latter provides an O(log 1

minh pH(h) )-approximation for the
expected number of queries (Kosaraju et al., 1999; Dasgupta, 2004) and a natural generalization of GBS
obtains the same guarantees with a larger set of labels (Guillory & Bilmes, 2009). Kosaraju et al. also point
out that running GBS on a modified prior p′H(h) ∝ max

{
pH(h), 1/|H|2 log |H|

}
is sufficient to obtain an

O(log |H|)-approximation.
Viewed from this perspective of the previous sections, shrinking the version space amounts to “covering”

all false hypotheses with stochastic sets (i.e., queries), where query x covers all hypotheses that disagree with
the target hypothesis h∗ at x. That is, x covers {h : h(x) 6= h∗(x)}. As in §6, these sets may be correlated in
complex ways determined by the set of possible hypotheses. Hence the problem is an adaptive stochastic
coverage problem in the same vein as Stochastic Submodular Maximization and Adaptive Viral Marketing,
except that it is a variant of the Set Cover problem (where we wish to find the cheapest set achieving full
coverage) rather than the Maximum Coverage problem (where we want to maximize coverage subject to a
budget constraint). We give general results for this adaptive stochastic coverage variant in the extended version
of this paper (Golovin & Krause, 2010). We prove the following result, which improves the constant in front
of the ln(1/minh pH(h)) to 1. Chakaravarthy et al. (2007) provide a reduction to Set Cover that, with some
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parameters slightly tweaked, can be combined with a Set Cover inapproximability result due to Feige (1998)
to yield a lower bound of (1/2− ε) ln(1/minh pH(h)) assuming NP * DTIME(nO(log logn)).

Theorem 7 In the Bayesian setting in which there is a prior pH on a finite set of hypothesesH , the generalized
binary search algorithm makes OPT ·

(
ln
(

1
minh pH(h)

)
+ 1
)

queries in expectation to identify a hypothesis
drawn from pH , where OPT is the minimum expected number of queries made by any policy.

Due to space limitations, we defer the proof of Theorem 7 to the longer version of this paper. The proof
relies on the fact that the reduction in version space is adaptive monotone submodular, which we prove
in Proposition 8 below. To define the objective function formally, we first need some notation. Define a
realization Φh for each hypothesis h ∈ H . The ground set is E = X , and the outcomes are binary; we define
O = {−1, 1} instead of using {0, 1} to be consistent with our earlier exposition. For all h ∈ H we set Φh ≡ h,
meaning Φh(x) = h(x) for all x ∈ X . Given observed labels Ψ ⊂ E × O, let V (Ψ) denote the version
space, i.e., the set of hypotheses for which h(x) = Ψ(x) for all x ∈ dom(Ψ). For a set of hypotheses V , let
pH(V ) :=

∑
h∈V pH(h) denote their total prior probability. Finally, let Ψ(S, h) = {(x, h(x)) : x ∈ S} be

the function with domain S that agrees with h on S. We define the objective function by

f(S,Φh) := 1− pH(V (Ψ(S, h))) = pH({Φ : ∃x ∈ S,Φ(x) 6= Φh(x)}) (11)

and use P [Φh] = pH(h) for all h. Note that identifying h∗ as the target hypothesis corresponds to eliminating
everything but h∗ from the version space.

Proposition 8 The version space reduction objective is adaptive monotone and adaptive submodular.

Proof: Adaptive monotonicity is immediate, as additional queries only remove hypotheses from the version
space, and never add to it. We establish the adaptive submodularity of f using the characterization in Proposi-
tion 3. Each query x eliminates some subset of hypotheses, and as more queries are performed, the subset of
hypotheses eliminated by x cannot grow. More formally, consider the expected marginal contribution of x
under two partial realizations Ψ,Ψ′ where Ψ is a subrealization of Ψ′ (i.e., Ψ ⊂ Ψ′), and x /∈ dom(Ψ′). Let
Ψ[e/o] be the partial realization with domain dom(Ψ) ∪ {e} that agrees with Ψ on its domain, and maps e to
o. For each o ∈ O, let ao := p(V (Ψ[x/o])), bo := p(V (Ψ′[x/o])). Since a hypotheses eliminated from the
version space cannot later appear in the version space, we have ao ≥ bo for all o. Next, note the expected
reduction in version space mass (and hence the expected marginal contribution) due to selecting x given partial
realization Ψ is

∆Ψ(x) =
∑
o∈O

ao · P [Φ(x) 6= o | Φ ∼ Ψ] =
∑
o

ao

(∑
o′ 6=o ao′∑
o′ ao′

)
=

∑
o6=o′ aoao′∑
o′ ao′

(12)

The corresponding quantity for Ψ′ has bo substituted for ao in Eq. (12), for each o. Proposition 3 states that
proving adaptive submodularity amounts to showing ∆Ψ(x) ≥ ∆Ψ′(x). Using Eq. (12), it suffices to show
that ∂φ/∂zo ≥ 0 for each o, where φ(~z ) :=

(∑
o6=o′ zozo′

)
/ (
∑
o′ zo′) and we assume each zo ≥ 0 and

zo > 0 for some o. This is because ∂φ/∂zo ≥ 0 for each o implies that growing the version space in any
manner cannot decrease the marginal benefit of query x, and hence shrinking it in any manner cannot increase
the marginal benefit of x. The fact ∂φ/∂zo ≥ 0 for each o can be shown by means of elementary calculus.

Extensions to Arbitrary Costs, Multiple Classes, and Approximate Greedy Policies.
This result easily generalizes to handle the multi-class setting (i.e., |O| ≥ 2), and α-approximate greedy
policies, where we lose a factor of α in the approximation factor. As we describe in the extended version of this
paper, we can generalize adaptive submodularity to incorporate costs on items, which allows us to extend this
result to handle query costs as well. We can therefore recover these extensions of Guillory and Bilmes (2009),
while improving the approximation factor for GBS with item costs to ln

(
1

minh pH(h)

)
+1. Guillory and Bilmes

also showed how to extend the technique of Kosaraju et al. (1999) to obtain an O
(

log
(
|H|maxx c(x)

minx c(x)

))
-

approximation with costs using a greedy policy, which may be combined with our tighter analysis as well
to give a similar result with an improved leading constant. Recently, Gupta et al. (2010) showed how
to simultaneously remove the dependence on both costs and probabilities from the approximation ratio.
Specifically, within the context of studying an adaptive travelling salesman problem they investigated the
Optimal Decision Tree problem, which is equivalent to the active learning problem we consider here. Using a
clever, more complex algorithm than adaptive greedy, they achieve an O (log |H|)-approximation in the case
of non-uniform costs and general priors.
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8 Hardness of Approximation
In this paper, we have developed the notion of adaptive submodularity, which characterizes when certain
adaptive stochastic optimization problems are well-behaved in the sense that a simple greedy policy obtains a
constant factor or logarithmic factor approximation to the best policy. However, without adaptive submodular-
ity, the Adaptive Stochastic Maximization problem (1) is extremely inapproximable, even with (pointwise)
linear objective functions (i.e., those where for each Φ, f : 2E ×OE → R is linear in the first argument): We
cannot hope to achieve an O(|E|1−ε) approximation ratio for this problem, unless the polynomial hierarchy
collapses to ΣP2 . Even worse, we can rule out good bicriteria results under the same assumption.

Theorem 9 In general, for all (possibly non-constant) β ≥ 1, no polynomial time algorithm for Adaptive
Stochastic Maximization with a budget of βk items can approximate the reward of an optimal policy with a
budget of only k items to within a multiplicative factor of O(|E|1−ε/β) for any ε > 0, unless PH = ΣP2 . This
holds even for pointwise linear f .

Proof: We construct a hard instance based on the following intuition. We make the algorithm go “treasure
hunting”. There is a set of t locations {0, 1, , . . . , t− 1}, there is a treasure at one of these locations, and the
algorithm gets unit reward if it finds it, and zero reward otherwise. There are m “maps,” each consisting of
a cluster of s bits, and each purporting to indicate where the treasure is, and each map is stored in a (weak)
secret-sharing way, so that querying few bits of a map reveals nothing about where it says the treasure is.
Moreover, all but one of the maps are fake, and there is a puzzle indicating which map is the correct one
indicating the treasure’s location. Formally, a fake map is one which is probabilistically independent of the
location of the treasure, conditioned on the puzzle.

Our instance will have three types of elements, E = ET ] EM ] EP , where |ET | = t encodes where
the treasure is, |EM | = ms encodes the maps, and |EP | = n3 encodes the puzzle, where m, t, s and n are
specified below. All outcomes are binary, O = {0, 1}. For all e ∈ EM ∪EP , P [Φ(e) = 1] = .5 independently.
The conditional distribution P [Φ(ET ) | Φ(EM ∪ EP )] will be deterministic as specified below. Our objective
function f is linear, and defined as follows:

f(E′,Φ) = |{e ∈ E′ ∩ ET : Φ(e) = 1}|.

We now describe the puzzle, which is to compute i(P ) := (perm(P ) mod p) mod 2` for a suitably sampled
random matrix P , and suitable prime p and integer `, where perm(P ) =

∑
σ∈Sn

∏n
i=1 Piσ(i) is the permanent

of P . We exploit Theorem 1.9 of Feige and Lund (1997) in which they show that if there exist constants η, δ > 0
such that a randomized polynomial time algorithm can compute (perm(P ) mod p) mod 2` correctly with
probability 2−`(1 + 1/nη), where P is drawn uniformly at random from {0, 1, 2, . . . , p− 1}n×n, p is any
prime superpolynomial in n, and ` ≤ p

(
1
2 − δ

)
, then PH = AM = ΣP2 . To encode the puzzle, we fix a prime

p ∈ [2n−2, 2n−1] and use the n3 bits of Φ(EP ) to sample P = P (Φ) (nearly) uniformly at random from
{0, 1, 2, . . . , p− 1}n×n as follows. For a matrix P ∈ Zn×n, we let rep(P ) :=

∑
ij Pij · p(i−1)n+(j−1) define

a base p representation of P . Note rep(·) is one-to-one for n× n matrices with entries in Zp, so we can define
its inverse rep−1(·). The encoding P (Φ) interprets the bits Φ(EP ) as an integer x in [2n

3

], and computes
y = x mod (pn

2

). If x ≤
⌊
2n

3

/pn
2
⌋
pn

2

, then P = rep−1(y). Otherwise, P is the all zero matrix. This

latter event occurs with probability at most pn
2

/2n
3 ≤ 2−n

2

, and in this case we simply suppose the algorithm
under consideration finds the treasure and so gets unit reward. This adds 2−n

2

to its expected reward. So let us
assume from now on that P is drawn uniformly at random.

Next we consider the maps. Partition EM =
⊎m
i=1Mi into m maps Mi, each consisting of s items. For

each map Mi, partition its items into s/ log2 t groups of log2 t bits each, and let vi ∈ {0, 1, . . . , t− 1} be
the XOR of these groups of bits. We say Mi points to vi as the location of the treasure. A priori, each vi is
uniformly distributed in {0, ..., t− 1}. For a particular realization of Φ(EP ∪ EM ), define v(Φ) := vi(P (Φ)).
We set v(Φ) to be the location of the treasure under realization Φ, i.e., we label ET = {e0, e1, . . . , et−1} and
ensure Φ(ej) = 1 if j = vi(P (Φ)), and Φ(e) = 0 for all other e ∈ ET . Note the random variable v = v(Φ) is
distributed uniformly at random in {0, 1, . . . , t−1}. Note that this still holds if we condition on the realizations
of any set of s/ log2 t− 1 items in a map.

Now consider the optimal policy with a budget of k = n3 + s+ 1 items to pick. Clearly, its reward can be
at most 1. However, given a budget of k, a computationally unconstrained policy can exhaustively sample EP ,
solve the puzzle (i.e., compute i(P )), read the correct map (i.e., exhaustively sample Mi(P )), decode the map
(i.e., compute v = vi(P )), and get the treasure (i.e., pick ev) thereby obtaining a reward of one.

Now we give an upper bound on the expected reward R of any randomized polynomial time algorithm
A with a budget of βk items, assuming ΣP2 6= PH. Fix a small constant γ > 0, and set s = n3 and
m = t = n1/γ . We suppose we give A the realizations Φ(EM ) for free. We also replace its budget of
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βk items with a budget of βk specifically for map items in EM and an additional budget of βk specifically
for the treasure locations in ET . Obviously, this can only help it. As noted, if it selects less than s/ log2 t
bits from the map Mi(P ) indicated by P , the distribution over vi(P ) conditioned on those realizations is still
uniform. Of course, knowledge of vi for i 6= i(P ) is useless for getting reward. Hence A can try at most
βk log2(t)/s = o(βk) maps in an attempt to find Mi(P ). Note that if we have a randomized algorithm which
given a random P drawn from {0, 1, 2, . . . , p− 1}n×n always outputs a set S of integers of size α such that
P [i(P ) ∈ S] ≥ q, then we can use it to construct a randomized algorithm that, given P , outputs an integer
x such that P [i(P ) = x] ≥ q/α, simply by running the first algorithm and then selecting a random element
of S. If A does not find Mi(P ), the distribution on the treasure’s location is uniform given its knowledge.
Hence it’s budget of βk treasure locations can only earn it expected reward at most βk/t. Armed with these
observations and Theorem 1.9 of Feige and Lund (1997) and our complexity theoretic assumptions, we infer
E [R] ≤ o(βk) · 2−`(1 + 1/nη) + βk/t+ 2−n

2

. Since s = n3 and m = t = n1/γ and γ = Θ(1) and η = 1
and ` = log2m and k = n3 + s+ 1 = 2n3 + 1, we have

E [R] ≤ βk

t
(1 + o(1)) = 2βn3−1/γ(1 + o(1)).

Next note that |E| = t+ms+ n3 = n3+1/γ(1 + o(1)). Straightforward algebra shows that in order to ensure
E [R] = o(β/|E|1−ε), it suffices to choose γ ≤ ε/6. Thus, under our complexity theoretic assumptions, any
polynomial time randomized algorithm A with budget βk achieves at most o(β/|E|1−ε) of the value obtained
by the optimal policy with budget k, so the approximation ratio is ω(|E|1−ε/β).

9 Conclusions
In this paper, we introduced the concept of adaptive submodularity, generalizing submodular set functions to
adaptive policies. Our generalization is based on a natural adaptive analog of the diminishing returns property
well understood for set functions. In the special case of deterministic distributions, adaptive submodularity
reduces to the classical notion of submodular set functions. We proved that guarantees carried by the non-
adaptive greedy algorithm for submodular set functions generalize to a natural adaptive greedy algorithm in
the case of adaptive submodular functions. We illustrated the usefulness of the concept by giving several
examples of adaptive submodular objectives arising in diverse applications including sensor placement, viral
marketing and pool-based active learning. Proving adaptive submodularity for these problems allowed us to
recover existing results in these applications as special cases and leads to natural generalizations. We believe
that our results provide an interesting step in the direction of exploiting structure to solve complex stochastic
optimization problems under partial observability.
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Abstract

We present a new online learning algorithm in the selective sampling framework, where labels must
be actively queried before they are revealed. We prove bounds on the regret of our algorithm and
on the number of labels it queries when faced with an adaptive adversarial strategy of generating
the instances. Our bounds both generalize and strictly improve over previous bounds in similar
settings. Using a simple online-to-batch conversion technique, our selective sampling algorithm can
be converted into a statistical (pool-based) active learning algorithm. We extend our algorithm and
analysis to the multiple-teacher setting, where the algorithm can choose which subset of teachers
to query for each label.

1 Introduction

A selective samplingalgorithm (Cohn et al., 1990; Freund et al., 1997) is an online learning algorithm that
actively decides which labels to query. More precisely, learning takes place in a sequence of rounds. On
roundt, the online learner receives an instancext ∈ R

d and predicts a binary labelŷt ∈ {−1,+1}. Then, the
learner decides whether or not toquerythe true labelyt associated withxt. If the label is queried, the learner
incurs a unit cost and uses the label to improve his future predictions. If the label is not queried, the learner
never knows whether his prediction was correct. Nevertheless, the accuracy of the learner is evaluated on
both queried and unqueried instances. We say that a selective sampling algorithm isrobustif it works even
when the instance sequencex1,x2, ... is generated by anadaptive adversary. Robustness thereby implies a
high level of adaptation to the learning environment.

Inspired by known online ridge regression algorithms (e.g., (Hoerl & Kennard, 1970; Lai & Wei, 1982;
Vovk, 2001; Azoury & Warmuth, 2001; Cesa-Bianchi et al., 2003; Cesa-Bianchi et al., 2005; Li et al., 2008;
Strehl & Littman, 2008; Cavallanti et al., 2009; Cesa-Bianchi et al., 2009)), we begin by presenting a new
robust selective sampling algorithm within the label-noise setting considered in (Cavallanti et al., 2009; Cesa-
Bianchi et al., 2009; Strehl & Littman, 2008). We measure the predictive accuracy of our learner using the
game-theoretic notion ofregret (formally defined below) and prove formal bounds on this quantity. We also
prove bounds on the number of queries issued by the learner. Our bounds are strictly better than the best
available bounds in the robust selective sampling setting, and can be shown to be optimal with respect to
certain parameters. A detailed comparison of our results with the results of the predominant previous papers
on this topic (Cesa-Bianchi et al., 2006; Strehl & Littman, 2008; Cesa-Bianchi et al., 2009) is given in
Section 2.5, after our results are presented.

Selective sampling can be viewed as an online-learning variant of active learning. The literature on active
learning is vast, and we can hardly do it justice here. Recent papers on active learning include (Balcan
et al., 2006; Balcan et al., 2007; Castro & Nowak, 2008; Dasgupta et al., 2008; Dasgupta et al., 2005;
Hanneke, 2007; Hanneke, 2009). All of these papers consider the case where instances are drawn i.i.d. from
a fixed distribution (either known or unknown). As a by-product of our adversarial analysis, we also obtain
a tight regret bound in the case where the instancesxt are generated i.i.d. according to a fixed and unknown
distribution. Moreover, using a simple online-to-batch conversion technique, our online learner becomes a
randomized statistical pool-based active-learning algorithm, with a high-probability risk bound.

In the second part of this paper, we extend our algorithm and analysis to the case where the learner
has access to multiple teachers, each one with a different area of expertise and a different level of overall
competence. In other words, the learner is free to query any subset of teachers and each teacher is capable
of providing accurate labels only within some subset of the instance space. The learner is not given any
information on the expertise region of each teacher, and must infer this information directly from the labels.
Roughly speaking, the goal of the learner is to perform as well as each teacher in his respective area of
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expertise. We first present an online learner that either queriesall of the teachers or does not query any
teacher. We then enhance this learner to query only those teachers it believes to be experts onxt.

The general aim of this line of research is to provide algorithms of practical utility for which we can
also prove formal performance guarantees. The motivation behind selective sampling is the same as the
motivation behind any active learning algorithm: human-generated labels are expensive and therefore we
only want labels that improve our ability to make accurate predictions. Our work within the multiple teacher
setting is motivated by an Internet search company that uses online learning techniques to determine the
results of its search engine. More concretely, the instancext represents the pairing of a search-engine query
with a candidate web page; the goal of the online learner is to determine whether or not this pair constitutes a
good match. The company employs human teachers to provide the correct answer for any instance. Clearly,
there is no way to manually label the millions of daily search engine queries, and some intelligent mechanism
of choosing which instances to label is required. Each teacher provides labels of different quality in different
regions of the instance space. To make accurate predictions, the learner must figure out which teachers to
trust for each instance.

A learning framework sharing similar motivations to ours is the proactive learning setting (Donmez &
Carbonell, 2008; Yang & Carbonell, 2009a), where the learner has access to teachers of different quality,
with associated costs per label. Yang and Carbonell (2009b) presents a theoretical analysis of proactive
learning, however, this analysis relies on the strong assumption that each teacher gives the correct label most
of the time. We make no such assumption in our analysis. Moreover, our setting supports the realistic scenario
where each teacher has a very narrow area of expertise and gives useless labels outside of this area.

2 The Single Teacher Case
In this section, we focus on the standard online selective sampling setting, where the learner has to learn an
accurate predictor while determining whether or not to query the label of each instance it observes. In this
setting, the learner has no control over where the label comes from.

2.1 Preliminaries and Notation

As mentioned above, on roundt of the online learning process, the learner receives inputxt ∈ R
d, predicts

ŷt ∈ {−1,+1}, and chooses whether or not to query the correct labelyt ∈ {−1,+1}. We setZt = 1 if
a query is issued andZt = 0 otherwise. The only assumption we make on the process that generatesxt is
that ‖xt‖ ≤ 1; for all we know instances may be generated by anadaptiveadversary. Note that most of
the previous work on this topic makes stronger assumptions on the process that generatesxt, leading to a
less general setting. As for the labels, we adopt the standard stochastic linear noise1 model for this problem
(Cesa-Bianchi et al., 2003; Cavallanti et al., 2009; Cesa-Bianchi et al., 2009; Strehl & Littman, 2008) and
assume that eachyt ∈ {−1,+1} is sampled according to the lawP (yt = 1 |xt ) = (1 + u

⊤
xt)/2, where

u ∈ R
d is a fixed but unknown vector with‖u‖ ≤ 1. Note that under this setup,E [yt |xt ] = u

⊤
xt,

and we denote the latter by∆t. The learner uses hyperplanes to predict the label on each round. That
is, on roundt the learner predictŝyt = sign(∆̂t) where∆̂t = wt−1

⊤
xt. Let Pt denote the conditional

probabilityP( ·|x1, . . . ,xt−1,xt, y1, . . . , yt−1). We evaluate the accuracy of the learner’s predictions using
its cumulativeregret, defined as

RT =
∑T

t=1

(

Pt(yt∆̂t < 0) − Pt(yt∆t < 0)
)

.

Additionally, we are interested in the number of queries issued by the learnerNT =
∑T

t=1
Zt. Our goal is

to simultaneously bound the cumulative regretRT and the number of queriesNT with high probability over
the random draw of labels.

2.2 Algorithm

The single teacher algorithm is a margin-based selective sampling procedure. The algorithm “Selective Sam-
pler” (Algorithm 1) depends on a confidence parameterδ ∈ (0, 1]. As in known online ridge-regression-like
algorithms (e.g., (Hoerl & Kennard, 1970; Vovk, 2001; Azoury & Warmuth, 2001; Cesa-Bianchi et al., 2003;
Cesa-Bianchi et al., 2005; Li et al., 2008; Strehl & Littman, 2008; Cavallanti et al., 2009; Cesa-Bianchi et al.,
2009)), our algorithm maintains a weight vectorwt (initialized asw0 = 0) and a data correlation matrixAt

(initialized asA0 = I). After receivingxt and predictinĝyt = sign(∆̂t), the algorithm computes an adaptive
data-dependent thresholdθt, defined as

θ2
t = x

⊤
t A−1

t−1xt

(

1 + 4
∑t−1

i=1
Ziri + 36log(t/δ)

)

,

1Thenoise model we are adopting here not only can be made more general (i.e., highly nonlinear) by the use of kernel
functions (see Section 2.2), but has also undergone a rather thorough experimental validation on real-world data (Caval-
lanti et al., 2009; Cesa-Bianchi et al., 2009).
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whereri = x
⊤
i A−1

i xi. Thedefinition of θt derives from our analysis, and can be interpreted as the algo-
rithm’s uncertainty in its own predictions. More precisely, the learner believes that|∆̂t − ∆t| ≤ θt. A query
is issued only if2 |∆̂t| ≤ θt, or in other words, when the algorithm is unsure about the sign of∆t.

It is important to stress howθt depends on the three terms
∑t−1

i=1
Ziri, log(t/δ), andx

⊤
t A−1

t−1xt. We
can prove that

∑t
i=1

Ziri grows only logarithmically with the number of queriesNt, and obviouslylog(t/δ)

grows logarithmically witht. The behavior of the third term,x⊤
t A−1

t−1xt, depends on the relationship between
the current instancext and the previous instances. Ifxt lies along the directions spanned by the previous
instances then we can show thatx

⊤
t A−1

t−1xt tends to shrink as1/Nt. As a result, the thresholdθt is on the
order oflog(t/δ)/Nt and the algorithm keeps querying labels at a slow logarithmic rate. On the other hand,
if the adversary choosesxt to lie outside of the subspace spanned by the previous examples, then the term
x
⊤
t A−1

t−1xt causesθt to be large, and the algorithm is more likely to issue a query. Overall, to ensure a small
uncertainty thresholdθt over all input directions determined by the adversarial choice ofxt, the algorithm
must query on the order oflog(t) labels for each such direction in the instance space.

If the label is not queried, (Zt = 0) then the algorithm does not update its internal state. If the label
is queried (Zt = 1), then the algorithm computes the intermediate vectorw

′
t−1 in such a way that̂∆′

t =

w
′
t−1

⊤
xt is at most one in magnitude. Observe that∆̂t and∆̂′

t have the same sign and only their magnitudes
can differ. In particular, it holds that

∆̂′
t =

{

sgn(∆̂t) if |∆̂t| > 1

∆̂t otherwise .

Next, the algorithm defines the new vectorwt so thatAtwt undergoes an additive update, whereAt is a
rank-one adjustment ofAt−1.

It is not hard to show that this algorithm has a quadratic running time per round, where quadratic means
O(d2) if it is run in primal form, andO(N2

t ) if it is run in dual form (i.e., in a reproducing kernel Hilbert
space). In the dual case, since the algorithm updates only whenZt = 1, the number of labelsNt corresponds
to the number of support vectors used to define the current hypothesis.

2.3 Analysis

We now prove formal guarantees on the regret of the algorithm and the number of labels it queries. Some
details are omitted due to space constraints, and the interested reader is referred to (Dekel et al., 2010) for a
more complete analysis. Following (Cesa-Bianchi et al., 2009), the bounds we give depend on how many of
the (adversarially chosen) inputsxt are close to being complete noise. To capture this dependence, for any
ǫ > 0, define

Tǫ =

T
∑

t=1

11{|∆t| ≤ ǫ} . (1)

Note that if|∆t| ≤ ǫ thenPt(yt = 1) ∈ [1/2 + ǫ, 1/2 − ǫ]. In short,Tǫ is a “hardness” parameter which is
essentially controlled by the adversary. This need not be the case when data is i.i.d. (see Section 2.4). The
following theorem is the main result of this section, and is stated so as to emphasize both the data-dependent
and the time-dependent aspects of our bounds.

Theorem 1 Assume that Selective Sampler is run with confidence parameterδ ∈ (0, 1]. Then with probabil-
ity at least1 − δ it holds that for allT > 0 that

RT ≤ inf
ǫ>0

{

ǫ Tǫ +
2 + 8 log|AT | + 144 log(T/δ)

ǫ

}

= inf
ǫ>0

{

ǫ Tǫ + O
(d log T + log(T/δ)

ǫ

)}

NT ≤ inf
ǫ>0

{

Tǫ + O
( log |AT | log(T/δ) + log2 |AT |

ǫ2

)}

= inf
ǫ>0

{

Tǫ + O
(d2 log2(T/δ)

ǫ2

)}

,

where |AT | is the determinant of the matrixAT .

As in (Cesa-Bianchi et al., 2009) it is easy to see that the algorithm can also be run in an infinite dimen-
sional reproducing kernel Hilbert space. In this case, the dimensiond in the bounds above is replaced by a
quantity that depends on the spectrum of the data’s Gram matrix.

The proof of Theorem 1 splits into a series of lemmas. For everyT > 0 andǫ > 0, we define

UT,ǫ =

T
∑

t=1

Z̄t 11
{

∆t∆̂t < 0
}

and QT,ǫ =

T
∑

t=1

Zt 11
{

∆t∆̂t < 0,∆2
t > ǫ2

}

|∆t| ,

2This is denoted byZt = 11
˘

|∆̂t| ≤ θt} in the algorithm’s pseudocode. Here and throughout11
˘

·
¯

denotes the
indicator function.
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Algorithm 1: Selective Sampler

input confidence levelδ ∈ (0, 1]
initialize w0 = 0, A0 = I
for t = 1, 2, . . .

receive xt ∈ R
d : ||xt|| ≤ 1, and set̂∆t = wt−1

⊤
xt

predict ŷt = sgn(∆̂t) ∈ {−1,+1}

θ2
t = x

⊤
t A−1

t−1xt

(

1 + 4
∑t−1

i=1
Ziri + 36log(t/δ)

)

Zt = 11
{

∆̂2
t ≤ θ2

t

}

∈ {0, 1}
if Zt = 1

query yt ∈ {−1,+1}

w
′
t−1 =

{

wt−1 −
(

|∆̂t|−1

x
⊤

t A−1
t−1xt

)

A−1
t−1xt if |∆̂t| > 1

wt−1 otherwise
At = At−1 + xtx

⊤
t , rt = x

⊤
t A−1

t xt, wt = A−1
t (At−1w

′
t−1 + ytxt)

else
At = At−1, wt = wt−1, rt = 0

whereZ̄t = 1 − Zt. In the above,UT,ǫ deals with rounds where the algorithm does not make a query, while
QT,ǫ deals with rounds where the algorithm does make a query. The proof exploits the potential-based method
(e.g., (Cesa-Bianchi & Lugosi, 2006)) for online ridge-regression-like algorithms introduced in (Azoury &
Warmuth, 2001). See also (Hazan et al., 2006; Dani et al., 2008) for a similar use in different contexts. The
potential function we use is the (quadratic) Bregman divergencedt(u,w) = 1

2
(u − w)⊤At(u − w), where

At is the matrix computed by Selective Sampler at timet. The proof structure is as follows. First, Lemma
2 below decomposes the regretRT into 3 parts:RT ≤ ǫTǫ + UT,ǫ + QT,ǫ. The bound onUT,ǫ is given by
Lemma 3. For the bound onQT,ǫ and the bound on the number of queriesNT , we use Lemmas 4 and 5,
respectively. However, both of these lemmas require that(∆t − ∆̂t)

2 ≤ θ2
t for all t. This assumption is taken

care of by the subsequent Lemma 6. Sinceǫ is a positive free parameter, we can take the infimum overǫ > 0
to get the required results.

Lemma 2 For anyǫ > 0 it holds that RT ≤ ǫTǫ + UT,ǫ + QT,ǫ .

Proof: We have

Pt(∆̂tyt < 0) − Pt(∆tyt < 0) ≤ 11
{

∆̂t∆t ≤ 0
}

∣

∣

∣
2Pt(yt = 1) − 1

∣

∣

∣
= 11

{

∆̂t∆t ≤ 0
}

|∆t|

= 11
{

∆t∆̂t < 0,∆2
t ≤ ǫ2

}

|∆t| + 11
{

∆t∆̂t < 0,∆2
t > ǫ2

}

|∆t|

≤ ǫ 11
{

∆t∆̂t < 0,∆2
t ≤ ǫ2

}

+ 11
{

∆t∆̂t < 0,∆2
t > ǫ2

}

|∆t| (2)

≤ ǫ 11
{

∆t∆̂t < 0,∆2
t ≤ ǫ2

}

+ 11
{

∆t∆̂t < 0,∆2
t > ǫ2, Zt = 0

}

|∆t|

+ 11
{

∆t∆̂t < 0,∆2
t > ǫ2, Zt = 1

}

|∆t|

≤ ǫ 11
{

∆t∆̂t < 0,∆2
t ≤ ǫ2

}

+ Z̄t 11
{

∆t∆̂t < 0,∆2
t > ǫ2

}

+ Zt 11
{

∆t∆̂t < 0,∆2
t > ǫ2

}

|∆t|.

Summing overt = 1 . . . T completes the proof.

Lemma 3 For anyǫ > 0 andT > 0, with probability at least1 − δ it holds that

QT,ǫ ≤
2 + 8 log|AT | + 144 log(T/δ)

ǫ
= O

(

d log T + log(T/δ)

ǫ

)

.

Proof Sketch: Using the fact that sgn(̂∆t) = sgn(∆̂′
t) and the inequality11

{

∆2
t > ǫ2

}

≤ |∆t|/ǫ, we upper

boundQT,ǫ ≤
1

ǫ

∑T
t=1

Zt 11
{

∆̂′
t∆t < 0

}

∆2
t . Moreover,∆̂′

t∆t < 0 implies∆2
t ≤ (∆t − ∆̂′

t)
2 and therefore

QT,ǫ ≤
1

ǫ

∑T
t=1

Zt(∆t − ∆̂′
t)

2. Next, we defineMt = Zt(∆t − yt)(∆t − ∆̂′
t) and note that

T
∑

t=1

Mt =
1

2

T
∑

t=1

Zt(∆t − ∆̂′
t)

2 −
1

2

T
∑

t=1

Zt

(

(yt − ∆̂′
t)

2 − (yt − ∆t)
2
)

.
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We also note that(Mt)
T
t=1 is a martingale difference sequence with|Mi| ≤ 4. Using martingale tail bounds

from (Kakade & Tewari, 2008), we obtain a high probability upper bound on
∑T

t=1
Mt, which implies that

1

ǫ

T
∑

t=1

Zt(∆t − ∆̂′
t)

2 ≤
2

ǫ

T
∑

t=1

Zt

(

(yt − ∆̂′
t)

2 − (yt − ∆t)
2
)

+
144

ǫ
log(T/δ) .

Finally, we use techniques from (Azoury & Warmuth, 2001) to upper bound the above by

4

ǫ

T
∑

t=1

Zt

(

dt−1(u,w′
t−1) − dt(u,w′

t) + 2 log |At| − 2 log |At−1|
)

+
144

ǫ
log(T/δ) .

We are left with a telescoping sum that collapses to the desired upper bound.

Lemma 4 Assumethat (∆t − ∆̂t)
2 ≤ θ2

t holds for allt. Then, for anyǫ > 0, we haveUT,ǫ = 0

Proof: We rewrite our assumption(∆t − ∆̂t)
2 ≤ θ2

t as ∆t∆̂t ≥
∆̂

2
t+∆

2−θ2
t

2
≥ ∆̂

2
t−θ2

t

2
. However, ifZ̄t = 1,

then ∆̂2
t > θ2

t and so∆t∆̂t ≥ 0. Hence, under the above assumption, we can guarantee that for anyt,

Z̄t 11
{

∆t∆̂t < 0
}

= 0, thereby implyingUT,ǫ =
∑T

t=1
Z̄t 11

{

∆t∆̂t < 0,∆2
t > ǫ2

}

= 0.

Lemma 5 Assumethat (∆t − ∆̂t)
2 ≤ θ2

t holds for allt. Then, for anyǫ > 0, we have

NT ≤ Tǫ + O

(

log |AT | log(T/δ) + log2 |AT |

ǫ2

)

= Tǫ + O

(

d2 log2(T/δ)

ǫ2

)

.

Proof Sketch: Defineβt =
ǫ2 x

⊤

t A−1
t−1xt

8 rt
andrewrite

Zt = Zt 11
{

θ2
t < βt

}

+ Zt 11
{

θ2
t ≥ βt

}

= 11
{

∆̂2
t ≤ θ2

t , θ2
t < βt

}

+ Zt 11
{

θ2
t ≥ βt

}

.

We begin by dealing with the first term on the right-hand side above. Our assumption implies that whenever
∆̂2

t ≤ θ2
t it also holds that∆2

t ≤ 4θ2
t . Hence we can upper bound the first term by11

{

∆2
t ≤ 4θ2

t , θ2
t < βt

}

.
Using technical results from (Azoury & Warmuth, 2001), we have thatβt ≤ ǫ2/4, and we can further upper
bound 11

{

∆2
t ≤ 4θ2

t , θ2
t < βt

}

≤ 11
{

∆2
t ≤ ǫ2

}

. Summing overt gives

NT =

T
∑

t=1

Zt ≤ Tǫ +

T
∑

t=1

Zt 11
{

θ2
t ≥ βt

}

.

Next, we use the definitions ofZt, βt andθt to get,

T
∑

t=1

Zt 11
{

θ2
t ≥ βt

}

=

T
∑

t=1

Zt 11
{

8 rt

(

1 + 4
∑t−1

i=1
Ziri + 36 log(t/δ)

)

≥ ǫ2
}

≤
8

ǫ2

T
∑

t=1

Ztrt

(

1 + 4
∑t−1

i=1
Ziri + 36 log(t/δ)

)

.

Once again relying on results from (Azoury & Warmuth, 2001), we have thatZiri ≤ log |Ai| − log |Ai−1|
and the above can be upper bounded by

8

ǫ2
(1 + 36 log(T/δ)) log |AT | +

16

ǫ2
log2 |AT | .

This concludes the proof.

Lemma 6 If Selective Sampler is run with confidence parameterδ ∈ (0, 1], then with probability at least
1 − δ, the inequality(∆t − ∆̂t)

2 ≤ θ2
t holds simultaneously for allt.

Proof Sketch: First note that by Ḧolder’s inequality,

(∆t − ∆̂t)
2 = ((wt−1 − u)

⊤
xt)

2 ≤ 2 x
T
t A−1

t−1xt dt−1(wt−1,u) . (3)
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The algorithm only performs an update whenZt = 1. Since this update is that of online ridge regression, we
can use techniques in (Azoury & Warmuth, 2001) to show that

1

2

t−1
∑

i=1

Zi

(

(yi − ∆̂′
i)

2 − (yi − ∆i)
2
)

≤
1

2
− dt−1(u,wt−1) + 2

∑t−1

i=1
Ziri .

Plugging back into (3) gives

(∆t − ∆̂t)
2 ≤ x

T
t A−1

t−1xt

(

1 + 4
∑t−1

i=1
Ziri −

∑t−1

i=1
Zi

(

(yi − ∆̂′
i)

2 − (yi − ∆i)
2
)

)

. (4)

As in the proof of Lemma 3, we construct the martingale difference sequenceMi = Zi(∆i − yi)(∆i − ∆̂′
i)

and use tail bounds from (Kakade & Tewari, 2008) to prove that for any givent > 1, with probability at least
1 − δ/t2,

−
1

2

t−1
∑

i=1

Zi

(

(yi − ∆̂′
i)

2 − (yi − ∆i)
2
)

≤ 36 log(t/δ) .

Plugging the above into Eq. (4) and recalling the definition ofθt, we have that(∆t − ∆̂t)
2 ≤ θ2

t . A union
bound over allt concludes the proof.

Remark 1 Computingthe intermediate vectorw′
t−1 from wt−1, as defined in the Selective Sampler pseu-

docode, corresponds to projectingwt−1 onto the convex setCt = {w ∈ R
d : |w⊤

xt| ≤ 1} w.r.t. the
Bregman divergencedt−1, i.e., w′

t−1 = argmin
u∈Ct

dt−1(u,wt−1). Notice thatCt includes the unit ball
sincext is normalized. This projection step is needed for technical purposes during the construction of our
bounded martingale difference sequence (see previous lemmas). Unlike similar constructions (e.g. (Hazan
et al., 2006; Dani et al., 2008)), we do not project onto the unit ball, which would involve a line search over
matrices and would slow down the algorithm to a significant extent. Moreover, we can prove that the total
number of times that Selective Sampler projects ontoCt is O

(

d2 log2(T/δ)
)

.

2.4 An Online-to-Batch Conversion

It is instructive to see what the bound in Theorem 1 looks like when we assume that the instancesxt are
drawn i.i.d. according to an unknown distribution over the Euclidean unit sphere, and to compare this bound
to standard statistical learning bounds. We model the distribution of the instances near the hyperplane{x :
u
⊤
x = 0} using the well-knownMammen-Tsybakov low noise condition3 (Tsybakov, 2004):

There existc > 0 andα ≥ 0 such thatP
(

|u⊤
x| < ǫ

)

≤ c ǫα for all ǫ > 0.

We now describe a simple randomized algorithm which, with high probability over the sampling of the data,
returns a linear predictor with a small expected risk (expectation is taken over the randomization of the
algorithm). The algorithm is as follows:

1. Run Algorithm 1 with confidence levelδ on the data(x1, y1), ..., (xT , yT ), and obtain the sequence of
predictorsw0,w1, . . . ,wT−1

2. Pickr ∈ {0, 1, . . . , T − 1} uniformly at random and returnwr.

Due to the unavailability of all labels, standard conversion techniques that return a single deterministic hy-
pothesis (e.g., (Cesa-Bianchi & Gentile, 2008)) do not readily apply here. The following theorem states a
high probability bound on the risk and the label complexity of our algorithm. We omit the proof due to space
constraints.

Theorem 7 Letwr be the linear hypothesis returned by the above algorithm. Then with probability at least
1 − δ we have

Er

[

P ′
r(y w

⊤
r x < 0)

]

≤ P (y u
⊤
x < 0) + O

(

(d log(T/δ))
α+1
α+2 T−α+1

α+2 + log

(

log T

δ

)

/T

)

,

NT = O
(

(d2 log2(T/δ))
α

α+2 T
2

α+2 + log(1/δ)
)

,

whereEr is the expectation over the randomization in the algorithm, andP ′
r(·) denotes the conditional

probability4 P (· |x1, . . . ,xr−1, y1, . . . , yr−1).

3Theconstantc might actually depend on the input dimensiond. For notational simplicity, Theorem 7 regardsc as a
constant, hence it is hidden in the big-oh notation.

4Notice the difference with the conditional probabilityPr(·) defined in Section 2.1.
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As α goes from 0 (no assumptions on the noise) to∞ (hardseparation assumption), the above bound on the
average regret roughly interpolates between1/

√
T and1/T . Correspondingly, the bound on the number of

labelsNT goes fromT to log2 T . In particular, observe that, viewed as a function ofNT (and disregarding log

factors), the instantaneous regret is of the formN
−α+1

2

T . Thesebounds are sharper than those in (Cavallanti
et al., 2009) and, in fact, no further improvement is generally possible (see Castro and Nowak (2008)). The
same rates are obtained by (Hanneke, 2009) under much more general conditions, for less efficient algorithms
that are based on empirical risk minimization.

One might wonder whether an adaptively adversarial model of learning might somehow be overkill for
obtaining i.i.d. results. As a matter of fact, the way our algorithm works makes an adaptively adversarial
analysis a very natural one even for deriving the above i.i.d. results.

2.5 Related Work

Selective sampling is an online learning framework lying between passive learning (where the algorithm has
no control over the learning sequence) and fully active learning (where the learning algorithm is allowed to
select the instancesxt). Recent papers on active learning include (Balcan et al., 2006; Bach, 2006; Balcan
et al., 2007; Castro & Nowak, 2008; Dasgupta et al., 2008; Dasgupta et al., 2005; Hanneke, 2007; Hanneke,
2009). All of these papers consider the case when instances are drawn i.i.d. from a fixed distribution (either
known or unknown). In particular, (Dasgupta et al., 2005) gives an efficient Perceptron-like algorithm for
learning within accuracyǫ the class of homogeneousd-dimensional half-spaces under the uniform distribution
over the unit ball, with label complexity of the formd log 1

ǫ . Still in the i.i.d. setting, more general results
are given in (Balcan et al., 2007). A neat analysis of previously proposed general active learning schemes
(Balcan et al., 2006; Dasgupta et al., 2008) is provided by the aforementioned paper (Hanneke, 2009). Due to
their generality, many of the above results rely on schemes that are computationally prohibitive (exceptions
being the results in (Dasgupta et al., 2005) and the realizable cases analyzed in (Balcan et al., 2007)). Finally,
pool-based active learning scenarios are considered in (Bach, 2006, and the references therein), though the
analysis is only asymptotic in nature and no quantification is given of the trade-off between risk and number
of labels.

The results of Theorem 1 are more in line with the worst-case analyses in (Cesa-Bianchi et al., 2006;
Strehl & Littman, 2008; Cesa-Bianchi et al., 2009). These papers present variants of Recursive Least Squares
algorithms that operate on arbitrary instance sequences. The analysis in (Cesa-Bianchi et al., 2006) is com-
pletely worst case: the authors make no assumptions whatsoever on the mechanism generating instances
or labels; however, they are unable to prove bounds on the label query rate. The setups in (Strehl &
Littman, 2008; Cesa-Bianchi et al., 2009) are closest to ours in that they assume the same linear stochas-
tic noise-model used in our analysis. The algorithm presented in (Strehl & Littman, 2008) approximates
the Bayes margin to within a given accuracyǫ, and queries̃O(d3/ǫ4) labels; this bound is significantly in-
ferior to our bound, and it seems to hold only in the finite-dimensional case. A more precise comparison
can be made to the (expectation) bounds presented in (Cesa-Bianchi et al., 2009), which are of the form

RT ≤ min0<ǫ<1

(

ǫ Tǫ + T 1−κ

ǫ2 + d
ǫ2 lnT

)

, andNT = O (d Tκ lnT ) , whereκ ∈ [0, 1] is a parameter of

their algorithm. In contrast, our bound in Theorem 1 has a sharper dependence onǫ, and a better trade-off
betweenRT andNT . Moreover, unlike the analysis in (Cesa-Bianchi et al., 2009), our analysis covers the
case where the instances are generated by an adaptive adversary.

3 The Multiple Teacher Case

The problem is still online binary classification, where at each time stept = 1, 2, . . . the learner receives
an inputxt ∈ R

d, with ‖xt‖ ≤ 1, and outputs a binary prediction̂yt. However, there are nowK available
teachers, each with his own area of expertise. Ifxt falls within the expertise region of teacherj, then that
teacher can provide an accurate label. After making each binary prediction, the learner chooses if to issue a
query to one or more of theK teachers. The learner is free to query any subset of teachers, but each teacher
charges a unit cost per label. The expertise region of each teacher is unknown to the learner, and can only be
inferred indirectly from the binary labels purchased from that teacher.

Formally, we assume that teacherj is associated with a weight vectoruj ∈ R
d, where‖uj‖ ≤ 1.

If teacherj is queried on roundt, he stochastically generates the binary labelyj,t according to the law
Pt(yj,t = 1|xt) = (1 + ∆j,t)/2, where∆j,t = uj

⊤
xt and, as in Section 2,xt can be chosen adversarially

depending on previousx’s andyj ’s. We consider|∆j,t| to be theconfidenceof teacherj in his label forxt.
When the learner issues a query, he receives nothing other than the binary label itself, and the confidence is
only part of our theoretical model of the teacher. Ifxt is almost orthogonal touj then teacherj has a very
low confidence in his label, and we say thatxt lies outside the expertise region of teacherj.

It is no longer clear how we should evaluate the performance of the learner, since theK teachers will
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often give inconsistent labels on the givenxt, andwe do not have a well defined ground truth to compare
against. Intuitively, we would like the learner to predict the label ofxt as accurately as the teachers who are
experts onxt. To formalize this intuition, define the average margin of a generic subset of teachers5 C ⊆ [K]
as∆C,t = 1

|C|

∑

i∈C ∆i,t. We define the set of experts for each instance using a user-specified parameter
τ > 0. Define

j⋆
t = argmaxj |∆j,t| and Ct = {i : |∆i,t| ≥ |∆j⋆

t ,t| − τ} . (5)

In words,j⋆
t is themost confident teacherat timet, andCt is theset of confident teachersat timet. This

means thatτ is a tolerance parameter that defines how confident a teacher must be, compared to the most
confident teacher, to be considered a confident teacher. Althoughτ does not appear explicitly in the notation
Ct, the reader should keep in mind thatCt and other sets defined later on in this section all depend onτ . Using
the definitions above,∆Ct,t is the average margin of the confident teachers, and we abbreviate∆t = ∆Ct,t.

Now, let yt be the random variable that takes values in{−1, 1}, with Pt(yt = 1|xt) = (1 + ∆t)/2. In
words,yt is the binary label generated according to the average margin of the confident teachers. We consider
the sequencey1, . . . , yT to be our ad-hoc ground-truth, and the goal of our algorithm is to accurately predict
this sequence. Note that an equivalent way of generatingyt is by picking a confident teacherj uniformly
at random fromCt and settingyt = yj,t. Indeed there are other reasonable ways to define the ground-truth
for this problem, however, we feel that our definition coincides with our intuitions on learning from teachers
with different areas of expertise. Ifτ is set to be1, the learner is compared against the average margin of all
K teachers, while ifτ = 0, the learner is compared against the single most confident teacher.

We now describe and analyze two algorithms within the multiple teacher setting. We call these algorithms
“first version” and “second version”. In the first version, the algorithm queries either all of the teachers or
none of the teachers. The second version is more refined in that the algorithm may query a different subset of
teachers on each round.

3.1 Algorithm, First Version

The learner attempts to model each weight vectoruj with a sequence of weight vectors(wj,t)
T
t=1. As in the

single teacher case, the learner maintains a variable thresholdθt, which can be interpreted as the learner’s
confidence in its current set of weight vectors. The learner attempts to mimic the process of generatingyt by
choosing its own set of confident teachers at each time step. Denoting∆̂j,t = wj,t

⊤
xt, the learner defines

ĵt = argmaxj |∆̂j,t| and Ĉt = {i : |∆̂i,t| ≥ |∆̂ĵt,t| − τ − 2θt} ,

whereĵt is the learner’s estimate of the most confident teacher, andĈt is the learner’s estimate of the set of
confident teachers. Note that the definition ofĈt is more inclusive than the definition ofCt in Eq. (5), in that
it also includes teachers whose confidence falls below|∆̂ĵt,t|−τ . This accounts for the uncertainty regarding
the learner’s set of weight vectors.

As above, we define the notation̂∆C,t = 1

|C|

∑

i∈C ∆̂i,t, and abbreviate∆̂t = ∆̂Ĉt,t. The

learner predicts the binary label̂yt = sgn(∆̂t). Let Pt denote the conditional probabilityPt(·) =
P( ·|x1, y1,1 . . . , yK,1,x2, y1,2 . . . , yK,2, . . .xt−1, y1,t−1, . . . yK,t−1,xt), and let the regret of the learner be

RT =

T
∑

t=1

(

Pt(yt∆̂t < 0) − Pt(yt∆t < 0)
)

. (6)

Next, we proceed to describe our criterion for querying teachers. We present a simple criterion that either
setsZt = 1 and queries all of the teachers or setsZt = 0 and queries none of them. Hence, the learner either
incurs a cost ofK or a cost of0 on each round. We partition the set of confident teachersĈt into two sets,

Ĥt = {i : |∆̂i,t| ≥ |∆̂ĵt,t| − τ + 2θt}

B̂t = {i : |∆̂ĵt,t| − τ − 2θt ≤ |∆̂i,t| < |∆̂ĵt,t| − τ + 2θt} .

Ĥt is the set of teachers with especially high confidence, whileB̂t is the set of teachers with borderline
confidence. Intuitively, the learner is unsure whether the teachers inB̂t should or should not be included in
Ĉt. The learner issues a query (to allK teachers) if there exists a setS ⊆ B̂t such that either̂∆t∆̂Ĥt∪S, t < 0

or |∆̂Ĥt∪S, t| ≤ θt. In other words, the learner searches for a subset ofB̂t such that replacinĝBt with that

subset would either flip the sign of̂∆t or make it too small. If a query is issued, each weight vectorwj,t is
updated as in the single teacher case. Pseudocode of this learner is given in Algorithm 2.

5Hereand throughout,[K] = {1, 2, . . . , K}.
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Algorithm 2: Multiple Teacher Selective Sampler – first version

input confidence levelδ ∈ (0, 1], tolerance parameterτ ≥ 0

initialize A0 = I, ∀j ∈ [K] wj,0 = 0

for t = 1, 2, . . .

receive xt ∈ R
d : ||xt|| ≤ 1

θ2
t = x

⊤
t A−1

t−1xt

(

1 + 4
∑t−1

i=1
Ziri + 36log(Kt/δ)

)

∀j ∈ [K] ∆̂j,t = wj,t−1
⊤
xt and ĵt = argmaxj |∆̂j,t|

predict ŷt = sgn(∆̂t) ∈ {−1,+1}

Zt =

{

1 if ∃S ⊆ B̂t : ∆̂t∆̂S∪Ĥt, t < 0 or |∆̂S∪Ĥt, t| ≤ θt

0 otherwise

if Zt = 1

query y1,t, . . . , yK,t

At = At−1 + xtx
⊤
t , rt = x

⊤
t A−1

t xt

for j = 1, . . . ,K

w
′
j,t−1 =

{

wj,t−1 −
(

|∆̂j,t|−1

x
⊤

t A−1
t−1xt

)

A−1
t−1xt if |∆̂j,t| > 1,

wj,t−1 otherwise

wj,t = A−1
t (At−1w

′
j,t−1 + yj,txt)

else
At = At−1, rt = 0 and ∀j ∈ [K] wj,t = wj,t−1

3.2 Analysis, First Version

Our learning algorithm relies on labels it receives from a set of teachers, and therefore our bounds should nat-
urally depend on the ability of those teachers to provide accurate labels for the concrete sequencex1, . . . ,xT .
For example, if an inputxt lies outside the expertise regions of all teachers, we cannot hope to learn anything
from the labels provided by the teachers for this input. Similarly, there is nothing we can do on rounds where
the set of confident teachers is split between two equally confident but conflicting opinions. We count these
difficult rounds by defining, for anyǫ > 0,

Tǫ =

T
∑

t=1

11{|∆t| ≤ ǫ} . (7)

The above is just a multiple teacher counterpart to (1). However it is interesting to note that even in a case
where most teachers have low confidence in their prediction on any given round,Tǫ can still be small provided
that the experts in the field have a confident opinion.

A more subtle difficulty presents itself when the collective opinion expressed by the set of confident
teachers changes qualitatively with a small perturbation of the inputxt or one of the weight vectorsuj . To
state this formally, define for anyǫ > 0

Hǫ,t = {i : |∆i,t| ≥ |∆j⋆
t ,t| − τ + ǫ}

Bǫ,t = {i : |∆j⋆
t ,t| − τ − ǫ ≤ |∆i,t| < |∆j⋆

t ,t| − τ + ǫ} .

The setHǫ,t is the subset of teachers inCt with especially high confidence,ǫ higher than the minimal confi-
dence required for inclusion inCt. In contrast, the setBǫ,t is the set of teachers with borderline confidence:
either teachers inCt that would be excluded if their margin were smaller byǫ, or teachers that are not in
Ct that would be included if their margin were larger byǫ. We say that the average margin of the confident
teachers isunstablewith respect toτ andǫ if |∆t| > ǫ but we can find a subsetS ⊆ Bǫ,t such that either
∆t∆S∪Hǫ,t, t < 0 or |∆S∪Hǫ,t, t| < ǫ. In other words, we are dealing with the situation where∆t is suffi-
ciently confident, but a smallǫ-perturbation to the margins of the individual teachers can cause its sign to flip,
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or its confidence to fall belowǫ. We count the unstable rounds by defining, for any6 ǫ > 0,

T ′
ǫ =

T
∑

t=1

11
{

|∆t| > ǫ
}

11
{

∃S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t, t < 0 ∨ |∆S∪Hǫ,t, t| ≤ ǫ
}

. (8)

Intuitively T ′
ǫ counts the number of rounds on which anǫ-perturbation of the∆t,j of the teachers either

changes the sign of the average margin or results in an average margin close to zero. LikeTǫ, this quantity
measures an inherent hardness of the multiple teacher problem.

The following theorem is the main theoretical result of this section. It provides an upper bound on the
regret of the learner, as defined in Eq. (6), and on the total cost of queries,NT = K

∑T
t=1

Zt. Again, we
stress both the data and the time-dependent aspects of the bound.

Theorem 8 Assume Algorithm 2 is run with a confidence parameterδ > 0. Then with probability at least
1 − δ it holds for allT > 0 that

RT ≤ inf
ǫ>0

{

ǫTǫ + T ′
ǫ + O

(

log |AT | log(KT/δ) + log2 |AT |

ǫ2

)}

= inf
ǫ>0

{

ǫTǫ + T ′
ǫ + O

(

d2 log2(KT/δ)

ǫ2

)}

,

NT ≤ K inf
ǫ>0

{

Tǫ + T ′
ǫ + O

(

log |AT | log(KT/δ) + log2 |AT |

ǫ2

)}

= K inf
ǫ>0

{

Tǫ + T ′
ǫ + O

(

d2 log2(KT/δ)

ǫ2

)}

.

As in the proof of Theorem 1, we begin by decomposing the regret. For anyǫ > 0, Lemma 9 states that
RT ≤ ǫTǫ + T ′

ǫ + UT,ǫ + QT,ǫ, whereTǫ is defined in Eq. (7),T ′
ǫ is defined in Eq. (8), and

UT,ǫ =
∑T

t=1
Z̄t 11

{

∆t∆̂t < 0
}

, QT,ǫ =
∑T

t=1
Zt 11

{

∀S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t
≥ 0, |∆S∪Hǫ,t

| > ǫ
}

.

Tǫ and T ′
ǫ deal with time steps on which the ground truth itself is unreliable,UT,ǫ sums over rounds

where the learner does not make a query, andQT,ǫ sums over rounds where a query is issued. Simi-
larly, for any ǫ > 0, Lemma 10 upper bounds the number of time steps on which a query is issued by
Tǫ + T ′

ǫ + QT,ǫ . Lemma 11 upper boundsQT,ǫ and Lemma 12 upper boundsUT,ǫ. Both lemmas rely
on the assumption that(∆j,t − ∆̂j,t)

2 ≤ θ2
t for all t ∈ [T ] andj ∈ [K]. A straightforward stratification of

Lemma 6 in Section 2 over theK teachers verifies that this condition holds with high probability. The proofs
of the mentioned lemmas are omitted.

Lemma 9 For anyǫ > 0 it holds thatRT ≤ ǫTǫ + T ′
ǫ + UT,ǫ + QT,ǫ.

Lemma 10 For anyǫ > 0, it holds that
∑T

t=1
Zt ≤ Tǫ + T ′

ǫ + QT,ǫ.

Lemma 11 If (∆j,t − ∆̂j,t)
2 ≤ θ2

t holds for allj ∈ [K] andt ∈ [T ], then

QT,ǫ = O

(

log |AT | log(KT/δ) + log2 |AT |

ǫ2

)

= O

(

d2 log2(KT/δ)

ǫ2

)

.

Lemma 12 If (∆j,t − ∆̂j,t)
2 ≤ θ2

t for all j ∈ [K] andt ∈ [T ], thenUT,ǫ = 0 for all ǫ > 0.

3.3 Algorithm, Second Version

The second version differs from the first one in that now each teacherj has its own thresholdθj,t, and also
its own matrixAj,t. As a consequence, the set of confident teachersĈt and the partition ofĈt into highly
confident (̂Ht) and borderline (̂Bt) teachers have to be redefined as follows:

Ĉt = {j : |∆̂j,t| ≥ |∆̂ĵt,t| − τ − θj,t − θĵt,t}, where ĵt = argmaxj |∆̂j,t|,

Ĥt = {i : |∆̂i,t| ≥ |∆̂ĵt,t| − τ + θj,t + maxj∈Ĉt
θj,t},

B̂t =
{

i : |∆̂ĵt,t| − τ − θj,t − θĵt,t
≤ |∆̂i,t| < |∆̂ĵt,t| − τ + θj,t + maxj∈Ĉt

θj,t

}

.

The pseudocode is given in Algorithm 3. Notice that the query condition definingZt now depends on an
average thresholdθS∪Ĥt, t = 1

|S∪Ĥt|

∑

j∈S∪Ĥt
θj,t .

6Noticethat, up to degenerate cases, bothTǫ andT
′

ǫ tend to vanish asǫ → 0. Hence, as in the single teacher case, the
free parameterǫ trades-off hardness terms against regret terms.
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Algorithm 3: Multiple Teacher Selective Sampler – second version

input confidence levelδ ∈ (0, 1], tolerance parameterτ ≥ 0

initialize Aj,0 = I, wj,0 = 0, ∀j ∈ [K]

for t = 1, 2, . . .

receive xt ∈ R
d : ||xt|| ≤ 1

∀j ∈ [K], θ2
j,t = x

⊤
t A−1

j,t−1xt

(

1 + 4
∑t−1

i=1
Zirj,i + 36log(Kt/δ)

)

∀j ∈ [K], ∆̂j,t = wj,t−1
⊤
xt and ĵt = argmaxj |∆̂j,t|

predict ŷt = sgn(∆̂t) ∈ {−1,+1}

Zt =

{

1 if ∃S ⊆ B̂t : ∆̂t∆̂S∪Ĥt, t < 0 or |∆̂S∪Ĥt, t| ≤ θS∪Ĥt, t

0 otherwise

if Zt = 1 andj ∈ Ĉt

query yj,t

Aj,t = Aj,t−1 + xtx
⊤
t , rj,t = x

⊤
t A−1

j,t xt

w
′
j,t−1 =

{

wj,t−1 −
(

|∆̂j,t|−1

x
⊤

t A−1
j,t−1xt

)

A−1
j,t−1xt if |∆̂j,t| > 1,

wj,t−1 otherwise

wj,t = A−1
j,t (Aj,t−1w

′
j,t−1 + yj,txt)

else
Aj,t = Aj,t−1, rj,t = 0 and wj,t = wj,t−1

3.4 Analysis, Second Version

The following theorem bounds the cumulative regret and the total number of queries with high probability.
The proof is similar to the proof of Theorem 8. We keep the definitions of the setsHǫ,t andBǫ,t as given in
Section 3.2, but in the bound onNT in Theorem 13, we replaceT ′

ǫ with the more refined quantityT ′′
ǫ , where

T ′′
ǫ =

T
∑

t=1

|Hǫ,t ∪ Bǫ,t|

K
11
{

|∆t| > ǫ
}

11
{

∃S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t, t < 0 ∨ |∆S∪Hǫ,t, t| ≤ ǫ
}

.

Note thatT ′′
ǫ is similar toT ′

ǫ except that whileT ′
ǫ only counts the number of times that perturbations to the

∆j,t’s lead to conflict or low confidence predictions,T ′′
ǫ counts the fraction of confident teachers involved in

the conflict. If for mostxt only a few of theK teachers are experts (highly confident), then one would expect
T ′′

ǫ to be much smaller thanT ′
ǫ and thus we expect the number of queries to be small.

Theorem 13 Assume Algorithm 3 is run with a confidence parameterδ > 0. Then with probability at least
1 − δ it holds for allT > 0 that

RT ≤ inf
ǫ>0

{

ǫTǫ + T ′
ǫ + O

(

K log |AT | log(KT/δ) + K log2 |AT |

ǫ2

)}

= inf
ǫ>0

{

ǫTǫ + T ′
ǫ + O

(

K d2 log2(KT/δ)

ǫ2

)}

,

NT ≤ K inf
ǫ>0

{

Tǫ + T ′′
ǫ + O

(

K log |AT | log(KT/δ) + K log2 |AT |

ǫ2

)}

= K inf
ǫ>0

{

Tǫ + T ′′
ǫ + O

(

K d2 log2(KT/δ)

ǫ2

)}

.

Note that the above theorem holds at the cost of losing a factorK elsewhere in the regret terms, thereby
making Theorem 8 and Theorem 13 incomparable.

4 Conclusions and Ongoing Research

We introduced a new Ridge-Regression-like algorithm operating in a robust selecting sampling environment,
where the adversary can adapt on the fly to the algorithm’s choices. We gave sharp bounds on the cumulative
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regret and the number of queries made by this algorithm, solvingquestions left open in previous investiga-
tions. We then lifted this machinery to solving the more involved problem where multiple unreliable teachers
are available. We gave two algorithms and corresponding analyses.

We are currently running experiments on real-world data (the experimental setting is somewhat similar to
the one described in (Donmez & Carbonell, 2008)) to see the performance of the multiple teacher algorithms
compared to the simple baseline whereK independent instances of the single teacher algorithm (Algorithm
1) are run in parallel. An implementation issue of the multiple teacher algorithms we have presented is the
exponential explosion that seemingly arises when computingZt, due to the need to check all possible subsets
S ⊆ B̂t. As a matter of fact, this check can be computed efficiently by sorting the teachers according to their
estimated confidence|∆̂j,t|. Though preliminary, our experiments suggest that the multiple teacher algorithm
largely outperforms the baseline, both in terms of accuracy and total number of requested labels.

On the theoretical side, a few points we are presently investigating are the following: i) The bound onNT

in Theorem 1 is tight w.r.t.ǫ (see the lower bound in (Cesa-Bianchi et al., 2009)), but need not be tight w.r.t.
d. This might be due to the way we constructed our martingale argument to prove Lemma 6. ii) As a more
general issue, we are trying to generalize our results to further label noise models, such as logistic models.
iii) The bounds for the multiple teacher algorithms in Theorems 8 and 13 are likely to be suboptimal, and
we are currently trying to better exploit the interaction structure among teachers. iv) Proactive learning, as
presented in (Donmez & Carbonell, 2008; Yang & Carbonell, 2009b; Yang & Carbonell, 2009a), also allows
for different costs for different teachers, the idea being that more expensive teachers may be more reliable.
We are trying to see whether we can incorporate costs into our multiple teacher analysis.
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Abstract

Given some arbitrary distributionD over{0, 1}n and arbitrary target functionc∗, the problem of
agnostic learning of disjunctions is to achieve an error rate comparable to the errorOPTdisj of
the best disjunction with respect to(D, c∗). Achieving errorO(n · OPTdisj) + ǫ is trivial, and
Winnow [13] achieves errorO(r ·OPTdisj) + ǫ, wherer is the number of relevant variables in the
best disjunction. In recent work, Peleg [14] shows how to achieve a bound ofÕ(

√
n ·OPTdisj)+ ǫ

in polynomial time. In this paper we improve on Peleg’s bound, giving a polynomial-time algorithm
achieving a bound of

O(n1/3+α · OPTdisj) + ǫ

for any constantα > 0. The heart of the algorithm is a method for weak-learning whenOPTdisj =

O(1/n1/3+α), which can then be fed into existing agnostic boosting procedures to achieve the
desired guarantee.

1 Introduction

Learning disjunctions (or conjunctions) over{0, 1}n in the PAC model is a well-studied and easy problem.
The simple “list-and-cross-off” algorithm runs in linear time per example and requires onlyO(n/ǫ) examples
to achieve errorǫ (ignoring the logarithmic dependence on the confidence termδ). The similarly efficient
Winnow algorithm [13] requires onlyO((r log n)/ǫ) examples to learn well when the target function is a
disjunction of sizer.

However, when the data is only “mostly” consistent with a disjunction, the problem becomes substan-
tially harder. In thisagnosticsetting, our goal is to produce a hypothesish whose error rateerrD(h) =
PrD (h(x) 6= c∗(x)) satisfieserrD(h) ≤ c · OPTdisj + ǫ, whereOPTdisj is the error rate of thebestdis-
junction andc is as small as possible. For example, while Winnow performs well as a function of the number
of attribute errorsof the best disjunction1 [12, 1] , this can be a factorO(r) worse than the number ofmistakes
of the best disjunction. Recently, Feldman [3] has shown that for any constantǫ > 0, determining whether the
best disjunction for a given datasetS has error≤ ǫ or error≥ 1

2 − ǫ is NP-hard. Even more recently, Feldman
et al. [5] extend this hardness result to the problem of agnostic learning disjunctions by the hypothesis class
of halfspaces. Thus, these results show that the problem of finding a disjunction (or linear separator) of error
at most12 − ǫ given that the errorOPTdisj of the best disjunction is at mostǫ is computationally hard for any
constantǫ > 0.

Given these hardness results, it is natural to consider what kinds of learning guaranteescanbe achieved.
If the errorOPTdisj of the best disjunction isO(1/n) then learning is essentially equivalent to the noise-free
case. Peleg [14] shows how to improve this to a bound ofÕ(1/

√
n). In particular, on any given datasetS,

his algorithm produces a disjunction of error rate onS at mostÕ(
√

n · OPTdisj(S)).2

1The minimum number of variables that would need to be flipped in order to make the data perfectly consistent with
a disjunction. This is essentially the same as its hinge loss.

2His results are for the “Red-Blue Set-Cover Problem” [2] which is equivalent to the problem of approximating the
best disjunction, except that positive examples must be classified correctly (i.e., the goal is to approximate the minimum
number of mistakes on negatives subject to correctly classifying the positives). The extension to allowing for two-sided
error, however, is immediate.
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In this work, we improve on the result of Peleg [14], achieving abound ofO(n1/3+α · OPTdisj) + ǫ
for any constantα > 0, though our algorithm is not a “proper” learner (does not produce a disjunction as its
output).3 In particular, our main result is an algorithm for weak-learning under an arbitrary distributionD,
under the assumption that the optimal disjunction has error rateO(1/n1/3+α), which we can then feed into
boosting procedures of [7, 9] or the recentABoostDI booster of [4], to achieve the claimed guarantee.

Note that our guarantee holds for any distribution over{0, 1}n. In contrast, most recent work on agnostic
learning has been for the case of uniform or other “nice” distributions [8, 10, 11].

1.1 Our Results

We present a learning algorithm whose error rate is anO(n1/3+α) approximation to that of the best disjunc-
tion, for anyα > 0. Formally, we prove the following theorem.

Theorem 1 There exists an algorithm that for an arbitrary distributionD over{0, 1}n and arbitrary target
functionc∗ : {0, 1}n 7→ {1,−1}, for every constantα > 0 and everyǫ, δ > 0, runs in time polynomial
in 1/ǫ, log(1/δ), andn, usespoly(1/ǫ, log(1/δ), n) random examples fromD, and outputs a hypothesish,
such that with probability> 1 − δ,

errD(h) ≤ O(n
1
3
+αOPTdisj) + ǫ

whereOPTdisj = minf∈DISJUNCTIONS errD(f).

The proof of Theorem 1 is based on finding a weak-learner under the assumption thatOPT ≡ OPTdisj =

O(n−(1/3+α)). In particular, we show:

Theorem 2 There exists an algorithm with the following property. For every distributionD over{0, 1}n and
every target functionc∗ such thatOPT < n− 1

3
−α, for some constantα > 0, for everyδ > 0, the algorithm

runs in timet(δ, n), usesm(δ, n) random samples drawn fromD and outputs a hypothesish, such that with
probability> 1 − δ,

errD(h) ≤
1

2
− γ

wheret andm are polynomials inn, 1/δ, andγ = Ω(n−2).

The high-level idea of the algorithm and proof for Theorem 2 is as follows. First, we can assume the target
function is balanced (nearly equal probability mass on positive and negative examples) and that similarly no
individual variable is noticeably correlated with the target, else weak-learning is immediate. So, for each
variablei, the probability mass of positive examples withxi = 1 is approximately equal to the fraction of
negative examples withxi = 1. Let copt denote the (unknown) optimal disjunction, which we may assume
is monotone by including negated variables as additional features. Letr denote the number of relevant
variables; i.e., the number of variables incopt. Also, assume for this discussion that we know the value of
OPT = errD(copt). Call an examplex “good” if c∗(x) = copt(x) and “bad” otherwise. Now, since the
only negative examples than can have a relevantxi set to 1 are the bad negatives, this means that for relevant
variablesi, Prx∼D(xi = 1|c∗(x) = −1) = O(OPT). Therefore,Prx∼D(xi = 1|c∗(x) = +1) = O(OPT)
and soPrx∼D(xi = 1) = O(OPT) as well. This means that by estimatingPrx∼D(xi = 1) for each variable
i, we can remove all variables of densityω(OPT) from the system, knowing they are irrelevant.

At this point, we have nearly all the ingredients for theÕ(1/
√

n) bound of Peleg [14]. In particular,
since all variables have densityO(OPT), this means the average number of variables set to 1 per example is
O(OPT · n). Let S′ be the set of examples whose density is at most twice the average (soPr(S′) ≥ 1/2);
we now claim that ifOPT = o(1/

√
n), then eitherS′ is unbalanced or else some variablexi must have

noticeable correlation with the target over examples inS′. In particular, since positive examples must have
on average at least1−O(OPT) relevant variables set to 1, and the good negative examples have zero relevant
variables set to 1, the only way forS′ to be balanced and have no relevant variable with noticeable correlation
is for the bad negative examples to on average haveΩ(1/OPT) relevant variables set to 1. But this is not
possible since all examples inS′ have onlyO(OPT · n) variables set to 1, and1/OPT ≫ OPT · n for
OPT = o(1/

√
n). So, some hypothesis of the form: “ifx 6∈ S′ then flip a fair coin, else predictxi” must be

a weak-learner.

3This bound hides a low-order term of(log n)1/α. Solving for equality yieldsα =
q

log log n

log n
and a bound of

O(n1/3+o(1)).
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In order to improve over thẽO(1/
√

n) bound of [14], we do the following. Assume all variables have
nearly the same density and all examples have nearly the same density as well. This isnot without loss of
generality (and the general case adds additional complications that must be addressed), but simplifies the
picture for this high-level sketch. Now, if no individual variable or its complement is a weak predictor, by
the above analysis it must be the case that the bad negative examples on average have a substantial number
of variables set to 1 in the relevant region (essentially so that the total hinge-loss (attribute-errors) isΩ(m)).
Suppose now that one “guesses” such a bad negative examplee and focuses on only thosen′ variables set
to 1 by e. The disjunctioncopt restricted to this set may now make many mistakes on positive examples
(the “substantial number of variables set to 1 in the relevant region” ine may still be a small fraction of the
relevant region). On the other hand, because we have restricted to a relatively small number of variablesn′,
theaverage densityof examples as a function ofn′ has dropped significantly.4 As a result, suppose we again
discard all examples with a number of 1’s in thesen′ variables substantially larger than the average. Then,
on the remainder, thehinge-loss(attribute-errors) caused by the bad negative examples is now substantially
reduced. This more than makes up for the additional error on positive examples. In particular, we show one
can argue that forsomebad negative examplee, if one performs the above procedure, then with respect to
the remaining subset of examples, some variable must be a weak predictor. In the end, the final hypothesis
is defined by an examplee, a thresholdθ, and a variablei, and will be of the form “ifx · e 6∈ [1, θ] then flip
a coin, else predictxi.” The algorithm then simply searches over all such triples. In the general case (when
the variables and the examples do not all have the same density), this is preceded by a preprocessing step that
groups variables and examples into a number of buckets and then runs the above algorithm on each bucket.

The rest of the paper is organized as follows. We start off with notation and definitions in Section 2.
In Section 3 we prove Theorem 1. We achieve this in two steps: first we show how to get a weak learner
for the special case that the examples and variables are fairly homogeneous (all variables set to 1 roughly
the same number of times, and all examples with roughly the same number of variables set to 1 (actually a
somewhat weaker condition than this)). We then show how to reduce a general instance to this special case.
In Section 3.3 we use existing boosting algorithms combined with this weak-learner to prove our main result.
Finally, we discuss conclusions and future directions in Section 4.

2 Notation and Preliminaries

Let X = {0, 1}n and letD be the data distribution overX . We have a labeling functionc∗ : X → {1,−1},
and usecopt to denote the disjunction of least error with respect toc∗. Without loss of generality we may
assumecopt is monotone, and we denote the error rate ofcopt asOPTdisj or simply OPT. I.e., OPT =
Prx∼D[copt(x) 6= c∗(x)]. For the rest of the paper, we will assume thatOPT = Ω( 1√

n
) (otherwise we can

use Peleg’s algorithm described in the previous section). We will also assume that we know the value of
OPT.5 We user to denote the number of variables incopt and we call these therelevantvariables. We will
call the examples on whichc∗ andcopt agree “good”, and those on whichc∗ andcopt disagree “bad”. The
examples causing the most difficulty will be the bad negative examples, which can potentially satisfy many
relevant variables, thus incurring up tor attribute errors (hinge-loss) and yet be labeled negative.

We assume that the algorithm gets as input2m examples out of whichm+ are positive examples (their
label is 1), andm− are negative (their label is−1). We can assume for the goal of weak-learning that
m+, m− = m(1 ± o(1)), else we have an immediate weak predictor. Letm+

bad denote the number of bad
positive examples, i.e., positives that do not satisfycopt, and letm−

bad denote the number of bad negative
examples, i.e., negatives that do satisfycopt. For convenience of notation (losing at most a factor of 2 in our
guarantee) we assume that the error rate ofcopt on both positive and negative examples separately is at most
OPT. Given this, we may assume thatm+

bad ≤ m · OPT(1 + o(1)) andm−
bad ≤ m · OPT(1 + o(1)).

Our algorithm will examine a set of̃O(mn2) hypotheses, of which we will prove that at least one has
training error at most1/2 − Ω̃(1/n2), under the assumption thatOPT is O(1/n1/3+α). In the following
we assume thatm is sufficiently large,Õ(n4), so that with high probability this implies error at most1/2 −
Ω̃(1/n2) overD. In particular, each hypothesis is defined by a training example, a threshold and a variable,
and so by compression bounds [6],Õ(n4) training examples are sufficient to produce a weak learner with

4E.g., given tworandomvectors withn′ = n
2/3 1’s, their intersection would have expected size(n′)1/2. Of course,

our dataset need not be uniform random examples of the given density, but the fact that all variables have the same density
allows one to make a similar argument.

5If OPT is unknown, we can efficiently enumerate over possible guesses forOPT such that one such guess will be
within a 1/poly additive factor of the true value. For each guess, we can run our algorithm and test it on a fresh sample
to see if its output is a weak learner.
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high probability.
Finally, it will be convenient to think of algorithms that make predictions on only a subset of the domain.

If an algorithm predicts on a subset of probability massp, and has error rate1/2 − γ′ on that subset, then by
flipping a fair coin on the remainder, the overall error rate will be1/2 − γ for γ = pγ′.

3 Proof of Theorem 1

We first build a weak agnostic learner for the best disjunction problem. Our weak learner has the guarantee
given in Theorem 2, which we restate below.

Theorem 2There exists an algorithm with the following property. For every distributionD over{0, 1}n and
every target functionc∗ such thatOPT < n− 1

3
−α, for some constantα > 0, for everyδ > 0, the algorithm

runs in timet(δ, n), usesm(δ, n) random samples drawn fromD and outputs a hypothesish, such that with
probability> 1 − δ,

errD(h) ≤
1

2
− γ

wheret andm are polynomials inn, 1/δ, andγ = Ω(n−2).

Our algorithm has two stages: a preprocessing step (which we present later in Section 3.2) that ensures
that all variables are set to 1 roughly the same number of times and that the bad and good examples have
roughly the same number 1s, and a core algorithm (which we present first in Section 3.1) that operates on
data of this form. One aspect of the preprocessing step is that in addition to partitioning examples into buckets,
it may involve discarding some relevant variables, yielding a dataset in which only somem̃ ≥ m/polylog(n)
positive examples satisfycopt over the variables remaining. Thus, our assumption in Section 3.1 is that
while the dataset has the “homogeneity” properties desired and the fraction of bad negative examples is
OPT(1 + o(1)), the fraction of badpositiveexamples may be as large as1 − 1/polylog(n). Nonetheless,
this will still allow for weak learning.

3.1 (B, α, m̃)-Sparse Instances

As mentioned above, in this section we give a weak learning algorithm for a dataset that has certain “nice”
homogeneity properties. We call such a dataset a(B, α, m̃)-sparse instance. We begin by describing what
these properties are.

The first property is that there exists a positive integerB such that for each variablexi, the number of
positive examples in the instance withxi = 1 is betweenB/2 andB, and the number of negative examples
with xi = 1 is betweenB

2 (1 − o(1)) andB(1 + o(1)).
The first property implies that in this case the overall number of1s in all examples is at most2nB(1 +

o(1)), and therefore, an average example has no more thannB(1+o(1))
m variables set to1. If the bad negatives

were typical examples, we would expect them to contain at mostnB
m ·m−

bad(1+o(1)) ≤ nB ·OPT(1+o(1))
ones in total. While in general this may not necessarily be the case, we assume for this section that at least
they are nottoo atypical on average. In particular, the second property we assume this instance satisfies is
that the overall number of ones present in all the bad negatives is at mostn1+αBOPT.

Denote bym̃ the number of positive examples thatcopt classifies correctly. The third property is that
m̃ ≥ m/no(α). If this dataset were our given training set then this would be redundant, as we already assume
the stronger condition that the fraction of good positive examples is1 − O(OPT).6 However,m̃ will be of
use in later sections, when we call this algorithm as a subroutine on instances defined by only a subset of all
the variables. In other words, we show here that even if we allowcopt to make more mistakes on the positive
examples (and in particular, to label almost all positives incorrectly!) yet make at mostmOPT mistakes on
the negatives, we are still able to weak-learn. As our analysis shows, the condition we require ofm̃ is that
the ratio m̃

m dominates the ratioOPT

n−1/3 . Furthermore, the ratiom̃m will play a role in the definition ofγ, our
advantage over a random guess.

An instance satisfying all the above three properties is called a(B, α, m̃)-sparseinstance. Next, we show
how to get a weak learner for such sparse instances. We first introduce the following definitions.

Definition 3 Given an examplee and a positive integer thresholdθ, we define the(e, θ)-restricted domainto
be the set of all examples whose intersection withe is strictly smaller thanθ. That is, the set of examplesx
such thatx · e < θ. For any hypothesish, we define the(e, θ)-restricted hypothesisto beh over any example

6Indeed, if the original instance was sparse, we would havem̃ = m(1 − o(1)).
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that belongs to the(e, θ) restricted domain, and “I don’t know” (flipping a fair coin) over any other example.
In particular, we consider the

• (e, θ)-restricted(+1)-hypothesis – predict+1 if the given example intersectse on less thanθ variables.

• (e, θ)-restricted(−1)-hypothesis – predict−1 if the given example intersectse on less thanθ variables.

• (e, θ)-restrictedxi-hypothesis – predict+1 if the given example intersectse on less thanθ variablesand
hasxi = 1.

We call thesen + 2 restricted hypotheses the(e, θ)-restricted base hypotheses.

Our weak-learning algorithm enumerates over all pairs of(e, θ), wheree is a negative example in our
training set andθ is an integer between1 andn. For every such pair, our algorithm checks whether any of
the n + 2 restricted hypothesis is aΩ( m̃

m · OPT

r )-weak-learner (see Algorithm 1 below). Our next lemma
proves that for(B, α, m̃)-sparse instances, this algorithm indeed finds a weak-learner. In fact, we show that
for every negative examplee, it suffices to consider a particular value ofθ.

Algorithm 1 A weak learner for sparse instances.

Input: A (B, α, m̃) sparse instance.
Step 1: For every negative examplee in the set and everyθ ∈ {1, 2, . . . , n}

Step 1a: Check if any of the(e, θ)-restricted hypotheses from Definition 3 is a weak learner with error at
most 1

2 − Ω(n−2).
Step 1b: If Yes, then output the corresponding hypothesis and halt.
Step 2: If no restricted hypothesis is a weak learner, output failure.

Lemma 4 Suppose we are given a(B, α, m̃)-sparse instance, and thatcopt makes no more than an−( 1
3
+α)

fraction of errors on the negative examples. Then there exists a bad negative examplee and a thresholdθ
such that one of the(e, θ)-restricted base hypotheses mentioned in Definition 3 has error at most1/2− γ for
γ = Ω( m̃

m · OPT

r ). Since we may assumeOPT > 1/
√

n, this impliesγ = Ω(n−2). Thus Algorithm 1 outputs
a hypothesis of error at most12 − Ω(n−2).

Proof: Let m+ andm− be the number of positive and negative examples in this sparse instance, where we
reservem to refer to the size of the original dataset of which this sparse instance is a subset. As before, call
examples “good” if they are classified correctly bycopt, else call them “bad”. We knowB = O(mOPT),
because relevant variables have no more thanO(mOPT) occurrences of1 over the negative examples. Since
each good positive example has to have at least one relevant variable set to1, it must also hold thatB =
Ω(m̃/r). It follows thatrOPT = Ω(m̃/m). We now show how to find a weak learner given a(B, α, m̃)-
sparse instance, based on a bad negative example.

Consider any bad negative exampleei with ti variables set to1. If we sum the intersection (i.e. the dot-
product) ofei with each of the positive examples in the instance, we simply get the total number of ones in
the positive examples over theseti variables. As each variable is set to1 betweenB/2 andB times, this sum
is B′ti for someB′ ∈ [B/2, B]. Therefore, the expected intersection ofei with a random positive example
is 1

m+ · tiB′. Setθi = β · tiB
′

m+ , whereβ > 1 will be chosen later suitably. Throw out any example which has
more thanθi intersection withei. Using Markov’s inequality, we deduce that we retain at leastm+(1 − 1

β )

positive examples.
The key point of the above is that focusing on the examples that remain, none of them can contribute

more thanθi hinge-loss (attribute errors), restrictingcopt to theti variables set to 1 byei. On the other hand,
it is possible that the number ofactualerrors over positives has increased substantially: perhaps too few of
the remaining positive examples share relevant variables withei in order for any of the(ei, θi) restricted
hypotheses to be a weak learner. We now argue that this cannot happen simultaneously for allei.

Specifically, assume for contradiction that none of the(ei, θi)-restricted base hypotheses yields a weak
learner. Consider the total number of1s contributed by the remaining negative examples over the relevant
variables ofei (the relevant variables that are set to1 by ei). As each bad negative contributes at mostθi such
ones, the overall contribution on the negative side is≤ θi · mOPT(1 + o(1)) = β tiB

′

m+ · mOPT(1 + o(1)).
Since none of relevant variables set to1 by ei gives a weak learner, it holds that the number of1s over the
positive side of these relevant variables is no more than2β m

m+ · tiB ·OPT (see below, at the specification of
the value ofγ). So even if each occurrence of1 comes from a unique positive example, we still have no more
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than2β m
m+ · tiB ·OPT positive examples from the(ei, θi) restricted domain intersectingei over the relevant

variables. Therefore, adding back in the positive examplesnot from the restricted domain, we have no more
than2β m

m+ · tiB · OPT + m+/β positive examples that intersectei over the relevant variables.
Consider now a bipartite graph with thẽm good positive examples on one side and themOPT bad

negative examples on the other side, with an edge between positiveej and negativeei if ej intersectsei over
the relevant variables. Since eachei has degree at most2β m

m+ ·tiB ·OPT+m+/β, the total number of edges
is at most2β m

m+ BOPT
∑

i ti+m+ ·mOPT/β, and therefore some good positive examples must have degree

at mostOPT[ 2βBm
m̃m+

∑

i ti + m+

β · m
m̃ ]. On the other hand, since we are given a(B, α, m̃)-sparse instance, we

know that every good positive example intersectsat least B(1−o(1))
2 negative examples, and moreover that

∑

i ti ≤ n1+αBOPT. Putting this together we have:

B/2 ≤ (1 + o(1))OPT

[

2βB2n1+αOPTm

m̃m+
+

m+

β
·
m

m̃

]

.

Setting β =
√

(m+)2

2B2n1+αOPT
to equalize the two terms in the sum above, we derive

B ≤ 4
√

2(1 + o(1))B · m
m̃ · n(1+α)/2OPT

3/2.

Thus we haven1+α · m2

m̃2 · OPT
3 ≥ 1+o(1)

32 . Recall thatm̃/m ≥ n−o(α), so we derive a contradiction, as for
sufficiently largen it must hold that

OPT ≥

(

1 + o(1)

32

)1/3

n− 1+α
3

−o(α) > n−1/3−α.

In order to complete the proof, we need to verify that indeedβ > 1. RecallB = O(mOPT) and
m+ ≥ m̃, som+/m ≥ n−o(α). Thusβ2 = Ω( 1

n1+α+o(α)OPT3 ) = Ω(n2α−o(α)) by our assumption onOPT.
The last detail is to check what advantage do we get over a random guess. Our analysis shows that for

some bad negative exampleei, the number of ones over the relevant variables on the positive side is at least
2β m

m+ · tiB · OPT, whereas on the negative side, there can be at mostβ m
m+ · tiB · OPT(1 + o(1)) ones.

We deduce that at least one of the at mostmin(r, ti) relevant variables set to 1 byei must give a gap of
at leastβ·tiBm·OPT(1−o(1))

m+ min(r,ti)
> B · OPT(1 − o(1)) sinceβ > 1. Finally, using the fact thatB = Ω(m̃/r)

we get a gap ofΩ( m̃OPT

r ) or equivalently an advantage ofγ = Ω(OPT

r · m̃
m ). This advantage is trivially

Ω(n−2(1+o(α))), or, using the assumptionOPT > 1/
√

n (for otherwise, we can apply Peleg’s algorithm [14]),
we getγ = Ω(n− 3

2
(1+o(α))).

3.2 General Instances

Section 3.1 dealt with nicely behaved (homogeneous) instances. In order to complete the proof of Theorem 2,
we need to show how to reduce a general instance to such a(B, α, m̃)-sparse instance. What we show is a
(simple) algorithm that partitions a given instance into sub-instances, based on the number of 1s of each ex-
ample over certain variables (but without looking at the labels of the examples). It outputs apolylog(n)-long
list of sub-instances, each containing a noticeable fraction of the domain, and has the following guarantee:
either some sub-instance has a trivial weak-learner (has a noticeably different number of positive versus neg-
ative examples or there is a variable with noticeable correlation), or some sub-instance is(B, α, m̃)-sparse.
Formally, we prove this next lemma.

Lemma 5 There exists apoly((log n)O(1/α), n, m)-time algorithm, that gets as an input2m labeled exam-
ples in{0, 1}n, and output a list of subsets, each containingm/polylog(n) examples, s.t. either some subset
has a trivial weak-learner, or some subset is(B, α, m/polylog(n))-sparse.

Combining the algorithm from Lemma 5 with the algorithm presented in Section 3.1, we get our weak-
learning algorithm (see Algorithm 2). We first run the algorithm of Lemma 5, traverse all sub-instances, and
check whether any has a trivial weak-learner. If not, we run the algorithm for(B, α, m̃)-sparse instances over
each sub-instance. Obviously, given the one sub-instance which is sparse, we find a restricted hypothesis with
Ω̃(n−2) advantage over a random guess.

Proof: We start by repeating the argument presented in the introduction (Section 1.1). For any relevant
variable, no more thanm−

bad ≤ m · OPT(1 + o(1)) bad examples set it to1. Therefore, as an initial step,
we throw out any variable with more than this many occurrences over the negative examples, as it cannot
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possibly be a relevant variable. For convenience, redefinen to be the number of variables that remain. Next,
we check each individual variable to determine if it itself is a weak predictor. If not, then this means each
variable is set to 1 on approximately the same number of positive and negative examples.

Bucket all the variables according the number of times they are set to1, where thej-bucket contains
all the variables that are set to1 any number of times in the range[2j , 2j+1). Since there are at mostlog n

buckets, some bucketj must cover at leastm
+

log n positive examples, in the sense that the disjunction over the

relevantvariables in this bucket agrees with at least this many good positives. So now, letB′ = 2j+1, let
n′ andr′ be the total number of variables and the number of relevant variables in this bucket respextively.
As we can ignore all examples that are identically0 over then′ variables in this bucket, letm′+ (resp.m′−)
be the number of positive (resp. negative) examples covered by the variables in this bucket. Our algorithm
adds the remaining examples (over thesen′ variables) as one sub-instance to its list. Let the number of these
examples be2m′. As before, if the number of positive examples and negative examples covered by thesen′

variables differ significantly, or if some variable is a weak learner (with respect to the set of examples left),
then the algorithm halts. Observe that if this sub-instance is(B′, α, m/ log(n))-sparse, then we are done, no
matter what other sub-instances the algorithm will add to its list.

Focusing on the remaining examples, every variable is set to1 at mostB′ many times over the pos-
itive examples, so the total number of1s, over the positive examples is≤ n′B′. If indeed the resulting
instance is not(B′, α, m/ log(n))-sparse, then the total number of1s over the bad negative examples is
≥ (n′)1+α(B′)OPT. So now, our algorithm throws out any example with more than2n′B′/m′ variables set
to 1, and adds the remaining examples to the list of sub-instances. By Markov’s inequality, we are guaranteed
not to remove more than1/2 of the positive examples, so the sub-instance remaining is sufficiently large.
As before, if the remaining subset of examples (over thesen′ variables) has a trivial weak-learner, we are
done. Otherwise, the algorithm continues recursively over this sub-instance – re-buckets and then removes
all examples with too many variables set to1. Note, each time the algorithm buckets the variables, it needs to
recurse over each bucket that covers at least a1/ log(n) fraction of the positive examples. In the worst-case,
all of the log(n) buckets cover these many positive examples, and therefore, the branching factor in each
bucketing step islog(n).

We now show that the depth of the bucket-and-remove recurrence is no more thanO(1/α). It is easy
to see inductively that at thei-th step of the recursion, we retain a fraction ofm/(logn)i positive examples.
Suppose that by the firsti steps, no sub-instance is sparse and no weak-learner is found. Recall, ifrOPT ≪ 1,
we have an immediate weak-learner, so it must hold that in thei-th step, we still retain at leastni = 1/OPT

variables. Furthermore, as in thei-th step we did not have a sparse instance, it follows that the bad negative
examples had more than(ni)

1+α(B′)OPT ones before we threw out examples. Once we remove dense

examples, they contain no more than2(ni)(B
′)

mi
· mOPT many ones. Thus, the fraction of ones over the bad

negatives that survive each removal step is no more thann−α
i · m

mi
. As1/OPT > n1/3, this fraction is at most

n−α/3(log n)i < n−α/6 (for the firstO(1/α) iterations). Hence, after6/α iterations, some relevant variable
must be a weak-learner.

To complete the proof, note that we take no more than(log n)6/α bucket-and-remove steps. Each such
step requirespoly(n, m) time for the bucketing, removal and checking for weak-learner. We conclude that
the run-time of this algorithm ispoly((log n)1/α, n, m).

Algorithm 2 A weak learner for general instances.
Input: A set of2m training examples.
Step 1: If any individual variable or the constant hypotheses is a weak learner, output it and halt.
Step 2: Remove any variable which has more than2mOPT 1’s over the negative examples.
Step 3: Bucket the remaining variables such that bucketj contains variables with density in[2j , 2j+1).
Step 4: For every bucket which covers at least alog n fraction of the positive examples
Step 4a: Run the algorithm for sparse instances on this bucket. If a weak learner is obtained, output it and

halt.
Step 4b: Let B′ be the density (2j+1) in this bucket,n′ be the number of variables in the bucket and2m′ be

the total number of examples with respect to this bucket (ignoring the ones which are identically
zero over then′ variables). Remove all the examples which have more than2n′B′/m′ 1’s over this
bucket. Repeat steps1-4 on this new instance.
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3.3 Strong Learning

Given Theorem 2, we now prove the main theorem (Theorem 1) by plugging the weak-learner into an off-
the-shelf boosting algorithm for the agnostic case. We use the recentABoostDI booster of [4], which
converts any algorithm satisfying Theorem 2 into one satisfying Theorem 1. The result in [4] gives a boosting
technique for(η, γ)-weak learners. In our context an(η, γ)-weak learner is an algorithm which with respect
to to any distributionD, with high probability, produces a hypothesis of error≤ 1

2 −γ, wheneverOPTdisj ≤
1
2 − η.

Theorem 6 (Feldman [4], Theorem 3.5)There exists an algorithmABoostDI that, given a(η, γ)-weak
learner, for every distributionD and ǫ > 0, produces, with high probability, a hypothesish such that
errD(h) ≤

OPTdisj

1−2η + ǫ. Furthermore, the running time of the algorithm isT · poly( 1
γ , 1

ǫ ), whereT is
the running time of the weak learner.

As an immediate corollary, we setη = 1
2 − 1

2 · n−1/3−α and obtain an hypothesish such thaterrD(h) ≤

2n1/3+αOPT + ǫ. This concludes the proof of Theorem 1. We note that as an alternative toABoostDI,
one can also use the boosting algorithm of Kalai et. al [9], followed by another boosting algorithm of Gavin-
sky [7], to get the result in Theorem 1.

4 Future Directions

In this paper we have presented an algorithm for learning the class of disjunctions in the case thatOPT <
n−(1/3+α), achieving an error rate ofO(n1/3+α · OPT) + ǫ. The natural open question is whether one can
improve this bound. For example, can one achieve weak agnostic learning forOPT = n−1/4? Or, can one
improve the bounds as a function of the number of relevant variables, e.g., making only a factorO(r0.9) times
more mistakes than the best disjunction?

An intriguing open question is whether one can extend this technique for other concept classes. For
example, consider the class of linear separators over{0, 1}n with weights in{0, 1} (i.e., majority vote or
“k of r” functions). Here we do not know even how to achieve weak learning forOPT = n−0.99. The
algorithm presented in this paper for disjunctions uses the fact that in order for individual variables not to be
weak hypotheses themselves, the bad negative examples must in some sense “point” in the direction of the
target vector (they must have a high dot-product with the target function vector if we view the disjunction as
a linear threshold function) to a substantially greater extent than the positive examples do. E.g., if a typical
positive example hast relevant variables set to 1, then the typical bad negative example must havet/OPT

relevant variables set to 1. For the case of majority-vote functions, the difficulty with this approach is that
instead all we can say is that if the positive examples haver/2 + t relevant variables set to 1, then the typical
bad negative examples should have at leastr/2 + t/OPT relevant variables set to 1, which might not be such
a distinction in a multiplicative sense.

On a more general note, our work here uses somewhat non-traditional hypotheses, by using the examples
themselves to define “slices” of the data (focusing on those examples with no more than a certainθ dot-
product with some given negative example). Perhaps this might be useful for other learning problems.
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Abstract

In 1994, Y. Mansour conjectured that for every DNF formula on n variables with t terms there exists
a polynomial p with tO(log(1/ε)) non-zero coefficients such that Ex∈{0,1}n [(p(x) − f(x))2] ≤ ε.
We make the first progress on this conjecture and show that it is true for several natural subclasses
of DNF formulas including randomly chosen DNF formulas and read-k DNF formulas for constant
k.

Our result yields the first polynomial-time query algorithm for agnostically learning these sub-
classes of DNF formulas with respect to the uniform distribution on {0, 1}n (for any constant error
parameter).

Applying recent work on sandwiching polynomials, our results imply that a t−O(log 1/ε)-biased
distribution fools the above subclasses of DNF formulas. This gives pseudorandom generators for
these subclasses with shorter seed length than all previous work.

1 Introduction
Let f : {0, 1}n → {0, 1} be a DNF formula, i.e., a function of the form T1 ∨ · · · ∨ Tt where each Ti is a
conjunction of at most n literals. In this paper we are concerned with the following question: How well can a
real-valued polynomial p approximate the Boolean function f? This is an important problem in computational
learning theory, as real-valued polynomials play a critical role in developing learning algorithms for DNF
formulas.

Over the last twenty years, considerable work has gone into finding polynomials p with certain properties
(e.g., low-degree, sparse) such that

E
x∈{0,1}n

[(p(x)− f(x))2] ≤ ε.

In 1989, Linial et al. (1993) were the first to prove that for any t-term DNF formula f , there exists
a polynomial p : {0, 1}n → R of degree O(log(t/ε)2) such that Ex∈{0,1}n [(p(x) − f(x))2] ≤ ε. They
showed that this type of approximation implies a quasipolynomial-time algorithm for PAC learning DNF
formulas with respect to the uniform distribution. Kalai et al. (2008) observed that this fact actually implies
something stronger, namely a quasipolynomial-time agnostic learning algorithm for learning DNF formulas
(with respect to the uniform distribution). Additionally, the above approximation was used in recent work
due to Bazzi (2007) and Razborov (2008) to show that bounded independence fools DNF formulas.

Three years later, building on the work of Linial et al. (1993) Mansour (1995) proved that for any t-
term DNF formula, there exists a polynomial p defined over {0, 1}n with sparsity tO(log log t log(1/ε)) such
that Ex∈{0,1}n [(p(x) − f(x))2] ≤ ε (for 1/ε = poly(n)). By sparsity we mean the number of non-zero
Fourier coefficients of p. This result implied a nearly polynomial-time query algorithm for PAC learning
DNF formulas with respect to the uniform distribution.

Mansour conjectured (Mansour, 1994) that the above bound could be improved to tO(log 1/ε). Such an
improvement would imply a polynomial-time query algorithm for learning DNF formulas with respect to the
uniform distribution (to within any constant accuracy), and learning DNF formulas in this model was a major
open problem at that time.

In a celebrated work from 1994, Jeff Jackson proved that DNF formulas were learnable in polynomial
time (with queries, with respect to the uniform distribution) without proving the Mansour conjecture. His
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“Harmonic Sieve” algorithm (Jackson, 1997) used boosting in combination with some weak approximation
properties of polynomials. As such, for several years, Mansour’s conjecture remained open and attracted
considerable interest, but its resolution did not imply any new results in learning theory.

In 2008, Gopalan et al. (2008b) proved that a positive resolution to the Mansour conjecture also implies
an efficient query algorithm for agnostically learning DNF formulas (to within any constant error parameter).
The agnostic model of learning is a challenging learning scenario that requires the learner to succeed in the
presence of adversarial noise. Roughly, Gopalan et al. (2008b) showed that if a class of Boolean functions C
can be ε-approximated by polynomials of sparsity s, then there is a query algorithm for agnostically learning
C in time poly(s, 1/ε) (since decision trees are approximated by sparse polynomials, they obtained the first
query algorithm for agnostically learning decision trees with respect to the uniform distribution on {0, 1}n).
Whether DNF formulas can be agnostically learned (with queries, with respect to the uniform distribution)
still remains a difficult open problem (Gopalan et al., 2008a).

1.1 Our Results
We prove that the Mansour conjecture is true for several well-studied subclasses of DNF formulas. As far as
we know, prior to this work, the Mansour conjecture was not known to be true for any interesting class of
DNF formulas.

Our first result shows that the Mansour conjecture is true for the class of randomly chosen DNF formulas:

Theorem 1 Let f : {0, 1}n → {0, 1} be a DNF formula with t = nO(1) terms where each term is chosen
independently from the set of all terms of length blog tc. Then with probability 1 − n−Ω(1) (over the choice
of the DNF formula), there exists a polynomial p with sparsity tO(log 1/ε) such that E[(p(x)− f(x))2] ≤ ε.

For t = nΘ(1), the conclusion of Theorem 1 holds with probability at least 1 − n−Ω(log t). Our second
result is that the Mansour conjecture is true for the class of read-k DNF formulas:

Theorem 2 Let f : {0, 1}n → {0, 1} be a DNF formula with t terms where each literal appears at most k

times. Then there exists a polynomial p with sparsity tO(16k log 1/ε) such that E[(p(x)− f(x))2] ≤ ε.

Even for the case k = 1, Mansour’s conjecture was not known to be true. Mansour (1995) proves
that any polynomial that approximates read-once DNF formulas to ε accuracy must have degree at least
d = Ω(log t log(1/ε)/ log log(1/ε)). He further shows that a “low-degree” strategy of selecting all of a
DNF formula’s Fourier coefficients of monomials up to degree d results in a polynomial p with sparsity
tO(log log t log 1/ε) for 1/ε = poly n. It is not clear, however, how to improve this to the desired tO(log 1/ε)

bound.
As mentioned earlier, by applying the result of Gopalan et al. (2008b), we obtain the first polynomial-

time query algorithms for agnostically learning the above classes of DNF formulas to within any constant
accuracy parameter. We consider this an important step towards agnostically learning all DNF formulas.

Corollary 3 Let C be the class of DNF formulas with t = nO(1) terms where each term is randomly chosen
from the set of all terms of length blog tc. Then there is a query-algorithm for agnostically learning C with
respect to the uniform distribution on {0, 1}n to accuracy ε in time poly(n) · tO(log 1/ε) with probability
1− n−Ω(1) (over the choice of the DNF formula).

We define the notion of agnostic learning with respect to randomly chosen concept classes in Section 2.
For t = nΘ(1), Corollary 3 holds for a 1 − n−Ω(log t) fraction of randomly chosen DNF formulas. We also
obtain a corresponding agnostic learning algorithm for read-k DNF formulas:

Corollary 4 Let C be the class of read-k DNF formulas with t terms. Then there is a query-algorithm for
agnostically learning C with respect to the uniform distribution on {0, 1}n to accuracy ε in time poly(n) ·
tO(16k log 1/ε).

Our sparse polynomial approximators can also be used in conjunction with recent work due to De et al.
(2009) to show that for randomly chosen polynomial-size DNF formulas or read-k DNF formulas f , a
t−O(log 1/ε)-biased distribution fools f (for k = O(1)):

Theorem 5 Let f be a randomly chosen polynomial-size DNF formula or a read-k DNF formula. Then (with
probability 1− n−Ω(1) for random DNF formulas) there exists a pseudorandom generator G such that∣∣∣∣ Pr

x∈{0,1}s
[f(G(x)) = 1]− Pr

z∈{0,1}n
[f(z) = 1]

∣∣∣∣ ≤ ε

with s = O(log n + log t · log(1/ε)).
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Previously it was only known that these types of biased distributions fool read-once DNF formulas (De
et al., 2009).

1.2 Related Work
As mentioned earlier, Mansour, using the random restriction machinery of Håstad (1986) and Linial et al.
(1993) had shown that for any DNF formula f , there exists a polynomial of sparsity tO(log log t log 1/ε) that
approximates f .

The subclasses of DNF formulas that we show are agnostically learnable have been well-studied in the
PAC model of learning. Monotone read-k DNF formulas were shown to be PAC-learnable with respect to the
uniform distribution by Hancock and Mansour (1991), and random DNF formulas were recently shown to be
learnable on average with respect to the uniform distribution in the following sequence of work (Jackson &
Servedio, 2005; Jackson et al., 2008; Sellie, 2008; Sellie, 2009).

Recently (and independently) De et al. (2009) proved that for any read-once DNF formula f , there exists
an approximating polynomial p of sparsity tO(log 1/ε). More specifically, De et al. (2009) showed that for
any class of functions C fooled by δ-biased sets, there exist sparse, sandwiching polynomials for C where
the sparsity depends on δ. Since they show that t−O(log 1/ε)-biased sets fool read-once DNF formulas, the
existence of a sparse approximator for the read-once case is implicit in their work.

1.3 Our Approach
As stated above, our proof does not analyze the Fourier coefficients of DNF formulas, and our approach is
considerably simpler than the random-restriction method taken by Mansour (we consider the lack of Fourier
analysis a feature of the proof, given that all previous work on this problem has been Fourier-based). Instead,
we use polynomial interpolation.

A Basic Example. Consider a DNF formula f = T1 ∨ · · · ∨ Tt where each Ti is on a disjoint set of exactly
log t variables (assume t is a power of 2). The probability that each term is satisfied is 1/t, and the expected
number of satisfied terms is one. Further, since the terms are disjoint, with high probability over the choice of
the random input, only a few—say d—terms will be satisfied. As such, we construct a univariate polynomial
p with p(0) = 0 and p(i) = 1 for 1 ≤ i ≤ d. Then p(T1 + · · ·+ Tt) will be exactly equal to f as long as at
most d terms are satisfied. A careful calculation shows that the inputs where p is incorrect will not contribute
too much to E[(f − p)2], as there are few of them. Setting parameters appropriately yields a polynomial p
that is both sparse and an ε-approximator of f .

Random and read-once DNF formulas. More generally, we adopt the following strategy: given a DNF
formula f (randomly chosen or read-once) either (1) with sufficiently high probability a random input does
not satisfy too many terms of f or (2) f is highly biased. In the former case we can use polynomial in-
terpolation to construct a sparse approximator and in the latter case we can simply use the constant 0 or 1
function.

The probability calculations are a bit delicate, as we must ensure that the probability of many terms being
satisfied decays faster than the growth rate of our polynomial approximators. For the case of random DNF
formulas, we make use of some recent work due to Jackson et al. (2008) on learning random monotone DNF
formulas.

Read-k DNF formulas. Read-k DNF formulas do not fit into the above dichotomy so we do not use the
sum T1 + · · · + Tt inside the univariate polynomial. Instead, we use a sum of formulas (rather than terms)
based on a construction from (Razborov, 2008). We modify Razborov’s construction to exploit the fact that
terms in a read-k DNF formula do not share variables with many other terms. Our analysis shows that we
can then employ the previous strategy: either (1) with sufficiently high probability a random input does not
satisfy too many formulas in the sum or (2) f is highly biased.

2 Preliminaries
In this paper, we will primarily be concerned with Boolean functions f : {0, 1}n → {0, 1}. Let x1, . . . ,xn

be Boolean variables. A literal is either a variable xi of its negation x̄i, and a term is a conjunction of
literals. Any Boolean function can be expressed as a disjunction of terms, and such a formula is said to be a
disjunctive normal form (or DNF) formula. A read-k DNF formula is a DNF formula in which the maximum
number of occurrences of each variable is bounded by k. A Boolean function is monotone if changing the
value of an input bit from 0 to 1 never causes the value of f to change from 1 to 0. The following consequence
(Kleitman, 1966; Alon & Spencer, 2000) of the Four Functions Theorem will be useful in our study of
monotone functions.
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Theorem 6 Let e, f , ¬g, and ¬h be monotone Boolean functions over {0, 1}n. Then for any product dis-
tribution D over {0, 1}n, PrD[e ∧ f ] ≥ PrD[e] PrD[f ], PrD[g ∧ h] ≥ PrD[g] PrD[h], and PrD[f ∧ g] ≤
PrD[f ] PrD[g].

2.1 Sparse Polynomials

Every function f : {0, 1}n → R can be expressed by its Fourier expansion: f(x) =
∑

S f̂(S)χS(x) where
χS(x) =

∏
i∈S(−1)xi for S ⊆ [n], and f̂(S) = E[f · χS ]. The Fourier expansion of f can be thought of as

the unique polynomial representation of f over {+1,−1}n under the map xi 7→ 1− 2xi.
Mansour conjectured that polynomial-size DNF formulas could be approximated by sparse polynomials

over {+1,−1}n. We say a polynomial p : {+1,−1}n→R has sparsity s if it has at most s non-zero coeffi-
cients. We state Mansour’s conjecture as originally posed in (Mansour, 1994), which uses the convention of
representing FALSE by +1 and TRUE by −1.

Conjecture 7 (Mansour, 1994) Let f : {+1,−1}n → {+1,−1} be any function computable by a t-term
DNF formula. Then there exists a polynomial p : {+1,−1}n → R with tO(log 1/ε) terms such that E[(f −
p)2] ≤ ε.

We will prove the conjecture to be true for various subclasses of polynomial-size DNF formulas. In our
setting, Boolean functions will output 0 for FALSE and 1 for TRUE. However, we can easily change the range
by setting f± := 1 − 2 · f . Changing the range to {+1,−1} changes the accuracy of the approximation by
at most a factor of 4: E[((1− 2f)− (1− 2p))2] = 4E[(f − p)2], and it increases the sparsity by at most 1.

Given a Boolean function f , we construct a sparse approximating polynomial over {+1,−1}n by giving
an approximating polynomial p : {0, 1}n→R with real coefficients that has small spectral norm. The rest
of the section gives us some tools to construct such polynomials and explains why doing so yields sparse
approximators.

Definition 8 The Fourier `1-norm (also called the spectral norm) of a function p : {0, 1}n→R is defined to
be ‖p‖1 :=

∑
S |p̂(S)|. We will also use the following minor variant, ‖p‖ 6=∅1 :=

∑
S 6=∅|p̂(S)|.

The following two facts about the spectral norm of functions will allow us to construct polynomials over
{0, 1}n naturally from DNF formulas.

Fact 9 Let p : {0, 1}m→R be a polynomial with coefficients pS ∈ R for S ⊆ [m], and q1, . . . , qm :
{0, 1}n→{0, 1} be arbitrary Boolean functions. Then p(q1, . . . , qm) =

∑
S pS

∏
i∈S qi is a polynomial over

{0, 1}n with spectral norm at most ∑
S⊆[m]

|pS |
∏
i∈S

||qi||1.

Proof: The fact follows by observing that for any p, q : {0, 1}n→R, we have ||p + q||1 ≤ ||p||1 + ||q||1 and
||pq||1 ≤ ||p||1||q||1.

Fact 10 Let T : {0, 1}n→{0, 1} be an AND of a subset of its literals. Then ||T ||1 = 1.

Finally, using the fact below, we show why approximating polynomials with small spectral norm give sparse
approximating polynomials.

Fact 11 (Kushilevitz & Mansour, 1993) Given any function f : {0, 1}n→R and ε > 0, let S = {S ⊆ [n] :
|f̂(S)| ≥ ε/‖f‖1}, and g(x) =

∑
S∈S f̂(S)χs(x). Then E[(f − g)2] ≤ ε, and |S| ≤ ‖f‖2

1/ε.

Now, given functions f, p : {0, 1}n→R such that E[(f − p)2] ≤ ε, we can construct a 4ε-approximator for
f with sparsity ||p||21/ε by defining p′(x) =

∑
S∈S p̂(S)χS(x) as in Fact 11. Clearly p′ has sparsity ||p||21/ε,

and
E[(f − p′)2] = E[(f − p + p− p′)2] ≤ E[2((f − p)2 + (p− p′)2)] ≤ 4ε,

where the first inequality follows from the inequality (a + b)2 ≤ 2(a2 + b2) for any reals a and b.
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2.2 Agnostic learning
We first describe the traditional framework for agnostically learning concept classes with respect to the uni-
form distribution and then give a slightly modified definition for an “average-case” version of agnostic learn-
ing where the unknown concept (in this case a DNF formula) is randomly chosen.

Definition 12 (Standard agnostic model) Let f : {+1,−1}n → {+1,−1} be an arbitrary function, and
let D be the uniform distribution on {+1,−1}n. Define

opt = min
c∈C

Pr
x∼D

[c(x) 6= f(x)].

That is, opt is the error of the best fitting concept in C with respect to D. We say that an algorithm A
agnostically learns C with respect to D if the following holds for any f : if A is given black-box access to f
then with high probability A outputs a hypothesis h such that Prx∼D[h(x) 6= f(x)] ≤ opt + ε.

The intuition behind the above definition is that a learner—given access to a concept c ∈ C where an
η fraction of c’s inputs have been adversarially corrupted—should still be able to output a hypothesis with
accuracy η + ε (achieving error better than η may not be possible, as the adversary could embed a completely
random function on an η fraction of c’s inputs). Here η plays the role of opt.

This motivates the following definition for agnostically learning a randomly chosen concept from some
class C:

Definition 13 (Agnostically learning random concepts) Let C be a concept class and choose c randomly
from C (the distribution over C will be clear from the context). We say that an algorithm A agnostically
learns random concepts from C if with probability at least 1 − δ over the choice of c the following holds: if
the learner is given black-box access to some fixed function c′ and Prx∈{+1,−1}n [c(x) 6= c′(x)] ≤ η, then A
outputs a hypothesis h such that Prx∈{+1,−1}n [h(x) 6= c′(x)] ≤ η + ε.

We are unaware of any prior work defining an agnostic framework for learning randomly chosen concepts.
The main result we use to connect the approximation of DNF formulas by sparse polynomials with ag-

nostic learning is due to Gopalan et al. (2008b):

Theorem 14 (Gopalan et al., 2008b) Let C be a concept class such that for every c ∈ C there exists a
polynomial p such that ‖p‖1 ≤ s and Ex∈{+1,−1}n [|p(x)−c(x)|2] ≤ ε2/2. Then there exists an algorithm B

such that the following holds: given black-box access to any Boolean function f : {+1,−1}n→{+1,−1},
B runs in time poly(n, s, 1/ε) and outputs a hypothesis h : {+1,−1}n→{+1,−1} with

Pr
x∈{+1,−1}n

[h(x) 6= f(x)] ≤ opt + ε.

3 Approximating DNFs using univariate polynomial interpolation
Let f = T1∨T2∨· · ·∨Tt be any DNF formula. We say Ti(x) = 1 if x satisfies the term Ti, and 0 otherwise.
Let yf : {0, 1}n → {0, . . . ,t} be the function that outputs the number of terms of f satisfied by x, i.e.,
yf (x) = T1(x) + T2(x) + · · ·+ Tt(x).

Our constructions will use the following univariate polynomial Pd to interpolate the values of f on inputs
{x : yf (x) ≤ d}.

Fact 15 Let

Pd(y) := (−1)d+1 (y − 1)(y − 2) · · · (y − d)
d!

+ 1. (1)

Then, (1) the polynomial Pd is a degree-d polynomial in y; (2) Pd(0) = 0, Pd(y) = 1 for y ∈ [d], and for
y ∈ [t] \ [d], Pd(y) = −

(
y−1

d

)
+ 1 ≤ 0 if d is even and Pd(y) =

(
y−1

d

)
+ 1 > 1 if d is odd; and (3) the sum

of the magnitudes of Pd’s coefficients is d.

Proof: Properties (1) and (2) can be easily verified by inspection. Expanding the falling factorial, we get that
(y − 1)(y − 2) · · · (y − d) =

∑d
j=0(−1)d−j

[
d+1
j+1

]
yj , where

[
a
b

]
denotes a Stirling number of the first kind.

The Stirling numbers of the first kind count the number of permutations of a elements with b disjoint cycles.
Therefore,

∑d
j=0

[
d+1
j+1

]
= (d +1)! (Graham et al., 1994). The constant coefficient of Pd is 0 by Property (2),

thus the sum of the absolute values of the other coefficients is ((d + 1)!− d!)/d! = d.

For any t-term DNF formula f , we can construct a polynomial pf,d : {0, 1}n→R defined as pf,d :=
Pd ◦yf . A simple calculation, given below, shows that the `1-norm of pf,d is polynomial in t and exponential
in d.
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Lemma 16 Let f be a t-term DNF formula, then ‖pf,d‖1 ≤ tO(d).

Proof: By Fact 15, Pd is a degree-d univariate polynomial with d non-zero coefficients of magnitude at most
d. We can view the polynomial pf,d as the polynomial P ′

d(T1, . . . , Tt) := Pd(T1 + · · · + Tt) over variables
Ti ∈ {0, 1}. Expanding out P ′

d gives us at most dtd monomials with coefficients of magnitude at most d.
Now each monomial of P ′

d is a product of Ti’s, so applying Facts 10 and 9 we have that ‖pf,d‖1 ≤ tO(d).

The next two sections will show that the polynomial pf,d (for d = Θ(log 1/ε)) is in fact a good approxi-
mation for random DNF formulas and (with a slight modification) for read-k DNF formulas. As a warm-up,
we will show the simple case of read-once DNF formulas.

3.1 A Simple Case: Read-Once DNF Formulas
For read-once DNF formulas, the probability that a term is satisfied is independent of whether or not any of
the other terms are satisfied, and thus f is unlikely to have many terms satisfied simultaneously.

Lemma 17 Let f = T1∨, · · · ,∨Tt be a read-once DNF formula of size t such that Pr[f ] < 1− ε. Then the
probability over the uniform distribution on {0, 1}n that some set of j > e ln 1/ε terms is satisfied is at most(

e ln 1/ε
j

)j

.

Proof: For any assignment x to the variables of f , let yf (x) be the number terms satisfied in f . By linearity
of expectation, we have that Ex[yf (x)] =

∑t
i=1 Pr[Ti = 1]. Note that Pr[¬f ] =

∏t
i=1(1−Pr[Ti]), which is

maximized when each Pr[Ti] = E[yf ]/t, hence Pr[¬f ] ≤ (1− E[yf ]/t)t ≤ e−E[yf ]. Thus we may assume
that E[yf ] ≤ ln 1/ε, otherwise Pr[f ] ≥ 1− ε.

Assuming E[yf ] ≤ ln 1/ε, we now bound the probability that some set of j > e ln 1/ε terms of f is
satisfied. Since all the terms are disjoint, this probability is

∑
S⊆[t],|S|=j

∏
i∈S Pr[Ti], and the arithmetic-

geometric mean inequality gives that this is maximized when every Pr[Ti] = E[yf ]/t. Then the probability
of satisfying some set of j terms is at most:(

t

j

)(
ln 1/ε

t

)j

≤
(

et

j

)j ( ln 1/ε

t

)j

=
(

e ln 1/ε

j

)j

,

which concludes the proof of the lemma.

The following lemma shows that we can set d to be fairly small, Θ(log 1/ε), and the polynomial pf,d

will be a good approximation for any DNF formula f , as long as f is unlikely to have many terms satisfied
simultaneously.

Lemma 18 Let f be any t-term DNF formula, and let d = d4e3 ln 1/εe. If

Pr[yf (x) = j] ≤
(

e ln 1/ε

j

)j

for every d ≤ j ≤ t, then the polynomial pf,d satisfies E[(f − pf,d)2] ≤ ε.

Proof: We condition on the values of yf (x), controlling the magnitude of pf,d by the unlikelihood of yf

being large. By Fact 15, pf,d(x) will output 0 if x does not satisfy f , pf,d(x) will output 1 if yf (x) ∈ [d],
and |pf,d(x)| <

(
yf

d

)
for yf (x) ∈ [t] \ [d]. Hence:

‖f − pf,d‖2 <
t∑

j=d+1

(
j

d

)2(
e ln 1/ε

j

)j

<
t∑

j=d+1

22j

(
e ln 1/ε

4e3 ln 1/ε

)j

< ε
t∑

j=d+1

1
ej

< ε.

Combining Lemmas 16, 17, and 18 gives us Mansour’s conjecture for read-once DNF formulas.

Theorem 19 Let f be any read-once DNF formula with t terms. Then there is a polynomial pf,d with
‖pf,d‖1 ≤ tO(log 1/ε) and E[(f − pf,d)2] ≤ ε for all ε > 0.
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4 Mansour’s Conjecture for Random DNF Formulas
In this section, we establish various properties of random DNF formulas and use these properties to show that
for almost all f , Mansour’s conjecture holds. Roughly speaking, we will show that a random DNF formula
behaves like a read-once DNF formula, in that any “large” set of terms is unlikely to be satisfied by a random
assignment. This notion is formalized in Lemma 22. For such DNF formulas, we may use the construction
from Section 3 to obtain a good approximating polynomial for f with small spectral norm (Theorem 24).

Throughout the rest of this section, we assume that t(n) = nO(1). For brevity we write t for t(n). Let
Dt

n be the probability distribution over t-term DNF formulas induced by the following process: each term
is independently and uniformly chosen at random from all t

(
n

log t

)
possible terms of size exactly log t over

{x1, . . . ,xn}. For convenience, we assume that log t is an integer throughout our discussion, although the
general case is easily handled by taking terms of length blog tc. If the terms are not of size Θ(log n), then the
DNF will be biased, and thus be easy to learn. We refer the reader to Jackson and Servedio (2005) for a full
discussion of the model.

If t grows very slowly relative to n, say t = no(1), then with high probability (1 − nΩ(1)) a random f
drawn from Dt

n will be a read-once DNF formula, in which case the results of Section 3.1 hold. Therefore,
throughout the rest of this section we will assume that t is in fact nΘ(1).

To prove Lemma 22, we require two lemmas, which are inspired by the results of (Jackson & Servedio,
2005) and (Jackson et al., 2008). Lemma 20 shows that with high probability the terms of a random DNF
formula are close to being disjoint, and thus cover close to j log t variables.

Lemma 20 With probability at least 1− tjej log t(j log t)log t/nlog t over the random draw of f from Dt
n, at

least j log t− (log t)/4 variables occur in every set of j distinct terms of f . The failure probability is at most
1/nΩ(log t) for any j < c log n, for some constant c.

Proof: Let k := log t. Fix a set of j terms, and let v ≤ jk be the number of distinct variables (negated
or not) that occur in these terms. We will bound the probability that v > w := jk − k/4. Consider any
particular fixed set of w variables. The probability that none of the j terms include any variable outside of
the w variables is precisely

((
w
k

)
/
(
n
k

))j
. Thus, the probability that v ≤ w is by the union bound:(

n

w

)((w
k

)(
n
k

))j

<
(en

w

)w (w

n

)jk

=
ejk−k/4(jk − k/4)k/4

nk/4
<

ejk(jk)k/4

nk/4
.

Taking a union bound over all (at most tj) sets, we have that with the correct probability every set of j terms
contains at least w distinct variables.

We will use the method of bounded differences (a.k.a., McDiarmid’s inequality) to prove Lemma 22.

Proposition 21 (McDiarmid’s inequality) Let X1, . . . ,Xm be independent random variables taking values
in a set X , and let f : Xm → R be such that for all i ∈ [m], |f(a) − f(a′)| ≤ di, whenever a, a′ ∈ Xm

differ in just the ith coordinate. Then for all τ > 0,

Pr [f > E f + τ ] ≤ exp
(
− 2τ2∑

i d2
i

)
and Pr [f < E f − τ ] ≤ exp

(
− 2τ2∑

i d2
i

)
.

The following lemma shows that with high probability over the choice of random DNF formula, the
probability that exactly j terms are satisfied is close to that for the “tribes” function:

(
t
j

)
t−j(1− 1/t)t−j .

Lemma 22 There exists a constant c such that for any j < c log n, with probability at least 1 − 1/nΩ(log t)

over the random draw of f from Dt
n, the probability over the uniform distribution on {0, 1}n that an input

satisfies exactly j distinct terms of f is at most 2
(

t
j

)
t−j(1− 1/t)t−j .

Proof: Let f = T1 ∨ · · · ∨ Tt, and let β := t−j(1 − 1/t)t−j . Fix any J ⊂ [t] of size j, and let UJ be the
probability over x ∈ {0, 1}n that the terms Ti for i ∈ J are satisfied and no other terms are satisfied. We
will show that UJ < 2β with high probability; a union bound over all possible sets J of size j in [t] gives
that UJ ≤ 2β for every J with high probability. Finally, a union bound over all

(
t
j

)
possible sets of j terms

(where the probability is taken over x) proves the lemma.
Without loss of generality, we may assume that J = [j]. For any fixed x, we have:

Pr
f∈Dt

n

[x satisfies exactly the terms in J ] = β,
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and thus by linearity of expectation, we have Ef∈Dt
n

[UJ ] = β. Now we show that with high probability that
the deviation of UJ from its expected value is low.

Applying Lemma 20, we may assume that the terms T1, · · · , Tj contain at least j log t− (log t)/4 many
variables, and that J ∪ Ti for all i = j + 1, · · · , t includes at least (j + 1) log t − (log t)/4 many unique
variables, while increasing the failure probability by only 1/nΩ(log t). Note that conditioning on this event
can change the value of UJ by at most 1/nΩ(log t) < 1

2β, so under this conditioning we have E[Pj ] ≥ 1
2β.

Conditioning on this event, fix the terms T1, · · · , Tj . Then the terms Tj+1, · · · , Tt are chosen uniformly and
independently from the set of all terms T of length log t such that the union of the variables in J and T
includes at least (j + 1) log t− (log t)/4 unique variables. Call this set X .

We now use McDiarmid’s inequality where the random variables are the terms Tj+1, . . . , Tt randomly
selected from X , letting g(Tj+1, · · · , Tt) = UJ and g(Tj+1, · · · , Ti−1, T

′
i , Ti+1, · · · , Tt) = U ′

J for all
i = j + 1, . . . ,t. We claim that:

|UJ − U ′
J | ≤ di :=

t1/4

tj+1
.

This is because U ′
J can only be larger than UJ by assignments which satisfy T1, · · · , TJ and Ti. Similarly,

U ′
J can only be smaller than UJ by assignments which satisfy T1, · · · , TJ and T ′

i . Since Ti and T ′
i come

from X , we know that at least (j + 1)t− (log t)/4 variables must be satisfied.
Thus we may apply McDiarmid’s inequality with τ = 3

2β, which gives that Prf [UJ > 2β] is at most

exp
( −2 9

4β2

t3/2/t2j+2

)
≤ exp

(
−9

√
t(1− 1/t)2(t−j)

2

)
.

Combining the failure probabilities over all the
(

t
j

)
possible sets, we get that with probability at least(

t

j

)(
1

nΩ(log t)
+ e−9

√
t(1−1/t)2(t−j)/2

)
=

1
nΩ(log t)

,

over the random draw of f from Dt
n, UJ for all J ⊆ [t] of size j is at most 2β. Thus, the probability that a

random input satisfies exactly some j distinct terms of f is at most 2
(

t
j

)
β.

Using these properties of random DNF formulas we can now show a lemma analogous to Lemma 18 for
random DNF formulas.

Lemma 23 Let f be any DNF formula with t = nO(1) terms, and let ε > 0 which satisfies 1/ε = o(log log n).
Then set d = d4e3 ln 1/εe and ` = c log n, where c is the constant in Lemma 22. If

Pr[yf (x) = j] ≤
(

e ln 1/ε

j

)j

for every d ≤ j ≤ `, then the polynomial pf,d satisfies E[(f − pf,d)2] ≤ ε.

Proof: We condition on the values of yf (x), controlling the magnitude of pf,d by the unlikelihood of yf

being large. By Fact 15, pf,d(x) will output 0 if x does not satisfy f , pf,d(x) will output 1 if yf (x) ∈ [d],
and |pf,d(x)| <

(
yf

d

)
for yf (x) ∈ [t] \ [d]. Hence:

‖f − pf,d‖2 <
`−1∑

j=d+1

(
j

d

)2(
e ln 1/ε

j

)j

+
(

t

d

)2

· Pr[yf ≥ `]

<
`−1∑

j=d+1

22j

(
e ln 1/ε

4e3 ln 1/ε

)j

+ n−Ω(log log n)

< ε
`−1∑

j=d+1

1
ej

+ n−Ω(log log n) < ε.

We can now show that Mansour’s conjecture (Mansour, 1994) is true with high probability over the choice
of f from Dt

n.

Theorem 24 Let f : {0, 1}n → {0, 1} be a t = nΘ(1)-term DNF formula where each term is chosen
independently from the set of all terms of length log t. Then with probability at least 1 − n−Ω(log t) over the
choice of f , there exists a polynomial p with ‖p‖1 ≤ tO(log 1/ε) such that E[(p(x)− f(x))2] ≤ ε.
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Proof: Let d := d4e3 ln(1/ε)e and pf,d be as defined in Section 3. Lemma 16 tells us that ‖pf,d‖1 ≤
tO(log 1/ε). We show that with probability at least 1 − n−Ω(log t) over the random draw of f from Dt

n, pf,d

will be a good approximator for f . This follows by Lemma 22; with probability at least 1− (c log(n)− d−
1)/nΩ(log t) = 1 − n−Ω(log t), we have Pr[y = j] for all d < j ≤ c log(n). Thus for such f Lemma 18 tells
us that E[(f − pf,d)2] ≤ ε.

5 Mansour’s Conjecture for Read-k DNF Formulas
In this section, we give an ε-approximating polynomial for any read-k DNF formula and show that its spectral
norm is at most tO(24k log 1/ε). This implies that Mansour’s conjecture holds for all read-k DNF formulas
where k is any constant.

Read-k DNF formulas may not satisfy the conditions of Lemma 18, so we must change our approach.
Instead of using

∑t
i=1 Ti inside our univariate polynomial, we use a different sum, which is based on a

construction from (Razborov, 2008) for representing any DNF formula. We modify this representation to
exploit the fact that for read-k DNF formulas, the variables in a term can not share variables with too many
other terms. Unlike for read-once DNF formulas, it is not clear that the number of terms satisfied in a read-k
DNF formula will be extremely concentrated on a small range. We show how to modify our construction so
that a concentration result does hold.

Let f = T1 ∨ · · · ∨ Tt be any t-term read-k DNF formula, and let |Ti| denote the number of variables in
the term Ti. We assume that the terms are ordered from longest to shortest, i.e., |Tj | ≥ |Ti| for all j ≤ i. For
any term Ti of f , let φi be the DNF formula consisting of those terms (at least as large as Ti) in T1, · · · , Ti−1

that overlap with Ti, i.e.,
φi :=

∨
j∈Ci

Tj , for Ci = {j < i | Tj ∩ Ti 6= ∅}.

We define Ai := Ti ∧ ¬φi and zf :=
∑t

i=1 Ai. The function zf : {0, 1}n → {0, . . . ,t} outputs the number
of disjoint terms of f satisfied by x (greedily starting from T1). Note that if f is a read-once DNF formula,
then zf = yf .

Observe that each Ai can be represented by the polynomial Ti ·
∏

j∈Ci
(1− Tj) (and so zf can be repre-

sented by a polynomial), and that ||(1 − Tj)||1 ≤ 2 for all j. As f is a read-k DNF formula, each φi has at
most k|Ti| terms, and Ai has small spectral norm:

Fact 25 Let f = T1 ∨ · · · ∨ Tt be a t-term read-k DNF formula. Then each Ai has a polynomial represen-
tation, and ||Ai||1 ≤ 2k|Ti|.

As we did in Section 3, we can construct a polynomial qf,d : {0, 1}n→R defined as qf,d := Pd ◦ zf for
any t-term read-k DNF formula f . The following lemma shows that qf,d has small spectral norm.

Lemma 26 Let f be a t-term read-k DNF formula with terms of length at most w. Then ‖qf,d‖1 ≤
2O(d(log t+kw)).

Proof: By Fact 15, Pd is a degree-d univariate polynomial with d terms and coefficients of magnitude at most
d. We can view the polynomial qf,d as the polynomial P ′

d(A1, . . . , At) := Pd(A1 + · · ·+ At) over variables
Ai ∈ {0, 1}. Expanding out (but not recombining) P ′

d gives us at most dtd monomials of degree d (over
variables Ai) with coefficients of magnitude at most d.

We can now apply Facts 25 and 9 to bound the spectral norm of qf,d. Since P ′
d has at most dtd mono-

mials each of degree d (over Ai), fnd each Ai satisfies ||Ai||1 ≤ 2kw, we have that ||qf,d||1 ≤ 2dkwdtd =
2O(d(log t+kw)).

We will show that Mansour’s conjecture holds for read-k DNF formulas by showing that zf =
∑t

i=1 Ai

behaves much like yf =
∑t

i=1 Ti would if f were a read-once DNF formula, and thus we can use our
polynomial Pd (Equation 1) to approximate f .

One crucial property of our construction is that only disjoint sets of terms can contribute to zf .

Claim 27 Let T1 ∨ · · · ∨ Tt be a t-term DNF formula. Then for any S ⊆ [t], Pr[∧i∈SAi] ≤
∏

i∈S Pr[Ti].

Proof: If there is a pair j, k ∈ S such that Tj ∩ Tk 6= ∅ for some j < k, then φk contains Tj and both
Tj ∧ ¬φj and Tk ∧ ¬φk cannot be satisfied simultaneously, so Pr[∧i∈SAi] = 0. If no such pair exists, then
all the terms indexed by S are disjoint. Thus,

Pr[∧i∈SAi] ≤ Pr[∧i∈STi] =
∏
i∈S

Pr[Ti],
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as was to be shown.

The following lemma was communicated to us by Omid Etesami and James Cook (Etesami & Cook,
2010).

Lemma 28 Let f = T1 ∨ . . . ∨ Tt be a t-term read-k DNF formula, and let f ′ = T ′
1 ∨ . . . ∨ T ′

t be the
monotone formula obtained from f by replacing all the negative literals by their positive counterparts. Then
Pr[f ′] ≤ Pr[f ].

Proof: For each 0 ≤ i ≤ n, define f (i) as the DNF formula obtained from f when replacing each occurrence
of ¬xj by xj for all 1 ≤ j ≤ i. In particular, f (0) = f and f (n) = f ′. Let f (i−1) = (gxi

∧ xi) ∨ (g¬xi
∧

¬xi) ∨ g∅ where gxi
∧ xi is the OR of all terms from f (i−1) that have the literal xi, g¬xi

∧ ¬xi is the OR of
all terms that have the literal ¬xi, and g∅ is the OR of all terms that neither contain xi nor contain ¬xi. Note
that f (i) = ((gxi

∨ g¬xi
) ∧ xi) ∨ g∅. Thus

Pr
[
f (i−1)

]
=

1
2

Pr[gxi
∧ ¬g∅] +

1
2

Pr[g¬xi
∧ ¬g∅] + Pr[g∅],

and
Pr
[
f (i)
]

=
1
2

Pr[(gxi
∨ g¬xi

) ∧ ¬g∅] + Pr[g∅].

A union bound on the events (gxi
∧ ¬g∅) and (g¬xi

∧ ¬g∅) tells us that Pr[f (i−1)] ≥ Pr[f (i)], and thus
Pr[f (0)] ≥ Pr[f (n)].

As in the read-once case, we will prove that for any read-k DNF formula f , if
∑t

i=1 Pr[Ti] is large then
f is biased towards one (Lemma 30). To do so we will prove this for monotone read-k DNF formulas and
then use Lemma 28 to obtain the general case. Before we prove Lemma 30 we need the following claim,
which tells us that for a read-k monotone DNF formula, the probability of satisfying Ai compared to that of
satisfying Ti is only smaller by a constant (for constant k).

Claim 29 Let T1 ∨ · · · ∨ Tt be a t-term monotone read-k DNF formula. Then 2−4k Pr[Ti] ≤ Pr[Ai].

Proof: Let I be the set of indices of the terms in φi. For each Tj ∈ φi, let T ′
j be Tj with all the variables of

Ti set to 1, and let φ′i = ∨{j:Tj∈φi}T
′
j . (For example, if Ti = x1x2x3 and Tj = x2x4x5 is a term of φi, then

φ′i contains the term T ′
j = x4x5.) Observe that Pr[Ai] = Pr[Ti ∧ ¬φi] = Pr[Ti ∧ ¬φ′i] = Pr[Ti] Pr[¬φ′i].

Thus it suffices to show that Pr[¬φ′i] ≥ 2−4k.
Let aj be the number of variables in Tj ∩ Ti. By the definition of φi, 1 ≤ aj ≤ |Ti| − 1, and note that

Pr[T ′
j ] = 2aj−|Tj |. Applying the Four Functions Theorem (Theorem 6), we obtain:

Pr[¬φ′i] ≥
∏
j∈I

Pr[¬T ′
j ] =

∏
j∈I

(1− 2aj−|Tj |) ≥
∏
j∈I

(1− 2aj−|Ti|).

We partition I into two sets: J = {j : aj ≤ |Ti|/2} and J ′ = {j : aj > |Ti|/2}. (Assume that |Ti| ≥ 4
or else we are done, because there can be at most 4k terms.) As φi is a read-k DNF formula, we have that∑

j∈I aj ≤ k|Ti|, and thus |J ′| ≤ 2k, and |J | ≤ k|Ti|.
We will lower bound the products over each set of indices separately. For those terms in J , we have that

Pr[T ′
j ] ≤ 2−|Ti|/2, hence∏

j∈J

(1− Pr[T ′
j ]) ≥

∏
j∈J

(1− 2−|Ti|/2) ≥ (1− 2−|Ti|/2)k|Ti| ≥ 2−2k.

For those terms Tj , j ∈ J ′ (which share many variables with Ti), we use the facts that each Pr[T ′
j ] ≤ 1/2

and that there are at most 2k such terms, so that∏
j∈J′

(1− Pr[T ′
j ]) ≥ 2−2k.

Taking the product over the set J ∪ J ′ completes the proof of the claim.

Finally, we will prove that for any read-k DNF formula f , if
∑t

i=1 Pr[Ti] is large then f is biased towards
one. Using Lemma 30 with Claim 27, we can prove a lemma analogous to Lemma 17 by a case analysis of∑t

i=1 Pr[Ti]; either it is large and f must be biased toward one, or it is small so zf is usually small.
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Lemma 30 Let f be a t-term read-k DNF formula. Then,
t∑

i=1

Pr[Ti] ≤ 24k ln
(

1
Pr[¬f ]

)
.

Proof: First, let us consider the case when f is monotone. Let ρi be those terms among T1, . . . , Ti−1 that are
not present in φi. We can upper-bound Pr[¬f ] by:

Pr[¬f ] =
t∏

i=1

(1− Pr[Ti | ¬φi ∧ ¬ρi])

≤
t∏

i=1

(1− Pr[Ti ∧ ¬φi | ¬ρi]) =
t∏

i=1

(1− Pr[Ti | ¬ρi] Pr[¬φi | Ti ∧ ¬ρi])

≤
t∏

i=1

(1− Pr[Ti] Pr[¬φi | Ti]) =
t∏

i=1

(1− Pr[Ai]) .

The first inequality comes from Pr[A | B ∧ C] ≥ Pr[A ∧ B | C] for any A, B, and C. The last inequality
holds because Pr[Ti | ¬ρi] = Pr[Ti] (by the mutual independence of Ti and ρi) and Pr[¬φi | Ti] ≤ Pr[¬φi |
Ti ∧ ¬ρi]. The last fact may be obtained by applying the Four Functions Theorem to ¬φi and ¬ρi under the
product distribution induced by setting all the variables of Ti to be true.

We apply Claim 29 to obtain Pr[¬f ] ≤
∏t

i=1(1 − Pr[Ti]2−4k), and the arithmetic-geometric mean
inequality shows that our upper-bound on Pr[¬f ] is maximized when all the Pr[Ti] are equal, hence:

Pr[¬f ] ≤

(
1− 2−4k

∑t
i=1 Pr[Ti]

t

)t

≤ exp

(
−2−4k

t∑
i=1

Pr[Ti]

)
.

Solving for
∑t

i=1 Pr[Ti] yields the lemma.
Now let f be a non-monotone DNF formula, and let f ′ be the monotonized version of f . Then by

Lemma 28 we have:
t∑

i=1

Pr[Ti] =
t∑

i=1

Pr[T ′
i ] ≤ 24k ln

(
1

Pr[¬f ′]

)
≤ 24k ln

(
1

Pr[¬f ]

)
,

as was to be shown.

Lemma 31 Let f = T1 ∨ · · · ∨ Tt be a read-k DNF formula of size t such that Pr[f ] < 1 − ε. Then
the probability over the uniform distribution on {0, 1}n that zf ≥ j (for any j > 24ke ln(1/ε)) is at most(

24ke ln(1/ε)
j

)j

.

Proof: By Lemma 30, TA :=
∑t

i=1 Pr[Ti] < 24k ln(1/ε). The probability that some set of j Ai’s is satisfied
is at most

∑
S⊆[t],|S|=j Pr[∧i∈SAi]. Applying Claim 27, we have:∑

S⊆[t],|S|=j

Pr[∧i∈SAi] ≤
∑

S⊆[t],|S|=j

∏
i∈S

Pr[Ti].

The arithmetic-geometric mean inequality shows that this quantity is maximized when all Pr[Ti] are equal,
hence: ∑

S⊆[t],|S|=j

∏
i∈S

Pr[Ti] ≤
(

t

j

)(
TA

t

)j

≤
(

eTA

j

)j

≤
(

24ke ln 1/ε

j

)j

We can now show that Mansour’s conjecture holds for read-k DNF formulas with any constant k.

Theorem 32 Let f : {0, 1}n → {0, 1} be any read-k DNF formula with t terms. Then there is a polynomial
qf,d with ‖qf,d‖1 = tO(24k log 1/ε) and E[(f − qf,d)2] ≤ ε for all ε > 0.

Proof: If Pr[f = 1] > 1 − ε, the constant 1 is a suitable polynomial. Let g be the DNF formula f after
dropping terms of length greater than w := log(2t/ε). (This only changes the probability by ε/2.) Let
d := d4e324k ln(2/ε)e and qg,d be as defined at the beginning of Section 5. Lemma 26 tells us that ‖qg,d‖1 ≤
tO(24k log 1/ε), and Lemma 31 combined with Lemma 18 tells us that E[(g − qg,d)2] ≤ ε/2.
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6 Pseudorandomness

De et al. (2009) recently improved long-standing pseudorandom generators against DNF formulas.

Definition 33 A probability distribution X over {0, 1}n
ε-fools a real function f : {0, 1}n → R if

|E[f(X)]−E[f(Un)]| ≤ ε.

If C is a class of functions, then we say that X ε-fools C if X ε-fools every function f ∈ C.
We say a probability distribution X over {0, 1}n is ε-biased if it ε-fools the character function χS for

every S ⊆ [n].

De et al. (2009) observed that the result of Bazzi (2007) implied a pseudorandom generator that ε-fools
t-term DNF formulas over n variables with seed length O(log n · log2(t/β)), which already improves the
long-standing upper bound of O(log4(tn/ε)) of Luby et al. (1993). They go on to show a pseudorandom
generator with seed length O(log n + log2(t/ε) log log(t/ε)).

They prove that a sufficient condition for a function f to be ε-fooled by an ε-biased distribution is that the
function be “sandwiched” between two bounded real-valued functions whose Fourier transform has small `1
norm:

Lemma 34 (Sandwich Bound (De et al., 2009)) Suppose f, f`, fu : {0, 1}n → R are three functions such
that for every x ∈ {0, 1}n, f`(x) ≤ f(x) ≤ fu(x), E[fu(Un)]−E[f(Un)] ≤ ε, and E[f(Un)]−E[f`(Un)] ≤
ε. Let L = max(‖f`‖6=∅1 , ‖fu‖6=∅1 ). Then any β-biased probability distribution (ε + βL)-fools f .

Naor and Naor (1993) prove that an ε-biased distribution over n bits can be sampled using a seed of
O(log(n/ε)) bits. Using our construction from Section 4, we show that random DNF formulas are ε-fooled
by a pseudorandom generator with seed length O(log n + log(t) log(1/ε)):

Theorem 35 Let f = T1∨· · ·∨Tt be a random DNF formula chosen from Dt
n for t = nΘ(1). For 1 ≤ d ≤ t,

with probability 1 − 1/nΩ(log t) over the choice of f , β-biased distributions O(2−Ω(d) + βtd)-fool f . In
particular, we can ε-fool most f ∈ Dt

n by a t−O(log(1/ε)-biased distribution.

Proof: Let d+ be the first odd integer greater than d, and let d− be the first even integer greater than d. Let
fu = pf,d+ and f` = pf,d− (where pf,d is defined as in Section 3). By Lemma 16, the `1-norms of fu and f`

are tO(d). By Fact 15, we know that Pd+(y) =
(
y−1

d

)
+1 > 1 and Pd−(y) = −

(
y−1

d

)
+1 ≤ 0 for y ∈ [t]\ [d],

hence:

E[fu(Un)]−E[f(Un)] =
t∑

j=d+1

((
j − 1

d

)
+ 1− 1

)
Pr[yf = j],

which with probability 1 − 1/nΩ(log t) over the choice of f is at most 2−Ω(d) by the analysis in Lemma 18.
The same analysis applies for f`, thus applying Lemma 34 gives us the theorem.

De et al. (2009) match our bound for random DNF formulas for the special case of read-once DNF formu-
las. Using our construction from Section 5 and a similar proof as the one above, we can show that monotone
read-k formulas are ε-fooled by a pseudorandom generator with seed length O(log n + log(t) log(1/ε)).

Theorem 36 Let f = T1 ∨ · · · ∨ Tt be a read-k DNF formula for constant k. For 1 ≤ d ≤ t, β-biased
distributions O(2−Ω(d) + βtd)-fool f . In particular, we can ε-fool read-k DNF formulas by a t−O(log(1/ε))-
biased distribution.

Acknowledgments. Thanks to Sasha Sherstov for important contributions at an early stage of this work.
We would also like to thank Omid Etesami for pointing out some errors in a previous version of this work,
including a crucial flaw in the proof of the read-k case. We also thank him for pointing out to us that our
proof for the monotone read-k case extends to the non-monotone case (through Lemma 28). Lemma 28 is
due to Omid and James Cook.

379



References
Alon, N., & Spencer, J. H. (2000). The probabilistic method. Hoboken, NJ: Wiley-Interscience. 2nd edition

edition.

Bazzi, L. (2007). Polylogarithmic independence can fool DNF formulas. Proc. 48th IEEE Symposium on
Foundations of Computer Science (FOCS) (pp. 63–73).

De, A., Etesami, O., Trevisan, L., & Tulsiani, M. (2009). Improved pseudorandom generators for depth 2
circuits (Technical Report 141). Electronic Colloquium on Computational Complexity (ECCC).

Etesami, O., & Cook, J. (2010). personal communication.

Gopalan, P., Kalai, A., & Klivans, A. R. (2008a). A query algorithm for agnostically learning DNF? 21st
Annual Conference on Learning Theory - COLT 2008, Helsinki, Finland, July 9-12, 2008 (pp. 515–516).
Omnipress.

Gopalan, P., Kalai, A. T., & Klivans, A. R. (2008b). Agnostically learning decision trees. Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17-20,
2008 (pp. 527–536). ACM.

Graham, R. L., Knuth, D. E., & Patashnik, O. (1994). Concrete mathematics: A foundation for computer
science. Addison-Wesley.

Hancock, T., & Mansour, Y. (1991). Learning monotone k-µ DNF formulas on product distributions. Proc.
of the 4th Annual Conference on Computational Learning Theory (COLT) (pp. 179–183).
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Abstract

A significant Fourier transform (SFT) algorithm, given a threshold τ and oracle access to a function
f , outputs (the frequencies and approximate values of) all the τ -significant Fourier coefficients of
f , i.e., the Fourier coefficients whose magnitude exceeds τ‖f‖22. In this paper we present the first
deterministic SFT algorithm for functions f over ZN which is: (1) Local, i.e., its running time
is polynomial in logN , 1/τ and L1(f̂) (the L1 norm of f ’s Fourier transform). (2) Robust to
random noise. This strictly extends the class of compressible/Fourier sparse functions over ZN
efficiently handled by prior deterministic algorithms. As a corollary we obtain deterministic and
robust algorithms for sparse Fourier approximation, compressed sensing and sketching.

As a central tool, we prove that there are:

1. Explicit sets A of size poly((lnN)d, 1/ε) with ε-discrepancy in all rank d Bohr sets in ZN .
This extends the Razborov-Szemeredi-Wigderson result on ε-discrepancy in arithmetic pro-
gressions to Bohr sets, which are their higher rank analogue.

2. Explicit sets AP of size poly(lnN, 1/ε) that ε-approximate the uniform distribution over a
given arithmetic progression P in ZN , in the sense that |Ex∈A χ(x)− Ex∈P χ(x)| < ε for all
linear tests χ in ZN . This extends results on small biased sets, which are sets approximating
the uniform distribution over the entire domain, to sets approximating uniform distributions
over (arbitrary size) arithmetic progressions.

These results may be of independent interest.

1 Introduction
Computing the Fourier transform is a basic building block used in numerous applications. Its complexity is
well understood: Quasi-linear running time O(N logN) for N the input size is achieved by the Fast Fourier
Transform (FFT) algorithm [CT65], and believed to be optimal. For data intensive applications, however,
achieving a sub-linear running time is desired. In general, this is infeasible, because the input and output
are already of size N . Nevertheless, in settings where the input is given via oracle access, and it suffices to
output only the few “significant” Fourier coefficients, sub-linear algorithms do exist.

We say that a Fourier coefficient is τ -significant if its magnitude is at least a τ -fraction (say, 1%) of
the sum of squared Fourier coefficients. A significant Fourier transform (SFT) algorithm is an algorithm
that, given a significance threshold τ and oracle access to a function f , outputs all the τ -significant Fourier
coefficients of f (i.e., their frequencies and approximate values). The complexity of such algorithms is
measured primarily in terms of 1/τ and the size N of (the truth table of) f .

Randomized SFT algorithms achieving complexity polynomial in logN and 1/τ for functions over any
finite abelian group were developed in a sequence of works [GL89,KM93,Man95,GGI+02,AGS03,GMS05,
Aka09].

Deterministic SFT algorithms were given for restricted functions:
• Functions over the boolean hypercube {0, 1}n in Kushilevitz-Mansour’s (KM) algorithm [KM93].

∗This research was supported in part by NSF grant CCF-0514167, by NSF grant CCF-0832797, and by Israel Science
Foundation 700/08.
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• Compressible or Fourier sparse functions over ZN in Iwen’s algorithms [Iwe07, Iwe08, IS08].
(A function is compressible if its Fourier coefficients decay as fast as the series c(1/i)p for absolute
constants c > 0 and p > 1. A function is Fourier sparse if it has at most poly(logN) non-zero Fourier
coefficients.)

The KM algorithm [KM93] is given as an extra input an upper bound t on the sum of (absolute values

of) Fourier coefficients of the input function f , L1(f̂)
def
=
∑
α

∣∣∣f̂(α)
∣∣∣. Its running time is polynomial in

logN , 1/τ and t. We say that a deterministic SFT algorithm achieves the KM benchmark if its complexity is
polynomial in logN , 1/τ and t.

1.1 Main Result: Deterministic & Robust SFT Algorithm
In this paper we present a deterministic SFT algorithm achieving the KM benchmark for all functions f over
ZN . Furthermore, our SFT algorithm is robust to random noise. That is, the algorithm succeeds even if
the oracle to f is noisy in the sense that on queries x the oracle returns the value f ′(x) = f(x) + η(x) for
η : ZN → C an ε-random noise, i.e., values η(x) are drawn independently at random from distributions Dx

of expected absolute value at most Eη(x)∼Dx [|η(x)|] ≤ ε.

Theorem 1 There is a deterministic algorithm such that:

• Given N , τ , t, and oracle access to a function f : ZN → C s.t. L1(f̂) ≤ t, the algorithm outputs all the
τ -significant Fourier coefficients of f .

• Given N , τ , t, and oracle access is to a function f ′ : ZN → C, where f ′ = f + η s.t. L1(f̂) ≤ t
and η is a τ/3-random noise, the algorithm outputs all the τ -significant Fourier coefficients of f (with
probability at least 1− 1/NΘ(1) over the random noise η).

The running time and query complexity are polynomial in logN , 1/τ and t.

Remarks. (i) The KM benchmark is matched by taking t = L1(f̂). (ii) We stress that the complexity of our
algorithm depends on the bound t on L1(f̂), and not on a bound on L1(f̂ ′). This is crucial, because even if
L1(f̂) ≤ t is small, typically L1(f̂ ′) ≈

√
N is very large.

Our algorithm is better than the prior deterministic SFT algorithms for functions over ZN in:

1. Achieving the KM benchmark. In particular, our algorithm efficiently (i.e., in time polynomial in logN )
handles a much wider class of functions than handled by prior works: all functions f s.t. L1(f̂) ≤
poly(logN), instead of only the compressible/Fourier sparse functions.1

Handling this wider class of functions is motivated by functions arising in applications, e.g., threshold
functions fθ(x) = 1 iff x ≤ θ and 0 otherwise.

2. Achieving robustness to random noise. In contrast, in other deterministic algorithms, noisy functions
f ′ = f + η are out of the scope of functions handled efficiently, because typically f ′ is not compress-
ible/Fourier sparse (even if f were).2

Robustness to noise is motivated for example by measurement noise in signal processing applications.

1.2 New Tools: Fooling Bohr Sets and Arithmetic Progressions
As a central ingredient for our deterministic SFT algorithm, we prove that there exists explicit constructions
of: (1) Sets with small discrepancy on all rank d Bohr sets; and (2) Sets that ε-approximate the uniform
distribution on a given arithmetic progression (definitions follow). These results may be of independent
interest.

1In the context of SFT algorithms, compressible functions f are a strict subclass of the functions with poly-logarithmic
L1(f̂). This is because without loss of generality we may assume that f is normalized to have (approximately) unit
energy (as significance is determined by ratios of Fourier coefficient magnitude to total energy), and for normalized f ,
compressibility implies that L1(f̂) = O(1).

2A few remarks. (i) Having some restriction on the class of functions efficiently handled by deterministic algorithms
is unavoidable (because two input functions f, g may be identical on the small set of entries read by the deterministic
algorithm, while differing widely on their Fourier transform, implying the algorithm fails on at least one out of f, g). The
class of functions handled by our algorithm is wide enough to include typical noise. (ii) Our analysis extends to show
that KM’s deterministic algorithm for functions over {0, 1}n is also robust to random noise.
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1.2.1 Definitions
For sets A,S in a group G, we denote by US the uniform distribution over S, and say that:

• A has ε-discrepancy on S in G if the intersection |A ∩ S| is roughly as expected if A were random:

DA,G(S)
def
=
∣∣∣∣ |A ∩ S||A|

− |S|
|G|

∣∣∣∣ < ε.

For a family S of sets, A has ε-discrepancy on S, if DA,G(S)
def
= maxS∈S DA,G(S) < ε.

• A ε-approximates US in G if for all linear tests χ : G → C in G, the expected outcome χ(x) over
uniform x in A is ε-close to its expected outcome over uniform x in S:∣∣∣∣ E

x∈A
χ(x)− E

x∈S
χ(x)

∣∣∣∣ < ε.

We focus on G = ZN , where linear tests are the functions χα(x)
def
= e2πiαx/N indexed by α ∈ ZN .

• A is explicit if there is a deterministic algorithm that, given G (by its generators and their orders) and ε,
outputs A in time polynomial in |A|. We usually focus on explicit sets A of size polynomial in log |G|
and 1/ε.

We are particularly interested in sets S that are either arithmetic progressions or Bohr sets (which are the
higher rank analogue of arithmetic progressions used in many additive combinatorics works [TV06]):

• Arithmetic progressions in ZN are sets Pα,I
def
= {x · α mod N |x ∈ I} for α ∈ ZN a multiplier and

I = [a..b] an interval (i.e., the set of integers in [a, b]) with endpoints 0 ≤ a ≤ b < N .

• Rank d Bohr sets in ZN are sets B{αi,Ii}di=1

def
= {x ∈ ZN |αi · x mod N ∈ Ii ∀i = 1, . . . , d} for

αi ∈ ZN multipliers and Ii = [ai..bi] intervals with endpoints 0 ≤ ai ≤ bi < N . Denote by BN,d the
set of all rank d Bohr sets in ZN .

1.2.2 Our Results
We show that there exists (1) explicit sets with small discrepancy on all rank d Bohr sets, and (2) explicit sets
approximating the uniform distribution on a given arithmetic progression:

Theorem 2 1. For any N , ε, d, there is an explicit set A ⊆ ZN of size polynomial in 1/ε and (lnN)d with
ε-discrepancy on BN,d.

2. For anyN , ε, and an arithmetic progression P in ZN , there is an explicit setA ⊆ ZN of size polynomial
in 1/ε and ln |P | that ε-approximates the distribution UP .

Remarks and comparison to prior works.

1. Our proof is by reduction to explicit constructions of small biased sets. The exact size of our sets A
depends on the small biased set we use. For example, using the ε′-biased set of size O((logN)2/ε′)
of [Kat89] results in sets A of sizes O((logN)2+d/ε) and O((logN)4/ε3) in Theorem 2 Parts 1 and 2
respectively.3

2. For d = 1, our proof of Theorem 2 Part 1 gives a new –and much simpler– proof for the Razborov-
Szemeredi-Wigderson [RSW93] result on ε-discrepancy on arithmetic progressions.

Our result (even when restricted to d = 1) is better than the latter in: (i) Achieving ε-discrepancy on
all arithmetic progressions Pα,I , in contrast to only Pα,I s.t. α is co-prime to N . (ii) Achieving a
better set size whenever ε < 1/(logN)1/8 (as for d = 1 our set size is Θ((logN)3/ε) compared with
Θ((logN)2/ε9) in [RSW93]).

3. Theorem 2 Part 2 can be viewed as a generalization of small biased sets in ZN : Small biased sets are
sets approximating the uniform distribution over the entire domain, that is, the arithmetic progression
Pα,I for α = 1 and I = [0..N − 1], whereas our result addresses arbitrary arithmetic progressions P .

3The size quoted here for the ε′-biased set of [Kat89] is taken from the accounts of [AIK+90] on [Kat89]. We
remark that using the (much simpler) ε′-biased set of size O((log N)2/ε′3) of [AIK+90] results in sets A of sizes
O((log N)2+d/ε3) and O((log N)4/ε9) in Theorem 2 Parts 1 and 2 respectively.
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1.3 Paper Organization
In the rest of this paper we present: An overview of our proof (Sect. 2); Preliminaries (Sect. 3); Our explicit
constructions (Sect. 4); Our deterministic SFT algorithm (Sect. 5); Concluding remarks (Sect. 6).

2 Proof Overview
Our starting point is the randomized SFT algorithm of [Aka09]. Randomness there is employed solely for
constructing a set S = SN,τ,t ⊆ ZN of queries to the oracle to the input function f , such that (with high
probability) S is good according to Definition 3 below. Their analysis shows that: (i) If S is good, then for
all functions f over ZN s.t. L1(f̂) ≤ t, their algorithm finds the τ -significant Fourier coefficients of f (even
in the presence of noise) while querying f only on the entries in S. (ii) With high probability, their S is good.

Definition 3 (Good queries [Aka09]) A set S = SN,τ,t ⊆ ZN is (N, τ, t)-good (good, in short) if S =⋃b(logN)c
`=0 (A−B`) s.t. for ε = Θ(τ/(t2 logN)) sufficiently small:

• A is an ε-biased set in ZN
• For each `, B` ε-approximates the distribution U[0..2`−1] in ZN
• The sizes |A| and |B1| , . . . ,

∣∣Bb(logN)c
∣∣ are polynomial in logN , 1/τ and t

Remark. Exact setting of ε may vary depending on the desired tradeoff: We take ε = τ/(3t2 lnN) when
there is no noise, and ε = τ/(49t2 lnN) to tolerate up to τ/3-random noise.

In this work we obtain a deterministic (and robust) SFT algorithm by replacing the randomized construc-
tion of sets S in [Aka09] with an explicit (i.e., efficient and deterministic) construction.

The heart of our construction is a novel analysis, where, for any arithmetic progression P (say, [0..2`]),
we reduce the problem of finding explicit sets approximating the distribution UP in ZN to the problem of
finding explicit sets with small bias in ZM for M = |P |.4 We then obtain a good set S by utilizing known
constructions of explicit small-biased sets in ZM [Kat89, AIK+90, RSW93].

Our reduction is composed of the three parts detailed in the theorem below.

Theorem 4 (Our reduction) For any positive integers d,M < N , a positive real ε, andA ⊆ I = [0..M−1],

1. If A is ε/(4 lnM)d-biased in ZM , then A has ε-discrepancy on all rank d Bohr sets in ZM .
2. If A has ε3/(128π2)-discrepancy on all rank 2 Bohr sets in ZM , then A ε-approximates UI in ZN .
3. For every α, s ∈ ZN , if A ε-approximates UI in ZN , then α(A+ s) ε-approximates UPα,I+s in ZN .

Remark. The converse of Theorem 4 Part 1 is known (and simple to prove): If A has ε-discrepancy on all
arithmetic progressions in ZN , then A is 2πε-biased in ZN (see [RSW93], Proposition 4.1).

Proving part 3 of our reduction is straightforward, whereas Parts 1-2 require more insight (details follow).

Theorem 4, Part 1. We relate having small bias in ZM to having small discrepancy on all rank d Bohr sets
in ZM as follows. First we upper bound the discrepancy of A on any set R (say, a rank d Bohr set) in ZM by

DA,ZN (R) ≤ ε′ · L1(R̂) for ε′ the bias of A in ZM and for L1(R̂)
def
=
∑
α∈ZM

∣∣∣R̂(α)
∣∣∣ the L1-norm of the

Fourier transform of (the characteristic function of) R. Next we apply Fourier analysis and some elementary
number theory to show that for any rank d Bohr set R in ZM , L1(R̂) ≤ (4 lnM)d. We conclude that if A is
ε′ = ε/(4 lnM)d-biased in ZM , then A has ε-discrepancy on all rank d Bohr sets in ZM .

Theorem 4, Part 2. We relate approximating UI in ZN to having small discrepancy on rank 2 Bohr sets in
ZM as follows.

First, we identify each element α ∈ ZN with the pair (qα, rα) of its quotient and remainder in the
division-with-remainder by (the typically, non-integer value)N/M . We then rewrite each linear test χα(x) =
e(αx/N) in ZN as: χα(x) = e

(((
qαx
M

)
1

+
(
rαx
N

)
1

)
1

)
(where for any real number r, (r)1 denotes its non-

integer part, i.e., its remainder modulo 1; and e(r) = e2πir).
Second, we embed the sets

{(
qαx
M

)
1

}
x∈I and

{(
rαx
N

)
1

}
x∈I into ZM , and use this embedding to show that

if A has ε′-discrepancy on all rank 2 Bohr sets in ZM , then the joint distribution of pairs
((
qαx
M

)
1
,
(
rαx
N

)
1

)
4We remark that the connection between approximating UP in ZN and having small bias in Z|P | may seem surprising.

For example, achieving the former requires satisfying N linear tests modulo N , whereas achieving the latter requires
satisfying only |P | linear tests and these tests are modulo |P | (where |P | < N is arbitrary).
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over uniform x in A is “close” to their distribution over uniform x in I; where closeness is in the sense that
for every two length ρ = ε/8π intervals J1, J2 ⊆ [0, 1],∣∣∣∣ Pr

x∈A

[(qαx
M

)
1
∈ J1 &

(rαx
N

)
1
∈ J2

]
− Pr
x∈I

[(qαx
M

)
1
∈ J1 &

(rαx
N

)
1
∈ J2

]∣∣∣∣ < ε′

Finally, we prove that ε′-closeness of these two joint distributions implies ((ε′/ρ2) + 4πρ)-closeness of
the expected value of χα(x) = e

(((
qαx
M

)
1

+
(
rαx
N

)
1

)
1

)
over uniform x in A and over uniform x in I .

Assigning ε′ = ε3/(128π2), we conclude that A ε-approximates UI in ZN .

3 Preliminaries
In this section we summarize some preliminary terminology, notations and facts.
Notations. Let Z and C denote the integer and complex numbers respectively. Let ZN and Z∗N denote the
additive and the multiplicative groups of integers moduloN . We identify the elements of ZN with integers in
0, . . . , N − 1, and denote abs(α) = min {α,N − α} for all α ∈ ZN . We denote by [a..b] the set of integers
in the closed interval [a, b]. For any element a ∈ ZN and sets S, S′ ⊆ ZN , denote aS = {as}s∈S and
S − S′ = {s− s′}s∈S,s′∈S′ . For any real number r, denote e(r) = e2πir, and denote by (r)1 the remainder
of r in division by 1.

3.1 Significant Fourier Transform Coefficients
We give definitions and properties for normed spaces and Fourier transform.
Inner product, norms, convolution. The inner product of complex valued functions f, g over a domain

G is 〈f, g〉 def= 1
|G|
∑
x∈G f(x)g(x). Denote the `2-norm of f by ‖f‖2

def
=
√
〈f, f〉, and its L1-norm by

L1(f)
def
=
∑
x∈G |f(x)|. The convolution of f and g is the function f ∗ g : G → C defined by f ∗ g(x)

def
=

1
|G|
∑
y∈G f(y)g(x− y).

Characters and Fourier transform. The characters of a finite abelian groups G are all the homomorphisms
χ : G → C from G into the complex unit sphere. Denote by Ĝ the set of characters of G. The Fourier

transform of a complex valued function f over G is the function f̂ : Ĝ → C defined by f̂(χ)
def
= 〈f, χ〉. A

character χ is trivial if χ(x) = 1 for all x.

In particular, the characters of ZN are the functions χα : ZN → C, α ∈ ZN , defined by χα(x)
def
=

e2πiαx/N . Abusing notation, we view f̂ as a function over G, defined by f̂(α)
def
= 〈f, χα〉.

Significant Fourier coefficients. For any α ∈ ZN and τ ∈ [0, 1], we say that α is a τ -significant Fourier

coefficient iff
∣∣∣f̂(α)

∣∣∣2 ≥ τ‖f‖22. Denote by Heavyτ (f) the set of all τ -significant Fourier coefficients of f .

Useful Fourier transform properties. For every positive integer N , functions f, g : ZN → C, and elements
s ∈ ZN and t ∈ Z∗N , the following holds (where subtraction, multiplication and inverse operations are

modulo N ): Parseval Identity: 1
N

∑
x∈ZN |f(x)|2 =

∑
α∈ZN

∣∣∣f̂(α)
∣∣∣2. Convolution Theorem: (̂f ∗ g)(α) =

f̂(α) · ĝ(α) and similarly 1
N f̂ · g(α) = (f̂ ∗ ĝ)(α). Phase Shift: If g = f · χ−s, then ĝ(α) = f̂(α − s)

for all α. Scaling: If g(x) = f(tx) ∀x, then ĝ(α) = f̂(α · t−1) for all α. Finally, for all integers α,
1
N

∑
x∈ZN e(αx/N) = 1 iff α = 0 mod N and it is 0 otherwise.

3.2 Small Biased Sets

Let G be a finite abelian group and A ⊆ G. Denote biasA(χ)
def
= 1
|A|
∑
a∈A χ(a). A is ε-biased in G if for

all non-trivial characters χ of G, |biasA(χ)| < ε.

Fact 1 (ε-biased sets in ZN [AIK+90, RSW93, Kat89]) For any integer N > 0 and real ε > 0, there exists
an explicit set A of size polynomial in logN and 1/ε which is ε-biased in ZN .

For the sake of completeness we specify the details of one of the small biased sets constructed in
[AIK+90] (chosen due to its simplicity): For each N , ε, let AIKPS(N, ε) denote the ε-biased set in ZN
of [AIK+90] defined by:

AIKPS(N, ε)
def
=
{
sp−1 mod N

∣∣ s ∈ S, p ∈ P, p 6 |s} (1)

where, for ε′ = −(log ε)/(log logN), P =
{
p | p is prime, (logN)1+ε′/2 < p ≤ (logN)1+ε′

}
and S =

[1..(logN)1+2ε′ ].
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4 Our Results on Explicit Constructions
We present our results on explicit sets with small discrepancy on Bohr sets (Sect. 4.1), and explicit sets
approximating distributions uniform over arithmetic progressions (Sect. 4.2). See definitions in Sect. 1.2.1.

4.1 Small Discrepancy in Bohr Set
We show that there are explicit small sets A with small discrepancy on all rank d Bohr sets in ZN .

Theorem 2 Part 1 (Small discrepancy on Bohr sets). For any integers N, d > 0 and real ε > 0, there is
an explicit set A ⊆ ZN of size polynomial in 1/ε and (lnN)d s.t. DA,ZN (BN,d) < ε.

Proof: Fix N , d, ε. Denote ε′ = ε/(4 lnN)d. Let A be any explicit ε′-biased set A in ZN of size polynomial
in logN and 1/ε′ (such sets exists by Fact 1, Sect. 3.2). By Lemma 5, for any set B ⊆ ZN ,

DA,ZN (B) < ε′L1(B̂)

for L1(B̂)
def
=
∑
α∈ZN

∣∣∣B̂(α)
∣∣∣ the L1-norm of the Fourier transform of the characteristic function B(x) = 1

iff x ∈ B and 0 otherwise. By Lemma 6, for any rank d Bohr set B,

L1(B̂) ≤ (4 lnN)d.

We conclude that DA,ZN (B) < ε′ · (4 lnN)d = ε.

For any subsetsA,B of a finite abelian groupG, we bound the discrepancy ofA onB inG by the product
of the bias of A in G and the L1-norm of the Fourier transform of B.

Lemma 5 For any finite abelian group G, sets A,B ⊆ G and a real number ε > 0, if A is ε-biased in G,
then DA,G(B) < εL1(B̂). Furthermore, this bound is tight.

Proof: We show that DA,G(B) < εL1(B̂). Recall that DA,G(B) =
∣∣∣ |A∩B||A| −

|B|
|G|

∣∣∣. Replacing B with its

characteristic function, we get that DA,G(B) =
∣∣∣ 1
|A|
∑
a∈AB(a)− 1

|G|
∑
a∈GB(a)

∣∣∣ . Replacing the charac-

teristic function of B with its Fourier representation B(a) =
∑
χ B̂(χ)χ(a) and rearranging the summation

we get that DA,G(B) =
∣∣∣∑χ B̂(χ)

(
1
|A|
∑
a∈A χ(a)− 1

|G|
∑
a∈G χ(a)

)∣∣∣ which is in turn equal to

DA,G(B) =

∣∣∣∣∣∣
∑

non-trivial χ
B̂(χ) · biasA(χ)

∣∣∣∣∣∣ (2)

(since for the trivial χ, the difference in the parenthesis is zero, and for all non-trivial χ, 1
|G|
∑
a∈G χ(a) = 0).

Using the triangle inequality and bounding the bias of A by its upper bound ε, we conclude that

DA,G(B) ≤ max
non trivial χ

|biasA(χ)|
∑
χ

∣∣∣B̂(χ)
∣∣∣ < εL1(B̂).

We prove the bound is tight. Let G = {0, 1}n. Given any ε-biased set A ⊆ {0, 1}n and α ∈ {0, 1}n s.t.
biasA(χα) = ε, define B = {x |x · α = 0} (x · α is the dot product). Then DA,G(B) = εL1(B̂), because

DA,G(B) =
∣∣∣∑α6=0 B̂(χα)biasA(χα)

∣∣∣ (by Eq. 2) and B̂(χβ) 6= 0 iff β = α (by Fourier analysis of B).

We bound the L1-norm of the Fourier transform of rank d Bohr sets B.

Lemma 6 For any positive integers N, d, and B the characteristic function of a rank d Bohr set in ZN ,
L1(B̂) ≤ (4lnN)d.

Proof: FixB{αi,Ii}di=1
a rank d Bohr set in ZN . Observe thatB{αi,Ii}di=1

=
⋂d
i=1B{αi,Ii} is the intersection

of the d rank 1 Bohr sets B{αi,Ii}. Denote by B and B1, . . . , Bd the characteristic functions of B{αi,Ii}di=1

and B{α1,I1}, . . . , B{αd,Id} respectively. Then B =
∏d
i=1Bi. By Proposition 2, the above implies that

L1(B̂) ≤
∏d
i=1 L1(B̂i). By Lemma 7, L1(B̂i) ≤ 4 lnN for any rank 1 Bohr set Bi. We conclude that

L1(B̂) ≤ (4 lnN)d.

We bound the L1-norm of the Fourier transform of a product of functions.
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Proposition 2 Let f, g : G→ C, then L1(f̂ · g) ≤ L1(f̂) · L1(ĝ).

Proof: By the convolution theorem, f̂ · g(χ) = N(f̂ ∗ ĝ)(χ). Thus, L1(f̂ · g) =
∑
χ

∣∣∣N(f̂ ∗ ĝ)(χ)
∣∣∣ . By

definition of the convolution operator, the latter is equal to the sum
∑
χ

∣∣∣∑ψ f̂(ψ) · ĝ(χ · ψ−1)
∣∣∣ over χ, ψ

characters of the group G, which is upper bounded by
∑
ψ

∣∣∣f̂(ψ)
∣∣∣∑χ

∣∣ĝ(χ · ψ−1)
∣∣ = L1(f̂) · L1(ĝ).

We bound the L1-norm of the Fourier transform of rank 1 Bohr sets.

Lemma 7 For any positive integer N , and B the characteristic function of any rank 1 Bohr set in ZN ,
L1(B̂) ≤ 4 lnN .

Remark. The bound is tight up to constants, that is, there are Bohr sets B s.t. L1(B̂) = Ω(lnN).

Proof: Fix a rank 1 Bohr set in ZN ,B = Bα,I , for α ∈ ZN and I = [s..t] ⊆ ZN . Denote by g
def
= gcd(N,α)

the greatest common divisor of N and α, and let β
def
= α/g. We prove that L1(B̂) ≤ 4 lnN .

For g = 1 the proof is simple: Since α is co-prime toN , then ZN =
{
α−1x mod N

}
x∈ZN

, implying that
B is equal to the arithmetic progression

{
(α−1x mod N) ∈ ZN

∣∣α(α−1x) ∈ I
}

= α−1I . By the scaling

property of the Fourier transform, for α−1 co-prime to N , L1(α̂−1I) = L1(Î). Thus, by Proposition 3,
L1(B̂) ≤ 4 lnN .

For g > 1 the proof is more involved, details are given in Sect. 4.1.1.

We bound the L1-norm of the Fourier transform of an interval I .

Proposition 3 Let I be the characteristic function of an interval in ZN . Then L1(Î) < 4 lnN .

Proof: By [AGS03], the Fourier coefficients of any length at most N/2 interval I ′ are upper bounded by∣∣∣Î ′(α)
∣∣∣ ≤ 1/abs(α) for abs(α) = min {α,N − α}, and

∣∣∣Î(0)
∣∣∣ ≤ 1. For longer intervals I , we write I as the

sum of two intervals each of length at mostN/2. By linearity of the Fourier transform, the Fourier coefficients
of I are the sum of the Fourier coefficients of these intervals, and are therefore bounded by Î(α) ≤ 2/abs(α).
We conclude that L1(Î) ≤ 1 + 2

∑N/2
α=1(2/abs(α)) < 4 lnN (where for the last inequality we use the bound∑n

i=1(1/i) ≤ 1 + lnn on harmonic numbers).

4.1.1 Proof of Lemma 7
We prove Lemma 7 for the case of rank 1 Bohr sets in ZN with a multiplier α that is not co-prime to N .

Proof of Lemma 7. Fix a rank 1 Bohr set B
def
= {x ∈ ZN | (αx mod N) ∈ I} in ZN for α ∈ ZN and

I = [s..t] ⊆ ZN . Denote by g
def
= gcd(N,α) the greatest common divisor of N and α, and let β

def
= α/g.

We prove that L1(B̂) ≤ 4 lnN , focusing on the case that g > 1.

By Claim 8, for J
def
= [d( sg )e..b( tg )c] we can rewrite B as

B =
{
β−1(i

N

g
+ x0) ∈ ZN

∣∣∣∣x0 ∈ J, i ∈ [0..g − 1]
}

(3)

for β−1 the inverse of β modulo N . Denote

ĴN/g(α)
def
=

1
N/g

∑
x∈J

e(αx/(N/g)).

By Claim 9, for every index γ ∈ ZN , the γ-Fourier coefficient of B is

B̂(γ) =


0 g 6 |γ

ĴN/g(γβ−1/g) g|γ

Thus,
L1(B̂) =

∑
γ′∈ZN/g

ĴN/g((γ′g)β−1/g) =
∑

γ′∈ZN/g

∣∣∣ĴN/g(γ′β−1)
∣∣∣ =

∑
γ′∈ZN/g

∣∣∣ĴN/g(γ′)∣∣∣
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where the last equality holds because β−1 is co-prime to N/g (because it is co-prime to N , and N/g is a
divisor ofN ). By the definition of ĴN/g ,

∑
γ′∈ZN/g

∣∣∣ĴN/g(γ′)∣∣∣ is equal to L1(Ĵ) where the Fourier transform
of J is computed with respect to the characters of ZN/g. By Proposition 3, the latter is upper bounded by
4 ln(N/g) ≤ 4 lnN . We conclude that L1(B̂) ≤ 4 lnN.

Claim 8 B =
{
β−1(iNg + x0) ∈ ZN

∣∣∣x0 ∈ J, i ∈ [0..g − 1]
}
.

Proof: Since
{
β−1x

}
x∈ZN

= ZN (as by the maximality of g, gcd(N, β) = 1), then B is equal to the set{
β−1x ∈ ZN

∣∣ (α(β−1x) mod N) ∈ I
}

. Since α(β−1x) = (gβ)(β−1x) = gx we get that

B =
{
β−1x ∈ ZN

∣∣ (gx mod N) ∈ I
}
.

Thus, by Proposition 4, for J = [d( sg )e..b( tg )c],

B =
{
β−1x ∈ ZN

∣∣ (x mod
N

g
) ∈ J

}
.

Expressing each x ∈ ZN according to its division with remainder by N/g, i.e., x = iNg + x0 for i =
b(x/(N/g))c ∈ [0..g − 1] and x0 = x− iNg ∈ [0..Ng − 1], we get that

B =
{
β−1(i

N

g
+ x0) ∈ ZN

∣∣∣∣x0 ∈ J, i ∈ [0..g − 1]
}
.

Claim 9 For every index γ ∈ ZN , if g 6 |γ, then B̂(γ) = 0, and B̂(γ) = ĴN/g(γβ−1/g) otherwise.

Proof: Fix γ ∈ ZN . By definition of the Fourier transform in ZN and the set B,

B̂(γ) =
1
N

∑
x∈B

e(γx/N) =
1
N

∑
x0∈J

∑
i∈[0..g−1]

e(γβ−1(i
N

g
+ x0)/N)

where the last equality holds by Eq. 3. Rearranging this sum we get that

B̂(γ) =
1
N

∑
x0∈J

e(γβ−1x0/N) ·
∑

i∈[0..g−1]

e(γβ−1i/g)

=

 0 g 6 |γβ−1

g
N

∑
x0∈J e(γβ

−1x0/N) otherwise

where the last equality holds since 1
g

∑
i∈[0..g−1] e(γβ

−1i/g) = 0 if g 6 |γβ−1, and it is 1 otherwise (see Sect.
3.1).

Note that g|γβ−1 iff g|γ: This trivially holds for g = 1, and holds for g > 1, since g 6 |β (because g|N
and gcd(N, β) = 1). We conclude that B̂(γ) = 0 if g 6 |γ.

We focus next on the case that g|γ. Denote γ′ = γ/g. Substituting γ with γ′g in the above and rearrang-
ing, we get that, B̂(γ) = g

N

∑
x0∈J e(γ

′β−1x0/(N/g)). This in turn is equal to ĴN/g(γ′β−1) (by definition
of ĴN/g). We conclude that B̂(γ) = ĴN/g(γ′β−1) = ĴN/g(γβ−1/g) if g|γ.

Proposition 4 Fix any positive integers N, g s.t. g|N , and any x ∈ ZN and I = [s..t] ⊆ ZN . Then
(gx mod N) ∈ I iff (x mod N

g ) ∈ [d( sg )e..b( tg )c].

Proof: Observe that since g|N , then (gx mod N) = (x mod N
g ) · g. (Because x = x1

N
g + x2 for x1 < g,

x2 <
N
g , implying that (x mod N

g ) = x2 and (gx mod N) = (x1N+gx2 mod N) = gx2.) Thus, (gx mod
N) ≥ s iff (x mod N

g ) ≥ s/g, which in turn happens iff (x mod N
g ) ≥ d(s/g)e (because x mod N

g is an
integer). Similarly, (gx mod N) ≤ t iff (x mod N

g ) ≤ b(t/g)c. We conclude that (gx mod N) ∈ I iff
(x mod N

g ) ∈ [d( sg )e..b( tg )c].
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4.2 Approximating Distributions Uniform over Arithmetic Progressions
We show that there are explicit small sets approximating the uniform distribution over a given arithmetic
progression.

Theorem 2 Part 2 (Approximating arithmetic progressions). For any integer N > 0, real ε ∈ (0, 1), and
a length M ≤ N arithmetic progression B in ZN , there is an explicit set A ⊆ ZN of size polynomial in 1/ε
and (lnM)2 that ε-approximates UB in ZN .
Proof: Fix N , M and ε. We focus here on the case B = [0..M − 1] is an interval starting at zero; extensions
to arbitrary arithmetic progressions appear in section 4.2.1.

Let ε′ = ερ2/2 for ρ = ε/8π. We show below that if DA,ZM (BM,2) < ε′ (i.e., A has ε′-discrepancy on
all rank 2 Bohr sets in ZM ), then A ε-approximates UB . This completes our proof, as by Theorem 2 Part 1
there exists sets A of size polynomial in 1/ε′ = O(1/ε3) and (lnM)2 s.t. DA,ZM (BM,2) < ε′.

To relate approximating the distribution UB over ZN to having ε′-discrepancy on all rank 2 Bohr sets in
ZM , we do the following: For each α ∈ ZN , denote by (qα, rα) its quotient and remainder in division-with-
remainder by (the typically non-integer value) N/M . That is, qα is the largest integer s.t. qα NM ≤ α and
rα = α− qα NM is the remainder. Write α as:

α = N
( qα
M

+
rα
N

)
Rewrite each linear test χα(x) = e(αx/N) in ZN as:

χα(x) = e

(((qαx
M

)
1

+
(rαx
N

)
1

)
1

)
by replacing αx with N

(
qαx
M + rαx

N

)
1

= N
((
qαx
M

)
1

+
(
rαx
N

)
1

)
1
. By Lemma 10, if DA,ZM (BM,2) < ε′,

then the joint distribution of pairs
((
qαx
M

)
1
,
(
rαx
N

)
1

)
with x drawn uniformly at random from A is “close”

to their distribution with x drawn uniformly at random from B. Closeness is in the sense that for every two
length ρ intervals J1, J2 ⊆ [0, 1],∣∣∣∣ Pr

x∈A

[(qαx
M

)
1
∈ J1 &

(rαx
N

)
1
∈ J2

]
− Pr
x∈B

[(qαx
M

)
1
∈ J1 &

(rαx
N

)
1
∈ J2

]∣∣∣∣ < ε′

By Lemma 11, if the above equation holds, thenA ( ε
′

ρ2 +4πρ)-approximates UB . Noting that ( ε
′

ρ2 +4πρ) = ε,
we conclude that DA,ZM (BM,2) < ε′ implies that A ε-approximates UB .

Lemma 10 For any positive integers M ≤ N , positive real ε and a subset A ⊆ ZM , if DA,ZM (BM,2) < ε′,
then for all integers α ∈ [0,M), reals β ∈ [0, N/M), and intervals J1, J2 ⊆ [0, 1],∣∣∣∣ Pr

x∈A

[(αx
M

)
1
∈ J1 and

(
βx

N

)
1

∈ J2

]
− Pr
x∈B

[(αx
M

)
1
∈ J1 and

(
βx

N

)
1

∈ J2

]∣∣∣∣ < ε′ (4)

Remark. In particular, Eq. 4 holds for any α, β, J1, J2, ε
′ s.t. (α, β) = (qz, rz) are the quotient and remainder

in the division-with-remainder by N/M of some z ∈ ZN , J1, J2 ⊆ [0, 1] and length ρ intervals (because qz
is an integer in [0,M) and rz is a real in [0, N/M)).
Proof: Fix parameters α, β, J1, J2 and ε′ for Eq. 4. Fix A ⊆ ZM s.t. DA,ZM (BM,2) < ε′. In the following
we first show that Eq. 4 above holds iff Eq. 5 below holds. We then argue that Eq. 5 holds as it bounds the
discrepancy of A on a rank 2 Bohr set in ZM . We conclude that Eq. 4 holds.

We map the sets
(
αB
M

)
1

and
(
βB
N

)
1

into ZM by the one-to-one mappings:

(i)
(αx
M

)
1
7→ αx mod M

(ii)
(
βx

N

)
1

7→ x

(The latter map is a one-to-one because β < N/M and hence for x ∈ B = [0..M −1],
(
βx
N

)
1

does not wrap

around 0.) Denote by J̄1 and J̄2 the intervals in ZM that are the images of the sets J ′1 = J1 ∩
(
αB
M

)
1

and

J ′2 = J2 ∩
(
βB
N

)
1

under mappings (i) and (ii), respectively. Since mappings (i),(ii) are one-to-one, then Eq.
4 holds iff the following holds:∣∣∣∣ Pr

x∈A

[
(αx mod M) ∈ J̄1 and x ∈ J̄2

]
− Pr
x∈B

[
(αx mod M) ∈ J̄1 and x ∈ J̄2

]∣∣∣∣ < ε′ (5)
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Observing that the left hand side of Eq. 5 is the discrepancy of A on the rank 2 Bohr set

R =
{
x ∈ ZM | (αx mod M) ∈ J̄1 and x ∈ J̄2

}
,

we conclude that Eq. 5 holds and hence Eq. 4 holds.

Lemma 11 If Eq. 4 holds for every integer α ∈ [0,M), real β ∈ [0, N/M), and length ρ intervals J1, J2 ⊆
[0, 1], then A ( ε

′

ρ2 + 4πρ)-approximates UB in ZN .

Proof Sketch. Intuitively, if the distribution of pairs
((
qαx
M

)
1
,
(
rαx
N

)
1

)
with x drawn from UA is “close” to the

distribution of such pairs with x drawn from UB , then the distribution of sums χα(x) =
((
qαx
M

)
1

+
(
rαx
N

)
1

)
1

over x ∈ A is “close” to the distribution of such sums over x ∈ B. Namely, the expected value of χα(x)
with x drawn from UA is “close” to its expected value with x drawn from UB .

Capturing this intuition requires some technical work, where we rewrite Ex∈S χα(x), S = A,B, as a sum
over expressions depending on pairs of intervals J1, J2, and use Eq. 4 (and other manipulations) to bound
these expressions. Details are omitted from this extended abstract.

4.2.1 From Approximating Intervals to Approximating Arithmetic Progressions
We show that given any lengthM arithmetic progressionP = Pα,[s..s+M−1] and any setA that ε-approximates
U[0..M−1] in ZN , the set A′ = α(A+ s) is a set of size |A′| ≤ |A| that ε-approximates UP .

Lemma 12 For any positive integers M ≤ N and any length M arithmetic progression P = Pα,[s..M−1+s]

in ZN , if A ⊆ ZN ε-approximates U[0..M−1], then A′
def
= α(A+ s) ε-approximates UP .

Proof: For any β ∈ ZN and subsets S, S′ ⊆ ZN , denote diffβ(S, S′)
def
= Ex∈S e(βx/N)−Ex∈S′ e(βx/N).

We prove that |diffβ(A′, P )| < ε for all β ∈ ZN . Fix β. By definition of A′ and P , |diffβ(A′, P )| =
|Ex∈A e(βα(x+s)/N)−Ex∈[0..M−1] e(βα(x+s)/N)|. The latter is equal to |e(βαs/N)||Ex∈A e(βαx/N)−
Ex∈[0..M−1] e(βαx/N)| = 1 · |diffαβ(A, [0..M − 1])| < ε where the last inequality holds, because A ε-
approximates U[0..M−1] means that |diffβ′(A, [0..M − 1])| < ε for all β′ ∈ ZN .

5 Deterministically Finding Significant Fourier Coefficients
We present our deterministic and robust SFT algorithm, and prove Theorem 1.

5.1 The SFT Algorithm
At a high level, our SFT algorithm is a binary search algorithm that repeatedly: (1) Partitions the set of
potentially significant Fourier coefficients into two subsets. (2) Tests each subset to decide if it (potentially)
contains a significant Fourier coefficient. (3) Continues recursively on any subset with a positive test result.

Elaborating on the above, at each step of this search, the set of potentially significant Fourier coefficients
is maintained as a collection J of intervals, starting with J containing the four intervals [iN4 ..(i + 1)N4 ],
i = 0, . . . , 3. To maintain efficiency, the intervals [a..b] are represented by their endpoints pairs {a, b}. The
partition step partitions every interval J = [a..b] ∈ J into its lower and upper halves: J1 = [a..c] and
J2 = [c + 1..b] for c = b((a + b)/2)c its center. For i = 1, 2, the test estimates the Fourier weight of f on

Ji, denoted f̂(Ji)2 def
=
∑
α∈Ji

∣∣∣f̂(α)
∣∣∣2, returning YES if this weight exceeds the significance threshold τ .

The set J is updated by removing J , and inserting each Ji (i = 1, 2) iff it passes the test. After O(logN)
steps this search terminates with a collection J of length one intervals containing the frequencies of the
(potentially) significant Fourier coefficients. The algorithm wraps up by executing a sieving step, where for
each frequency α of a potentially significant Fourier coefficient, aO(τ)-approximation for f̂(α) is computed:
valα = 1

|A|
∑
x∈A−y f(x)χα(x) (for an arbitrary y ∈ ∪b(logN)c

`=1 B`); and the algorithm outputs the pairs
(α, valα) for all α found to be significant, i.e., valα ≥ τ/2.

The heart of the algorithm is the test deciding which intervals potentially contain a significant Fourier
coefficient. This test, given an interval J = [a..b], answers YES if the Fourier weight on J , exceeds the
significance threshold τ , and answers NO if the Fourier weight of a slightly larger interval J ′ ⊇ J is less
than τ/2. This is achieved by estimating the `2 norm (i.e., sum of squared Fourier coefficients) of a filtered
version of the input function f , when using a filter h that passes Fourier coefficients in J and decays fast
outside of J . The filters we use are functions h = h`,c which are (normalized) periodic square functions with

390



support size 2` when phase shifted by −c, for c = b((a + b)/2)c the center of J and ` = b(log N
4(b−a) )c a

function of J’s length:

h`,c(y)
def
=


N
2`
· χ−c(y) y ∈ [0..2` − 1]

0 otherwise
(6)

The filter h`,c passes all frequencies that lie within the length N/2`+2 interval J centered around c, and
decays fast outside of J . The filtered version of f is f ∗ h, and we estimate its `2 norm ‖f ∗ h‖22 by the
estimator:

est`,c(f)
def
=

1
|A|

∑
x∈A

 1
|B`|

∑
y∈B`

χ−c(y)f(x− y)

2

(7)

for A a small biased set in ZN , and B` approximating the uniform distribution over [0..2` − 1] in ZN .
A pseudo-code of the algorithm follows.

Algorithm 5 SFT.
Input: N ∈ N, τ ∈ (0, 1], oracle access to f : ZN → C.

1. Initialize: L = φ; J ←
{{
iλN2 , (i+ 1)λN2

}} 2
λ−1

i=0
for λ = 1/2; γ = τ/(49t2 lnN)

2. Construct queries:
• A := AIKPS(N, γ)
• For ` = 1, ..., logN, B` := AIKPS(2`, γ`) for γ` := γ3/(128π2`2)

Remark: AIKPS(N, ε) is as specified in Sect. 3.2, Eq. 1.

3. Main Loop: While ∃{a, b} ∈ J s.t. b 6= a do:

(a) Remove {a, b} from J , denote c′ = b(a+b
2 )c

(b) For each pair {a′, b′} out of the pairs {a, c′} and {c′ + 1, b} do:

i. Let ` = b(log λN
2(b′−a′) )c and c = b(a

′+b′

2 )c

ii. Compute est`,c ← 1
|A|
∑
x∈A

(
1
|B`|

∑
y∈B` χ−c(y)f(x− y)

)2

iii. If est`,c ≥ τ/2, insert {a′, b′} to J
4. Sieving: For each {a, b} ∈ J , and each α ∈ [a..b]

(a) Compute val(α)←
∣∣∣ 1
|A|
∑
x∈A χα(x)f(x)

∣∣∣2
(b) If val(α) ≥ τ/2, insert α to L

5. Output {(α, valα)}α∈L

Remarks. (1) To keep this paper self contained, in Step 2 of the pseudo-code we use the small biased sets
of [AIK+90] which were specified in Sect. 3.2, Eq. 1. Nevertheless, any other construction of small biased
sets may be used (with set sizes |A| , |B`| varying accordingly). (2) To simplify notations, we assume without
loss of generality that 0 ∈ ∪`B` (otherwise add it), and ‖f‖2 = 1 (otherwise normalize f by dividing each
read value by an energy estimator 1

|A|
∑
x∈A f(x)

2
).

5.2 Proof of Theorem 1
The proof of Theorem 1 is simple given our new result on explicit sets approximating given arithmetic pro-
gressions in ZN (Theorems 2 and 4) together with the work of [Aka09]:

Proof:[Proof of Theorem 1.] Our algorithm builds on the algorithm of [Aka09] while replacing their ran-
domized construction of sets S =

⋃
`(A − B`) with a deterministic construction. Our deterministic con-

struction produces a set S which is (N, τ, t)-good (see Corollary 13 below). When S is (N, τ, t)-good, the
analysis of [Aka09] shows that the algorithm succeeds (see Theorem 14 below). Namely, the algorithm out-
puts L ⊇ Heavyτ (f) (with probability at least 1 − 1/NΘ(1) over the random noise η) in running time is
O( 1

τ2 logN · |S|). Finally, this running time polynomial in logN , 1/τ and t by the definition of good sets.

As a corollary of our results on explicit constructions (Theorems 2,4), the queries constructed in our SFT
algorithm are (N, τ, t)-good.
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Corollary 13 The set S =
⋃
`(A−B`) for A,B` as in Algorithm 5 is an (N, τ, t)-good set.

Proof: The set S is good, because: (i) A is a γ-biased set in ZN . (ii) B` γ-approximates U[0..2`−1] (by
Theorem 4 and the fact that B` is a γ` = γ3/(128π2`2)-biased set in Z2` ). Finally, |A| , |B`| are polynomial
in logN and 1/γ = O(t2 lnN/τ).

Theorem 14 ( [Aka09]) If the queries S =
⋃
`(A−B`) for A,B` as in Algorithm 5 are (N, τ, t)-good, then

the following holds. Given N , τ , t, and {(x, f ′(x))}x∈S for f ′ = f + η a complex valued function over ZN
s.t. L1(f̂) ≤ t and η is a τ/3-random noise, Algorithm 5 outputs {(α, valα)}α∈L s.t. (with probability at
least 1 − 1/NΘ(1) over the random noise η) L ⊇ Heavyτ (f) and valα are O(τ)-approximations of f̂(α).
The running time of the algorithm is O( 1

τ2 logN · |S|).

6 Conclusions
We presented the first deterministic SFT algorithm for functions over ZN , which is: (1) Local, i.e., its running
time is polynomial in logN , 1/τ and L1(f̂); and (2) Robust to random noise. Our main technical novelty
lies in proving that there exists explicit constructions of small sets with small discrepancy in all rank d Bohr
sets, as well as small sets approximating the uniform distribution over a given arithmetic progression.

Extensions. Our deterministic SFT algorithm extends to handle functions over all finite abelian groups G
(given by their generators g1, . . . , gk and their orders N1, . . . , Nk). This extension is motivated for example
by functions over domains G = ZN1 × . . .× ZNk arising in image/video processing applications (k = 2, 3)
and machine learning applications (large k). As a central ingredient for this extension we present explicit
small sets approximating the uniform distribution over rectangles Rt,` = [0..N1]× . . .× [0..Nt−1]× [0..2`−
1]× {0}k−t for given t ∈ [k] and ` ∈ [logNt]. Details are omitted from this extended abstract.

Applications to sparse Fourier approximation, compressed sensing and sketching. Using our SFT al-
gorithm we obtain deterministic and robust algorithms for sparse Fourier approximation, compressed sensing
and sketching. Our algorithms, given N , m, ε, t and oracle access to a signal x ∈ CN s.t. L1(x̂) ≤ t (resp., a
sketch Ax for A = AN,m,ε,t ∈ Cpoly(logN,m/ε,t)×N an explicit measurement matrix), output a near optimal
m-sparse approximation R of x, i.e., ‖x−R‖22 ≤ ‖x−Ropt‖22 + ε for Ropt the best m-terms approximation
of x in the Fourier (resp., standard) basis. Our algorithms are robust to m/3ε-random noise, and their run-
ning time is polynomial in logN , m/ε and t. Given our SFT algorithm, the derivation of these algorithms is
standard; details are omitted from this extended abstract.

Open questions. Our results on explicit constructions yields sets sizes that are efficient but not optimal:
Probabilistic method arguments show that there are randomized constructions of sets of size O(d logN/ε2)
with ε-discrepancy in all rank d Bohr sets, as well as sets of size O((logN)/ε2) ε-approximating the uni-
form distribution over a given arithmetic progression. Whether these bounds can be matched by explicit
constructions is an open problem.
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Abstract

We study graph estimation and density estimation in high dimensions, using a family of density
estimators based on forest structured undirected graphical models. For density estimation, we do
not assume the true distribution corresponds to a forest; rather, we form kernel density estimates of
the bivariate and univariate marginals, and apply Kruskal’s algorithm to estimate the optimal forest
on held out data. We prove an oracle inequality on the excess risk of the resulting estimator relative
to the risk of the best forest. For graph estimation, we consider the problem of estimating forests
with restricted tree sizes. We prove that finding a maximum weight spanning forest with restricted
tree size is NP-hard, and develop an approximation algorithm for this problem. Viewing the tree
size as a complexity parameter, we then select a forest using data splitting, and prove bounds
on excess risk and structure selection consistency of the procedure. Experiments with simulated
data and microarray data indicate that the methods are a practical alternative to sparse Gaussian
graphical models.

1 Introduction

One way to explore the structure of a high dimensional distributionP for a random vectorX = (X1, . . . , Xd)
is to estimate its undirected graph. The undirected graphG associated withP hasd vertices corresponding
to the variablesX1, . . . , Xd, and omits an edge between two nodesXi andXj if and only if Xi andXj are
conditionally independent given the other variables. Currently, the most popular methods for estimatingG
assume that the distributionP is Gaussian. Finding the graphical structure in this case amounts to estimating
the inverse covariance matrixΩ; the edge betweenXj andXk is missing if and only ifΩjk = 0. Algorithms
for optimizing theℓ1-regularized log-likelihood have recently been proposed that efficiently produce sparse
estimates of the inverse covariance matrix and the underlying graph (Banerjee et al., 2008; Friedman et al.,
2007).

In this paper our goal is to relax the Gaussian assumption and to develop nonparametric methods for
estimating the graph of a distribution. Of course, estimating a high dimensional distribution is impossible
without making any assumptions. The approach we take here is to force the graphical structure to be a forest,
where each pair of vertices is connected by at most one path. Thus, we relax the distributional assumption of
normality but we restrict the family of undirected graphs that are allowed.

If the graph forP is a forest, then its densityp can be written as

p(x) =
∏

(i,j)∈E

p(xi, xj)

p(xi)p(xj)

d
∏

k=1

p(xk) (1.1)

whereE is the set of edges in the forest. Thus, it is only necessary to estimate the bivariate and univariate
marginals. Given any distributionP with densityp, there is a treeT and a densitypT whose graph isT and
which is closest in Kullback-Leibler divergence top. WhenP is known, then the best fitting tree distribution
can be obtained by Kruskal’s algorithm (Kruskal, 1956), or other algorithms for finding a maximum weight
spanning tree. In the discrete case, the algorithm can be applied to the estimated probability mass function,
resulting in a procedure originally proposed by Chow and Liu (1968). Here we are concerned with continuous
random variables, and we estimate the bivariate marginals with nonparametric kernel density estimators.

In high dimensions, fitting a fully connected spanning tree can be expected to over fit. We regulate the
complexity of the forest by selecting the edges to include using a data splitting scheme, a simple form of
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cross validation. In particular, we consider the family of foreststructured densities that use the marginal
kernel density estimates constructed on the first partition of the data, and estimate the risk of the resulting
densities over a second, held out partition. The optimal forest in terms of the held out risk is then obtained by
finding a maximum weight spanning forest for an appropriate set of edge weights.

While tree and forest structured density estimation has been long recognized as a useful tool, there has
been little theoretical analysis of the statistical properties of such density estimators. The main contribution
of this paper is an analysis of the asymptotic properties of forest density estimation in high dimensions. We
allow both the sample sizen and dimensiond to increase, and prove oracle results on the risk of the method.
In particular, we assume that the univariate and bivariate marginal densities lie in a Hölder class with exponent
β (see Section 4 for details), and show that

R(p̂ bF ) − min
F

R(p̂F ) = OP

(

√

log(nd)

(

k∗ + ̂k

nβ/(2+2β)
+

d

nβ/(1+2β)

))

(1.2)

whereR denotes the risk, the expected negative log-likelihood,̂k is the number of edges in the estimated
forest ̂F , andk∗ is the number of edges in the optimal forestF ∗ that can be constructed in terms of the kernel
density estimateŝp.

Among the only other previous work analyzing tree structured graphical models is Tan et al. (2009a) and
Chechetka and Guestrin (2007). Tan et al. (2009a) analyze the error exponent in the rate of decay of the error
probability for estimating the tree, in the fixed dimension setting, and Chechetka and Guestrin (2007) give a
PAC analysis. An extension to the Gaussian case is given by Tan et al. (2009b).

In addition to the above results on risk consistency, we also study the problem of estimating forests with
restricted tree sizes. In many applications, one is interested in obtaining a graphical representation of a high
dimensional distribution to aid in interpretation. For instance, a biologist studying gene interaction networks
might be interested in a visualization that groups together genes in small sets. Such a clustering approach
through density estimation is problematic if the graph is allowed to have cycles, as this can require marginal
densities to be estimated with many interacting variables. Restricting the graph to be a forest beats the curse
of dimensionality by requiring only univariate and bivariate marginal densities. To group the variables into
small interacting sets, we are led to the problem of estimating a maximum weight spanning forest with a
restriction on the size of each component tree. As we demonstrate, estimating restricted tree size forests can
also be useful in model selection for the purpose of risk minimization. Limiting the tree size gives another
way of regulating tree complexity that provides larger family of forest to select from in the data splitting
procedure.

While the problem of finding a maximum weight forest with restricted tree size may be natural, it appears
not to have been studied previously. We prove that the problem is NP-hard through a reduction from the
problem of Exact 3-Cover (Garey & Johnson, 1979), where we are given a setX and a familyS of 3-element
subsets ofX, and must choose a subfamily of disjoint 3-element subsets to coverX. While finding the exact
optimum is hard, we give a practical4-approximation algorithm for finding the optimal tree restricted forest;
that is, our algorithm outputs a forest whose weight is guaranteed to be at least1

4
w(F ∗), wherew(F ∗) is

the weight of the optimal forest. This approximation guarantee translates into excess risk bounds on the
constructed forest using our previous analysis, as the weight of the forest corresponds to contribution to the
risk coming from the bivariate marginals over the edges in the forest. Our experimental results with this
approximation algorithm show that it can be effective in practice for forest density estimation.

In Section 2 we review some background and notation. In Section 3 we present a two-stage algorithm,
and we provide a theoretical analysis of the algorithm in Section 4, with the detailed proofs collected in the
full arXiv version of this paper (Liu et al., 2010). In Section 6 we present experiments with both simulated
data and gene microarray data, where the problem is to estimate the gene-gene association graph, which has
been previously studied using Gaussian graphical models by Wille et al. (2004).

2 Preliminaries and Notation
Let p∗(x) be a probability density with respect to Lebesgue measureµ(·) onR

d and letX(1), . . . , X(n) ben

independent identically distributedRd-valued data vectors sampled fromp∗(x) whereX(i) = (X
(i)
1 , . . . , X

(i)
d ).

LetXj denote the range ofX(i)
j and letX = X1 × · · · × Xd.

A graph is a forest if it is acyclic. IfF is ad-node undirected forest with vertex setVF = {1, . . . , d} and
edge setE(F ) ⊂ {1, . . . , d} × {1, . . . , d}, the number of edges satisfies|E(F )| < d, noting that we do not
restrict the graph to be connected. We say that a probability density functionp(x) is supported by a forestF
if the density can be written as

pF (x) =
∏

(i,j)∈E(F )

p(xi, xj)

p(xi) p(xj)

∏

k∈VF

p(xk), (2.1)
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where eachp(xi, xj) is a bivariate density onXi×Xj , and eachp(xk) is a univariate density onXk (Lauritzen,
1996).

LetFd be the family of forests withd nodes, and letPd be the corresponding family of densities:

Pd =

{

p ≥ 0 :

∫

X

p(x) dµ(x) = 1, andp(x) satisfies (2.1) for someF ∈ Fd

}

. (2.2)

To bound the number of labeled spanning forests ond nodes, note that each such forest can be obtained by
forming a labeled tree ond + 1 nodes, and then removing noded + 1. From Cayley’s formula (Cayley, 1889;
Aigner & Ziegler, 1998), we then obtain the following.

Proposition 2.1 The size of the collectionFd of labeled forests ond nodes satisfies

|Fd| < (d + 1)d−1. (2.3)

Define the oracle forest density
q∗ = arg min

q∈Pd

D(p∗‖ q) (2.4)

where the Kullback-Leibler divergenceD(p‖ q) between two densitiesp andq is

D(p‖ q) =

∫

X

p(x) log
p(x)

q(x)
dx, (2.5)

underthe convention that0 log(0/q) = 0, andp log(p/0) = ∞ for p 6= 0. The following is proved by Bach
and Jordan (2003).

Proposition 2.2 Let q∗ be defined as in(2.4). There exists a treeT ∗ ∈ Fd, such that

q∗ = p∗T∗ =
∏

(i,j)∈E(T∗)

p∗(xi, xj)

p∗(xi) p∗(xj)

∏

k∈VT∗

p∗(xk) (2.6)

wherep∗(xi, xj) andp∗(xi) are the bivariate and univariate marginal densities ofp∗.

For any densityq(x), the negative log-likelihood riskR(q) is defined as

R(q) = −E log q(X) = −

∫

X

p∗(x) log q(x) dx. (2.7)

It is straightforward to see that the densityq∗ defined in (2.4) also minimizes the negative log-likelihood loss:

q∗ = arg min
q∈Pd

D(p∗‖ q) = arg min
q∈Pd

R(q) (2.8)

We thus define the oracle risk asR∗ = R(q∗). Using Proposition 2.2 and equation (2.1), we have

R∗ = R(q∗) = R(p∗T∗)

= −

∫

X

p∗(x)

(

∑

(i,j)∈E(T∗)

log
p∗(xi, xj)

p∗(xi)p∗(xj)
+

∑

k∈VT∗

log (p∗(xk))

)

dx

= −
∑

(i,j)∈E(T∗)

∫

Xi×Xj

p∗(xi, xj) log
p∗(xi, xj)

p∗(xi)p∗(xj)
dxidxj −

∑

k∈VT∗

∫

Xk

p∗(xk) log p∗(xk)dxk

= −
∑

(i,j)∈E(T∗)

I(Xi;Xj) +
∑

k∈VT∗

H(Xk), (2.9)

where

I(Xi;Xj) =

∫

Xi×Xj

p∗(xi, xj) log
p∗(xi, xj)

p∗(xi) p∗(xj)
dxidxj (2.10)

is the mutual information between the pair of variablesXi, Xj and

H(Xk) = −

∫

Xk

p∗(xk) log p∗(xk) dxk (2.11)

396



is the entropy. While the best forest will in fact be a spanning tree,the densitiesp∗(xi, xj) are in practice not
known. We estimate the marginals using finite data, in terms of a kernel density estimatesp̂n1

(xi, xj) over a
training set of sizen1. With these estimated marginals, we consider all forest density estimates of the form

p̂F (x) =
∏

(i,j)∈E(F )

p̂n1
(xi, xj)

p̂n1
(xi) p̂n1

(xj)

∏

k∈VF

p̂n1
(xk). (2.12)

Within this family, the best density estimate may not be supported on a full spanning tree, since a full tree
will in general be subject to over fitting. Analogously, in high dimensional linear regression, the optimal
regression model will generally be a fullp-dimensional fit, with a nonzero parameter for each variable.
However, when estimated on finite data the variance of a full model will dominate the squared bias, resulting
in over fitting. In our setting of density estimation we will regulate the complexity of the forest by cross
validating over a held out set.

There are several different ways to judge the quality of a forest structured density estimator. In this paper
we concern ourselves with prediction and density estimation, and thus focus on risk consistency.

Definition 2.3 ((Risk consistency))For an estimator̂qn ∈ Pd, the excess risk is defined asR(q̂n)−R∗. The
estimatorq̂n is risk consistent with convergence rateδn if

lim
M→∞

lim sup
n→∞

P (R(q̂n) − R∗ ≥ Mδn) = 0. (2.13)

In this case we writeR(q̂n) − R∗ = OP (δn).

It is important to note that this criterion is an oracle property, in the sense that the true densityp∗(x) is not
restricted to be supported by a tree; rather, the property assesses how well a given estimatorq̂ approximates
the best forest density (the oracle) within a class.

3 Kernel Density Estimation For Forests
If the true densityp∗(x) were known, by Proposition 2.2, the density estimation problem would be reduced
to finding the best tree structureT ∗

d , satisfying

T ∗
d = arg min

T∈Td

R(p∗T ) = arg min
T∈Td

D(p∗‖ p∗T ). (3.1)

The optimal treeT ∗
d can be found by minimizing the right hand side of (2.9). Since the entropy termH(X) =

∑

k H(Xk) is constant across all trees, this can be recast as the problem of finding the maximum weight
spanning tree for a weighted graph, where the weight of the edge connecting nodesi andj is I(Xi;Xj).
Kruskal’s algorithm (Kruskal, 1956) is a greedy algorithm that is guaranteed to find a maximum weight
spanning tree of a weighted graph. In the setting of density estimation, this procedure was proposed by Chow
and Liu (1968) as a way of constructing a tree approximation to a distribution. At each stage the algorithm
adds an edge connecting that pair of variables with maximum mutual information among all pairs not yet
visited by the algorithm, if doing so does not form a cycle. When stopped early, afterk < d − 1 edges have
been added, it yields the bestk-edge weighted forest.

Of course, the above procedure is not practical since the true densityp∗(x) is unknown. We replace the
population mutual informationI(Xi;Xj) in (2.9) by the plug-in estimatêIn(Xi, Xj), defined as

̂In(Xi, Xj) =

∫

Xi×Xj

p̂n(xi, xj) log
p̂n(xi, xj)

p̂n(xi) p̂n(xj)
dxidxj (3.2)

where p̂n(xi, xj) and p̂n(xi) are bivariate and univariate kernel density estimates. Given this estimated

mutual information matrix̂Mn =
[

̂In(Xi, Xj)
]

, we can then apply Kruskal’s algorithm (equivalently, the

Chow-Liu algorithm) to find the best tree structurêFn.
Since the number of edges of̂Fn controls the number of degrees of freedom in the final density estimator,

we need an automatic data-dependent way to choose it. We adopt the following two-stage procedure. First,
randomly partition the data into two setsD1 andD2 of sizesn1 andn2; then, apply the following steps:

1. UsingD1, construct kernel density estimates of the univariate and bivariate marginals and calculate
̂In1

(Xi, Xj) for i, j ∈ {1, . . . , d} with i 6= j. Construct a full treêF (d−1)
n1 with d − 1 edges, using the

Chow-Liu algorithm.

2. UsingD2, prune the treêF (d−1)
n1 to find a forest̂F (bk)

n1 with ̂k edges, for0 ≤ ̂k ≤ d − 1.

Once ̂F
(bk)
n1 is obtained in Step 2, we can calculatep̂

bF
(bk)
n1

according to (2.1), using the kernel density

estimates constructed in Step 1.
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Algorithm 3.1 Chow-Liu (Kruskal)

1: Input dataD1 = {X(1), . . . , X(n1)}.

2: CalculatêMn1
, according to (3.3), (3.4), and (3.5).

3: Initialize E(0) = ∅

4: for k = 1, . . . , d − 1 do

5: (i(k), j(k)) ← arg max(i,j) ̂Mn1
(i, j) such thatE(k−1) ∪ {(i(k), j(k))} does not contain a cycle

6: E(k) ← E(k−1) ∪ {(i(k), j(k))}

7: Output tree ̂F
(d−1)
n1 with edge setE(d−1).

3.1 Step 1: Estimating the marginals

Step1 is carried out on the datasetD1. Let K(·) be a univariate kernel function. Given an evaluation point
(xi, xj), the bivariate kernel density estimate for(Xi, Xj) based on the observations{X(s)

i , X
(s)
j }s∈D1

is
defined as

p̂n1
(xi, xj) =

1

n1

∑

s∈D1

1

h2
2

K

(

X
(s)
i − xi

h2

)

K

(

X
(s)
j − xj

h2

)

, (3.3)

wherewe use a product kernel withh2 > 0 as the bandwidth parameter. The univariate kernel density
estimatêpn1

(xk) for Xk is

p̂n1
(xk) =

1

n1

∑

s∈D1

1

h1

K

(

X
(s)
k − xk

h1

)

, (3.4)

whereh1 > 0 is the univariate bandwidth. Detailed specifications forK(·) andh1, h2 will be discussed in
the next section.

We assume that the data lie in ad-dimensional unit cubeX = [0, 1]d. To calculate the empirical mutual
information̂In1

(Xi, Xj), we need to numerically evaluate a two-dimensional integral. To do so, we calculate
the kernel density estimates on a grid of points. We choosem evaluation points on each dimension,x1i <

x2i < · · · < xmi for theith variable. The mutual information̂In1
(Xi, Xj) is then approximated as

̂In1
(Xi, Xj) =

1

m2

m
∑

k=1

m
∑

ℓ=1

p̂n1
(xki, xℓj) log

p̂n1
(xki, xℓj)

p̂n1
(xki) p̂n1

(xℓj)
. (3.5)

The approximation error can be made arbitrarily small by choosingm sufficiently large. As a practical con-
cern, care needs to be taken that the factorsp̂n1

(xki) andp̂n1
(xℓj) in the denominator are not too small; a trun-

cation procedure can be used to ensure this. Once thed×d mutual information matrix̂Mn1
=

[

̂In1
(Xi, Xj)

]

is obtained, we can apply the Chow-Liu (Kruskal) algorithm to find a maximum weight spanning tree.

3.2 Step 2: Optimizing the forest

The full tree ̂F
(d−1)
n1 obtained in Step 1 might have high variance when the dimensiond is large, leading to

over fitting in the density estimate. In order to reduce the variance, we prune the tree; that is, we choose forest
with k ≤ d − 1 edges. The number of edgesk is a tuning parameter that induces a bias-variance tradeoff.

In order to choosek, note that in stagek of the Chow-Liu algorithm we have an edge setE(k) (in the
notation of the Algorithm 3.1) which corresponds to a forest̂F

(k)
n1 with k edges, wherêF (0)

n1 is the union ofd
disconnected nodes. To selectk, we choose among thed treeŝF

(0)
n1 , ̂F

(1)
n1 , . . . , ̂F

(d−1)
n1 .

Let p̂n2
(xi, xj) andp̂n2

(xk) be defined as in (3.3) and (3.4), but now evaluated solely based on the held-
out data inD2. For a densitypF that is supported by a forestF , we define the held-out negative log-likelihood
risk as

̂Rn2
(pF ) (3.6)

= −
∑

(i,j)∈EF

∫

Xi×Xj

p̂n2
(xi, xj) log

p(xi, xj)

p(xi) p(xj)
dxidxj −

∑

k∈VF

∫

Xk

p̂n2
(xk) log p(xk) dxk.
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The selected forest is then̂F (bk)
n1 where

̂k = arg min
k∈{0,...,d−1}

̂Rn2

(

p̂ bF
(k)
n1

)

(3.7)

and wherêp bF
(k)
n1

is computed using the density estimatep̂n1
constructed onD1.

For computational simplicity, we can also estimatêk as

̂k = arg max
k∈{0,...,d−1}

1

n2

∑

s∈D2

log







∏

(i,j)∈E(k)

p̂n1
(X

(s)
i , X

(s)
j )

p̂n1
(X

(s)
i ) p̂n1

(X
(s)
j )

∏

k∈V
bF
(k)
n1

p̂n1
(X

(s)
k )






(3.8)

= arg max
k∈{0,...,d−1}

1

n2

∑

s∈D2

log





∏

(i,j)∈E(k)

p̂n1
(X

(s)
i , X

(s)
j )

p̂n1
(X

(s)
i ) p̂n1

(X
(s)
j )



 . (3.9)

This minimization can be efficiently carried out by iterating over thed − 1 edges in̂F
(d−1)
n1 .

Oncêk is obtained, the final forest density estimate is given by

p̂n(x) =
∏

(i,j)∈E(bk)

p̂n1
(xi, xj)

p̂n1
(xi) p̂n1

(xj)

∏

k

p̂n1
(xk). (3.10)

4 Statistical Properties

In this section we present our theoretical results on risk consistency and structure selection consistency of the
forest density estimatêpn = p̂

bF
(bk)
d

.

To establish some notation, we writean = Ω(bn) if there exists a constantc such thatan ≥ cbn for
sufficiently largen. We also writean ≍ bn if there exists a constantc such thatan ≤ c bn andbn ≤ c an

for sufficiently largen. Given ad-dimensional functionf on the domainX , we denote itsL2(P )-norm and
sup-norm as

‖f‖L2(P ) =

√

∫

X

f2(x)dPX(x), ‖f‖∞ = sup
x∈X

|f(x)| (4.1)

wherePX is the probability measure induced byX. Throughout this section, all constants are treated as
generic values, and as a result they can change from line to line.

In our use of a data splitting scheme, we always adopt equally sized splits for simplicity, so thatn1 =
n2 = n/2, noting that this does not affect the final rate of convergence.

4.1 Assumptions on the density

Fix β > 0. For anyd-tupleα = (α1, . . . , αd) ∈ N
d andx = (x1, . . . , xd) ∈ X , we definexα =

∏d
j=1

x
αj

j .
Let Dα denote the differential operator

Dα =
∂α1+···+αd

∂xα1
1 · · · ∂xαd

d

. (4.2)

For any real-valuedd-dimensional functionf on X that is ⌊β⌋-times continuously differentiable at point
x0 ∈ X , let P (β)

f,x0
(x) be its Taylor polynomial of degree⌊β⌋ at pointx0:

P
(β)

f,x0
(x) =

∑

α1+···+αd≤⌊β⌋

(x − x0)
α

α1! · · ·αd!
Dαf(x0). (4.3)

Fix L > 0, and denote byΣ(β, L, r, x0) the set of functionsf : X → R that are⌊β⌋-times continuously
differentiable atx0 and satisfy

∣

∣

∣
f(x) − P

(β)

f,x0
(x)

∣

∣

∣
≤ L‖x − x0‖

β
2 , ∀x ∈ B(x0, r) (4.4)

whereB(x0, r) = {x : ‖x − x0‖2 ≤ r} is theL2-ball of radiusr centered atx0. The setΣ(β, L, r, x0) is
called the(β, L, r, x0)-locally Hölder class of functions. Given a setA, we define

Σ(β, L, r, A) = ∩x0∈AΣ(β, L, r, x0). (4.5)

The following are the regularity assumptions we make on the true density functionp∗(x).
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Assumption 4.1 For any1 ≤ i < j ≤ d, we assume

(D1) there existL1 > 0 andL2 > 0 such that for anyc > 0 the true bivariate and univariate densities satisfy

p∗(xi, xj) ∈ Σ
(

β, L2, c (log n/n)
1

2β+2 ,Xi ×Xj

)

(4.6)

and
p∗(xi) ∈ Σ

(

β, L1, c (log n/n)
1

2β+1 ,Xi

)

; (4.7)

(D2) there exists two constantsc1 andc2 such that

c1γn ≤ inf
xi,xj∈Xi×Xj

p∗(xi, xj) ≤ sup
xi,xj∈Xi×Xj

p∗(xi, xj) ≤ c2 (4.8)

µ-almost surely, whereγ2
n = Ω

(

√

log n + log d

nβ/(β+1)

)

.

These assumptions are mild, in the sense that instead of adding constraints on the joint densityp∗(x), we
only add regularity conditions on the bivariate and univariate marginals.

4.2 Assumptions on the kernel

An important ingredient in our analysis is an exponential concentration result for the kernel density estimate,
due to Gińe and Guillou (2002). We first specify the requirements on the kernel functionK(·).

Let (Ω,A) be a measurable space and letF be a uniformly bounded collection of measurable functions.

Definition 4.2 F is a bounded measurable VC class of functions with characteristicsA andv if it is separa-
ble and for every probability measureP on (Ω,A) and any0 < ǫ < 1,

N
(

ǫ‖F‖L2(P ),F , ‖ · ‖L2(P )

)

≤

(

A

ǫ

)v

, (4.9)

where F (x) = supf∈F |f(x)| and N(ǫ,F , ‖ · ‖L2(P )) denotes theǫ-covering number of the metric space
(Ω, ‖ · ‖L2(P )); that is, the smallest number of balls of radius no larger thanǫ (in the norm‖ · ‖L2(P )) needed
to coverF .

The one-dimensional density estimates are constructed using a kernelK, and the two-dimensional esti-
mates are constructed using the product kernel

K2(x, y) = K(x) · K(y). (4.10)

Assumption 4.3 The kernelK satisfies the following properties.

(K1)
∫

K(u) du = 1,
∫ ∞

−∞

K2(u) du < ∞ andsup
u∈R

K(u) ≤ c for some constantc.

(K2) K is a finite linear combination of functionsg whose epigraphs epi(g) = {(s, u) : g(s) ≥ u}, can be
represented as a finite number of Boolean operations (union and intersection) among sets of the form
{(s, u) : Q(s, u) ≥ φ(u)}, whereQ is a polynomial onR × R andφ is an arbitrary real function.

(K3) K has a compact support and for anyℓ ≥ 1 and1 ≤ ℓ′ ≤ ⌊β⌋
∫

|t|β |K(t)| dt < ∞, and

∫

|K(t)|ℓdt < ∞,

∫

tℓ
′

K(t)dt = 0. (4.11)

Assumptions (K1), (K2) and (K3) are mild. As pointed out by Nolan and Pollard (1987), both the pyramid
(truncated or not) kernel and the boxcar kernel satisfy them. It follows from (K2) that the classes of functions

F1 =

{

1

h1

K

(

u − ·

h1

)

: u ∈ R, h1 > 0

}

(4.12)

F2 =

{

1

h2
2

K

(

u − ·

h2

)

K

(

t − ·

h2

)

: u, t ∈ R, h2 > 0

}

(4.13)

are bounded VC classes, in the sense of Definition 4.2. Assumption (K3) essentially says that the kernelK(·)
should beβ-valid; see Tsybakov (2008) and Definition 6.1 in Rigollet and Vert (2009) for further details
about this assumption.
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We choose the bandwidthsh1 andh2 usedin the one-dimensional and two-dimensional kernel density
estimates to satisfy

h1 ≍

(

log n

n

)
1

1+2β

(4.14)

h2 ≍

(

log n

n

)
1

2+2β

. (4.15)

This choice of bandwidths ensures the optimal rate of convergence.

4.3 Risk consistency

Given the above assumptions, we first present a key lemma that establishes the rates of convergence of
bivariate and univariate kernel density estimates in thesup norm. Due to space limitations, the proof of this
and our other technical results are provided in the extended arXiv version of this paper (Liu et al., 2010).

Lemma 4.4 Under Assumptions 4.1 and 4.3, and choosing bandwidths satisfying(4.14) and (4.15), the
bivariate and univariate kernel density estimatesp̂(xi, xj) and p̂(xk) in (3.3)and (3.4)satisfy

max
(i,j)∈{1,...,d}×{1,...,d}

sup
(xi,xj)∈Xi×Xj

|p̂(xi, xj) − p∗(xi, xj)| = OP

(

√

log n + log d

nβ/(1+β)

)

(4.16)

and

max
k∈{1,...,d}

sup
xk∈Xk

|p̂(xk) − p∗(xk)| = OP

(

√

log n + log d

n2β/(1+2β)

)

. (4.17)

To describe the risk consistency result, letP
(d−1)

d = Pd be the family of densities that are supported by

forests with at mostd− 1 edges, as already defined in (2.2). For0 ≤ k ≤ d− 1, we defineP(k)

d as the family
of d-dimensional densities that are supported by forests with at mostk edges. Then

P
(0)

d ⊂ P
(1)

d ⊂ · · · ⊂ P
(d−1)

d . (4.18)
Now, due to the nesting property (4.18), we have

inf
qF ∈P

(0)
d

R(qF ) ≥ inf
qF ∈P

(1)
d

R(qF ) ≥ · · · ≥ inf
qF ∈P

(d−1)
d

R(qF ). (4.19)

We first analyze the forest density estimator obtained using a fixed number of edgesk < d; specifically,
consider stopping the Chow-Liu algorithm in Stage 1 afterk iterations. This is in contrast to the algorithm
described in 3.2, where the pruned tree size is automatically determined on the held out data. While this is
not very realistic in applications, since the tuning parameterk is generally hard to choose, the analysis in this
case is simpler, and can be directly exploited to analyze the more complicated data-dependent method.

Theorem 4.5 (Risk consistency)Let p̂ bF
(k)
d

be the forest density estimate with|E( ̂F
(k)

d )| = k, obtained after

the firstk iterations of the Chow-Liu algorithm, for somek ∈ {0, . . . , d−1}. Under Assumptions 4.1 and 4.3,
we have

R(p̂ bF
(k)
d

) − inf
qF ∈P

(k)
d

R(qF ) = OP

(

k

√

log n + log d

nβ/(1+β)
+ d

√

log n + log d

n2β/(1+2β)

)

. (4.20)

Note that this result allows the dimensiond to increase at a rateo
(

√

n2β/(1+2β)/ log n
)

and the number

of edgesk to increase at a rateo
(

√

nβ/(1+β)/ log n
)

, with the excess risk still decreasing to zero asymptot-

ically.
The above results can be used to prove a risk consistency result for the data-dependent pruning method

using the data-splitting scheme described in Section 3.2.

Theorem 4.6 Let p̂
bF
(bk)
d

be the forest density estimate using the data-dependent pruning method in Sec-

tion 3.2, and let̂p bF
(k)
d

be the estimate with|E( ̂F
(k)

d )| = k obtained after the firstk iterations of the Chow-Liu

algorithm. Under Assumptions 4.1 and 4.3, we have

R(p̂
bF
(bk)
d

) − min
0≤k≤d−1

R(p̂ bF
(k)
d

) = OP

(

(k∗ + ̂k)

√

log n + log d

nβ/(1+β)
+ d

√

log n + log d

n2β/(1+2β)

)

(4.21)

wherek∗ = arg min0≤k≤d−1 R(p̂ bF
(k)
d

).

The proof of this theorem is given in (Liu et al., 2010).
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Algorithm 5.1 ApproximateMax Weightt-Restricted Forest

1: Input graphG with positive edge weights, and positive integert ≥ 2.

2: Sort edges in decreasing order of weight.

3: Greedily add edges in decreasing order of weight such that
(a) the degree of any node is at mostt;
(b) no cycles are formed.

The resulting forest isF ′ = {T1, T2, . . . , Tm}.

4: Output Ft = ∪jTreePartition(Tj , t).

5 Tree Restricted Forests
We now turn to the problem of estimating forests with restricted tree sizes. As discussed in the introduction,
clustering problems motivate the goal of constructing forest structured density estimators where each con-
nected component has a restricted number of edges. But estimating restricted tree size forests can also be
useful in model selection for the purpose of risk minimization, since the maximum subtree size can be viewed
as an additional complexity parameter.

Definition 5.1 A t-restricted forest of a graphG is a subgraphFt such that

1. Ft is the disjoint union of connected components{T1, ..., Tm}, each of which is a tree;
2. |Ti| ≤ t for eachi ≤ m, where|Ti| denotes the number of edges in theith component.

Given a weightwe assigned to each edge ofG, an optimalt-restricted forestF ∗
t satisfies

w(F ∗
t ) ≥ max

Ft(G)
w(Ft) (5.1)

wherew(F ) =
∑

e∈F we is the weight of a forestF andFt(G) denotes the collection of allt-restricted
forests ofG.

For t = 1, the problem is maximum weighted matching. Unfortunately fort ≥ 2, determining a max-
imum weightt-restricted forest is an NP-hard problem; however, this problem appears not to have been
previously studied. Our reduction is from Exact 3-Cover (X3C), shown to be NP-complete by Garey and
Johnson (1979)). In X3C, we are given a setX, a familyS of 3-element subsets ofX, and we must choose a
subfamily of disjoint 3-element subsets to coverX.

Our reduction constructs a graph with special tree-shaped subgraphs calledgadgets, such that each gadget
corresponds to a 3-element subset inS. We show that finding a maximum weightt-restricted forest on this
graph would allow us to then recover a solution to X3C by analyzing how the optimal forest must partition
each of the gadgets.

Given the difficulty of finding an optimalt-restricted forest, it is of interest to study approximation algo-
rithms. Algorithm 5.1 gives a procedure that has two stages. In the first stage, a forest is greedily constructed
in such a way that each node has degree no larger thant + 1. In the second stage, each tree in the forest is
partitioned in an optimal way by removing edges, resulting in a collection of trees, each of which has size
at mostt. The second stage employs a procedure we callTreePartition that takes a tree and returns
the optimalt-restricted subforest.TreePartition is a divide-and-conquer procedure of Lukes (1974)
that finds a carefully chosen set of forest partitions for each child subtree. It then merges these sets with the
parent node one subtree at a time. The details of theTreePartition procedure are given in (Liu et al.,
2010).

Theorem 5.2 Let Ft be the output of Algorithm 5.1, and letF ∗
t be the optimalt-restricted forest. Then

w(Ft) ≥
1

4
w(F ∗

t ).

5.1 Pruning Based ont-Restricted Forests

For a givent, after producing an approximate maximum weightt-restricted forest̂Ft usingD1, we prune away
edges usingD2. To do so, we first construct a new set of univariate and bivariate kernel density estimates
usingD2, as before,̂pn2

(xi) and p̂n2
(xi, xj). We then estimate the “cross-entropies” of the kernel density

estimateŝpn1
for each pair of variables by computing

̂In2,n1
(Xi, Xj) =

∫

p̂n2
(xi, xj) log

p̂n1
(xi, xj)

p̂n1
(xi)p̂n1

(xj)
dxi dxj (5.2)

≈
1

m2

m
∑

k=1

m
∑

ℓ=1

p̂n2
(xki, xℓj) log

p̂n1
(xki, xℓj)

p̂n1
(xki) p̂n1

(xℓj)
. (5.3)
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Algorithm 5.2 t-RestrictedForest Density Estimation

1: Divide data into two halvesD1 andD2.

2: Computekernel density estimatorŝpn1
andp̂n2 for all pairs and single variable marginals.

3: For all pairs(i, j) computêIn1
(Xi, Xj) according to (3.5) and̂In2,n1

(Xi, Xj) according to (5.3).

4: For t = 0, . . . , tfinal wheretfinal is chosen based on the application

1. Compute or approximate (fort ≥ 2) the optimalt-restricted forest̂Ft usinĝIn1
as edge weights.

2. PrunêFt to eliminate all edges with negative weightŝIn2,n1
.

5: Among all pruned forestŝpF t , select̂t = arg min0≤t≤tfinal
̂Rn2

(p̂ bFt
).

We then eliminate all edges(i, j) in ̂Ft for which ̂In2,n1
(Xi, Xj) ≤ 0. For notational simplicity, we denote

the resulting pruned forest again bŷFt.
To estimate the risk, we simply usêRn2

(p̂ bFt
) as defined before, and select the forest̂Fbt according to

̂t = arg min
0≤t≤d−1

̂Rn2
(p̂ bFt

). (5.4)

The resulting procedure is summarized in Algorithm 5.2.
Using the approximation guarantee and our previous analysis, we have that the population weights of the

approximatet-restricted forest and the optimal forest satisfy the following inequality. We state the result for
a generalc-approximation algorithm; for the algorithm given above,c = 4, but tighter approximations are
possible.

Theorem 5.3 Assume the conditions of Theorem 4.5. Fort ≥ 2, let ̂Ft be the forest constructed using a
c-approximation algorithm, and letF ∗

t be the optimal forest; both constructed with respect to finite sample
edge weightŝwn1

= ̂In1
. Then

w( ̂Ft) ≥
1

c
w(F ∗

t ) + OP

(

(k∗ + ̂k)

√

log n + log d

nβ/(1+β)

)

(5.5)

where ̂k andk∗ are the number of edges in̂Ft andF ∗
t , respectively, andw denotes the population weights,

given by the mutual information.

As seen below, although the approximation algorithm has weaker theoretical guarantees, it out-performs
other approaches in experiments.

6 Experimental Results

In this section, we report numerical results on both synthetic datasets and microarray data; additional exper-
iments and further details are presented in the extended version of this paper (Liu et al., 2010). We mainly
compare the forest density estimator with sparse Gaussian graphical models, fitting a multivariate Gaussian
with a sparse inverse covariance matrix. The sparse Gaussian models are estimated using the graphical lasso
algorithm (glasso) of Friedman et al. (2007), which is a refined version of an algorithm first derived by
Banerjee et al. (2008). Since the glasso typically results in a large parameter bias as a consequence of theℓ1
regularization, we also compare with a method that we call therefit glasso, which is a two-step procedure—
in the first step, a sparse inverse covariance matrix is obtained by the glasso; in the second step, a Gaussian
model is refit withoutℓ1 regularization, but enforcing the sparsity pattern obtained in the first step.

6.1 Synthetic data

We generate high dimensional Gaussian and non-Gaussian data which are consistent with an undirected
graph. A typical run showing the held-out log-likelihood and estimated graphs is provided in Figure 6.1. We
see that for the Gaussian data, the refit glasso has a higher held-out log-likelihood than the forest density
estimator and the glasso. This is expected, since the Gaussian model is correct. For very sparse models,
however, the performance of the glasso is worse than that of the forest density estimator, due to the large
parameter bias resulting from theℓ1 regularization. We also observe an efficiency loss in the nonparametric
forest density estimator, compared to the refit glasso. The graphs are automatically selected using the held-
out log-likelihood, and we see that the nonparametric forest-based kernel density estimator tends to select a
sparser model, while the parametric Gaussian models tend to overselect.

403



0 20 40 60 80 100

−
18

−
16

−
14

−
12

−
10

−
8

−
6

tree size

he
ld

 o
ut

 lo
g−

lik
el

ih
oo

d

*************** * **** ** ****
**
**

* * * * ** ***

oooooo
ooo

o
oo

o
oo

o
oo

o o
o o

o o oo oo oo o o o o o o oo o

truth forest glasso

Figure6.1: Synthetic data, non-Gaussian. Held-out log-likelihood plots show forest density (black step function), glasso
(red stars), and refit glasso (blue circles); vertical indicates size of true graph.

Figure 6.2:A 934gene subgraph of the full estimated 4238 gene network. Left: estimated forest graph. Right: estimated
Gaussian graph. Red edges in the forest graph are missing from the Gaussian graph and vice versa; the blue edges are
shared by both graphs. Note that the layout of the genes is the same for both graphs.

6.2 Microarray Data

Our data comes from Nayak et al. (2009). The dataset contains Affymetrics chip measured expression
levels of 4238 genes for 295 normal subjects in theCentre d’Etude du Polymorphisme Humain(CEPH) and
the International HapMap collections. The 295 subjects come from four different groups: 148 unrelated
grandparents in the CEPH-Utah pedigrees, 43 Han Chinese in Beijing, 44 Japanese in Tokyo, and 60 Yoruba
in Ibadan, Nigeria. Since we want to find common network patterns across different groups of subjects, we
pooled the data together into an = 295 by p = 4238 numerical matrix.

We estimate the full 4238 node graph using both the forest density estimator (described in Section 3.1 and
3.2) and the Meinshausen-Bühlmann neighborhood search method (Meinshausen & Bühlmann, 2006) with
regularization parameter chosen to give it about same number as edges as the forest graph. The forest density
estimated graph reveals one strongly connected component of more than 3000 genes and various isolated
genes; this is consistent with the analysis in Nayak et al. (2009) and is realistic for the regulatory system of
humans. The Gaussian graph contains similar component structure, but the set of edges differs significantly.
We also ran thet-restricted forest algorithm fort = 2000 and it successfully separates the giant component
into three smaller components. Since the forest density estimator produces a sparse and interpretable graph
whose structure is consistent with biological analysis, we believe that it may be helpful for studying gene
interaction networks.

For visualization purposes, we show only a 934 gene subgraph of the strongly connected component
among the full 4238 node graphs we estimated. We refer the reader to the extended arXiv version of this
paper (Liu et al., 2010) for the full graph and other visualizations.
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7 Conclusion

We have studied forest density estimation for high dimensional data. Forest density estimation skirts the
curse of dimensionality by restricting to undirected graphs without cycles, while allowing fully nonparametric
marginal densities. The method is computationally simple, and the optimal size of the forest can be robustly
selected by a data-splitting scheme. We have established oracle properties and rates of convergence for
function estimation in this setting. Our experimental results compared the forest density estimator to the
sparse Gaussian graphical model in terms of both predictive risk and the qualitative properties of the estimated
graphs for human gene expression array data. Together, these results indicate that forest density estimation
can be a useful tool for relaxing the normality assumption in graphical modeling.
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Abstract

In recent years analysis of complexity of learning Gaussian mixture models from sampled data
has received significant attention in computational machine learning and theory communities. In
this paper we present the first result showing that polynomial time learning of multidimensional
Gaussian Mixture distributions is possible when the separation between the component means is
arbitrarily small. Specifically, we present an algorithm for learning the parameters of a mixture of k
identical spherical Gaussians in n-dimensional space with an arbitrarily small separation between
the components, which is polynomial in dimension, inverse component separation and other input
parameters for a fixed number of components k. The algorithm uses a projection to k dimensions
and then a reduction to the 1-dimensional case. It relies on a theoretical analysis showing that
two 1-dimensional mixtures whose densities are close in the L2 norm must have similar means
and mixing coefficients. To produce the necessary lower bound for the L2 norm in terms of the
distances between the corresponding means, we analyze the behavior of the Fourier transform of a
mixture of Gaussians in one dimension around the origin, which turns out to be closely related to
the properties of the Vandermonde matrix obtained from the component means. Analysis of minors
of the Vandermonde matrix together with basic function approximation results allows us to provide
a lower bound for the norm of the mixture in the Fourier domain and hence a bound in the original
space. Additionally, we present a separate argument for reconstructing variance.

1 Introduction
Mixture models, particularly Gaussian mixture models, are a widely used tool for many problems of sta-
tistical inference (Titterington et al., 1985; McLachlan & Peel, 2000; McLachlan & Basford, 1988; Everitt
& Hand, 1981; Lindsay, 1995). The basic problem is to estimate the parameters of a mixture distribution,
such as the mixing coefficients, means and variances within some pre-specified precision from a number of
sampled data points. While the history of Gaussian mixture models goes back to (Pearson, 1894), in re-
cent years the theoretical aspects of mixture learning have attracted considerable attention in the theoretical
computer science, starting with the pioneering work of (Dasgupta, 1999), who showed that a mixture of k
spherical Gaussians in n dimensions can be learned in time polynomial in n, provided certain separation
conditions between the component means (separation of order

√
n) are satisfied. This work has been refined

and extended in a number of recent papers. The first result from (Dasgupta, 1999) was later improved to the
order of Ω(n

1
4 ) in (Dasgupta & Schulman, 2000) for spherical Gaussians and in (Arora & Kannan, 2001)

for general Gaussians. The separation requirement was further reduced and made independent of n to the

order of Ω(k
1
4 ) in (Vempala & Wang, 2002) for spherical Gaussians and to the order of Ω(k

3
2

ϵ2 ) in (Kannan
et al., 2005) for Logconcave distributions. In a related work (Achlioptas & McSherry, 2005) the separation
requirement was reduced to Ω(k +

√
k log n). An extension of PCA called isotropic PCA was introduced in

(Brubaker & Vempala, 2008) to learn mixtures of Gaussians when any pair of Gaussian components is sepa-
rated by a hyperplane having very small overlap along the hyperplane direction (so-called ”pancake layering
problem”).

In a slightly different direction the recent work (Feldman et al., 2006) made an important contribution to
the subject by providing a polynomial time algorithm for PAC-style learning of mixture of Gaussian distribu-
tions with arbitrary separation between the means. The authors used a grid search over the space of parameters
to a construct a hypothesis mixture of Gaussians that has density close to the actual mixture generating the
data. We note that the problem analyzed in (Feldman et al., 2006) can be viewed as density estimation within
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a certain family of distributions and is different from most other work on the subject, including our paper,
which address parameter learning1.

We also note several recent papers dealing with the related problems of learning mixture of product
distributions and heavy tailed distributions. See for example, (Feldman et al., 2008; Dasgupta et al., 2005;
Chaudhuri & Rao, 2008a; Chaudhuri & Rao, 2008b).

In the statistics literature, (Chen, 1995) showed that optimal convergence rate of MLE estimator for finite
mixture of normal distributions is O(n− 1

2 ), where n is the sample size, if number of mixing components k is
known in advance and is O(n− 1

4 ) when the number of mixing components is known up to an upper bound.
However, this result does not address the computational aspects, especially in high dimension.

In this paper we develop a polynomial time (for a fixed k) algorithm to identify the parameters of the mix-
ture of k identical spherical Gaussians with potentially unknown variance for an arbitrarily small separation
between the components2. To the best of our knowledge this is the first result of this kind except for the si-
multaneous and independent work (Kalai et al., 2010), which analyzes the case of a mixture of two Gaussians
with arbitrary covariance matrices using the method of moments. We note that the results in (Kalai et al.,
2010) and in our paper are somewhat orthogonal. Each paper deals with a special case of the ultimate goal
(two arbitrary Gaussians in (Kalai et al., 2010) and k identical spherical Gaussians with unknown variance
in our case), which is to show polynomial learnability for a mixture with an arbitrary number of components
and arbitrary variance.

All other existing algorithms for parameter estimation require minimum separation between the compo-
nents to be an increasing function of at least one of n or k. Our result also implies a density estimate bound
along the lines of (Feldman et al., 2006). We note, however, that we do have to pay a price as our procedure
(similarly to that in (Feldman et al., 2006)) is super-exponential in k. Despite these limitations we believe
that our paper makes a step towards understanding the fundamental problem of polynomial learnability of
Gaussian mixture distributions. We also think that the technique used in the paper to obtain the lower bound
may be of independent interest.

The main algorithm in our paper involves a grid search over a certain space of parameters, specifically
means and mixing coefficients of the mixture (a completely separate argument is given to estimate the vari-
ance). By giving appropriate lower and upper bounds for the norm of the difference of two mixture distri-
butions in terms of their means, we show that such a grid search is guaranteed to find a mixture with nearly
correct values of the parameters.

To prove that, we need to provide a lower and upper bounds on the norm of the mixture. A key point
of our paper is the lower bound showing that two mixtures with different means cannot produce similar
density functions. This bound is obtained by reducing the problem to a 1-dimensional mixture distribution
and analyzing the behavior of the Fourier transform (closely related to the characteristic function, whose
coefficients are moments of a random variable up to multiplication by a power of the imaginary unit i) of
the difference between densities near zero. We use certain properties of minors of Vandermonde matrices
to show that the norm of the mixture in the Fourier domain is bounded from below. Since the L2 norm is
invariant under the Fourier transform this provides a lower bound on the norm of the mixture in the original
space.

We also note the work (Lindsay, 1989), where Vandermonde matrices appear in the analysis of mixture
distributions in the context of proving consistency of the method of moments (in fact, we rely on a result
from (Lindsay, 1989) to provide an estimate for the variance).

Finally, our lower bound, together with an upper bound and some results from the non-parametric density
estimation and spectral projections of mixture distributions allows us to set up a grid search algorithm over
the space of parameters with the desired guarantees.
Extended version of this paper is available at http://arxiv.org/abs/0907.1054.

2 Outline of the argument
In this section we provide an informal outline of the argument that leads to the main result. To simplify the
discussion, we will assume that the variance for the components is known or estimated by using the estimation
algorithm provided in Section 3.3. It is straightforward (but requires a lot of technical details) to see that all
results go through if the actual variance is replaced by a sufficiently (polynomially) accurate estimate.

We will denote the n-dimensional Gaussian density 1
(
√
2πσ)n

exp
(
−∥x−µi∥

2

2σ2

)
by K(x,µ), where x,µ ∈

1Note that density estimation is generally easier than parameter learning since quite different configurations of param-
eters could conceivably lead to very similar density functions, while similar configurations of parameters always result in
similar density functions.

2We point out that some non-zero separation is necessary since the problem of learning parameters without any
separation assumptions at all is ill-defined.
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Rn or, when appropriate, in Rk. The notation ∥ · ∥ will always be used to represent L2 norm while dH(·, ·)
will be used to denote the Hausdorff distance between sets of points. Let p(x) =

∑k
i=1 αiK(x,µi) be a

mixture of k Gaussian components with the covariance matrix σ2I in Rn. The goal will be to identify the
means µi and the mixing coefficients αi under the assumption that the minimum distance ∥µi − µj∥, i ̸= j
is bounded from below by some given (arbitrarily small) dmin and the minimum mixing weight is bounded
from below by αmin. We note that while σ can also be estimated, we will assume that it is known in advance
to simplify the arguments. The number of components needs to be known in advance which is in line with
other work on the subject. Our main result is an algorithm guaranteed to produce an approximating mixture
p̃, whose means and mixing coefficients are all within ϵ of their true values and whose running time is a
polynomial in all parameters other than k. Input to our algorithm is αmin, σ, k, N points in Rn sampled from
p and an arbitrary small positive ϵ satisfying ϵ ≤ dmin

2 . The algorithm has the following main steps.
Parameters: αmin, dmin, σ, k.
Input: ϵ ≤ dmin

2 , N points in Rn sampled from p.
Output: θ∗, the vector of approximated means and mixing coefficients.

Step 1. (Reduction to k dimensions). Given a polynomial number of data points sampled from p it is
possible to identify the k-dimensional span of the means µi in Rn by using Singular Value Decomposition
(see (Vempala & Wang, 2002)). By an additional argument the problem can be reduced to analyzing a mixture
of k Gaussians in Rk.

Step 2. (Construction of kernel density estimator). Using Step 1, we can assume that n = k. Given a
sample of N points in Rk, we construct a density function pkde using an appropriately chosen kernel density
estimator. Given sufficiently many points, ∥p− pkde∥ can be made arbitrarily small. Note that while pkde is
a mixture of Gaussians, it is not a mixture of k Gaussians.

Step 3. (Grid search). Let Θ = (Rk)k ×Rk be the k2 + k-dimensional space of parameters (component
means and mixing coefficients) to be estimated. Because of Step 1, we can assume (see Lemma 1) µis are in
Rk.

For any θ̃ = (µ̃1, µ̃2, · · · , µ̃k, α̃) = (m̃, α̃) ∈ Θ, let p(x, θ̃) be the corresponding mixture distribution.
Note that θ = (m,α) ∈ Θ are the true parameters. We obtain a value G (polynomial in all arguments for
a fixed k) from Theorem 4 and take a grid MG of size G in Θ. The value θ∗ is found from a grid search
according to the following equation

θ∗ = argmin
θ̃∈MG

{
∥p(x, θ̃)− pkde∥

}
(1)

We show that the means and mixing coefficients obtained by taking θ∗ are close to the true underlying
means and mixing coefficients of p with high probability. We note that our algorithm is deterministic and the
uncertainty comes only from the sample (through the SVD projection and density estimation).

While a somewhat different grid search algorithm was used in (Feldman et al., 2006), the main novelty
of our result is showing that the parameters estimated from the grid search are close to the true underlying
parameters of the mixture. In principle, it is conceivable that two different configurations of Gaussians could
give rise to very similar mixture distributions. However, we show that this is not the case. Specifically,
and this is the theoretical core of this paper, we show that mixtures with different means/mixing coefficients
cannot be close in L2 norm3 (Theorem 2) and thus the grid search yields parameter values θ∗ that are close
to the true values of the means and mixing coefficients.

To provide a better high-level overview of the whole proof we give a high level summary of the argument
(Steps 2 and 3).

1. Since we do not know the underlying probability distribution p directly, we construct pkde, which is a
proxy for p = p(x,θ). pkde is obtained by taking an appropriate non-parametric density estimate and,
given a sufficiently large polynomial sample, can be made to be arbitrarily close to p in L2 norm (see
Lemma 9). Thus the problem of approximating p in L2 norm can be replaced by approximating pkde.

2. The main technical part of the paper are the lower and upper bounds on the norm ∥p(x,θ)−p(x, θ̃)∥ in
terms of the Hausdorff distance between the component means (considered as sets of k points) m and
m̃. Specifically, in Theorem 2 and Lemma 3 we prove that for θ̃ = (m̃, α̃)

dH(m, m̃) ≤ f(∥p(x,θ)− p(x, θ̃)∥) ≤ h(dH(m, m̃) + ∥α− α̃∥1)
where f, h are some explicitly given increasing functions. The lower bound shows that dH(m, m̃) can
be controlled by making ∥p(x,θ) − p(x, θ̃)∥ sufficiently small, which (assuming minimum separation

3Note that our notion of distance between two density functions is slightly different from the standard ones used in
literature, e.g., Hellinger distance or KL divergence. However, our goal is to estimate the parameters and here we use L2

norm merely as a tool to describe that two distributions are different.
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dmin between the components of p) immediately implies that each component mean of m is close to
exactly one component mean of m̃.

On the other hand, the upper bound guarantees that a search over a sufficiently fine grid in the space Θ
will produce a value θ∗, s.t. ∥p(x,θ)− p(x,θ∗)∥ is small.

3. Once the component means m and m̃ are shown to be close an argument using the Lipschitz property
of the mixture with respect to the mean locations can be used to establish that the corresponding mixing
coefficient are also close (Corollary 5).

We will now briefly outline the argument for the main theoretical contribution of this paper which is a lower
bound on the L2 norm in terms of the Hausdorff distance (Theorem 2).

1. (Minimum distance, reduction from Rk to R1) Suppose a component mean µi, is separated from every
estimated mean µ̃j by a distance of at least d, then there exists a unit vector v in Rk such than ∀i,j
|⟨v, (µ̃i − µj)⟩| ≥ d

4k2 . In other words a certain amount of separation is preserved after an appropriate
projection to one dimension. See Lemma 10 for a proof.

2. (Norm estimation, reduction from Rk to R1). Let p and p̃ be the true and estimated density respectively
and let v be a unit vector in Rk. pv and p̃v will denote the one-dimensional marginal densities obtained
by integrating p and p̃ in the directions orthogonal to v. It is easy to see that pv and p̃v are mixtures
of 1-dimensional Gaussians, whose means are projections of the original means onto v. It is shown in
Lemma 11 that

∥p− p̃∥2 ≥
(

1

cσ

)k

∥pv − p̃v∥2

and thus to provide a lower bound for ∥p − p̃∥ it is sufficient to provide an analogous bound (with a
different separation between the means) in one dimension.

3. (1-d lower bound) Finally, we consider a mixture q of 2k Gaussians in one dimension, with the assump-
tion that one of the component means is separated from the rest of the component means by at least t
and that the (not necessarily positive) mixing weights exceed αmin in absolute value. Assuming that the
means lie in an interval [−a, a] we show (Theorem 6)

∥q∥2 ≥ α4k
min

(
t

a2

)Ck2

for some positive constant C independent of k.

The proof of this result relies on analyzing the Taylor series for the Fourier transform of q near zeros,
which turns out to be closely related to a certain Vandermonde matrix.

Combining 1 and 2 above and applying the result in 3, q = pv−p̃v yields the desired lower bound for ∥p−p̃∥.

3 Main Results
In this section we present our main results. First we show that we can reduce the problem in Rn to a corre-
sponding problem in Rk , where n represents the dimension and k is the number of components, at the cost
of an arbitrarily small error. Then we solve the reduced problem in Rk, again allowing for only an arbitrarily
small error, by establishing appropriate lower and upper bounds of a mixture norm in Rk.

Lemma 1 (Reduction from Rn to Rk) Consider a mixture of k n-dimensional spherical Gaussians p(x) =∑k
i=1 αiK(x,µi) where the means lie within a cube [−1, 1]n, ∥µi − µj∥ ≥ dmin > 0,∀i̸=j and for all

i, αi > αmin. For any positive ϵ ≤ dmin

2 and δ ∈ (0, 1), given a sample of size poly
(

n
ϵαmin

)
· log

(
1
δ

)
,

with probability greater than 1− δ, the problem of learning the parameters (means and mixing weights) of p
within ϵ error can be reduced to learning the parameters of a k-dimensional mixture of spherical Gaussians
po(x) =

∑k
i=1 αiK(x,νi) where the means lie within a cube [−

√
n
k ,
√

n
k ]

k, ∥νi − νj∥ > dmin

2 > 0,∀i̸=j .
However, in Rk we need to learn the means within ϵ

2 error.

Proof: For i = 1, . . . , k, let vi ∈ Rn be the top k right singular vectors of a data matrix of size poly
(

n
ϵαmin

)
·

log
(
1
δ

)
sampled from p(x). It is well known (see (Vempala & Wang, 2002)) that the space spanned by the

410



means {µi}ki=1 remains arbitrarily close to the space spanned by {vi}ki=1. In particular, with probability
greater than 1− δ, the projected means {µ̃i}ki=1 satisfy ∥µi − µ̃i∥ ≤ ϵ

2 for all i (see Lemma 12).
Note that each projected mean µ̃i ∈ Rn can be represented by a k dimensional vector νi which are

the coefficients along the singular vectors vjs, that is for all i, µ̃i =
∑k

j=1 νijvj . Thus, for any i ̸=
j, ∥µ̃i − µ̃j∥ = ∥νi − νj∥. Since ∥µ̃i − µ̃j∥ ≥ dmin − ϵ

2 − ϵ
2 = dmin − ϵ ≥ dmin − dmin

2 = dmin

2 , we have
∥νi − νj∥ ≥ dmin

2 . Also note that each νi lie within a cube of [−
√

n
k ,
√

n
k ]

k where the axes of the cube are
along the top k singular vectors vjs.

Now suppose we can estimate each νi by ν̃i ∈ Rk such that ∥νi − ν̃i∥ ≤ ϵ
2 . Again each ν̃i has a

corresponding representation µ̂i ∈ Rn such that µ̂i =
∑k

j=1 ν̃ijvj and ∥µ̃i− µ̂i∥ = ∥νi− ν̃i∥. This implies
for each i, ∥µi − µ̂i∥ ≤ ∥µi − µ̃i∥+ ∥µ̃i − µ̂i∥ ≤ ϵ

2 + ϵ
2 = ϵ.

From here onwards we will deal with mixture of Gaussians in Rk. Thus we will assume that po denotes
the true mixture with means {νi}ki=1 while p̃o represents any other mixture in Rk with different means and
mixing weights.

We first prove a lower bound for ∥po − p̃o∥.

Theorem 2 (Lower bound in Rk) Consider a mixture of k k-dimensional spherical Gaussians po(x) =∑k
i=1 αiK(x,νi) where the means lie within a cube [−

√
n
k ,
√

n
k ]

k, ∥νi − νj∥ ≥ dmin

2 > 0,∀i̸=j and
for all i,αi > αmin. Let p̃o(x) =

∑k
i=1 α̃iK(x, ν̃i) be some arbitrary mixture such that the Hausdorff

distance between the set of true means m and the estimated means m̃ satisfies dH(m, m̃) ≤ dmin

4 . Then

∥po − p̃o∥2 ≥
(

α4
min

cσ

)k (
dH(m,m̃)

4nk2

)Ck2

where C, c are some positive constants independent of n, k.

Proof: Consider any arbitrary νi such that its closest estimate ν̃i from m̃ is t = ∥νi − ν̃i∥. Note that
t ≤ dmin

4 and all other νj , ν̃j , j ̸= i are at a distance at least t from νi. Lemma 10 ensures the existence
of a direction v ∈ Rk such that upon projecting on which |⟨v, (νi − ν̃i)⟩| ≥ t

4k2 and all other projected
means ⟨v,νj⟩, ⟨v, ν̃j⟩, j ̸= i are at a distance at least t

4k2 from ⟨v,νi⟩. Note that after projecting on v,
the mixture becomes a mixture of 1-dimensional Gaussians with variance σ2 and whose projected means
lie within [−

√
n,

√
n]. Let us denote these 1-dimensional mixtures by pv and p̃v respectively. Then using

Theorem 6 ∥pv − p̃v∥2 ≥ α4k
min

(
(t/4k2)

n

)Ck2

. Note that we obtain pv (respectively p̃v) by integrating po

(respectively p̃o) in all (k − 1) orthogonal directions to v. Now we need to relate ∥po − p̃o∥ and ∥pv − p̃v∥.
This is done in Lemma 11 to ensure that ∥po − p̃o∥2 ≥

(
1
cσ

)k ∥pv − p̃v∥2 where c > is in chosen such a
way that in any arbitrary direction probability mass of each projected Gaussian on that direction becomes

negligible outside the interval of [−cσ/2, cσ/2]. Thus, ∥po − p̃o∥2 ≥
(αmin4

cσ

)k ( t
4nk2

)Ck2

. Since this holds
for any arbitrary νi, we can replace t by dH(m, m̃).

Next, we prove a straightforward upper bound for ∥po − p̃o∥.

Lemma 3 (Upper bound in Rk) Consider a mixture of k, k-dimensional spherical Gaussians po(x) =∑k
i=1 αiK(x,νi) where the means lie within a cube [−

√
n
k ,
√

n
k ]

k, ∥νi − νj∥ ≥ dmin

2 > 0,∀i̸=j and
for all i,αi > αmin. Let p̃o(x) =

∑k
i=1 α̃iK(x, ν̃i) be some arbitrary mixture such that the Hausdorff

distance between the set of true means m and the estimated means m̃ satisfies dH(m, m̃) ≤ dmin

4 . Then
there exists a permutation π : {1, 2, . . . , k} → {1, 2, , . . . , k} such that

∥po − p̃o∥ ≤ 1

(2πσ2)k/2

k∑
i=1

(√
|αi − α̃π(i)|2 +

d2H(m, m̃)

σ2

)
Proof: Due to the constraint on the Hausdorff distance and constraint on the pair wise distance between
the means of m, there exists a permutation π : {1, 2, . . . , k} → {1, 2, , . . . , k} such that ∥νi − ν̂π(i)∥ ≤
dH(m, m̃). Due to one-to-one correspondence, without loss of generality we can write,
∥po − p̃o∥ ≤

∑k
i=1 ||gi∥ where gi(x) = αiK(x,νi)− α̃π(i)K(x, ν̃π(i)). Now using Lemma 13,

∥gi∥2 ≤ 1
(2πσ2)k

(
α2
i + α̃2

π(i) − 2αiα̃π(i) exp
(
−∥νi−ν̃π(i)∥2

2σ2

))
= 1

(2πσ2)k

(
(αi − α̃π(i))

2 + 2αiα̃π(i)

(
1− exp

(
−∥νi−ν̃π(i)∥2

2σ2

)))
≤ 1

(2πσ2)k

(
(αi − α̃π(i))

2 +
αiα̃π(i)∥νi−ν̃π(i)∥2

σ2

)
We now present our main result for learning mixture of Gaussians with arbitrary small separation.
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Theorem 4 Consider a mixture of k n-dimensional spherical Gaussians p(x) =
∑k

i=1 αiK(x,µi) where
the means lie within a cube [−1, 1]n, ∥µi − µj∥ > dmin > 0,∀i̸=j and for all i, αi > αmin. Then given any
positive ϵ ≤ dmin

2 and δ ∈ (0, 1), there exists a positive C1 independent of n and k such that using a sample of

size N = poly

((
nk2

ϵ

)k3

· logk
(
2
δ

))
and a grid MG of size G =

(α4
min)

k

k3/2

(
ϵ

8nk2

)C1k
2

, our algorithm given

by Equation 1 runs in time k3/2

(α4
minσ)

k

(
n3/2k1/2

ϵ

)C1k
2

and provides mean estimates which, with probability
greater than 1− δ, are within ϵ of their corresponding true values.

Proof: The proof has several parts.
SVD projection: We have shown in Lemma 1 that after projecting to SVD space (using a sample of size
poly

(
n

αminϵ

)
·log

(
2
δ

)
), we need to estimate the parameters of the mixture in Rk, po(x) =

∑k
i=1 αiK(x,νi)

where we must estimate the means within ϵ
2 error.

Grid Search: Let us denote the parameters4 of the underlying mixture po(x,θ) by
θ = (m,α) = (ν1, . . . ,νk,α) ∈ Rk2+k and any approximating mixture po(x, θ̃) has parameters θ̃ =

(m̃, α̃). We have proved the bounds f1 (dH(m, m̃)) ≤ ∥p(x,θ)− p(x, θ̃)∥ ≤ f2(dH(m, m̃)+ ∥α− α̃∥1)
(see Theorem 2, Lemma 3), where f1 and f2 are increasing functions. Let G be the step/grid size (whose value
we need to set) that we use for gridding along each of the k2 + k parameters over the grid MG. We note that
the L2 norm of the difference can be computed efficiently by multidimensional trapezoidal rule or any other
standard numerical analysis technique (see e.g., (Burden & Faires, 1993)). Since this integration needs to be
preformed on a (k2 + k)-dimensional space, for any pre-specified precision parameter ϵ, this can be done in

time
(
1
ϵ

)O(k2). Now note that there exists a point θ∗ = (m∗,α∗) on the grid MG , such that if somehow we
can identify this point as our parameter estimate then we make an error at most G/2 in estimating each mixing
weight and make an error at most G

√
k/2 in estimating each mean. Since there are k mixing weights and k

means to be estimated, ∥po(x,θ)− po(x,θ
∗)∥ ≤ f2(dH(m,m∗) + ∥α−α∗∥1) ≤ f2(G) =

k
√

1+k/σ2

2(2πσ2)k/2 G.
Thus,

f1 (dH(m,m∗)) ≤ ∥po(x,θ)− po(x,θ
∗)∥ ≤ f2(G)

Now, according to Lemma 9, using a sample of size Ω
([

log(2/δ)
ϵ2∗

]k)
we can obtain a kernel density estimate

such that with probability greater than 1− δ
2 ,

∥pkde − po(x,θ)∥ ≤ ϵ∗ (2)

By triangular inequality this implies,

f1 (dH(m,m∗))− ϵ∗ ≤ ∥pkde − po(x,θ
∗)∥ ≤ f2(G) + ϵ∗ (3)

Since there is a one-to-one correspondence between the set of means of m and m∗, dH(m,m∗) essentially
provides the maximum estimation error for any pair of true mean and its corresponding estimate. Suppose
we choose G such that it satisfies

2ϵ∗ + f2(G) ≤ f1

( ϵ
2

)
(4)

For this choice of grid size, Equation 3 and Equation 4 ensures that f1 (dH(m,m∗)) ≤ f2(G) + 2ϵ∗ ≤
f1
(
ϵ
2

)
. Hence dH(m,m∗) ≤ ϵ

2 . Now consider a point θN = (mN ,αN ) on the grid MG such that
dH(m,mN ) > ϵ

2 . This implies,

f1
(
dH(m,mN )

)
> f1

( ϵ
2

)
(5)

Now,
∥po(x,θN )− pkde∥

a
≥ ∥po(x,θN )− po(x,θ)∥ − ∥po(x,θ)− pkde∥

b
≥ f1

(
dH(m,mN )

)
− ϵ∗

c
> f1

(
ϵ
2

)
− ϵ∗

d
≥ f2(G) + ϵ∗
e
≥ ∥po(x,θ∗)− pkde∥

4To make our presentation simple we assume that the single parameter variance is fixed and known. Note that it can
also be estimated.
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where, inequality a follows from triangular inequality, inequality b follows from Equation 2, strict inequality c
follows from Equation 5, inequality d follows from Equation 4 and finally inequality e follows from Equation
3. Setting ϵ∗ = 1

3f1
(
ϵ
2

)
, Equation 4 and the above strict inequality guarantees that for a choice of Grid size

G = f−1
2

(
1
3f1

(
ϵ
2

))
=
(

α4k
min

k3/2

) (
ϵ

8nk2

)C1k
2

the solution obtained by equation 1 can have mean estimation

error at most ϵ
2 . Once projected onto SVD space each projected mean lies within a cube [−

√
n
k ,
√

n
k ]

k. With

the above chosen grid size, grid search for the means runs in time
(

k3/2

α4k
min

)
·
(

n3/2k1/2

ϵ

)C1k
2

. Note that grid

search for the mixing weights runs in time
(

k3/2

α4k
min

)
·
(

nk2

ϵ

)C1k
2

.

We now show that not only the mean estimates but also the mixing weights obtained by solving Equation
1 satisfy |αi − α̃i| ≤ ϵ for all i. In particular we show that if two mixtures have almost same means and
the L2 norm of difference of their densities is small then the difference of the corresponding mixing weights
must also be small.

Corollary 5 With sample size and grid size as in Theorem 4, the solution of Equation 1 provides mixing
weight estimates which are, with high probability, within ϵ of their true values.

Due to space limitation we defer the proof is omitted.

3.1 Lower Bound in 1-Dimensional Setting
In this section we provide the proof of our main theoretical result in 1-dimensional setting. Before we present
the actual proof, we provide high level arguments that lead us to this result. First note that Fourier transform
of a mixture of k univariate Gaussians q(x) =

∑k
i=1 αiK(x, µi) is given by

F(q)(u) = 1√
2π

∫
q(x) exp(−iux)dx = 1√

2π

∑k
j=1 αj exp

(
− 1

2 (σ
2u2 + i2uµj)

)
= 1√

2π
exp

(
−σ2u2

2

)∑k
j=1 αj exp(−iuµj)

Thus, ∥F(q)∥2 = 1
2π

∫
|
∑k

j=1 αj exp(−iuµj)|2 exp(−σ2u2)du. Since L2 norm of a function and its
Fourier transform are the same, we can write,
∥q∥2 = 1

2π

∫
|
∑k

j=1 αj exp(−iuµj)|2 exp(−σ2u2)du.

Further, 1
2π

∫
|
∑k

j=1 αj exp(−iuµj)|2 exp(−σ2u2)du = 1
2π

∫
|
∑k

j=1 αj exp(iuµj)|2 exp(−σ2u2)du and
we can write,

∥q∥2 =
1

2π

∫
|g(u)|2 exp(−σ2u2)du

where g(u) =
∑k

j=1 αj exp(iµju). This a complex valued function of a real variable which is infinitely
differentiable everywhere. In order to bound the above square norm from below, now our goal is to find an
interval where |g(u)|2 is bounded away from zero. In order to achieve this, we write Taylor series expansion
of g(u) at the origin using (k − 1) terms. This can be written in matrix vector multiplication format g(u) =
utAα + O(uk), where ut = [1 u u2

2! · · ·
uk−1

(k−1)! ], such that Aα captures the function value and (k −
1) derivative values at origin. In particular, ∥Aα∥2 is the sum of the squares of the function g and k −
1 derivatives at origin. Noting that A is a Vandermonde matrix we establish (see Lemma 16) ∥Aα∥ ≥

αmin

(
t

2
√
n

)k−1

. This implies that at least one of the (k − 1) derivatives, say the jth one, of g is bounded

away from zero at origin. Once this fact is established, and noting that (j + 1)th derivative of g is bounded
from above everywhere, it is easy to show (see Lemma 14) that it is possible to find an interval (0, a) where
jth derivative of g is bounded away from zero in this whole interval. Then using Lemma 15, it can be shown
that, it is possible to find a subinterval of (0, a) where the (j − 1)th derivative of g is bounded away from
zero. And thus, successively repeating this Lemma j times, it is easy to show that there exists a subinterval
of (0, a) where |g| is bounded away from zero. Once this subinterval is found, it is easy to show that ∥q∥2 is
lower bounded as well.

Now we present the formal statement of our result.

Theorem 6 (Lower bound in R) Consider a mixture of k univariate Gaussians q(x) =
∑k

i=1 αiK(x, µi)
where, for all i, the mixing coefficients αi ∈ (−1, 1) and the means µi ∈ [−

√
n,

√
n]. Suppose there

exists a µl such that minj |µl − µj | ≥ t, and for all i, |αi| ≥ αmin. Then the L2 norm of q satisfies

||q||2 ≥ α2k
min

(
t
n

)Ck2

where C is some positive constant independent of k.
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Proof: Note that,

∥q∥2 =
1

2π

∫
|g(u)|2 exp(−σ2u2)du

where, g(u) =
∑k

j=1 αj exp(iµju). Thus, in order to bound the above square norm from below, we need
to find an interval where g(u) is bounded away from zero. Note that g(u) is an infinitely differentiable
function with nth order derivative 5 g(n)(u) =

∑k
j=1 αj(iµj)

n exp(iµju). Now we can write the Taylor
series expansion of g(u) about origin as,

g(u) = g(0) + g(1)(0)
u

1!
+ g(2)(0)

u2

2!
+ ...+ g(k−1)(0)

u(k−1)

(k − 1)!
+O(uk)

which can be written as

g(u) =
[

1 u u2

2!
· · · uk−1

(k−1)!

]


1 1 1 · · · 1
iµ1 iµ2 iµ3 · · · iµk

(iµ1)
2 (iµ2)

2 (iµ3)
2 · · · (iµk)

2

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

(iµ1)
k−1 (iµ2)

k−1 (iµ3)
k−1 · · · (iµk)

k−1


︸ ︷︷ ︸

A


α1

α2

·
·
αk


︸ ︷︷ ︸

α

+O(uk)

Note that matrix A is Vandermonde matrix thus, using Lemma 16 this implies |g(0)|2 + |g(1)(0)|2 + · · · +

|g(k−1)(0)|2 = ∥Aα∥2 ≥ α2
min

(
t

1+
√
n

)2(k−1)

≥ α2
min

(
t

2
√
n

)2(k−1)

. This further implies that either

|g(0)|2 ≥ α2
min

k

(
t

2
√
n

)2(k−1)

or there exists a j ∈ {1, 2, · · · , k−1} such that |g(j)(0)|2 ≥ α2
min

k

(
t

2
√
n

)2(k−1)

.
In the worst case we can have j = k− 1, i.e. the (k− 1)-th derivative of g is lower bounded at origin and we
need to find an interval where g itself is lower bounded.

Next, note that for any u, g(k)(u) =
∑k

j=1 αj(iµj)
k exp(iuµj). Thus, |g(k)| ≤

∑k
j=1 |αj ||(iµj)

k| ≤

αmax(
√
n)k. Assuming t ≤ 2

√
n, if we let M = αmin√

k

(
t

2
√
n

)k
, then using Lemma 14, if we choose

a = M
2
√
2αmax(

√
n)k

= αmin

αmax2
√
2k

(
t
2n

)k
, and thus, in the interval [0, a], |g(k−1)| > M

2 = αmin

2
√
k

(
t

2
√
n

)k
.

This implies |Re[g(k−1)]|2 + |Im[g(k−1)]|2 >
α2

min

4k

(
t

2
√
n

)2k
. For simplicity denote by h = Re[g], thus,

h(k−1) = Re[g(k−1)] and without loss of generality assume |h(k−1)| > αmin

2
√
2k

(
t

2
√
n

)k
= M

2
√
2

in the interval

(0, a). Now repeatedly applying Lemma 15 (k − 1) times yields that in the interval
(

(3k−1−1)
3k−1 a, a

)
, (or in

any other subinterval of length a
3k−1 within [0, a])

|h| > M
2
√
2
(a6 )(

a
6.3 )(

a
6.32 ) · · · (

a
6.3k−1 ) =

(
M
2
√
2

) (
a
6

)k ( 1

3
k(k−1)

2

)
= αmax(

√
n)kak+1

2k3
k2+k

2

In particular, this implies, |g|2 ≥ |h|2 >
α2

maxn
ka2(k+1)

22k3k2+k
in an interval

(
(3k−1−1)

3k−1 a, a
)

.

Next, note that 0 < a ≤ 1 ⇒ exp(−σ2) ≤ exp(−σ2a2). Now, denoting β1 = (3k−1−1)
3k−1 a, β2 = a, we

have,
∥q∥2 ≥ 1

2π

∫ β2

β1
|g(u)|2 exp(−σ2u2)du ≥ β2−β1

2π |g(β2)|2 exp(−σ2)

=
(

exp(−σ2)
2π

)
α2

maxn
ka2k+3

22k3k2+2k−1
=
(

exp(−σ2)α2k+3
min

2π

)(
t2k

2+3k

22k2+5k+9/23k2+2k−1(αmax)2k+1kk+3/2n2k2+2k

)
≥
(

exp(−σ2)α2k+3
min

2π

)(
t2k

2+3k

22k2+5k+9/23k2+2k−1kk+3/2n2k2+2k

)
≥ α2k

min

(
t2k

2+3k

2O(k2 log n)

)
= α2k

min

(
t
n

)O(k2)

where the last inequality follows from the fact that if we let,
F (k) = 22k

2+5k+9/23k
2+2k−1kk+3/2nk2+2k then taking log with base 2 on both sides yields,

log(F (k)) = (2k2 + 5k+ 9/2) + (k2 + 2k− 1) log 3 + (k + 3/2) log k+ (2k2 + 2k) log n = O(k2 log n).
Thus, F (k) = 2O(k2 logn) = nO(k2).

5Note that Fourier transform is closely related to the characteristics function and the nth derivative of g at origin is
related to the nth order moment of the mixture in the Fourier domain.

414



3.2 Determinant of Vandermonde Like Matrices
In this section we derive a result for the determinant of a Vandermonde-like matrix. This result will be useful
in finding the angle made by any column of a Vandermonde matrix to the space spanned by the rest of the
columns and will be useful in deriving the lower bound in Theorem 6.

Consider any (n+ 1)× n matrix B of the form

B =


1 1 1 · · · 1
x1 x2 x3 · · · xn

x2
1 x2

2 x2
3 · · · x2

n
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
xn
1 xn

2 xn
3 · · · xn

n


If the last row is removed then it exactly becomes an n×n Vandermonde matrix having determinant Πi>j(xi−
xj). The interesting fact is that if any other row except the last one is removed then the corresponding n× n
matrix has a structure very similar to that of a Vandermonde matrix. The following result shows how the
determinants of such matrices are related to Πi>j(xi − xj).

Lemma 7 For 1 ≤ i ≤ (n−1), let Bi represents the n×n matrix obtained by removing the ith row from B.
Then det(Bi) = ciΠs>t(xs −xt) where ci is a polynomial having

(
n

i−1

)
terms with each term having degree

(n− i+ 1). Terms of the polynomial ci represent the possible ways in which (n− i+ 1) xjs can be chosen
from {xi}ni=1.

Proof: First note that if a matrix has elements that are monomials in some set of variables, then its determinant
will in general be polynomial in those variables. Next, by the basic property of a determinant, that it is zero if
two of its columns are same, we can deduce that for 1 ≤ i < n, det(Bi) = 0 if xs = xt for some s ̸= t, 1 ≤
s, t < n, and hence qi(x1, x2, ..., xn) = det(Bi) contains a factor p(x1, x2, ..., xn) = Πs>t(xs − xt). Let
qi(x1, x2, ..., xn) = p(x1, x2, ..., xn)ri(x1, x2, ..., xn).

Now, note that each term of p(x1, x2, ..., xn) has degree 0+1+2+...+(n−1) = n(n−1)
2 . Similarly, each

term of the polynomial qi(x1, x2, ..., xn) has degree (0+1+2+ ...+n)− (i−1) = n(n+1)
2 − (i−1). Hence

each term of the polynomial ri(x1, x2, ..., xn) must be of degree n(n+1)
2 − (i− 1)− n(n−1)

2 = (n− i+ 1).
However in each term of ri(x1, x2, ..., xn), the maximum power of any xj can not be greater than 1. This
follows from the fact that maximum power of xj in any term of qi(x1, x2, ..., xn) is n and in any term of
p(x1, x2, ..., xn) is (n − 1). Hence each term of ri(x1, x2, ..., xn) consists of (n − i + 1) different xjs and
represents the different ways in which (n− i+1) xjs can be chosen from {xi}ni=1. And since it can be done
in
(

n
n−i+1

)
=
(

n
i−1

)
ways there will be

(
n

i−1

)
terms in ri(x1, x2, ..., xn).

3.3 Estimation of Unknown Variance
In this section we discuss a procedure for consistent estimation of the unknown variance due to (Lindsay,
1989) (for the one-dimensional case) and prove that the estimate is polynomial. This estimated variance can
then be used in place of true variance in our main algorithm discussed earlier and the remaining mixture
parameters can be estimated subsequently.

We start by noting a mixture of k identical spherical Gaussians
∑k

i=1 αiN (µi, σ
2I) in Rn projected on

an arbitrary line becomes a mixture of identical 1-dimensional Gaussians p(x) =
∑k

i=1 αiN (µi, σ
2). While

the means of components may no longer be different, the variance does not change. Thus, the problem is
easily reduced to the 1-dimensional case.

We will now show that the variance of a mixture of k Gaussians in 1 dimension can be estimated from
a sample of size poly

(
1
ϵ ,

1
δ

)
, where ϵ > 0 is the precision ,with probability 1 − δ in time poly

(
1
ϵ ,

1
δ

)
. This

will lead to an estimate for the n-dimensional mixture using poly
(
n, 1

ϵ ,
1
δ

)
sample points/operations.

Consider now the set of Hermite polynomials γi(x, τ) given by the recurrence relation γi(x, τ) =
xγi−1(x, τ)− (i−1)τ2γi−2(x, τ), where γ0(x, τ) = 1 and γ1(x, τ) = x. Take M to be the (k+1)× (k+1)
matrix defined by

Mij = Ep[γi+j(X, τ)], 0 ≤ i+ j ≤ 2k.

It is shown in Lemma 5A of (Lindsay, 1989) that the determinant det(M) is a polynomial in τ and, moreover,
that the smallest positive root of det(M), viewed is a function of τ , is equal to the variance σ of the original
mixture p. We will use d(τ) to represent det(M).

This result leads to an estimation procedure, after observing that Ep[γi+j(X, τ)] can be replaced by its
empirical value given a sample X1, X2, ..., XN from the mixture distribution p. Indeed, one can construct
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the empirical version of the matrix M by putting

M̂ij =
1

N

N∑
t=1

[γi+j(Xt, τ)], 0 ≤ i+ j ≤ 2k. (6)

It is clear that d̂(τ) = det(M̂)(τ) is a polynomial in τ . Thus we can provide an estimate σ∗ for the variance
σ by taking the smallest positive root of d̂(τ). This leads to the following estimation procedure :

Parameter: Number of components k.
Input: N points in Rn sampled from

∑k
i=1 αiN (µi, σ

2I).
Output: σ∗, estimate of the unknown variance.

Step 1. Select an arbitrary direction v ∈ Rn and project the data points onto this direction.
Step 2. Construct the (k + 1)× (k + 1) matrix M̂(τ) using Eq. 6
Step 3. Compute the polynomial d̂(τ) = det(M̂)(τ). Obtain the estimated variance σ∗ by approximating

the smallest positive root of d̂(τ). This can be done efficiently by using any standard numerical method or
even a grid search.

We will now state our main result in this section, which establishes that this algorithm for variance esti-
mation is indeed polynomial in both the ambient dimension n and the inverse of the desired accuracy ϵ.

Theorem 8 For any ϵ > 0, 0 < δ < 1, if sample size N > O
(

npoly(k)

ϵ2δ

)
, then the above procedure provides

an estimate σ∗ of the unknown variance σ such that |σ − σ∗| ≤ ϵ with probability greater than 1− δ.

The idea of the proof is to show that the coefficients of the polynomials d(τ) and d̂(τ) are polynomially
close, given enough samples from p. That (under some additional technical conditions) can be shown to
imply that the smallest positive roots of these polynomials are also close. To verify that d(τ) and d̂(τ) are
close, we use the fact that the coefficients of d(τ) are polynomial functions of the first 2k moments of p, while
coefficients of d̂(τ) are the same functions of the empirical moment estimates. Using standard concentration
inequalities for the first 2k moments and providing a bound for these functions the result.

Proof: It is shown in Lemma 5A of (Lindsay, 1989) that the smallest positive root of the determinant d(τ) =
det(M)(τ), viewed is a function of τ , is equal to the variance σ of the original mixture p and also that d(τ)
undergoes a sign change at its smallest positive root. Let the smallest positive root of d̂(τ) = det(M̂)(τ) be
σ̂. We now show for any ϵ > 0 that σ and σ̂ are within ϵ given O

(
npoly(k)

ϵ2δ

)
samples.

In Corollary 18 we show that both d(τ) and d̂(τ) are polynomials of degree k(k + 1) and the highest
degree coefficient of d̂(τ) is independent of the sample. The rest of the coefficients of d(τ) and d̂(τ) are
sums of products of the coefficients of individual entries of the matrices M and M̂ respectively.

Note that E(M̂) = M , i.e., for any 1 ≤ i, j,≤ (k + 1),E(M̂i,j(τ)) = Mi,j(τ). Since Mi,j(τ) is
a polynomial in τ , using standard concentration results we can show that coefficients of the polynomial
M̂i,j(τ) are close to the corresponding coefficients of the polynomial Mi,j(τ) given large enough sample

size. Specifically, we show in Lemma 21 that given a sample of size O
(

npoly(k)

ϵ2δ

)
each of the coefficients of

each of the polynomials Mi,j(τ) can be estimated within error O
(

ϵ
npoly(k)

)
with probability at least 1− δ.

Next, in Lemma 22 we show that estimating each of the coefficients of the polynomial Mi,j(τ) for all
i, j with accuracy O

(
ϵ

npoly(k)

)
ensures that all coefficients of d(τ̂) are O

(
ϵ
k

)
close to the corresponding

coefficients of d(τ) with high probability.
Consequently, in Lemma 20 we show that when all coefficients of d̂(τ) are within O

(
ϵ
k

)
of the cor-

responding coefficients of d(τ), the smallest positive root of d̂(τ), σ̂, is at most ϵ away from the smallest
positive root σ of d(τ).

Observing that there exist many efficient numerical methods for estimating roots of polynomial of one
variable within the desires accuracy completes the proof.
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A Appendix
In this appendix we provide some of the auxiliary lemmas that are required in the main text. Due to
space limitation the proofs are omitted. Extended version of this paper containing the proofs is available
at http://arxiv.org/abs/0907.1054.
For the purpose of estimating the sample size requirement for an appropriate non-parametric density estimator
that is arbitrarily close in L2 norm sense, we define the Sobolev class as follows. In the following, Sobolev
space W 2,2 is defined as the subset of L2 such that if f ∈ W 2,2 then f and its weak derivatives up to order 2
have finite L2 norm.

Definition 1 Let L > 0. The Sobolev class S(2, L) is defined as the set of all functions f : Rd → R such
that f ∈ W 2,2, and all the second order partial derivatives ∂2f

∂x
α1
1 ...∂x

αd
d

, where α = (α1, α2, . . . , αd) is a

multi-index with |α| = 2 , satisfy ∥∥∥∥ ∂2f

∂xα1
1 . . . ∂xαd

d

∥∥∥∥
2

≤ L

Note that when the parameters are bounded, mixture of k Gaussian distributions belongs to Sobolev class
as defined above and the following Lemma shows that we can approximate the density of such a mixture
arbitrarily well in L2 norm sense.

Lemma 9 Let p ∈ S(2, L) be a d-dimensional probability density function and K : Rd → R be any
kernel function with diagonal bandwidth matrix h2I, h > 0, satisfying

∫
K(x)dx = 1,

∫
xK(x)dx =

0,
∫
xTxK(x)dx < C1 and

∫
K2(x)dx < C2 for positive C1, C2. Then for any ϵ0 > 0 and any δ ∈

(0, 1), with probability grater than 1 − δ, the kernel density estimate p̂S obtained using a sample S of size

Ω

([
log(1/δ)

ϵ20

]d)
satisfies,

∫
(p(x)− p̂S(x))

2
dx ≤ ϵ0.

Lemma 10 Consider any set of k points {xi}ki=1 in Rd. There exists a direction v ∈ Rd, ∥v∥ = 1 such for
any i, j |⟨xi,v⟩ − ⟨xj ,v⟩| > ∥xi−xj∥

k2 .

Note that in the above Lemma dimensionality of the space Rd is irrelevant but the number of samples k is
important. This Lemma can also be considered as a special kind of one sided version of Johnson-Lindenstraus
Lemma, and by choosing v at random from Rd the same result can be shown to hold with high probability.
However, the above result is deterministic.

Lemma 11 Let g : Rk → R be a continuous bounded function. Let v,u1, ...,uk−1 ∈ Rk be an orthonormal
basis of Rk and let g1 : R → R be defined as g1(v) =

∫
· · ·
∫
g(v, u1, ...uk−1)du1 · · · duk−1. Then for some

c > 0, ∥g∥2 ≥
(

1
cσ

)k ∥g1∥2.

A version of the following Lemma was proved in (Vempala & Wang, 2002). We tailor it for our purpose.

Lemma 12 Let the rows of A ∈ RN×n be picked according to a mixture of Gaussians with means µ1,µ2, . . . ,
µk ∈ Rn, common variance σ2 and mixing weights α1, α2, . . . , αk with minimum mixing weight being αmin.
Let µ̃1, µ̃2, . . . , µ̃k be the projections of these means on to the subspace spanned by the top k right singular
vectors of the sample matrix A. Then for any 0 < ϵ < 1, 0 < δ < 1, with probability at least 1 − δ,
∥µi − µ̃i∥ ≤ ϵ

2 , provided N = Ω
(

n3σ4

α3
minϵ

4

(
log
(

nσ
ϵαmin

)
+ 1

n(n−k) log(
1
δ )
))

,

In the following Lemma we consider a mixture of Gaussians where the mixing weights are allowed to take
negative values. This might sound counter intuitive since mixture of Gaussians are never allowed to take
negative mixing weights. However, if we have two separate mixtures, for example, one true mixture density
p(x) and one its estimate p̂(x), the function (p−p̂)(x) that describes the difference between the two densities
can be thought of as a mixture of Gaussians with negative coefficients. Our goal is to find a bound of the L2

norm of such a function.

Lemma 13 Consider a mixture of m k-dimensional Gaussians f(x) =
∑m

i=1 αiK(x,νi) where the mixing

coefficients αi ∈ (−1, 1), i = 1, 2, . . . ,m. Then the L2 norm of f satisfies ∥f∥2 ≤
(

1
(2πσ2)k

)
αT K̂α,

where K̂ is a m×m matrix with K̂ij = exp
(
−∥νi−νj∥2

2σ2

)
and α = (α1, α2, . . . , αm)T .
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Lemma 14 Let h : R → C be an infinitely differentiable function such that for some positive integer n and
real M,T > 0, |h(n)(0)| > M and |h(n+1)| < T . Then for any 0 < a < M

T
√
2

, |h(n)| > M −
√
2Ta in the

interval [0, a].

Lemma 15 Let h : R → R be an infinitely differentiable function such that for some positive integer n and
real M > 0, |h(n)| > M in an interval (a, b). Then |h(n−1)| > M(b − a)/6 in a smaller interval either in
(a, 2a+b

3 ) or in (a+2b
3 , b).

Let A be a k × k Vandermonde matrix defined as follows.

A =


1 1 1 · · · 1
x1 x2 x3 · · · xk

x2
1 x2

2 x2
3 · · · x2

k
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
xk−1
1 xk−1

2 xk−1
3 · · · xk−1

k


Then we can prove the following result.

Lemma 16 For any integer k > 1, and positive a, t ∈ R, let x1, x2, ..., xk ∈ [−a, a] and there exists an xi

such that t = minj,j ̸=i |xi − xj |. Let α = (α1, α2, ..., αk) ∈ Rk with mini |αi| ≥ αmin. Then for A as

defined above, ∥Aα∥ ≥ αmin

(
t

1+a

)k−1

.

Lemma 17 Consider the (k+ 1)× (k+ 1) Hankel matrix Γ, Γij = (γi+j(x, τ)) for i, j = 0, 1, ..., k, where
γn(x, τ) is the nth Hermite polynomial as described above. Then det(Γ)(x, τ) is a homogeneous polynomial
of degree k(k + 1) of two variables x and τ .

Using the above Lemma, we have the following simple corollary.

Corollary 18 d(τ) is a polynomial of of degree k(k+1), with the coefficient of the leading term independent
of the probability distribution p. Similarly, d̂(τ) is a polynomial of of degree k(k + 1), with the leading term
having coefficient independent of the coefficients of the sampled data.

Lemma 19 Let f(x) = xm+am−1x
m−1+am−2x

m−2+ · · ·+a1x+a0 be a polynomial having a smallest
positive real root x0 with multiplicity one and f ′(x0) ̸= 0. Let f̂(x) = xm + âm−1x

m−1 + âm−2x
m−2 +

· · · + â1x + â0 be another polynomial such that ∥a − â∥ ≤ ϵ for some sufficiently small ϵ > 0, where
a = (a0, a1, . . . , am−1) and â = (â0, â1, . . . , âm−1). Then there exists a C > 0 such that the smallest
positive root x̂0 of f̂(x) satisfies ∥x0 − x̂0∥ ≤ Cϵ.

Lemma 20 Let σ be the smallest positive root of d(τ). Suppose d̂(τ) be the polynomial where each of the
coefficients of d(τ) are estimated within ϵ error for some sufficiently small ϵ > 0. Let σ̂ be the smallest
positive root of d̂(τ). Then |σ̂ − σ| = O(kϵ).

The matrix M defined in Section 3.3 has 2k different entries which is clear from its construction. Each such
entry is a polynomial in τ . Let us denote these distinct entries by mi(τ) = E[γi(x, τ)], i = 1, 2, . . . , 2k.
Note that the empirical version of the matrix M is M̂ where each entry mi(τ) is replaced by its empirical
counterpart m̂i(τ). Using standard concentration inequality we show that for any mi(τ), its coefficients are
arbitrarily close to the corresponding coefficients of m̂i(τ) provided a large enough sample size is used to
estimate m̂i(τ).

Lemma 21 For any mi(τ), i = 1, , 2, . . . , 2k, let β be any arbitrary coefficient of the polynomial mi(τ).
Suppose X1, X2, . . . , XN iid samples from p is used to estimate m̂i(τ) and the corresponding coefficient is
β̂. Then there exists a polynomial η1(k) such that for any ϵ > 0 and 0 < δ, |β − β̂| ≤ ϵ with probability at
least 1− δ, provided N > nη1(k)

ϵ2δ .

Lemma 22 There exists a polynomial η2(k) such that if coefficients of each of the entries of matrix M (where
each such entry is a polynomial of τ ) are estimated within error ϵ

nη2(k) then each of the coefficients of d(τ)
are estimated within ϵ error.
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Abstract

Let S be an arbitrary measurable space, T ⊂ R and (X, Y ) be a random couple in S × T with

unknown distribution P. Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. copies of (X, Y ). Denote by Pn the

empirical distribution based on the sample (Xi, Yi), i = 1, . . . , n. Let H be a set of uniformly

bounded functions on S. Suppose that H is equipped with a σ-algebra and with a finite measure

µ. Let D be a convex set of probability densities with respect to µ. For λ ∈ D, define the mixture

fλ(·) =
∫
H

h(·)λ(h)dµ(h). Given a loss function ` : T × R 7→ R such that, for all y ∈ T, `(y, ·)

is convex, denote (` • f)(x, y) = `(y; f(x)). We study the following penalized empirical risk

minimization problem

λ̂ε := argmin
λ∈D

[
Pn(` • fλ) + ε

∫
λ log λdµ

]
along with its distribution dependent version

λε := argmin
λ∈D

[
P (` • fλ) + ε

∫
λ log λdµ

]
.

We prove that the “approximate sparsity” of λε implies the “approximate sparsity” of λ̂ε and study

connections between the sparsity and the excess risk of empirical solutions λ̂ε.

1 Introduction

Sparsity phenomena in empirical risk minimization over linear spans or convex hulls of large finite dictionar-

ies have been extensively studied in the recent years (see, e.g., [MPTJ07], [Kol09b], [BRT09] and references

therein). In this paper, our goal is to extend some of these results to the case of empirical risk minimization

over convex hulls of infinite dictionaries which is a standard framework in machine learning (for instance, in

large margin classification, the dictionaries are often infinite families of functions such as decision stumps,

decision trees or subsets of reproducing kernel Hilbert spaces).

Let S be a measurable space, T ⊂ R be a Borel set and (X, Y ) be a random couple in S × T with

unknown distribution P . The marginal distribution of X will be denoted by Π. Let (X1, Y1), . . . , (Xn, Yn)

be the training data consisting of n i.i.d. copies of (X, Y ). In what follows, we will denote by Pn the empirical

∗Partially supported by NSF grants MSPA-MCS-0624841, DMS-0906880 and CCF-0808863
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distribution based on a given sample of n training examples. Similarly, Πn will denote the empirical measure

based on the sample (X1, . . . , Xn). The integrals with respect to P and Pn are denoted by

Pg := Eg(X, Y ), Png :=
1
n

n∑
i=1

g(Xi, Yi).

Similar notations will be used for Π,Πn and other measures. Let `(y, ·) be the loss function such that for

all y ∈ T, `(y, ·) is convex. For a function f : S 7→ R, let (` • f)(x, y) := `(y, f(x)). A dictionary is a

given family H of measurable functions h : S 7→ [−1, 1]. Assume that H is equipped with a σ-algebra and

with a finite measure µ. In what follows, the complexity of the dictionary H will be characterized in terms

of L2(Π) and L2(Πn) covering numbers. Suppose Λ is a probability measure on H absolutely continuous

with respect to µ with λ = dΛ
dµ . The (negative) entropy H(λ) is defined as H(λ) :=

∫
H

λ(h) log λ(h)dµ(h).

In what follows, we consider only densities with finite entropies. Let fλ denote the mixture of the functions

from the dictionary H with respect to λ : fλ(·) :=
∫
H

h(·)λ(h)µ(dh). The excess risk E(f) of a function f is

defined as

E(f) = P (` • f)− inf
g:S 7→R

P (` • g) = P (` • f)− P (` • f∗) .

For simplicity, we assume throughout the paper that inf
g:S 7→R

P (` • g) is attained at some uniformly bounded

function f∗ (the infimum is taken over all measurable functions).

Let D be a convex set of probability densities on H. We will assume that, for all λ ∈ D, λ log λ ∈ L1(µ),

so, the entropy H(λ) is finite. Consider the following penalized risk minimization problem

λε := argminλ∈DF (λ), F (λ) := P (` • fλ) + εH(λ) (1.1)

together with its empirical version:

λ̂ε := argminλ∈DFn(λ), Fn(λ) := Pn(` • fλ) + εH(λ). (1.2)

Note that, due to the convexity of the loss, of the negative entropy and of the set D, both (1.1) and (1.2) are

convex optimization problems. We will use the notations Λε, Λ̂ε for the probability measures with densities

λε, λ̂ε, respectively.

Our first aim is to study problem (1.1) and to bound the approximation error E(fλε
) of its solution, which,

for the losses of quadratic type, is equivalent to bounding the L2(Π)-approximation error ‖fλε
− f∗‖2

L2(Π).

We show that the size of this error can be controlled in terms of the approximation error of oracle solutions

λ ∈ D that are “sparse” in the sense that they are concentrated on a “small” set of functions H′ ⊂ H and,

at the same time, possess some regularity properties. Moreover, we show that if there exist “sparse” oracles

providing good approximation of the target function, then solutions λε of problem (1.1) are “approximately

sparse” in the sense that they “concentrate” on the support of “sparse” oracles.

Next, we study the relationship between the problems (1.1) and (1.2). We show that the ”approximate

sparsity“ of the true penalized solution λε implies that the corresponding empirical solution λ̂ε possesses the

same property with a high probability. More precisely, if there exists a measurable set H′ ⊂ H such that

Λε(H \H′) is small and, at the same time, there exists a subspace L ⊂ L2(Π) of small dimension d that

provides a good L2(Π)-approximation of the functions from the set H′, we will show that in this case, with a

high probability, the empirical solution λ̂ε is also approximately supported on the same setH′ in the sense that

Λ̂ε(H \H′) is small. Thus, both the empirical solution λ̂ε and the true solution λε follow the same ”sparsity

pattern”: they are concentrated on the same set of functions H′ which can be well approximated by a linear
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subspace of small dimension. We also obtain probabilistic bounds on the random error
∣∣∣E(fλ̂ε

)− E(fλε
)
∣∣∣ ,

or, equivalently, the L2(Π)-random error ‖fλ̂ε
− fλε

‖2
L2(Π), in terms of characteristics of the sparsity of the

problem such as the measure Λε(H \H′) and the dimension d of the approximating space L. At the same

time, we derive upper bounds on the Kullback-Leibler type distance between λ̂ε and λε.

The idea of using entropy for complexity penalization is not new in machine learning (see, e.g., [Zha01]).

An approach to sparse recovery based on entropy penalization has been studied in the case of finite dictio-

naries H (see [Kol09a], [Kol08]). As in these papers, the fact that the penalty is strictly convex allows us

to study the random error independently of the approximation error, but geometric parameters of the dictio-

nary needed to control these two errors are not quite the same. `1-type penalization in the case of infinite

dictionaries was suggested in [RSSZ07] (however, sharp generalization error bounds were not studied in this

paper).

2 Preliminaries

Assumptions on the loss. Assume that for all y ∈ T , `(y, ·) is a convex twice differentiable function, `′′u

[here and in what follows the derivatives of the loss are taken with respect to the second variable] is uniformly

bounded in T × [−1, 1] and supy∈T `(y; 0) < +∞, supy∈T |`′u(y; 0)| < +∞. It will be also assumed that

m :=
1
2

inf
y∈T

inf
|u|≤1

`′′u(y, u) > 0.

In what follows, the loss functions ` satisfying the above assumptions will be called the losses of quadratic

type. In particular, the assumptions imply that

m‖fλ − f∗‖2
L2(Π) ≤ E (fλ) ≤ M‖fλ − f∗‖2

L2(Π),

where M := 1
2 sup

y,u
`′′u(y, u). Moreover, the following simple proposition also holds for such losses:

Proposition 1 There exists a constant C > 0 depending only on ` such that for all λ, λ̄ ∈ D,

|E(fλ̄)− E(fλ)| ≤ C

[
‖fλ̄ − fλ‖2

L2(Π)

∨ √
E(fλ)‖fλ̄ − fλ‖L2(Π)

]
.

Proof: See the proof of Theorem 3 in [Kol09a].

Common examples of such loss functions include the usual quadratic loss `(y, u) = (y − u)2 used in the

regression setting (with T being a bounded interval of R) as well as the exponential loss `(y, u) = e−yu and

the logit loss `(y, u) = log2 (1 + e−yu) used in large margin classification (with T = {−1, 1}).

Existence of solutions. We provide sufficient conditions of existence of solutions of problems (1.1) and

(1.2). Recall that all the densities λ in question have finite entropy.

Proposition 2 Problems (1.1), (1.2) have unique solutions in every convex weakly compact subset D of

Lp, p ≥ 1.

Proof: First, we show that the entropy functional H(λ) :=
∫
H

λ log λdµ is lower semi-continuous in Lp(µ),

p ≥ 1. Indeed, the functional is lower semi-continuous iff the level sets Lt = {λ : H(λ) ≤ t} are closed.

Suppose λn ∈ Lt, λn → λ0 in Lp. We can extract the subsequence λnk
converging to λ0 pointwise.

Noting that s log(s) + e−1 ≥ 0 and applying the Fatou lemma to the sequence {λnk
log(λnk

)}, we derive
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the result. Next, under the assumptions on the loss, F (λ) is convex, bounded from below and lower semi-

continuous(continuity of the risk P (` • fλ) follows from the uniform boundedness of the dictionary and

integral Minkowski inequality), so that the level sets Lt = {λ : F (λ) ≤ t} are closed and convex. Mazur’s

theorem implies that they are also closed in weak topology, so F is weakly lower semi-continuous. Given

a minimizing sequence λn, we can extract a weakly convergent subsequence λnk
−→λ∞, and conclude that

λ∞ ∈ D, −∞ < F (λ∞) ≤ lim inf
k→∞

F (λnk
) . Convexity of the set D and strict convexity of the functional F

implies the uniqueness of the solution of (1.1). Replacing F by Fn, we get similar statements for (1.2).

We will assume throughout the paper that D is a convex set of probability densities such that λ log λ ∈
L1(µ), λ ∈ D and solutions of the problems (1.1), (1.2) exist in D.

Differentiability of the risk and of the entropy. To derive necessary conditions of the minima in the

optimization problems (1.1), (1.2), we have to study differentiability properties of the functions involved. For

G : D 7→ R, λ ∈ D and ν such that λ̄ := λ + t0ν ∈ D for some t0 > 0, denote

DG(λ; ν) := lim
t↓0

G(λ + tν)−G(λ)
t

,

provided that the limit exists. DG(λ; ν) is the (directional) derivative of G at point λ in the direction ν.

First note that, under our assumptions on the loss function `, both the true risk D 3 λ 7→ P (`•fλ) =: L(λ)

and the empirical risk D 3 λ 7→ P (` • fλ) := Ln(λ) have directional derivatives at any point λ ∈ D in the

direction of any other point λ̄ = λ + t0ν ∈ D, t0 > 0. Moreover, the following formulas hold:

DL(λ, ν) = P (`′ • fλ)fν and DLn(λ, ν) = Pn(`′ • fλ)fν . (2.1)

Let λ1, λ2 be two densities from D and Λ1,Λ2 the corresponding probability measures on H. Denote

by K(λ1|λ2) :=
∫
H log λ1

λ2
λ1dµ the Kullback-Leibler divergence between λ1 and λ2 and let K(λ1, λ2) :=

K(λ1|λ2) + K(λ2|λ1) be the symmetrized Kullback-Leibler divergence.

Proposition 3 For all λ1, λ2 ∈ D, τ ∈ (0, 1) and measurable H′ ⊂ H

DH(λ1 + τ(λ2 − λ1);λ2 − λ1) =
∫
H

log(λ1 + τ(λ2 − λ1))(λ2 − λ1)dµ, (2.2)

K(λ1, λ2) = lim
t→0

∫
H

log
(1− t)λ1 + tλ2

tλ1 + (1− t)λ2
(λ1 − λ2)dµ, (2.3)

Λ1(H \H′) ≤ 2Λ2(H \H′) + K(λ1, λ2). (2.4)

The proof of (2.2) and (2.3) is based on a convexity argument and on the monotone convergence theorem.

To show (2.4), note that by the well known inequality relating the Kullback-Leibler and Hellinger distances,

for all H′ ⊂ H

K(λ1, λ2) ≥ 2
∫
H

(√
λ1 −

√
λ2

)2

≥ 2
∫

H\H′

(√
λ1 −

√
λ2

)2

≥

≥ 2
∫

H\H′

(
λ1 + λ2 −

λ1

2
− 2λ2

)
= Λ1(H \H′)− 2Λ2(H \H′).

3 Bounding approximation error

In what follows, our goal is to compare the excess risk of the estimator λε with the excess risk of “oracles”

λ ∈ D. Define a cone K := {c(λ1 − λ2) : λ1, λ2 ∈ D, c ∈ R} and for w ∈ L2(µ), define the alignment
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coefficient γ(w) to be

γ(w) := sup
{
〈w, u〉L2(µ) : ‖fu‖L2(Π) = 1, u ∈ K

}
.

It is easy to see that, for all constants c ∈ R, γ(w + c) = γ(w). Denote by K the Gram operator of the

dictionary, i.e.,

(Ku)(h) =
∫
H
〈h, g〉L2(Π)u(g)µ(dg), h ∈ L2(Π),

which is a self-adjoint nonnegatively definite operator. Clearly,

‖fu‖2
L2(Π) = 〈Ku, u〉L2(µ) = 〈K 1

2 u, K
1
2 u〉L2(µ)

and it is easy to see that for all w ∈ Im(K1/2), γ(w) ≤ ‖K− 1
2 w‖L2(µ). Roughly speaking, γ(w) is small

if the function w is “properly aligned” with eigenspaces of the Gram operator K of the dictionary (say, it

belongs to the linear span of eigenspaces corresponding to large enough eigenvalues of K).

The following theorem shows that the approximation error E(fλε
) of the true solution λε can be controlled

by the approximation error E(fλ) of “oracles” λ ∈ D up to an error term of the size γ2(log λ)ε2. Moreover,

it also shows that, for any oracle λ ∈ D, fλε
belongs to an L2(Π) ball around fλ whose radius is, up to a

constant, ‖fλ − f∗‖L2(Π) ∨ γ(log λ)ε. At the same time, λε belongs to a Kullback-Leibler “ball” around λ

whose radius is 1
ε‖fλ−f∗‖2

L2(Π)∨γ2(log λ)ε. Thus, the existence of an oracle λ that approximates the target

function well (i.e., ‖fλ − f∗‖L2(Π) is small) and that is “well aligned” with the dictionary (i.e., γ(log λ) is

small) would imply that fλε
is L2(Π)-close to fλ and, at the same time, λε is close to λ in the Kullback-

Leibler distance. It would also imply that the approximation error E(fλε
) is small and that the measures

Λε and Λ (with densities λε and λ) have similar “concentration pattern” (as the last two inequalities of the

theorem show).

Theorem 1 There exists a constant C > 0 depending only on the loss such that, for all oracles λ ∈ D,

‖fλε
− fλ‖2

L2(Π) + εK(λε, λ) ≤ C

[
‖fλ − f∗‖2

L2(Π)

∨
γ2(log λ)ε2

]
.

Moreover, the following bound on the excess risk of λε holds

E(fλε
) ≤ inf

λ∈D

[
E(fλ) + C

√
E(fλ)γ(log λ)ε + Cγ2(log λ)ε2

]
and, for all H′ ⊂ H,

Λε(H \H′) ≤ 2Λ(H \H′) +
C

ε

[
‖fλ − f∗‖2

L2(Π)

∨
γ2(log λ)ε2

]
,

Λ(H \H′) ≤ 2Λε(H \H′) +
C

ε

[
‖fλ − f∗‖2

L2(Π)

∨
γ2(log λ)ε2

]
.

In concrete examples below, the dictionary is of the form H = {ht : t ∈ I}, where I ⊂ Rd is a bounded

domain in Rd. In such cases, one can assume that µ is a measure on I and the mixing densities λ are functions

on I. Often, it happens that K−1/2 can be defined in terms of certain differential operators and the alignment

coefficient γ(w) is bounded by a Sobolev type norm of the function w : for some A > 0 and α > 0,

γ(w) ≤ A‖w‖W2,α(I). (3.1)

We are interested in those oracles λ ∈ Λ for which γ(log λ) is not too large and it is controlled by “smooth-

ness” and “sparsity” of λ. Assume that µ is the Lebesgue measure on I and that condition (3.1) holds. Let
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λ :=
∑d

j=1 λj + δ, where δ ∈ (0, 1) and λj are nonnegative functions, λj ∈ C∞(Rd), supp(λj) ⊂ Uj ,

Uj ⊂ T being disjoint balls. Finally, we assume that
∑d

j=1

∫
Rd λj(t)dt = 1− δ. Then it is easy to see that

log λ =
d∑

j=1

(log(λj + δ)− log δ) + log δ

and, for each j = 1, . . . , d, the function wj := log(λj + δ) − log δ ∈ C∞(Rd) and it is supported in Uj .

Therefore, since the functions wj have disjoint supports,

γ(log λ) ≤ A1

∥∥∥∥ d∑
j=1

wj

∥∥∥∥
W2,α(I)

≤ A

( d∑
j=1

‖wj‖2
W2,α(I)

)1/2

.

In this model, δ plays the role of a small “background density” (needed to make λ bounded away from 0)

and densities λj , j = 1, . . . , d are “spikes”. The resulting oracle density λ is ”approximately“ sparse in the

sense that most of the mass is concentrated in a small part of the space (in the union of balls Uj). For smooth

enough ”spikes“, γ(log λ) becomes of the order
√

d, so, it depends on the ”sparsity“ of the problem.

We now consider three more specific examples of the dictionaries.

Fourier dictionary. Suppose that S := Rd and let H = {cos〈t, ·〉, t ∈ I} , where I ⊂ Rd is a bounded

open set symmetric about the origin, i.e., I = −I . It can be assumed now that the measure µ and the densities

λ are defined on the set I. Suppose that measures µ, Π are absolutely continuous with respect to the Lebesgue

measure with densities m and p, respectively. It will be assumed that m(t) = m(−t), t ∈ I. We will also

assume that for λ ∈ D, λ(t) = λ(−t), t ∈ I. When it is needed, it will be assumed that functions λ, m

are defined on the whole space Rd and are equal to 0 on Rd \ I. Clearly, the function fλ is then the Fourier

transform of λm :

fλ(·) =
∫
Rd

ei〈t,·〉λ(t)m(t)dt := λ̂m(·).

Therefore, assuming that the density p is positive, we get, for all w ∈ C∞(Rd), u ∈ K

〈w, u〉L2(µ) = 〈w, u ·m〉L2(Rd) = 〈ŵ, ûm〉L2(Rd) = 〈ŵ, fu〉L2(Rd) =
〈

ŵ

p1/2
, fup1/2

〉
L2(Rd)

,

which easily implies that γ(w) ≤
∥∥∥ bw√

p

∥∥∥
L2(Rd)

. Under an additional assumption that for some L > 0, α > 0,

p(x) ≥ L(1 + |x|2)−α, x ∈ Rd, we get the following bound: γ(w) ≤ A1‖(I + ∆)α/2w‖L2(Rd) ≤
A‖w‖W2,α(Rd) (where ∆ stands for the Laplace operator).

Location dictionary. Suppose now that S := Td is the d-dimensional torus and letH =
{
h(· − θ), θ ∈ Td

}
for some bounded function h : Td → R and let µ be the Haar measure on Td. Assume that Π is a probability

measure on Td with density p (with respect to the Haar measure) that is bounded away from 0 by a constant

L > 0. Then, a simple Fourier analysis argument shows that

γ(w) ≤ A

( ∑
n∈Zd

∣∣∣∣ ŵn

ĥn

∣∣∣∣2)1/2

,

where ŵn, ĥn denote the Fourier coefficients of functions w, h. Under the assumption that |ĥn| ≥ L(1 +

|n|2)−α/2, it easily follows that

γ(w) ≤ A‖w‖W2,α(Td).
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Monotone functions dictionary. Assuming that S = [0, 1], let H := {I[0,s] : s ∈ [0, 1]} and let µ

be the Lebesgue measure in [0, 1]. The mixtures of functions from H are decreasing absolutely continuous

functions f : [0, 1] 7→ [0, 1] such that f(0) = 1 and f(1) = 0. Suppose that Π is the Lebesgue measure in

[0, 1]. The Gram operator K is given by the kernel K(s, t) = 〈I[0,s], I[0,t]〉L2(Π) = min(s, t). Clearly, K is

a compact self-adjoint operator. It is well known that its eigenvalues are
(

1
π(k+1/2)

)2

and the corresponding

eigenfunctions are φk(t) =
√

2 sin((k + 1/2)πt), k = 0, 1, 2, . . . . For a function w ∈ W2,1[0, 1], w(0) = 0,

w =
∞∑

k=0

wkφk, we have

(
K−1/2w

)
(t) =

∞∑
k=0

π(k + 1/2)wkφk(t) = w′(t).

Hence

γ(w) ≤ ‖K−1/2w‖L2[0,1] = π

( ∞∑
k=0

(k + 1/2)2w2
k

)1/2

≤ A‖w‖W2,1[0,1].

Assume again that H is an arbitrary dictionary.

Weakly correlated partitions. Let Hj , j = 1, . . . , N be a measurable partition of H. As a concrete

example of such a partition, one can consider the case when S = [0, 1]N and, for each j = 1, . . . , N, Hj is

a class of functions depending on the j-th variable. We are interested in the situation when the number N

of function classes Hj is large and they are ”weakly correlated“. This might be viewed as an extension to

the case of infinite dictionaries of usual notions of ”almost orthogonality“ (such as, for instance, restricted

isometry property of Candes and Tao) frequently used in the literature on sparse recovery. It is also close to

”sparse additive models“ and ”sparse multiple kernel learning“ (see [KY08], [MvdGB09]). Suppose there

exist oracles λ ∈ D such that fλ provides a good approximation of the target f∗ and, at the same time, λ

is ”sparse“ in the sense that it is concentrated mostly on a small number of sets Hj . For each set Hj , let

Kj : L2(Hj ;µ) 7→ L2(Hj , µ) be the integral operator (self-adjoint and nonnegatively definite) defined by

(Kju)(h) :=
∫
Hj

covΠ(h, g)u(g)µ(dg), h ∈ Hj ,

where covΠ(h, g) := Π(hg)−Π(h)Π(g). We will also denote

σΠ(g) :=
√

covΠ(g, g) and ρΠ(h, g) :=
covΠ(h, g)
σΠ(h)σΠ(g)

.

Let Lj be the subspace of L2(Π) spanned by Hj and, for J ⊂ {1, . . . , N}, let

β2(J) := inf
{

β > 0 : ∀fj ∈ Lj , j = 1, . . . , N
∑
j∈J

σ2
Π(fj) ≤ β2σ2

Π

( N∑
j=1

fj

)}
.

Note that if the spaces Lj , j = 1, . . . , N are uncorrelated, i.e., covΠ(h, g) = 0, h ∈ Li, g ∈ Lj , i 6= j,

then β2(J) = 1. More generally, given hj ∈ Lj , j = 1, . . . , N, denote by κ({hj : j ∈ J}) the minimal

eigenvalue of the covariance matrix (covΠ(hi, hj))i,j∈J . Let

κ(J) := inf
{

κ({hj : j ∈ J}) : hj ∈ Lj , σΠ(hj) = 1
}

.

Denote LJ = l.s.
(⋃

j∈J Lj

)
(here l.s. means linear span) and let ρ(J) := sup

{
ρΠ(f, g) : f ∈ LJ , g ∈

LJc

}
. The quantity ρ(J) should be compared with the notion of canonical correlation often used in the

multivariate statistical analysis. It is easy to check (see [Kol08], proposition 7.1) that

β2(J) ≤ 1√
κ(J)(1− ρ2(J))

.

The next proposition easily follows from the definitions of γ(w), β2(J) and the operators Kj .
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Proposition 4 For all J ⊂ {1, . . . , N} and all w =
∑

j∈J wj with wj ∈ Im(K1/2
j ),

γ(w) ≤ β2(J)
(∑

j∈J

‖K−1/2
j wj‖2

L2(Hj ,µ)

)1/2

. (3.2)

If now λ :=
∑

j∈J λj + δ, where δ ∈ (0, 1), λj are nonnegative functions defined on Hj and

d∑
j=1

∫
Hj

λj(h)dh = 1− δ,

then log λ =
∑

j∈J wjIHj
+ log δ, where wj := log(λj + δ)− log δ. Therefore, (3.2) implies

γ(log λ) ≤ β2(J)
(∑

j∈J

‖K−1/2
j wj‖2

L2(Hj ,µ)

)1/2

.

4 Bounding Random Error

The purpose of this section is to develop exponential bounds on the random error
∣∣∣E(fλ̂ε

)− E(fλε
)
∣∣∣ that

depend on the “approximate sparsity” of the true penalized solution λε. Since we are dealing with a loss ` of

quadratic type, bounding the random error is essentially equivalent to bounding the norm ‖fλ̂ε
− fλε

‖L2(Π)

(see Proposition 1). At the same time, we provide upper bounds on the symmetrized Kullback-Leibler dis-

tance between λ̂ε and λε and show that the “approximate sparsity” properties of these two functions are

closely related.

LetH′ be a measurable subset ofH. In the theorem below, it will be a subset of the dictionaryH on which

both λ̂ε and λε are approximately concentrated. Let L be a finite dimensional subspace of L2(Π) that will be

used to approximate the functions fromH′. Let d := dim(L) and denote UL(x) := suph∈L,‖h‖L2(Π)≤1 |h(x)|.
It is easy to check (using the Cauchy-Schwarz inequality) that ‖UL‖L2(Π) =

√
d. Denote U(L) := ‖UL‖L∞+

1. Note that U(L) is of the order
√

d if there exists an orthonormal basis φ1, . . . , φd of L such that the func-

tions φj are uniformly bounded by a constant. Finally, let ρ(H′;L) := sup
h∈H′

‖PL⊥h‖L2(Π), where PL⊥ stands

for the orthogonal projection on L⊥. We are interested in those subspaces L for which d and U(L) are not

very large and ρ(H′;L) is small enough, i.e., the space L provides a reasonably good L2(Π)-approximation

of the functions from H′. A natural choice of L might be a subspace spanned on the centers of the L2(Π)-

balls of small enough radius δ covering H′; in this case ρ(H′;L) ≤ δ and d is equal to the cardinality of such

a δ-covering.

For a function class G and a probability measure Q on S, let N(G;L2(Q); ε) denote the minimal number

of L2(Q)-balls of radius ε covering G. We will need the following complexity assumption on the base class

H : there exists a nonnegative nonincreasing function Ω such that Ω(u) → ∞ as u → 0, Ω is a regularly

varying function of exponent α ∈ [0, 2) and, with probability 1,

log N(H;L2(Πn);u/2) ≤ Ω(u), u > 0, n ∈ N. (4.1)

In particular, for VC-type classes of VC-dimension V such a bound holds with Ω(u) of the order V log(1/u).

Theorem 2 Suppose that the complexity assumption (4.1) holds. There exist constants C,D > 0 depending

only on ` such that for all measurable subsets H′ ⊂ H, for all finite dimensional subspaces L ⊂ L2(Π) with

d := dim(L) and ρ := ρ(H′;L), for all

ε ≥ D

√
Ω(1/

√
d)

n
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and for all t > 0, the following bounds hold with probability at least 1− e−t :

Λ̂ε(H \H′) ≤ C

Λε(H \H′)
∨ d + tn

nε

∨ ρ

ε

√
Ω(ρ/

√
d)

n

∨ U(L)Ω(ρ/
√

d)
nε

 , (4.2)

Λε(H \H′) ≤ C

Λ̂ε(H \H′)
∨ d + tn

nε

∨ ρ

ε

√
Ω(ρ/

√
d)

n

∨ U(L)Ω(ρ/
√

d)
nε

 (4.3)

and

‖fλ̂ε
− fλε

‖2
L2(Π) + εK(λ̂ε, λε) ≤ C

[
d + tn

n

∨
ρ

√
Ω(ρ/

√
d)

n

∨
Λε(H \H′)

√
Ω(1/

√
d)

n

∨ U(L)Ω(ρ/
√

d)
n

]
, (4.4)

where tn := t + 4 log log2 n + 2 log 2.

Theorems 1, 2 and Proposition 1 yield the following sparsity oracle inequality for the excess risk of

fλ̂ε
: for all oracles λ ∈ D, with probability at least 1− e−t,

E(fλ̂ε
) ≤ 2E(fλ) + C

d + tn
n

∨
ρ

√
Ω(ρ/

√
d)

n

∨
Λ(H \H′)

√
Ω(1/

√
d)

n

∨
∨ U(L)Ω(ρ/

√
d)

n

∨
ε2γ2(log λ)

]
.

Proof: Let λε be the solution of (1.1) and λ̂ε be the solution of (1.2). Denote

Λε(A) :=
∫

A

λε(h)µ(dh), Λ̂ε(A) :=
∫

A

λ̂ε(h)µ(dh).

Using (2.1) and (2.2), for all τ ∈ (0, 1), the directional derivative of F exists at the point λε + τ λ̂ε in the

direction λ̂ε − λε and

DF (λε + τ(λ̂ε − λε); λ̂ε − λε) = (4.5)

P (`′ • fλε+τ(λ̂ε−λε))(fλ̂ε
− fλε

) + ε

∫
H

(λ̂ε − λε) log(λε + τ(λ̂ε − λε))dµ ≥ 0.

[Note that the directional derivative of entropy H in the direction of λ̂ε − λε does not necessarily exist at the

point λε itself which explains the need in a somewhat more complicated argument given here]. Moreover,

since the function [0, 1] 3 τ 7→ F (λε + τ(λ̂ε − λε)) is convex, its right derivative, which coincides with

DF (λε+τ(λ̂ε−λε); λ̂ε−λε), is nondecreasing in τ ∈ [0, 1]. Since λε is the minimal point of F, this implies

that, for τ ∈ (0, 1),

DF (λε + τ(λ̂ε − λε); λ̂ε − λε) =

= P (`′ • fλε+τ(λ̂ε−λε))(fλ̂ε
− fλε

) + ε

∫
H

(λ̂ε − λε) log(λε + τ(λ̂ε − λε))dµ ≥ 0. (4.6)

A similar argument shows that for all τ ∈ (0, 1)

DFn(λ̂ε + τ(λε − λ̂ε); λ̂ε − λε) = (4.7)

Pn(`′ • fλ̂ε+τ(λε−λ̂ε))(fλ̂ε
− fλε

) + ε

∫
H

(λ̂ε − λε) log(λ̂ε + τ(λε − λ̂ε))dµ ≤ 0.
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Subtracting (4.6) from (4.7) and rearranging the terms, we get

P
(
`′ • fλ̂ε+τ(λε−λ̂ε) − `′ • fλε+τ(λ̂ε−λε)

)
(fλ̂ε

− fλε
)+ (4.8)

+ ε

∫ (
λ̂ε − λε

)
log

(1− τ)λ̂ε + τλε

(1− τ)λε + τ λ̂ε

dµ ≤
∣∣∣(P − Pn)(`′ • fλ̂ε+τ(λε−λ̂ε))(fλ̂ε

− fλε
)
∣∣∣ .

Under the assumptions on the loss (in particular, continuity of `′), passing to the limit as τ → 0, using the

dominated convergence, equation (2.3) of Proposition 3 and the bound

P
(
`′ • fλ̂ε

− `′ • fλε

)
(fλ̂ε

− fλε
) ≥ c‖fλ̂ε

− fλε
‖2

L2(Π)

that holds for losses of quadratic type, we get

c‖fλ̂ε
− fλε

‖2
L2(Π) + εK(λ̂ε, λε) ≤

∣∣∣(P − Pn)(`′ • fλ̂ε
)(fλ̂ε

− fλε
)
∣∣∣. (4.9)

To complete the proof of the theorem, it remains to bound
∣∣∣(P − Pn)(`′ • fλ̂ε

)(fλ̂ε
− fλε

)
∣∣∣ . Let

Λ(δ,∆) :=

λ ∈ D : ‖fλ − fλε
‖L2(Π) ≤ δ,

∫
H\H′

λ(h)µ(dh) ≤ ∆


and

αn(δ,∆) := sup {|(Pn − P )(`′ • fλ)(fλ − fλε
)|, λ ∈ Λ(δ,∆)} .

In what follows we will use Rademacher processes

Rn(f) := n−1
n∑

j=1

εjf(Xj),

where {εj} is a sequence of i.i.d. Rademacher random variables (taking values +1 and −1 with probability

1/2) independent of {Xj}.

Lemma 3 Let H be a class of functions on S uniformly bounded by 1 and let L ⊂ L2(Π) be a finite

dimensional subspace with d := dim(L) and ρ := ρ(H;L). Suppose that assumption (4.1) holds for some

function Ω. Then with some constant C > 0

E sup
h∈H

|Rn(PL⊥h)| ≤ C

[
ρ

√
Ω(ρ/

√
d)

n

∨ U(L)Ω(ρ/
√

d)
n

]
.

Proof: The following is true for all h1, h2 ∈ H

|PL(h1)(x)− PL(h2)(x)| ≤ UL(x)‖PL(h1)− PL(h2)‖L2(Π) ≤ UL(x)‖h1 − h2‖L2(Π)

and it implies that

‖PL(h1)− PL(h2)‖L2(Πn) ≤ ‖UL‖L2(Πn)‖h1 − h2‖L2(Π).

Therefore,

log N(PL(H);L2(Πn);u) ≤ log N

(
H;L2(Π);

u

‖UL‖L2(Πn)

)
. (4.10)

Complexity assumption (4.1), together with the law of large numbers, gives the bound for covering numbers

with respect to L2(Π)(see the proof of Theorem 3.4 in [GK06]):

log N (H;L2(Π), u) ≤ Ω(u). (4.11)
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Since PL⊥h = h− PLh, (4.10) implies

N(PL⊥(H);L2(Πn);u) ≤ N (H;L2(Πn), u/2)N

(
H;L2(Π);

u

2‖UL‖L2(Πn)

)
.

Recalling the complexity conditions (4.1) and (4.11), we easily get

log N(PL⊥(H);L2(Πn);u) ≤ Ω(u) + Ω
(

u

2‖UL‖L2(Πn)

)
.

It remains to use Theorem 3.1 from [GK06] to complete the proof.

Lemma 4 Under the assumptions of Theorem 2, there exists a constant C > 0 depending only on the loss

such that with probability at least 1− e−t for all 1√
n
≤ δ ≤ 1, 1√

n
≤ ∆ ≤ 1

αn(δ,∆) ≤C

δ

√
d + tn

n

∨
ρ

√
Ω(ρ/

√
d)

n

∨
Λε(H \H′)

√
Ω(1/

√
d)

n

∨

∆

√
Ω(1/

√
d)

n

∨ U(L)Ω(ρ/
√

d)
n

∨ tn
n

 =: β̂n(δ,∆).

where tn := t + 4 log log2 n + 2 log 2.

Proof: Recall that αn(δ,∆) := sup {|(P − Pn)(`′ • fλ)(fλ − fλε
)|, λ ∈ Λ(δ,∆)} . The function u 7→

`′(y, fλε
+u)u, |u| ≤ 2 is Lipschitz with Lipschitz constant depending only on `. Note that `′(y, fλ(·))(fλ(·)−

fλε
(·)) = `′(y, fλε

+u)u|u=fλ(·)−fλε (·) This allows us to apply the symmetrization and contraction inequal-

ities (see [vdVW96], Lemma 2.3.6 and Proposition A.3.2) which results in the following bound:

Eαn(δ,∆) ≤ CE sup
λ∈Λ(δ,∆)

|Rn(fλ − fλε
)|,

where C > 0 is a constant depending only on `. Let PL denote the orthogonal projection on a d-dimensional

subspace L. The following representation is straightforward:

fλ − fλε
= PL (fλ − fλε

) +
∫
H′

PL⊥(h) (λ(h)− λε(h))µ(dh) +
∫

H\H′

PL⊥(h) (λ(h)− λε(h))µ(dh).

(4.12)

Hence, it is enough to bound separately the expected supremum of the Rademacher process Rn for each term

in the sum. For the first term, the standard bound on Rademacher processes indexed by a finite dimensional

subspace (see, e.g., [Kol08], proposition 3.2) yields

E sup
λ∈Λ(δ,∆)

|Rn (PL(fλ − fλε
))| ≤ δ

√
d

n
. (4.13)

To bound the remaining terms, we will use Lemma 3. First, due to linearity of the Rademacher process,

E sup
λ∈Λ(δ,∆)

∣∣∣∣∣∣∣Rn

 ∫
H\H′

(λ− λε)(h)PL⊥h µ(dh)


∣∣∣∣∣∣∣ ≤

(
∆ + Λε(H \H′)

)
E sup

h∈H\H′
|Rn(PL⊥h)|. (4.14)

We now use the bound of Lemma 3 with H \H′ instead of H and with ρ = 1 to get

E sup
λ∈Λ(δ,∆)

∣∣∣∣∣∣∣Rn

 ∫
H\H′

(λ− λε)(h)PL⊥h µ(dh)


∣∣∣∣∣∣∣ ≤ (4.15)

C
(
∆ + Λε(H \H′)

)[√
Ω(1/

√
d)

n

∨ U(L)Ω(1/
√

d)
n

]
.
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Similarly,

E sup
λ∈Λ(δ,∆)

∣∣∣∣∣∣Rn

∫
H′

(λ− λε)PL⊥hdµ(h)

∣∣∣∣∣∣ ≤ 2E sup
h∈H′

|Rn(PL⊥h)|

and using the bound of Lemma 3 with H′ instead of H and with ρ := ρ(H′, L), we get

E sup
λ∈Λ(δ,∆)

∣∣∣∣∣∣Rn

∫
H′

(λ− λε)(h)PL⊥hdµ(h)

∣∣∣∣∣∣ ≤ C

[
ρ

√
Ω(ρ/

√
d)

n

∨ U(L)Ω(ρ/
√

d)
n

]
. (4.16)

Combining (4.13)–(4.16) results in the following bound:

Eαn(δ,∆) ≤ C

δ

√
d

n

∨
ρ

√
Ω(ρ/

√
d)

n

∨
(4.17)

Λε(H \H′)

√
Ω(1/

√
d)

n

∨
∆

√
Ω(1/

√
d)

n

∨ U(L)Ω(ρ/
√

d)
n

 .

Talagrand’s concentration inequality (see, e.g., [Bou02]) implies that with probability at least 1 − e−s and

with a proper choice of constant C > 0

αn(δ,∆) ≤ βn(δ,∆, s) := 2
(

Eαn(δ,∆) + Cδ

√
s

n
+ C

s

n

)
. (4.18)

We have to make the bound uniform with respect to 1√
n
≤ δ ≤ 1, 1√

n
≤ ∆ ≤ 1. To this end, let

δj = ∆j =
1
2j

, ti,j = t + 2 log(i + 1) + 2 log(j + 1) + 2 log 2, i, j ≥ 0. (4.19)

Then, with probability at least

1−
∑

i,j:δi,∆j≥n−1/2

exp{−ti,j} ≥ 1− e−t−log 4(
∑
j≥0

(j + 1)−2)2 ≥ 1− e−t,

for all i, j such that δi,∆j ≥ n−1/2 and all δ,∆ such that δ ∈ (δi+1, δi], ∆ ∈ (∆j+1,∆j ], the following

bounds hold: α(δ,∆) ≤ β(δi,∆j , ti,j). Note that

ti,j ≤ t + 2 log 2 + 2 log log2

(
1
δ

)
+ 2 log log2

(
1
∆

)
,

2 log log2

(
1
∆

)
n

≤ 2
log log2(n)

n
,

2 log log2

(
1
δ

)
n

≤ 2
log log2(n)

n
,

implying that ti,j ≤ tn. Thus, with probability at least 1− e−t, for all δ,∆ ∈ [n−1/2, 1]

αn(δ,∆) ≤ β̂n(δ,∆) := C

δ

√
d + tn

n

∨
ρ

√
Ω(ρ/

√
d)

n

∨

Λε(H \H′)

√
Ω(1/

√
d)

n

∨
∆

√
Ω(1/

√
d)

n

∨ U(L)Ω(ρ/
√

d)
n

∨ tn
n

 .

To complete the proof of the theorem, denote δ̂ := ‖fλ̂ε
− fλε

‖L2(Π), and ∆̂ := Λ̂ε(H \H′). By Lemma

4, (4.9) and (2.4) of Proposition 3, the following inequalities hold with probability at least 1− e−t

cδ̂2 ≤ β̂n(δ̂, ∆̂), (4.20)

ε∆̂ ≤ 2εΛε(H \H′) + β̂n(δ̂, ∆̂), (4.21)

provided that δ̂ ≥ n−1/2, ∆̂ ≥ n−1/2. It remains to solve (4.20), (4.21) for δ̂, ∆̂ (using the assumption on

ε) to get the desired bounds (in the cases when δ̂ < n−1/2 and/or ∆̂ < n−1/2 the derivation becomes even

simpler).
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lems. Lecture Notes for Ecole d’Eté de Probabilités de Saint-Flour, 2008.

[Kol09a] V. Koltchinskii. Sparse recovery in convex hulls via entropy penalization. Ann. Statist.,

37(3):1332–1359, 2009.

[Kol09b] V. Koltchinskii. Sparsity in penalized empirical risk minimization. Annales Inst. H. Poincare,

Probabilites et Statistique, 45(1):7–57, 2009.

[KY08] V. Koltchinskii and M. Yuan. Sparse recovery in large ensembles of kernel machines. In

Proceedings of 19th Annual Conference on Learning Theory(COLT 2008), pages 229–238,

2008.

[MPTJ07] S. Mendelson, A. Pajor, and N. Tomczak-Jaegermann. Reconstruction and subgaussian opera-

tors in asymptotic geometric analysis. Geom. Funct. Anal., 17(4):1248–1282, 2007.
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Abstract

Recent advances in large-margin classification of data residing in general metric spaces (rather than
Hilbert spaces) enable classification under various natural metrics, such as edit and earthmover dis-
tance. The general framework developed for this purpose by von Luxburg and Bousquet [JMLR,
2004] left open the question of computational efficiency and providing direct bounds on classifica-
tion error.

We design a new algorithm for classification in general metric spaces, whose runtime and accu-
racy depend on the doubling dimension of the data points. It thus achieves superior classification
performance in many common scenarios. The algorithmic core of our approach is an approxi-
mate (rather than exact) solution to the classical problems of Lipschitz extension and of Nearest
Neighbor Search. The algorithm’s generalization performance is established via the fat-shattering
dimension of Lipschitz classifiers.

1 Introduction

A recent line of work extends the large-margin classification paradigm from Hilbert spaces to less structured
ones, such as Banach or even metric spaces [HBS05, vLB04, DL07]. In this metric approach, data is presented
as points with distances but without requiring the additional structure of inner products. The potentially
significant advantage is that the metric can be carefully suited to the type of data, e.g. earthmover distance
for images, or edit distance for sequences.

However, much of the existing machinery of generalization bounds [CV95, SS02] depends strongly on
the inner-product structure of the Hilbert space. von Luxburg and Bousquet [vLB04] developed a powerful
framework of large-margin classification for a general metric spaceX . First, they show that the natural
hypotheses (classifiers) to consider in this context are maximally smooth Lipschitz functions; indeed, they
reduce classification (of points in a metric spaceX ) to finding a Lipschitz function (f : X → R) consistent
with the data, which is a classic problem in Analysis, known as Lipschitz extension. Next, they establish
error bounds in the form of expected-loss. Finally, the computational problem of evaluating the classification
function is reduced, assuming zero training error, to exact 1-nearest neighbor search. This matches a common
classification heuristic, see e.g. [CH67], and the analysis of [vLB04] may be viewed as a rigorous explanation
for the empirical success of this heuristic.

An important question left open by the work of [vLB04] is the efficient computation of the classifier.
Specifically, exact nearest neighbor search in general metrics might require time that is linear in the sam-
ple size, and it is algorithmically nontrivial to deal with training error. In particular, the task of choosing
which points will be misclassified by the hypothesis (i.e. optimizing the bias-variance tradeoff) remains to be
addressed.

Our contribution. We solve the problems delineated above by showing that data with a low doubling di-
mension admits accurate and computationally efficient classification. In fact, this is the first time in which the
doubling dimension of the data points is tied to either classification error or algorithmic runtime. (Previously,
the doubling dimension of the space of classifiers was controlled by the VC dimension of the classifier space
[BLL09].) We first give an alternate generalization bound for Lipschitz classifiers, which directly bounds the
classification error, rather than expected loss. (A similar bound can in fact be derived from the analysis of
[vLB04].) Our bound is based on an elementary analysis of the fat-shattering dimension, see Section 3.

∗This work was supported in part by The Israel Science Foundation (grant #452/08), and by a Minerva grant.
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We then present our main contribution, and give an efficient computational implementation of the Lips-
chitz classifier. In Section 4 we prove that once a Lipschitz classifier has been chosen, the classifier can be
computed (evaluated) quickly on any new pointx ∈ X , by utilizing approximate nearest neighbor search
(which is known to be fast when points have a low doubling dimension). In Section 5 we further show how
to quickly compute a near-optimal classifier (in terms of classification error bound), even when the training
error is nonzero. In particular, this necessitates the optimization of the number of incorrectly labeled exam-
ples – and moreover, their identity – as part of the bias-variance tradeoff. In Section 6 we give an example to
illustrate the potential power of our approach.

2 Definitions and notation

We use standard notation and definitions throughout.

Metric spaces. A metric ρ on a setX is a positive symmetric function satisfying the triangle inequality
ρ(x, y) ≤ ρ(x, z)+ρ(z, y); together the two comprise the metric space(X , ρ). The diameter of a setA ⊆ X ,
is defined bydiam(A) = supx,y∈A ρ(x, y). The Lipschitz constant of a functionf : X → R, denoted by
‖f‖Lip, is defined to be the smallestL > 0 that satisfies|f(x) − f(y)| ≤ Lρ(x, y) for all x, y ∈ X .

Doubling dimension. For a metric(X , ρ), let λ be the smallest value such that every ball inX can be
covered byλ balls of half the radius. Thedoubling dimensionof X is ddim(X ) = log2 λ. A metric is
doublingwhen its doubling dimension is bounded. Note that while a low Euclidean dimension implies a
low doubling dimension (Euclidean metrics of dimensiond have doubling dimensionO(d) [GKL03]), low
doubling dimension is strictly more general than low Euclidean dimension.

The following packing property can be demonstrated via a repetitive application of the doubling property:
For setS with doubling dimensionddim(X ), if the minimum interpoint distance inS is at leastα, and
diam(S) ≤ β, then|S| ≤ ⌈β/α⌉ddim(X )+1 (see, for example [KL04]).

Learning. Our setting in this paper is a generalization of PAC known asprobabilistic concept learning
[KS94]. In this model, examples are drawn independently fromX × {−1, 1} according to some unknown
probability distributionP , and the learner, having observedn such pairs(x, y) produces a hypothesish :
X → {−1, 1}. Thegeneralization erroris the probability of misclassifying a new point drawn fromP :

P {(x, y) : h(x) 6= y} .

The quantity above is random (since it depends on a random sequence) and we wish to upper-bound it in
probability. Most bounds of this sort contains asample errorterm (corresponding in statistics to bias), which
is the fraction of observed examples misclassified byh and ahypothesis complexityterm (corresponding to
variance in statistics) which measures the richness of the class of all admissible hypotheses [Was06]. Keeping
in line with the literature, we ignore the measure-theoretic technicalities associated with taking suprema over
uncountable function classes.

3 Generalization bounds

In this section, we take a preliminary step towards our efficient classification algorithm by deriving general-
ization bounds for Lipschitz classifiers over doubling spaces. As noted by [vLB04] Lipschitz functions are
the natural object to consider in an optimization/regularization framework. The basic intuition behind our
proofs is that the Lipschitz constant plays the role of the inverse margin in the confidence of the classifier.
As in [vLB04], small Lipschitz constant corresponds to large margin, which in turn yields low hypothesis
complexity and variance. In retrospect, our generalization bound (Corollary 5 below) can be derived as a
consequence of [vLB04, Theorem 18] in conjunction with [BM02, Theorem 5(b)].

We apply tools from generalized Vapnik-Chervonenkis theory to the case of Lipschitz classifiers. LetF
be a collection of functionsf : X → R and recall the definition of the fat-shattering dimension [ABCH97,
BS99]: a setX ⊂ X is said to beγ-shattered byF if there exists some functionr : X → R such that for
each label assignmenty ∈ {−1, 1}X there is anf ∈ F satisfyingy(x)(f(x)− r(x)) ≥ γ > 0 for all x ∈ X .
Theγ-fat-shattering dimension ofF , denoted byfatγ(F), is the cardinality of the largest setγ-shattered by
F .

For the case of Lipschitz functions, we will show that the notion of fat-shattering dimension may be
somewhat simplified. We say that a setX ⊂ X is γ-shatteredat zeroby a collection of functionsF if for
eachy ∈ {−1, 1}X there is anf ∈ F satisfyingy(x)f(x) ≥ γ for all x ∈ X . (This is the definition above
with r ≡ 0.) We writefat0γ(F) to denote the cardinality of the largest setγ-shattered at zero byF and show
that for Lipschitz function classes the two complexity measures are the same.

Lemma 1 LetF be the collection of allf : X → R with ‖f‖Lip ≤ L. Thenfatγ(F) = fat0γ(F).
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Proof: We begin by recalling the classic Lipschitz extension result, essentially due to McShane and Whitney
[McS34, Whi34]. Any real-valued functionf defined on a subsetX of a metric spaceX has an extensionf∗

to all ofX satisfying‖f∗‖Lip = ‖f‖Lip. Thus, in what follows we will assume that any functionf defined on
X ⊂ X is also defined on all ofX via some Lipschitz extension (in particular, to bound‖f‖Lip it suffices to
bound the restricted‖f |X‖

Lip
).

Consider some finiteX ⊂ X . If X is γ-shattered at zero byF then by definition it is alsoγ-shattered.
Now assume thatX is γ-shattered byF . Thus, there is some functionr : X → R such that for each
y ∈ {−1, 1}X there is anf = fr,y ∈ F such thatfr,y(x) ≥ r(x) + γ if y(x) = +1 andfr,y(x) ≤ r(x) − γ

if y(x) = −1. Let us define the functioñfy onX and as per above, on all ofX , by f̃y(x) = γy(x). It is clear

that the collection
{

f̃y : y ∈ {−1, 1}X
}

γ-fat-shattersX at zero; it only remains to verify that̃fy ∈ F , i.e.,

sup
y∈{−1,1}X

∥

∥

∥
f̃y

∥

∥

∥

Lip
≤ sup

y∈{−1,1}X

‖fr,y‖Lip
.

Indeed,

sup
y∈{−1,1}X ,x,x′∈X

fr,y(x) − fr,y(x′)

ρ(x, x′)
≥ sup

x,x′∈X

r(x) − r(x′) + 2γ

ρ(x, x′)
≥ sup

x,x′∈X

2γ

ρ(x, x′)
= sup

y∈{−1,1}X

∥

∥

∥
f̃y

∥

∥

∥

Lip
.

A consequence of Lemma 1 is that in considering the generalization properties of Lipschitz functions
we need only bound theγ-fat-shattering dimension at zero. The latter follows from the observation that the
packing number of a metric space controls the fat-shattering dimension of Lipschitz functions defined over
the metric space. LetM(X , ρ, ε) be defined as theε-packing number ofX , the cardinality of the largest
ε-separated subset ofX .

Theorem 2 Let(X , ρ) be a metric space. Fix someL > 0, and letF be the collection of allf : X → R with
‖f‖Lip ≤ L. Then for allγ > 0,

fatγ(F) = fat0γ(F) ≤ M(X , ρ, 2γ/L).

Proof: Suppose thatS ⊆ X is fatγ-shattered at zero. The case|S| = 1 is trivial, so we assume the existence
of x 6= x′ ∈ S andf ∈ F such thatf(x) ≥ γ > −γ ≥ f(x′). The Lipschitz property then implies that
ρ(x, x′) ≥ 2γ/L, and the claim follows.

Corollary 3 Let metric spaceX have doubling dimensionddim(X ), and letF be the collection of real-
valued functions overX with Lipschitz constant at mostL. Then for allγ > 0,

fatγ(F) ≤

⌈

Ldiam(X )

2γ

⌉ddim(X )+1

.

Proof: The claim follows immediately from Theorem 2 and the packing property of doubling spaces.

Equipped with these estimates for the fat-shattering dimension of Lipschitz classifiers, we can invoke a
standard generalization bound stated in terms of this quantity. For the remainder of this section, we take
γ = 1 and say that a functionf classifies an example(xi, yi) correctly if

yif(xi) ≥ 1. (1)

The following generalization bounds appear in [BS99]:

Theorem 4 LetF be a collection of real-valued functions over some setX , defined = fat1/16(F) and let
andP be some probability distribution onX × {−1, 1}. Suppose that(xi, yi), i = 1, . . . , n are drawn from
X × {−1, 1} independently according toP and that somef ∈ F classifies then examples correctly, in the
sense of (1). Then with probability at least1 − δ

P {(x, y) : sgn(f(x)) 6= y} ≤
2

n
(d log2(34en/d) log2(578n) + log2(4/δ)) .

Furthermore, iff ∈ F is correct on all butk examples, we have with probability at least1 − δ

P {(x, y) : sgn(f(x)) 6= y} ≤ k/n +

√

2

n
(d ln(34en/d) log2(578n) + ln(4/δ)).
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Applying Corollary 3, we obtain the following consequence of Theorem 4:

Corollary 5 Let metric spaceX have doubling dimensionddim(X ), and letF be the collection of real-
valued functions overX with Lipschitz constant at mostL. Then for anyf ∈ F that classifies a sample of
sizen correctly, we have with probability at least1 − δ

P {(x, y) : sgn(f(x)) 6= y} ≤
2

n
(d log2(34en/d) log2(578n) + log2(4/δ)) .

Likewise, iff is correct on all butk examples, we have with probability at least1 − δ

P {(x, y) : sgn(f(x)) 6= y} ≤ k/n +

√

2

n
(d ln(34en/d) log2(578n) + ln(4/δ)). (2)

In both cases,d = fat1/16(F) ≤ ⌈8Ldiam(X )⌉ddim(X )+1.

4 Lipschitz extension classifier

Given a labeled set(X, Y ) ⊂ X×{−1, 1}, we construct our classifier in a similar manner to [vLB04, Lemma
12], via a Lipschitz extension of the labelsY to all ofX . LetS+, S− ⊂ X be the sets of positive and negative
labeled points that the classifier correctly labels. Our starting point is the same extension function used in
[vLB04], namely, for allα ∈ [0, 1]

fα = α min
i

(

yi + 2
d(x, xi)

d(S+, S−)

)

+ (1 − α)max
j

(

yj − 2
d(x, xj)

d(S+, S−)

)

.

However, evaluating the exact value offα(x) for each pointx ⊂ X (or even the sign offα(x) at this point)
requires an exact nearest neighbor search, and in arbitrary metric space nearest neighbor search may require
Θ(|X |) time.

In this section, we give a classifier whose sign can be evaluated using a(1 + ε)-approximate nearest
neighbor search. There exists a search structure for ann point set that can be built in2O(ddim(X ))n log n time
and supports approximate nearest neighbor searches in time2O(ddim(X )) log n+ε−O(ddim(X )) [CG06, HM06]
(see also [KL04, BKL06]). In constructing the classifier, we assume that the sample points have already been
partitioned in a manner that yields a favorable bias-variance tradeoff, as in Section 5 below. Therefore, the
algorithm below takes as input a set of pointS1 ⊂ X that must be correctly classified, and a set of error points
S0 = X − S1 that may be ignored in the classifier construction (but which affect the resulting generalization
bound).

Theorem 6 LetX be a metric space, and fix0 < ε ≤ 1
2 . Given a labeled sampleS = (xi, yi) ∈ X×{−1, 1},

i = 1, . . . , n, let S be partitioned intoS0 andS1, of sizesk andn− k, whereS0 contains points that may be
misclassified, andS1 contains points that may not be misclassified. DefineS+

1 , S−
1 ⊂ S1 according to their

labels and defineL = 2/d(S+
1 , S−

1 ). Then there exists a binary classification functionh : X → {−1, 1}
satisfying the following:

(a) h(x) can be evaluated at eachx ∈ X via a single(1 + ε)-nearest neighbor query. In particu-
lar, h(x) can be evaluated in time2O(ddim(X )) log n + ε−O(ddim(X )), after an initial computation of
(2O(ddim(X )) log n + ε−O(ddim(X )))n time.

(b) With probability at least1 − δ

P {(x, y) : h(x) 6= y} ≤ 2

(

k

n
+

√

2

n
(d ln(34en/d) log2(578n) + ln(4/δ))

)

whered = ⌈8(1 + ε)Ldiam(X )⌉ddim(X )+1.

Proof: Let the distance functioñd(·, ·) be the approximate distance between a point and a set (or between
two sets), as determined by a fixed(1 + ε

4 )-nearest neighbor search structure. Let

f̃1(x) := min
i

(

yi + 2
d̃(x, xi)

d̃(S+
1 , S−

1 )

)

,

and let the classifier beh(x) := sgn(f̃1(x)). h(x) can be evaluated via an approximate nearest neighbor
query in time2O(ddim(X )) log n + ε−O(ddim(X )), assuming that a search structure has been precomputed in
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time 2O(ddim(X ))n log n, andd̃(S+
1 , S−

1 ) has been precomputed viaO(n) nearest neighbor searches in time
(2O(ddim(X )) log n + ε−O(ddim(X )))n.

It remains to bound the generalization error ofh. To this end, define

f+
1 (x) = (1 + ε)f1(x) + ε = (1 + ε)min

i

(

yi + 2
d(x, xi)

d(S+
1 , S−

1 )

)

+ ε,

f−
1 (x) = (1 + ε)f1(x) − ε = (1 + ε)min

i

(

yi + 2
d(x, xi)

d(S+
1 , S−

1 )

)

− ε.

Note thatf+
1 (x) > f−

1 (x). Bothf+
1 (x) andf−

1 (x) correctly classify all labeled points ofS1 and have Lips-
chitz constant(1 + ε)L, so their classification bounds are given by Corollary 5 with this Lipschitz constant.

We claim thath(x) always agrees with the sign of at least one off+
1 (x) and f−

1 (x): If f+
1 (x) and

f−
1 (x) disagree in their sign, then the claim follows trivially. Assume then that the signs off+

1 (x) and

f−
1 (x) agree. Suppose thatf+

1 (x) andf−
1 (x) are positive, which implies thatyj + 2

d(x,xj)

d(S+
1 ,S−

1 )
> ε

1+ε for

all j. Now recall thatf̃1(x) = mini

(

yi + 2 d̃(x,xi)

d̃(S+,S−)

)

≥ mini

(

yi + 2
(1+ε/4)2

d(x,xi)
d(S+,S−)

)

. If yi = +1,

then trivially h(x) is positive. Ifyi = −1, we have that2 d(x,xi)
d(S+,S−) > ε

1+ε + 1 = 1+2ε
1+ε , and sof̃1(x) ≥

mini

(

yi + 2
(1+ε/4)2

d(x,xi)
d(S+,S−)

)

> −1 + 1
(1+ε/4)2

(

1+2ε
1+ε

)

> 0, and we are done. Suppose then thatf+
1 (x)

andf−
1 (x) are negative, which implies thatyj + 2

d(x,xj)

d(S+
1 ,S−

1 )
< − ε

1+ε for some fixedj. Now it must be that

yj = −1, and so2
d(x,xj)

d(S+,S−) < − ε
1+ε + 1 = 1

1+ε . Now recall thatf̃1(x) = mini

(

yi + 2 d̃(x,xi)

d̃(S+,S−)

)

≤
(

yj + 2(1 + ε/4)2
d(x,xj)

d(S+,S−)

)

< −1 + (1 + ε/4)2
(

1
1+ε

)

< 0, and we are done.

It follows that if h(x) misclassifiesx, thenx must be misclassified by at least one off+
1 (x) andf−

1 (x).
Hence, the generalization bound ofh(x) is not greater than the sum of the generalization bounds off+

1 (x)
andf−

1 (x).

5 Bias-variance tradeoffs

In this section, we show how to efficiently construct a classifier that optimizes the bias-variance tradeoff
implicit in Corollary 5, equation (2). LetX be a metric space, and assume we are given a labeled sample
S = (xi, yi) ∈ X × {−1, 1}. For any Lipschitz constantL, let k(L) be the minimal sample error ofS over
all classifiers with Lipschitz constantL. We rewrite the generalization bound as follows:

G(L) = P {(x, y) : sgn(f(x)) 6= y} ≤ k(L)/n +

√

2

n
(d ln(34en/d) log2(578n) + ln(4/δ))

whered = ⌈8Ldiam(X )⌉ddim(X )+1. This bound contains a free parameter,L, which may be tuned to
optimize the bias-variance tradeoff. More precisely, decreasingL drives the bias term (number of mistakes)
up and the variance term (fat-shattering dimension) down. For some optimal values ofL, G(L) achieves a
minimum value. The following theorem gives our bias-variance tradeoff.

Theorem 7 LetX be a metric space. Given a labeled sampleS = (xi, yi) ∈ X × {−1, 1}, i = 1, . . . , n,
there exists a binary classification functionh : X → {−1, 1} satisfying the following properties:

(a) h(x) can be evaluated at eachx ∈ X in time2O(ddim(X )) log n, after an initial computation ofO(n2 log n)
time.

(b) The generalization error ofh is bound by

P {(x, y) : sgn(f(x)) 6= y} ≤ c · inf
L>0

(

k(L)/n +

√

2

n
(d ln(34en/d) log2(578n) + ln(4/δ))

)

.

for some constantc, and whered = d(L) = ⌈8Ldiam(X )⌉ddim(X )+1.

We proceed with a description of the algorithm. We will first give an algorithm with runtimeO(n4.376),
and then improve the runtime toO(n2 log n).
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Algorithm description. Here we give a randomized algorithm that finds an optimal valueL∗, that is
G(L∗) = infL>0 G(L). The runtime of this algorithm isO(n4.376) with high probability.

First note the behavior ofk(L) asL increases.k(L) may decrease when the value ofL crosses some
critical value: This critical value is determined by point pairsxi ∈ S+, xj ∈ S− (that is,L = 2

d(xi,xj)
)

and implies that the classification function can correctly classify both these points. There areO(n2) critical
values ofL, and these can be determined by enumerating all interpoint distances between setsS+, S− ⊂ S.

Below, we will show that for any givenL, the valuek(L) can be computed in randomized timeO(n2.376).
More precisely, we will show how to compute a partition ofS into setsS1 (with Lipschitz constantL) and
S0 (of sizek(L)) in this time. Given setsS0, S1 ⊂ S, we can construct the classifier of Corollary 5. Since
there areO(n2) critical values ofL, we can calculatek(L) for each critical value inO(n4.376) total time,
and thereby determineL∗. Then by Corollary 5, we may compute a classifier with a bias-variance tradeoff
arbitrarily close to optimal.

It is left to describe how valuek(L) is computed for anyL in randomized timeO(n2.376). Consider the
following algorithm: Construct a bipartite graphG = (V +, V −, E). The vertex setsV +, V − correspond
to the labeled setsS+, S− ∈ S, respectively. The length of edgee = (u, v) connecting verticesu ∈ V +

andv ∈ V − is equal to the distance between the points, andE includes all edges of length less than2/L.
(E can be computed inO(n2 log n) time.) Now, for all edgese ∈ E, a classifier with Lipschitz constantL
necessarily misclassifies at least one endpoint ofe. Hence, the problem of finding a classifier with Lipschitz
constantL that misclassifies a minimum number of points inS is equivalent to finding a minimum vertex
cover for bipartite graphG. By König’s theorem, minimum bipartite vertex cover is itself equivalent to the
maximum matching problem on bipartite graphs. An exact solution to the bipartite matching problem may
be computed in randomized timeO(n2.376) [MS04]. This solution immediately identifies setsS0, S1, which
allows us to compute a classifier with a bias-variance tradeoff arbitrarily close to optimal.

Improved algorithmic runtime. The runtime given above can be reduced from randomizedO(n4.376) to
deterministicO(n2 log n), if we are willing to settle for a generalization boundG(L) within a constant factor
of the optimalG(L∗).

The first improvement is in the runtime of the vertex cover algorithm. It is well known that a2-
approximation to the minimum vertex cover on an arbitrary graph can be computed by a greedy algorithm in
timeO(|V + + V −|+ |E|) = O(n2) [GJ77]. Hence, we may evaluate inO(n2) time a functionk′(L) which
satisfiesk(L) ≤ k′(L) ≤ 2k(L).

The second improvement uses a binary search over the values ofL, which allows us to evaluatek′(L) for
only O(log n) values ofL, as opposed to allΘ(n2) values above. Now, we seek the a value ofL for which

G′(L) = k′(L)/n +

√

2

n
(d ln(34en/d) log2(578n) + ln(4/δ))

is minimal. Call this valueL′. Also note that for allL, G′(L) ≤ 2G(L), from which it follows thatG′(L′) ≤
2G(L∗). While we cannot efficiently findL′, we are able to use a binary search to find a valueL for which
G′(L) ≤ 2G′(L′) ≤ 4G(L∗). In particular we seek the minimum value ofL for which

k′(L)/n ≤

√

2

n
(d ln(34en/d) log2(578n) + ln(4/δ)).

Now, decreasingL can only increasek′(L), so the solution to the inequality above necessarily yields anL
for which G′(L) ≤ 2G′(L′) ≤ 4G(L∗). The solution to the inequality can be computed through a binary
search on all values ofL. By Corollary 5, we can construct a classifier with a bias-variance tradeoff within a
factor4(1 + ε) of optimal. The total runtime isO(n2 log n).

6 Example: Earthmover metric

To illustrate the potential power of our approach, we now analyze the doubling dimension of an earthmover
metricXk that is often used in computer vision applications. (k ≥ 2 is a parameter.) Each point inXk is a
multiset of sizek in the unit square in the Euclidean plane, formallyS ⊂ [0, 1]2 and|S| = k (allowing and
counting multiplicities). The distance between such setsS, T (i.e. two points inXk) is given by

EMD(S, T ) = min
π:S→T

{

1
k

∑

s∈S

‖s − π(s)‖2

}

,

where the minimum is over all one-to-one mappingsπ : S → T . In other words,EMD(S, T ) is the
minimum-cost matching between the two setsS, T , where costs correspond to Euclidean distance.

Lemma 8 The earthmover metricX above satisfiesdiam(Xk) ≤
√

2, andddim(Xk) ≤ O(k log k).
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Proof: For the rest of this proof, a point refers to the unit square, notXk. Fix r > 0 and consider a ball (in
Xk) of radiusr around someS. Let N be anr/2-net of the unit square[0, 1]2. Now consider all multisetsT
of sizek of the unit square which satisfy the following condition: every point inT belongs to the netN and
is within (Euclidean) distance(k + 1/2)r from at least one point ofS. Points in such a multisetT are chosen

from a collection of size at mostk ·
⌈

(k+1/2)r
r/2

⌉O(1)

≤ kO(1) (by the packing property in the Euclidean plane).

Thus, the number of such multisetsT is at mostλ ≤ (kO(1))k = kO(k).
We complete the proof of the lemma, by showing that ther-ball (in Xk) aroundS is covered by theλ

balls of radiusr/2 whose centers are given by the above multisetsT . To see this, consider a multisetS′ such
thatEMD(S, S′) ≤ r, and let us show thatS′ is contained in anr/2-ball around one of the above multisets
T . Observe that every point inS′ is within distance at mostkr from at least one point ofS. By “mapping”
each point inS′ to its nearest point in the netN , we get a multisetT as above withEMD(S′, T ) ≤ r/2.
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Abstract

We describe and analyze a new algorithm for agnostically learning kernel-based halfspaces
with respect to the zero-one loss function. Unlike most previous formulations which rely on
surrogate convex loss functions (e.g. hinge-loss in SVM and log-loss in logistic regression),
we provide finite time/sample guarantees with respect to the more natural zero-one loss
function. The proposed algorithm can learn kernel-based halfspaces in worst-case time
poly(exp(L log(L/ε))), for any distribution, where L is a Lipschitz constant (which can be
thought of as the reciprocal of the margin), and the learned classifier is worse than the
optimal halfspace by at most ε. We also prove a hardness result, showing that under a
certain cryptographic assumption, no algorithm can learn kernel-based halfspaces in time
polynomial in L.

1 Introduction

A highly important hypothesis class in machine learning theory and applications is that of halfspaces
in a Reproducing Kernel Hilbert Space (RKHS). Choosing a halfspace based on empirical data is
often performed using Support Vector Machines (SVMs) [25]. SVMs replace the more natural 0-
1 loss function with a convex surrogate – the hinge-loss. By doing so, we can rely on convex
optimization tools. However, there are no guarantees on how well the hinge-loss approximates the 0-
1 loss function. There do exist some recent results on the asymptotic relationship between surrogate
convex loss functions and the 0-1 loss function [27, 4], but these do not come with finite-sample or
finite-time guarantees. In this paper, we tackle the task of learning kernel-based halfspaces with
respect to the non-convex 0-1 loss function. Our goal is to derive learning algorithms and to analyze
them in the finite-sample finite-time setting.

Following the standard statistical learning framework, we assume that there is an unknown
distribution, D, over the set of labeled examples, X × {0, 1}, and our primary goal is to find a
classifier, h : X → {0, 1}, with low generalization error,

errD(h) def= E
(x,y)∼D

[|h(x)− y|] . (1)

The learning algorithm is allowed to sample a training set of labeled examples, (x1, y1), . . . , (xm, ym),
where each example is sampled i.i.d. from D, and it returns a classifier. Following the agnostic PAC
learning framework [15], we say that an algorithm (ε, δ)-learns a concept class H of classifiers using
m examples, if with probability of at least 1− δ over a random choice of m examples the algorithm
returns a classifier ĥ that satisfies

errD(ĥ) ≤ inf
h∈H

errD(h) + ε . (2)

We note that ĥ does not necessarily belong to H. Namely, we are concerned with improper learning,
which is as useful as proper learning for the purpose of deriving good classifiers. A common learning
paradigm is the Empirical Risk Minimization (ERM) rule, which returns a classifier that minimizes
the average error over the training set,

ĥ ∈ argmin
h∈H

1
m

m∑
i=1

|h(xi)− yi| .
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Figure 1: Illustrations of transfer functions for L = 10 (left) and L = 3 (right): the 0-1 transfer function
(dashed blue line); the sigmoid transfer function (dotted black line); the erf transfer function (green line);
the piece-wise linear transfer function (dashed red line).

The class of (origin centered) halfspaces is defined as follows. Let X be a compact subset of a
RKHS, which w.l.o.g. will be taken to be the unit ball around the origin. Let φ0−1 : R→ R be the
function φ0−1(a) = 1(a ≥ 0) = 1

2 (sgn(a) + 1). The class of halfspaces is the set of classifiers

Hφ0−1

def= {x 7→ φ0−1(〈w,x〉) : w ∈ X} .

Although we represent the halfspace using w ∈ X , which is a vector in the RKHS whose dimen-
sionality can be infinite, in practice we only need a function that implements inner products in the
RKHS (a.k.a. a kernel function), and one can define w as the coefficients of a linear combination of
examples in our training set. To simplify the notation throughout the paper, we represent w simply
as a vector in the RKHS.

It is well known that if the dimensionality of X is n, then the VC dimension of Hφ0−1 equals n.
This implies that the number of training examples required to obtain a guarantee of the form given
in Equation (2) for the class of halfspaces scales at least linearly with the dimension n [25]. Since
kernel-based learning algorithms allow X to be an infinite dimensional inner product space, we must
use a different class in order to obtain a guarantee of the form given in Equation (2).

One way to define a slightly different concept class is to approximate the non-continuous function,
φ0−1, with a Lipschitz continuous function, φ : R→ [0, 1], which is often called a transfer function.
For example, we can use a sigmoidal transfer function

φsig(a) def=
1

1 + exp(−4La)
, (3)

which is a L-Lipschitz function. Other L-Lipschitz transfer functions are the erf function and the
piece-wise linear function:

φerf(a) def= 1
2

(
1 + erf

(√
π La

))
, φpw(a) def= max

{
min

{
1
2 + La , 1

}
0
}

(4)

An illustration of these transfer functions is given in Figure 1. Analogously to the definition of
Hφ0−1 , for a general transfer function φ we define Hφ to be the set of predictors x 7→ φ(〈w,x〉).
Since now the range of φ is not {0, 1} but rather the entire interval [0, 1], we interpret φ(〈w,x〉) as
the probability to output the label 1. The definition of errD(h) remains1 as in Equation (1).

The advantage of using a Lipschitz transfer function can be seen via Rademacher generalization
bounds [3]. In fact, a simple corollary of the contraction lemma implies the following:

Theorem 1 Let ε, δ ∈ (0, 1) and let φ be an L-Lipschitz transfer function. Let m be an integer
satisfying

m ≥

(
2L+ 3

√
2 ln(8/δ)
ε

)2

.

Then, for any distribution D over X × {0, 1}, the ERM algorithm (ε, δ)-learns the concept class Hφ

using m examples.

1Note that in this case errD(h) can be interpreted as P(x,y)∼D,b∼φ(〈w,x〉)[y 6= b].
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The above theorem tells us that the sample complexity of learning Hφ is Ω̃(L2/ε2). Crucially, the
sample complexity does not depend on the dimensionality of X , but only on the Lipschitz constant
of the transfer function. This allows us to learn with kernels, when the dimensionality of X can even
be infinite. A related analysis compares the error rate of a halfspace w to the number of margin
mistakes w makes on the training set - see Section 4.1 for a comparison.

From the computational complexity point of view, the result given in Theorem 1 is problematic,
since the ERM algorithm should solve the non-convex optimization problem

argmin
w:‖w‖≤1

1
m

m∑
i=1

|φ(〈w,xi〉)− yi| . (5)

Solving this problem in polynomial time is hard under reasonable assumptions (see Section 3 in
which we present a formal hardness result). Adapting a technique due to [6] we show in the full
version of this paper [22] that it is possible to find an ε-accurate solution to Equation (5) (where
the transfer function is φpw) in time poly

(
exp

(
L2

ε2 log(Lε )
))

. The main contribution of this paper
is the derivation and analysis of a more simple learning algorithm that (ε, δ)-learns the class Hsig

using time and sample complexity of at most poly
(
exp

(
L log(Lε )

))
. That is, the runtime of our

algorithm is exponentially smaller than the runtime required to solve the ERM problem using the
technique described in [6]. Moreover, the algorithm of [6] performs an exhaustive search over all
(L/ε)2 subsets of the m examples in the training set, and therefore its runtime is always order
of mL2/ε2 . In contrast, our algorithm’s runtime depends on a parameter B, which is bounded by
exp(L) only under a worst-case assumption. Depending on the underlying distribution, B can be
much smaller than the worst-case bound. In practice, we will cross-validate for B, and therefore the
worst-case bound will often be pessimistic.

The rest of the paper is organized as follows. In Section 2 we describe our main results. Next, in
Section 3 we provide a hardness result, showing that it is not likely that there exists an algorithm
that learns Hsig or Hpw in time polynomial in L. We outline additional related work in Section 4. In
particular, the relation between our approach and margin-based analysis is described in Section 4.1,
and the relation to approaches utilizing a distributional assumption is discussed in Section 4.2. We
wrap up with a discussion in Section 5.

2 Main Results

In this section we present our main result. Recall that we would like to derive an algorithm which
learns the class Hsig. However, the ERM optimization problem associated with Hsig is non-convex.
The main idea behind our construction is to learn a larger hypothesis class, denoted HB , which
approximately contains Hsig, and for which the ERM optimization problem becomes convex. The
price we need to pay is that from the statistical point of view, it is more difficult to learn the class
HB than the class Hsig, therefore the sample complexity increases.

The class HB we use is a class of linear predictors in some other RKHS. The kernel function
that implements the inner product in the newly constructed RKHS is

K(x,x′) def=
1

1− ν〈x,x′〉
, (6)

where ν ∈ (0, 1) is a parameter and 〈x,x′〉 is the inner product in the original RKHS. As mentioned
previously, 〈x,x′〉 is usually implemented by some kernel function K ′(z, z′), where z and z′ are the
pre-images of x and x′ with respect to the feature mapping induced by K ′. Therefore, the kernel in
Equation (6) is simply a composition with K ′, i.e. K(z, z′) = 1/(1− νK ′(z, z′)).

To simplify the presentation we will set ν = 1/2, although in practice other choices might
be more effective. It is easy to verify that K is a valid positive definite kernel function (see for
example [19, 10]). Therefore, there exists some mapping ψ : X → V, where V is an RKHS with
〈ψ(x), ψ(x′)〉 = K(x,x′). The class HB is defined to be:

HB
def= {x 7→ 〈v, ψ(x)〉 : v ∈ V, ‖v‖2 ≤ B} . (7)

The main result we prove in this section is the following:

Theorem 2 Let ε, δ ∈ (0, 1) and let L ≥ 3. Let B = 2L4 + exp
(
7L log

(
2L
ε

)
+ 3
)

and let m be a

sample size that satisfies m ≥ 8B
ε2

(
2 + 9

√
ln(8/δ)

)2

. Then, for any distribution D, with probability

of at least 1− δ, any ERM predictor ĥ ∈ HB with respect to HB satisfies
errD(ĥ) ≤ min

h∈Hsig
errD(hsig) + ε .

443



We note that the bound on B is far from being the tightest possible in terms of constants and
second-order terms. Also, the assumption of L ≥ 3 is rather arbitrary, and is meant to simplify the
presentation of the bound.

To prove this theorem, we start with analyzing the time and sample complexity of learning HB .
The sample complexity analysis follows directly from a Rademacher generalization bound [3]. In
particular, the following theorem tells us that the sample complexity of learning HB with the ERM
rule is order of B/ε2 examples.

Theorem 3 Let ε, δ ∈ (0, 1), let B ≥ 1, and let m be a sample size that satisfies

m ≥ 2B
ε2

(
2 + 9

√
ln(8/δ)

)2

.

Then, for any distribution D, the ERM algorithm (ε, δ)-learns HB.

Proof Since K(x,x) ≤ 2, the Rademacher complexity of HB is bounded by
√

2B/m (see also [13]).
Additionally, using Cauchy-Schwartz inequality we have that the loss is bounded, |〈v, ψ(x)〉 − y| ≤√

2B + 1. The result now follows directly from [3, 13].

Next, we show that the ERM problem with respect to HB can be solved in time poly(m). The
ERM problem associated with HB is

min
v:‖v‖2≤B

1
m

m∑
i=1

|〈v, ψ(xi)〉 − yi| .

Since the objective function is defined only via inner products with ψ(xi), and the constraint on
v is defined by the `2-norm, it follows by the Representer theorem [26] that there is an optimal
solution v? that can be written as v? =

∑m
i=1 αiψ(xi). Therefore, instead of optimizing over v, we

can optimize over the set of weights α1, . . . , αm by solving the equivalent optimization problem

min
α1,...,αm

1
m

m∑
i=1

∣∣∣∣∣∣
m∑
j=1

αjK(xj ,xi)− yi

∣∣∣∣∣∣ s.t.
m∑

i,j=1

αiαjK(xi,xj) ≤ B .

This is a convex optimization problem in Rm and therefore can be solved in time poly(m) using
standard optimization tools.2 We therefore obtain:

Corollary 1 Let ε, δ ∈ (0, 1) and let B ≥ 1. Then, for any distribution D, it is possible to (ε, δ)-
learn HB in sample and time complexity of poly

(
B
ε log(1/δ)

)
.

It is left to understand why the class HB approximately contains the class Hsig. Recall that for
any transfer function, φ, we define the class Hφ to be all the predictors of the form x 7→ φ(〈w,x〉).
The first step is to show that HB contains the union of Hφ over all polynomial transfer functions
that satisfy a certain boundedness condition on their coefficients.

Lemma 1 Let PB be the following set of polynomials (possibly with infinite degree)

PB
def=

p(a) =
∞∑
j=0

βj a
j :

∞∑
j=0

β2
j 2j ≤ B

 . (8)

Then, ⋃
p∈PB

Hp ⊂ HB .

Proof To simplify the proof, we first assume that X is simply the unit ball in Rn, for an arbitrarily
large but finite n. Consider the mapping ψ : X → RN defined as follows: for any x ∈ X , we let ψ(x)
be an infinite vector, indexed by k1 . . . , kj for all (k1, . . . , kj) ∈ {1, . . . , n}j and j = 0 . . .∞, where

2In fact, using stochastic gradient descent, we can (ε, δ)-learn HB in time O(m2), where m is as defined
in Theorem 3 —See for example [8, 20].
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the entry at index k1 . . . , kj equals 2−j/2xk1 ·xk2 · · ·xkj . The inner-product between ψ(x) and ψ(x′)
for any x,x′ ∈ X can be calculated as follows,

〈ψ(x), ψ(x′)〉 =
∞∑
j=0

∑
(k1,...,kj)∈{1,...,n}j

2−jxk1x
′
k1 · · ·xkj

x′kj
=

∞∑
j=0

2−j(〈x,x′〉)j =
1

1− 1
2 〈x,x′〉

.

This is exactly the kernel function defined in Equation (6) (recall that we set ν = 1/2) and therefore
ψ maps to the RKHS defined by K. Consider any polynomial p(a) =

∑∞
j=0 βja

j in PB , and any
w ∈ X . Let vw be an element in RN explicitly defined as being equal to βj2j/2wk1 · · ·wkj

at index
k1, . . . , kj (for all k1, . . . , kj ∈ {1, . . . , n}j , j = 0 . . .∞). By definition of ψ and vw, we have that

〈vw, ψ(x)〉 =
∞∑
j=0

∑
k1,...,kj

2−j/2βj2j/2wk1 · · ·wkjxk1 · · · ·xkj =
∞∑
j=0

βj(〈w,x〉)j = p(〈w,x〉) .

In addition,

‖vw‖2 =
∞∑
j=0

∑
k1,...,kj

β2
j 2jw2

k1 · · ·w
2
kj

=
∞∑
j=0

β2
j 2j

∑
k1

w2
k1

∑
k2

w2
k2 · · ·

∑
kj

w2
kj

=
∞∑
j=0

β2
j 2j

(
‖w‖2

)j ≤ B.
Thus, the predictor x 7→ 〈vw, ψ(x)〉 belongs to HB and is the same as the predictor x 7→ p(〈w,x〉).
This proves that Hp ⊂ HB for all p ∈ PB as required. Finally, if X is an infinite dimensional RKHS,
the only technicality is that in order to represent x as a (possibly infinite) vector, we need to show
that our RKHS has a countable basis. This holds since the inner product 〈x,x′〉 over X is continuous
and bounded (see [1]).

Finally, the following lemma states that with a sufficiently large B, there exists a polynomial in
PB which approximately equals to φsig. This implies that HB approximately contains Hsig.

Lemma 2 Let φsig be as defined in Equation (3), where for simplicity we assume L ≥ 3. For any
ε > 0, let

B = 2L4 + exp
(
7L log

(
2L
ε

)
+ 3
)
.

Then there exists p ∈ PB such that
∀x,w ∈ X , |p(〈w,x〉)− φsig(〈w,x〉)| ≤ ε .

The proof of the lemma is based on a Chebyshev approximation technique and is given in the full
version of our paper [22]. Since the proof is rather involved, we also present a similar lemma,
whose proof is simpler, for the φerf transfer function (see [22]). It is interesting to note that φerf

actually belongs to PB for a sufficiently large B, since it can be defined via its infinite-degree Taylor
expansion. However, the bound for φerf depends on exp(L2), rather than exp(L) for the sigmoid
transfer function φsig.

Finally, Theorem 2 is obtained as follows: Combining Theorem 3 and Lemma 1 we get that with
probability of at least 1− δ,

errD(ĥ) ≤ min
h∈HB

errD(h) + ε/2 ≤ min
p∈PB

min
h∈Hp

errD(h) + ε/2 . (9)

From Lemma 2 we obtain that for any w ∈ X , if h(x) = φsig(〈w,x〉) then there exists a polynomial
p0 ∈ PB such that if h′(x) = p0(〈w,x〉) then errD(h′) ≤ errD(h) + ε/2. Since it holds for all w, we
get that

min
p∈PB

min
h∈Hp

errD(h) ≤ min
h∈Hsig

errD(h) + ε/2 .

Combining this with Equation (9), Theorem 2 follows.

3 Hardness

In this section we derive a hardness result for agnostic learning of Hsig or Hpw with respect to the
zero-one loss. The hardness result relies on the hardness of standard (non-agnostic)3 PAC learning of
intersection of halfspaces given in Klivans and Sherstov [16] (see also similar arguments in [11]). The
hardness result is representation-independent —it makes no restrictions on the learning algorithm
and in particular also holds for improper learning algorithms. The hardness result is based on the
following cryptographic assumption:

3In the standard PAC model, we assume that some hypothesis in the class has errD(h) = 0, while in the
agnostic PAC model, which we study in this paper, errD(h) might be strictly greater than zero for all h ∈ H.
Note that our definition of (ε, δ)-learning in this paper is in the agnostic model.
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Assumption 1 There is no polynomial time solution to the Õ(n1.5)-unique-Shortest-Vector-Problem.

In a nutshell, given a basis v1, . . . ,vn ∈ Rn, the Õ(n1.5)-unique-Shortest-Vector-Problem consists
of finding the shortest nonzero vector in {a1v1 + . . . + anvn : a1, . . . , an ∈ Z}, even given the
information that it is shorter by a factor of at least Õ(n1.5) than any other non-parallel vector. This
problem is believed to be hard - there are no known sub-exponential algorithms, and it is known to
be NP-hard if Õ(n1.5) is replaced by a small constant (see [16] for more details).

With this assumption, Klivans and Sherstov proved the following:

Theorem 4 (Theorem 1.2 in Klivans and Sherstov [16]) Let X = {±1}n, let

H = {x 7→ φ0,1(〈w,x〉 − θ − 1/2) : θ ∈ N,w ∈ Nn, |θ|+ ‖w‖1 ≤ poly(n)} ,
and let Hk = {x 7→ (h1(x) ∧ . . . ∧ hk(x)) : ∀i, hi ∈ H}. Then, based on Assumption 1, Hk is not
efficiently learnable in the standard PAC model for any k = nρ where ρ > 0 is a constant.

The above theorem implies the following.

Lemma 3 Based on Assumption 1, there is no algorithm that runs in time poly(n, 1/ε, 1/δ) and
(ε, δ)-learns the class H defined in Theorem 4.

Proof To prove the lemma we show that if there is a polynomial time algorithm that learns H
in the agnostic model, then there exists a weak learning algorithm (with a polynomial edge) that
learns Hk in the standard (non-agnostic) PAC model. In the standard PAC model, weak learning
implies strong learning [18], hence the existence of a weak learning algorithm that learns Hk will
contradict Theorem 4.

Indeed, let D be any distribution such that there exists h? ∈ Hk with errD(h?) = 0. Let us
rewrite h? = h?1 ∧ . . .∧ h?k where for all i, h?i ∈ H. To show that there exists a weak learner, we first
show that there exists some h ∈ H with errD(h) ≤ 1/2− 1/n.

Since for each x if h?(x) = 0 then there exists j s.t. h?j (x) = 0, we can use the union bound to
get that

1 = P[∃j : h?j (x) = 0|h?(x) = 0] ≤
∑
j

P[h?j (x) = 0|h?(x) = 0] ≤ kmax
j

P[h?j (x) = 0|h?(x) = 0] .

So, for j that maximizes P[h?j (x) = 0|h?(x) = 0] we get that P[h?j (x) = 0|h?(x) = 0] ≥ 1/k.
Therefore,

errD(h?j ) = P[h?j (x) = 1 ∧ h?(x) = 0] = P[h?(x) = 0] P[h?j (x) = 1|h?(x) = 0]

= P[h?(x) = 0] (1− P[h?j (x) = 0|h?(x) = 0]) ≤ P[h?(x) = 0] (1− 1/k) .

Now, if P[h?(x) = 0] ≤ (1/2 + 1/k) then the above gives

errD(h?j ) ≤ (1/2 + 1/k)(1− 1/k) = 1/2 + 1/k − 1/(2k)− 1/k2 ≤ 1/2− 1/k .

Otherwise, if P[h?(x) = 0] > (1/2 + 1/k), then the constant predictor h(x) = 0 have errD(h) <
1/2 − 1/k. In both cases we have shown that there exists a predictor in H with error of at most
1/2− 1/k.

Finally, if we can agnostically learn H in time poly(n, 1/ε, 1/δ), then we can find h′ with
errD(h′) ≤ minh∈H errD(h) + ε ≤ 1/2 − 1/k + ε in time poly(n, 1/ε, 1/δ). This means that we
can have a weak learner that runs in polynomial time, and this concludes our proof.

Let h be a hypothesis in the class H defined in Theorem 4 and take any x ∈ {±1}n. Then,
there exist an integer θ and a vector of integers w such that h(x) = φ0,1(〈w,x〉 − θ − 1/2). But
since 〈w,x〉 − θ is also an integer, if we let L = 1 this means that h(x) = φpw(〈w,x〉 − θ − 1/2)
as well. Furthermore, letting x′ ∈ Rn+1 denote the concatenation of x with the constant 1 and
letting w′ ∈ Rn+1 denote the concatenation of w with the scalar (−θ − 1/2) we obtain that h(x) =
φpw(〈w′,x′〉). Last, let us normalize w̃ = w′/‖w′‖, x̃ = x/‖x′‖, and redefine L to be ‖w′‖ ‖x′‖, we
get that h(x) = φpw(〈w̃, x̃〉). That is, we have shown that H is contained in a class of the form Hpw

with a Lipschitz constant bounded by poly(n). Combining the above with Lemma 3 we obtain the
following:

Corollary 2 Let L be a Lipschitz constant and let Hpw be the class defined by the L-Lipschitz
transfer function φpw. Then, based on Assumption 1, there is no algorithm that runs in time
poly(L, 1/ε, 1/δ) and (ε, δ)-learns the class Hpw.
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A similar argument leads to the hardness of learning Hsig.

Theorem 5 Let L be a Lipschitz constant and let Hsig be the class defined by the L-Lipschitz transfer
function φsig. Then, based on Assumption 1, there is no algorithm that runs in time poly(L, 1/ε, 1/δ)
and (ε, δ)-learns the class Hsig.

Proof Let h be a hypothesis in the class H defined in Theorem 4 and take any x ∈ {±1}n. Then,
there exist an integer θ and a vector of integers w such that h(x) = φ0,1(〈w,x〉−θ−1/2). However,
since 〈w,x〉 − θ is also an integer, we see that

|φ0,1(〈w,x〉 − θ − 1/2)− φsig(〈w,x〉 − θ − 1/2)| ≤ 1
1 + exp(2L)

.

This means that for any ε > 0, if we pick L = log(2/ε−1)
2 and define hsig(x) = φsig(〈w,x〉 − θ− 1/2),

then |h(x) − hsig(x)| ≤ ε/2. Furthermore, letting x′ ∈ Rn+1 denote the concatenation of x with
the constant 1 and letting w′ ∈ Rn+1 denote the concatenation of w with the scalar (−θ − 1/2) we
obtain that hsig(x) = φsig(〈w′,x′〉). Last, let us normalize w̃ = w′/‖w′‖, x̃ = x/‖x′‖, and redefine
L to be

L =
‖w′‖‖x′‖ log(2/ε− 1)

2
(10)

so that hsig(x) = φsig(〈w̃, x̃〉). Thus we see that if there exists an algorithm that runs in time
poly(L, 1/ε, 1/δ) and (ε/2, δ)-learns the class Hsig, then since for all h ∈ H exists hsig ∈ Hsig such
that |hsig(x) − h(x)| ≤ ε/2, there also exists an algorithm that (ε, δ)-learns the concept class H
defined in Theorem 4 in time polynomial in (L, 1/ε, 1/δ) (for L defined in Equation 10). But by
definition of L in Equation 10 and the fact that ‖w′‖ and ‖x′‖ are of size poly(n), this means that
there is an algorithm that runs in time polynomial in (n, 1/ε, 1/δ) and (ε, δ)-learns the class H,
which contradicts Lemma 3.

4 Related work

The problem of learning kernel-based halfspaces has been extensively studied before, mainly in the
framework of SVM [25, 10, 19]. When the data is separable with a margin µ, it is possible to learn
a halfspaces in polynomial time. The learning problem becomes much more difficult when the data
is not separable with margin.

In terms of hardness results, [6] derive hardness results for proper learning with sufficiently small
margins. There are also strong hardness of approximation results for proper learning without margin
(see for example [12] and the references therein). We emphasize that we allow improper learning,
which is just as useful for the purpose of learning good classifiers, and thus these hardness results do
not apply. Instead, the hardness result we derived in Section 3 hold for improper learning as well.
As mentioned before, the main tool we rely on for deriving the hardness result is the representation
independent hardness result for learning intersections of halfspaces given in [16].

Practical algorithms such as SVM often replace the 0-1 error function with a convex surrogate,
and then apply convex optimization tools. However, there are no guarantees on how well the
surrogate function approximates the 0-1 error function. Recently, [27, 4] studied the asymptotic
relationship between surrogate convex loss functions and the 0-1 error function. In contrast, in this
paper we show that even with a finite sample, surrogate convex loss functions can be competitive
with the 0-1 error function as long as we replace inner-products with the kernel K(x,x′) = 1/(1 −
0.5〈x,x′〉).

4.1 Margin analysis
Recall that we circumvented the dependence of the VC dimension of Hφ0−1 on the dimensionality
of X by replacing φ0−1 with a Lipschitz transfer function. Another common approach is to require
that the learned classifier will be competitive with the margin error rate of the optimal halfspace.
Formally, the µ-margin error rate of a halfspace of the form hw(x) = 1(〈w,x〉 > 0) is defined as:

errD,µ(w) = Pr[hw(x) 6= y ∨ |〈w,x〉| ≤ µ] . (11)

Intuitively, errD,µ(w) is the error rate of hw had we µ-shifted each point in the worst possible way.
Margin based analysis restates the goal of the learner (as given in Equation (2)) and requires that
the learner will find a classifier h that satisfies:

errD(h) ≤ min
w:‖w‖=1

errD,µ(w) + ε . (12)
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Bounds of the above form are called margin-based bounds and are widely used in the statistical anal-
ysis of Support Vector Machines and AdaBoost. It was shown [3, 17] that m = Θ(log(1/δ)/(µ ε)2)
examples are sufficient (and necessary) to learn a classifier for which Equation (12) holds with prob-
ability of at least 1 − δ. Note that as in the sample complexity bound we gave in Theorem 1, the
margin based sample complexity bound also does not depend on the dimension.

In fact, the Lipschitz approach used in this paper and the margin-based approach are closely
related. First, it is easy to verify that if we set L = 1/(2µ), then for any w the hypothesis
h(x) = φpw(〈w,x〉) satisfies errD(h) ≤ errD,µ(w). Therefore, an algorithm that (ε, δ)-learns Hpw also
guarantees that Equation (12) holds. Second, it is also easy to verify that if we set L = 1

4µ log
(

2−ε
ε

)
then for any w the hypothesis h(x) = φsig(〈w,x〉) satisfies errD(h) ≤ errD,µ(w) + ε/2. Therefore,
an algorithm that (ε/2, δ)-learns Hsig also guarantees that Equation (12) holds.

As a direct corollary of the above discussion we obtain that it is possible to learn a vector w
that guarantees Equation (12) in time poly(exp(Õ(1/µ))).

A computational complexity analysis under margin assumptions was first carried out in [6] (see
also the hierarchical worst-case analysis recently proposed in [5]). The technique used in [6] is based
on the observation that in the noise-free case, an optimal halfspace can be expressed as a linear sum
of at most 1/µ2 examples. Therefore, one can perform an exhaustive search over all sub-sequences of
1/µ2 examples, and choose the optimal halfspace. Note that this algorithm will always run in time
m1/µ2

. Since the sample complexity bound requires that m will be order of 1/(µε)2, the runtime of
the method described by [6] becomes poly(exp(Õ(1/µ2))). In comparison, our algorithm achieves a
better runtime of poly(exp(Õ(1/µ))). Moreover, while the algorithm of [6] performs an exhaustive
search, our algorithm’s runtime depends on the parameter B, which is poly(exp(Õ(1/µ))) only under
a worst-case assumption. Since in practice we will cross-validate for B, it is plausible that in many
real-world scenarios the runtime of our algorithm will be much smaller.

4.2 Distributional Assumptions
The idea of approximating the zero-one transfer function with a polynomial was first proposed
by [14] who studied the problem of agnostically learning halfspaces without kernels in Rn under
distributional assumption. In particular, they showed that if the distribution over X is uniform over
the unit ball, then it is possible to agnostically learn Hφ0−1 in time poly(n1/ε4). This was further
generalized by [7], who showed that similar bounds hold for product distributions.

Beside distributional assumptions, these works are characterized by explicit dependence on the
dimension of X , and therefore are not adequate for the kernel-based setting we consider in this paper,
in which the dimensionality of X can even be infinite. More precisely, while [14] try to approximate
the zero-one transfer function with a low-degree polynomial, we require instead that the coefficients
of the polynomials are bounded. The principle that when learning in high dimensions “the size of
the parameters is more important than their number” was one of the main advantages in the analysis
of the statistical properties of several learning algorithms (e.g. [2]).

Interestingly, in [21] we show that the very same algorithm we use in this paper recover the same
complexity bound of [14].

5 Discussion

In this paper we described and analyzed a new technique for agnostically learning kernel-based
halfspaces with the zero-one loss function. The bound we derive has an exponential dependence
on L, the Lipschitz coefficient of the transfer function. While we prove that (under a certain
cryptographic assumption) no algorithm can have a polynomial dependence on L, the immediate
open question is whether the dependence on L can be further improved.

A perhaps surprising property of our analysis is that we propose a single algorithm, returning
a single classifier, which is simultaneously competitive against all transfer functions p ∈ PB . In
particular, it learns with respect to the “optimal” transfer function, where by optimal we mean the
one which attains the smallest error rate, E[|p(〈w,x〉)− y|], over the distribution D.

Our algorithm boils down to linear regression with the absolute loss function and while composing
a particular kernel function over our original RKHS. It is possible to show that solving the vanilla
SVM, with the hinge-loss, and composing again our particular kernel over the desired kernel, can
also give similar guarantees. It is therefore interesting to study if there is something special about
the kernel we propose or maybe other kernel functions (e.g. the Gaussian kernel) can give similar
guarantees.

Another possible direction is to consider other types of margin-based analysis or transfer func-
tions. For example, in the statistical learning literature, there are several definitions of “noise”
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conditions, some of them are related to margin, which lead to faster decrease of the error rate as
a function of the number of examples (see for example [9, 24, 23]). Studying the computational
complexity of learning under these conditions is left to future work.
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Abstract

In typical ranking problems the total number n of items to be ranked is relatively large,
but each data instance involves only k << n items. This paper examines the structure of
such partial rankings in Fourier space. Specifically, we develop a kernel–based framework
for solving ranking problems, define some canonical kernels on permutations, and show
that by transforming to Fourier space, the complexity of computing the kernel between
two partial rankings can be reduced from O((n−k)!2) to O((2k)2k+3).

1 Introduction

The word “ranking” covers a wide array of problems from learning a preference function from lists,
through fusing the results of multiple search engines to methods for evaluating the results of elections.
A closely related problem is “permutation learning” which attempts to learn an assignment between
two sets of objects, rather than an ordering of a single set (Helmbold & Warmuth, 2009). On the
theory side, “rank aggregation”, i.e., finding a single ranking that best represents a collection of
individual rankings according to some metric, is known to be hard, but recently some tractable
approximations to this problem have emerged (Ailon et al., 2005).

The common feature of all these problems is that they involve aggregating information from a
large set of diverse ranking instances. Typically, the individual instances, rather than being complete
rankings of all n items under consideration, are partial rankings that only involve k << n items. For
example, in the search engine case, we might only take the top ten results from each search engine,
giving us a sequence of partially overlapping lists. Similarly, in a movie recommendation system no
user will have seen all the movies in our database, and even if they have, they would find it very
difficult to give a single linear ordering of a large number of them. Instead, in many situations,
including social surveys and election schemes, people are asked to rank order just a small subset of
the n items under consideration. An extreme case of this are sports tournaments, such as in chess,
where a single global ranking must be established from a large collection of game outcomes, each of
which involves only two players.

Ultimately, ranking is a problem of inference on the group of permutations of n objects, called
the symmetric group. However, for various mathematical and computational reasons, formulating
it as such is difficult. A number of approaches are popular that circumvent this combinatorial
problem by reducing ranking to a sequence of binary decisions (Ailon & Mohri, 2008; Balcan et al.,
2008), estimating a parametric distribution (Lebanon & Lafferty, 2002), or estimating a scoring
function. Depending on the problem at hand, these heuristics might be more or less appropriate.
For example, in the search engine case it is reasonable to assume that the relevance of each web page
can be described by a real valued score, and, in fact, formulating the ranking problem as learning
the score might be a good way to reduce the complexity of the hypothesis space. On the other hand,
in the collaborative filtering example the scoring heuristic is not so helpful, since there is no single
“best movie”. As a more extreme case, in social surveys there is a lot of interest not just in finding a
single consensus ranking, but in finding clusters, trends, and principal axes of variation in the data,
which really do force us to treat individual instances as permutations or sets of permutations and
take into account the combinatorial structure of the symmetric group.

The algorithmic framework that we use in this paper is that of kernel methods. There are a
number of reasons why this is attractive for ranking: (1) kernel methods are flexible in that once we
define an appropriate kernel between any two (partial) rankings they allow us to handle diverse data
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involving a mixture of ranking instances of different types (partial rankings of different structure and
order); (2) by the representer theorem they allow us to circumvent the problem that the symmetric
group is of size n!; (3) by the input/output kernels formalism they allow us to predict rankings as
well as learn from rankings, in fact, there might not even be a distinction between input and output
spaces; (4) by the same token, they make it easy to introduce additional features (correlates) that
are not rankings; (5) finally, there is a wealth of algorithms to choose from to suit the learning
problem at hand.

Despite these potential advantages of kernel methods, they have not been used much in the
ranking domain, and to the best of our knowledge the issue of defining generic kernels on the
symmetric group has only been addressed in (Kondor, 2008). We believe that one of the main
reasons for this is that it is difficult to marginalize kernels to the types of partial rankings that
actually occur in data. The main practical conclusion of the present paper is that by a careful
analysis in Fourier space, heavily exploiting the underlying algebra of the symmetric group, it is
possible to compute such marginalized kernels quite fast.

Our focus in this paper is on structure and computational complexity rather than algorithms, so
we will mostly remain agnostic about which kernel algorithm to employ. As a short menu of options
we suggest the following.

In the unsupervised setting one can use kernel density estimation or some other similar method
to estimate a distribution over rankings. By the representer theorem the resulting distribution
takes the form of a linear combination p(σ) =

∑
i αiK(Ri, σ), and we can find the “best consensus

ranking” by finding arg maxσ∈Sn
〈p,σ〉. In political data, to find factors underlying people’s votes

one can use kernel PCA. Similarly, to find representative groups of individuals, we would use kernel
clustering.

In a more predictive setting, a typical type of question is “Given that user j ranked the movies
xi1 , . . . , xik

in the order xi1 � . . .� xik
, how would she rank xi′1

, . . . , xi′
`
? ” A natural algorithm for

this sort of problem is a multi–class SVM that minimizes a regularized risk of the form
∑

j L(f,Rj)+

〈f ,f〉
2
K , where the loss is the multi-class hinge loss comparing the correct ranking of xi′1

, . . . , xi′
`

conditional on xi1 �. . .� xik
to the highest scoring incorrect ranking,

L(f,Rj) = max
[
0, 1 −

(〈
f ,Re

j

〉
K
− max

τ∈Sk′\{e}

〈
f ,Rτ

j

〉
K

)]
, (1)

〈 · , · 〉K is the RKHS inner product, Rτ
j stands for (xi1 � . . . � xik

, xi′
τ−1(`)

� . . . � xi′
τ−1(1)

), which

is the j’th training example, the “outputs” of which have been permuted by τ , and e is the identity
permutation. The exact meaning of some of these notations will become clear later in the paper.

This paper has several goals: to define a canonical class of kernels on permutations (Section 3),
show how these kernels can be efficiently evaluated in Fourier space (Section 4), and give a detailed
analysis of the complexity of the computations involved (Section 5). Our main result is that the
inner product between any two k’th order partial rankings can be computed in at most (2k)2k+3

operations, irrespective of the number of items to be ranked (Theorem 13).
To get to this result we need a range of tools from algebra, which we try to present in a way that

is as concise yet intuitive as possible. Unfortunately, page limitations prevented us from making the
paper entirely self–contained. Background information from representation theory and most proofs
had to be relegated to a supplement, which will be published under separate cover.

2 Partial rankings, multirankings, and the group algebra

Let X = {x1, x2, . . . , xn} be a set of items to be ranked. We will use x � x′ to denote that x is
ranked higher than x′ according to some ranking R. A total ranking of X is then a statement of
the form

xi1 � xi2 � . . . � xin
, (2)

where i1, . . . , in are distinct indices in [1, n] (in this paper [i, j] denotes {i, i+1, . . . , j}).
In contrast, a partial ranking is a statement of the form X1 � X2 � . . . � Xk, where

X1, X2, . . . , Xk are disjoint subsets of X , and the semantics is that for i < j anything in Xi is
ranked above anything in Xj . If a pair of items x and y are both in the same Xi, or one or both
of them are not in any of the Xi’s at all, then their relative order is indeterminate. In other words,
neither x� y, nor y � x.

Partial rankings can be of different types. For example, in an election example, the vote of each
person corresponds to a partial ranking of the form

xi1 � xi2 � . . . � xik
, k ≤ n, (3)
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where, to simplify notation, we abbreviated {xij
} to just xij

. We call this an interleaving partial
ranking of order k, because in any total ranking satisfying (3), xi1 , xi2 , . . . , xik

are interleaved with
the other xi’s. The outcomes of individual games in a chess tournament are an example of this type
of partial ranking with k = 2. In contrast, the top k hits returned by a search engine induce what
we call top–k partial rankings

xi1 � xi2 � . . . � xik
� Xrest, (4)

where Xrest = X \ {xi1 , . . . , xik
}. Many other types of partial rankings are conceivable. For exam-

ple, a survey mentioned in (Diaconis, 1988) asked respondents which of 13 characteristics that a
child might have is the most desirable, next two most desirable, least desirable, and next two least
desirable. This corresponds to a partial ranking of the form X1 � X2 � X3 � X4 � X5, where
|X1 | = |X5 | = 1, |X2 | = |X4 | = 2 and |X3 | = 7. While the general framework described in this
paper does apply to such more complicated partial rankings, for brevity we will limit our discussion
to interleaving and top–k partial rankings.

We will also encounter cases where we have to deal with the conjunction of several partial
rankings. We call this a multiranking. For example, in a movie recommendation system we might
know that a certain user ranked movies x1, x2 and x3 in the order x1 � x2 � x3. Now based on a large
number of rankings of similar movies submitted by other users, we want to decide whether given her
choice x1 � x2 � x3 she is more likely to enjoy movie x4 or x5. This translates to predicting whether
overall the multi-ranking (x1 � x2 � x3, x4 � x5) or the multi-ranking (x1 � x2 � x3, x5 � x4) is
more probable. The most general form of multi-ranking is

(X1,1 � . . . � X1,k1
, . . . , X`,1 � . . . � X`,k`

),

but in this paper we will only discuss multi-rankings of the form

(xi1,1
� . . .� xi1,k1

, . . . , xi`,1
� . . .� xi`,k`

). (5)

For simplicity, we will loosely use the term “partial ranking” for both strict partial rankings and
multirankings.

2.1 Rankings as sets of permutations

We identify a total ranking, such as (2), with the unique permutation σ : [1, n] → [1, n] that moves
the index of the item ranked first into position n, the index of the item ranked second into position
n−1, etc.. In other words,

xσ−1(n) � xσ−1(n−1) � . . . � xσ−1(1). (6)

While at this point the reversal between ranks and mapping positions might seem like an unnecessary
complication, it will simplify the algebra later in the paper.

Partial rankings and multirankings are identified with the set of all permutations that satisfy
them. Thus, the interleaving partial ranking (3) corresponds to

Ai1,...,ik
= { σ | σ(ia) > σ(ib) if a < b } ,

while the top–k partial ranking (4) corresponds to

Bi1,...,ik
= { σ | σ(ij) = n−j +1, ∀j } .

Multi-rankings, in general, correspond to the intersection of the sets of permutations associated with

their constituents. In particular, the set corresponding to (5) is Ci1,1...i`,k`
=

⋂`
j=1 Aij,1,...,ij,kj

.

2.2 Rankings as vectors in C[Sn]

One of the key ideas of the present paper is to identify each (total, partial, or multi–) ranking with a
vector in a space called the group algebra of the symmetric group. Let us now clarify this statement.

If we define the product of one permutation σ1 with another permutation σ2 as their composition
σ2 ◦ σ1, then with respect to this operation the n! possible permutations of [1, n] form a group.
This group is called the symmetric group of degree n, and is denoted Sn.Since Sn is a non-
commutative group, in general, σ1 σ2 6= σ2 σ1. The identity permutation will be denoted e.

The group algebra of the symmetric group, denoted C[Sn], is an n!–dimensional complex1

vector space with canonical basis {eσ}σ∈Sn
, equipped with a notion of vector/vector multiplication

1Throughout the paper we use vector spaces defined over the complex numbers. This is because several
of the general results from representation theory are much easier to state over C than over R. However,
using the specific system of representations of Sn called Young’s Orthogonal Representation will allow us to
perform all actual computations over the reals.
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inherited from the structure of the symmetric group. In particular, eσeσ′ = eσσ′ , and this is
extended to the rest of the space by linearity. In other words, for general vectors u =

∑
σ∈Sn

uσeσ

and v =
∑

σ∈Sn
vσeσ,

uv =
∑

µ∈Sn

∑

ν∈Sn

uµvνeµeν =
∑

µ,ν∈Sn

uµvνeµν =
∑

σ∈Sn

wσeσ, (7)

where wσ =
∑

ν∈Sn
uσν−1vν . The inner product on C[Sn] is the usual 〈u,v〉 =

∑
σ∈Sn

u∗
σ vσ, where

∗ stands for complex conjugation. For future reference we note that as a function w is called the
convolution of v with u, and denoted u?v.

Throughout the paper, if f is a function on permutations, then f will be the corresponding group
algebra vector

∑
σ∈Sn

f(σ) eσ. Similarly, if U ⊂ Sn, then U will be
∑

σ∈U eσ. In particular, we

represent the total ranking (2) by the basis vector σ ≡ eσ, and the partial rankings (3), (4) and (5)
by Ai1,...,ik

=
∑

σ∈Ai1,...,ik

eσ, Bi1,...,ik
=

∑
σ∈Bi1,...,ik

eσ, and Cii,1...i`,k`
=

∑
σ∈Ci1,1...i`,k`

eσ.

The significance of the multiplicative structure of C[Sn] is that it allows us to express these
partial ranking vectors as

Ai1,...,ik
= Πn

k

�
n−k πi1,...,ik

, (8)

Bi1,...,ik
=

�
n−k πi1,...,ik

, (9)

Ci1,1...i`,k`
= Πn

m`
. . . Πm2

m1

�
n−k πi1,1,...,i1,k1

,...,i`,k`
, (10)

where in the last equation k =
∑`

i=1 ki, and πi1,...,ik
, Π`

k and Sm are the following elementary sets
of permutations.

• πi1,...,ik
is the selector permutation that maps i1, . . . , ik to positions n, n− 1, . . . , n− k + 1.

Where it maps all other numbers is presently irrelevant, so we leave it undefined.

• Π`
k is the set of interleavings of [n−`+1, n−k] with [n−k+1, n], i.e., the set of permutations

that satisfy
σ(i) = i if 1 ≤ i ≤ n−`,

σ(i) < σ(j) if n−` + 1 ≤ i < j ≤ n−k,

σ(i) < σ(j) if n−k + 1 ≤ i < j ≤ n.

This concept is the same as the riffle shuffles introduced in (Huang & Guestrin, 2009).

• Sm is the subgroup of permutations that only permute [1,m] and leave [m+1, n] fixed.

Intuitively, (8)–(10) describe the way that Ai1,...,ik
, Bi1,...,ik

and Ci1,1,...,i`,k`
can be “built up”

through a sequence of operations. For example, Ai1,...,ik
is the set of permutations that we get by

performing the following operations: (1) first map i1 7→ n, i2 7→ n−1, etc. up to ik 7→ n−k+1; (2)
then permute all the “unoccupied” positions [1, n−k] in all possible ways; (3) finally interleave the
numbers occupying [n−k+1, n] with whatever is in positions [1, n−k], while preserving their relative
ordering (see Figure 1). We will find that such factorizations are key to unraveling the spectral
structure of partial rankings and for efficiently computing kernels. Before describing this, however,
we need to develop some general results regarding kernels on permutations.

3 Kernels on the symmetric group

In studying kernels on R
d a lot of attention is focused on translation invariance (or stationarity) in the

sense of k(x, x′) = k(x+z, x′+z) for all z ∈R
d. When looking at kernels on non-commutative groups

we find a similar notion of invariance, but now right–invariance, meaning K(σπ, σ ′π) = K(σ, σ′)
for all σ, σ′ and π, and left–invariance, meaning K(πσ, πσ′) = K(σ, σ′) for all σ, σ′ and π, are
distinct concepts.

Right–invariance is a natural requirement in ranking, since it captures the notion that if we take
any permutation π, then the similarity between two rankings should not change if we relabel the
underlying items x1, . . . , xn as xπ−1(1), . . . , xπ−1(n). A right–invariant kernel on Sn can always be

expressed as K(σ′, σ) = κ(σ′σ−1) for some κ : Sn → R. A function κ : Sn → C is said to be a
positive (semi–)definite function on Sn if the corresponding K(σ′, σ) = κ(σ′σ−1) is a positive
(semi–)definite kernel. Note that in this case κ(σ) = K(σ, e) = K(e, σ) = κ(σ−1).

Left–invariance is not desirable in ranking, since it would imply that the value of the kernel
between a pair of rankings that rank a specific item in positions one and two respectively should
be the same as if they ranked it in positions, say, one and twenty (assuming that the ranking of
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Figure 1: An illustration of the factorization Ai1,...,ik
= Πn

k

�
n−k πi1,...,ik

. First, πi1,...,ik

moves (i1, i2, . . . , ik) into positions (n, n−1, . . . , n−k+1). Next,
�

n−k permutes positions 1, 2, . . . , n−k
in all possible ways. Finally, Πn

k maps n, n−1, . . . , n−k +1 to 1, 2, . . . , n in all possible ways that
respects their relative ordering.

other shared items does not change). However, in permutation learning, for example when we are
trying to learn the optimal assignment between aircraft and routes, left–invariance might be just as
natural a requirement as right–invariance. A kernel which is both left– and right–invariant is called
bi–invariant. In the bi–invariant case κ is a class function, which means that κ(τ−1στ) = κ(σ) for
all τ and σ.

On R
d Bochner’s theorem tells us that positive definite functions are characterized by the fact that

their Fourier transform is pointwise positive. On finite non-commutative groups we have a similar
result, except that now the ordinary Fourier transform must be replaced by its non-commutative
generalization. In the case of the symmetric group this takes the form

κ̂(λ) =
∑

σ∈Sn

κ(σ) ρλ(σ) λ ` n, (11)

and differs from the usual commutative Fourier transforms in two key respects:

1. Instead of frequency, the individual Fourier components are now indexed by integer partitions
of n, by which we mean a sequence λ = (λ1, . . . , λk) of weakly decreasing positive integers

summing to n (i.e., λ1, . . . , λk ∈ Z, λ1 ≥ λ2 ≥ . . . ≥ λk,
∑k

i=1 λi = n). A convenient graphical
representation for partitions is provided by so–called Young diagrams, consisting of λ1, . . . , λk

boxes placed in consecutive rows. For example,

is the Young diagram of λ = (4, 3, 1). The notation λ ` n just means that λ is an integer
partition of n.

2. Instead of expressions like eikx/2π, the weighting factors ρλ(σ) appearing in (11) are complex–
valued matrices, specifically elements of the irreducible representation (or irrep) of Sn

corresponding to λ. For the definition of what this means and how to construct such matrices
the reader is referred to the supplementary document. For now what is important to note is
that the Fourier transform (κ̂(λ))λ`n is a sequence of matrices of different sizes. We use dλ to
denote the dimensionality of the irrep indexed by λ, hence κ̂(λ) ∈ C

dλ×dλ . We also assume
throughout the paper that the irreps are unitary, and hence ρλ(σ−1) = ρλ(σ)†.

Aside from these two perhaps surprising features, (11) shares many important properties with ordi-
nary Fourier transformation. In particular, with respect to the appropriate matrix norms, κ 7→ κ̂ is
a unitary transformation, the inverse transform being

κ(σ) =
1

n!

∑

λ`n

dλ tr
[
κ̂(λ) ρλ(σ−1)

]
,
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and we also have analogs of the convolution and correlation theorems. By unitarity, the total size
of the Fourier matrices must be the same as the size of the original function, that is,

∑
λ`n d2

λ = n!.
Bochner’s theorem generalizes as follows. We do not claim that this result is novel to mathematics,
so the attributions only serve to indicate its first appearance in the machine learning literature.

Proposition 1 (Kondor, 2008, Thm. 4.5.4)(Fukumizu et al., 2009, Thm. 11) A function κ : Sn →
C is positive (semi–)definite if and only if each of the κ̂(λ) matrices in (11) are positive (semi–
)definite.

Much of the following discussion will revolve around moving back and forth between three different
views of the same objects: (1) the function view (f : Sn → C); (2) the group algebra vector view

(f ∈ C[Sn]); and (3) the Fourier transform view f̂ . Therefore, we will use the symbol ̂ very liberally:
if it is placed over a group algebra element, it will denote the Fourier transform of the corresponding
function, and if it is placed over a group element or set of group elements, it will denote the Fourier
transform of the corresponding indicator function.

3.1 Diffusion kernels

While Proposition 1 gives a general characterization of right–invariant kernels on the symmetric
group, it does not give us much guidance as to what specific kernel we should use for ranking. One
way to derive a kernel would be to induce it from a right–invariant metric on Sn, for example, one of
the metrics described in (Diaconis, 1988). However, if we then wanted to perform operations on the
kernel in Fourier space, as we will do in the next section, we would at some point have to perform
an explicit Fourier transform, which is very expensive.2

To avoid this problem, in the present paper we use diffusion kernels (Kondor & Lafferty, 2002),
which have strong connections to spectral theory. Recall that to define a diffusion kernel we start
with an adjacency relation ∼, which induces a graph. The corresponding graph Laplacian is the
matrix

∆σ′,σ =





1 if σ′∼ σ

−dσ if σ′= σ

0 otherwise,

and the diffusion kernel is K(σ′, σ) = [eβ∆]σ′,σ for some diffusion parameter β ∈R, where eβ∆ is the
matrix exponential limm→∞(I + β∆/m)m.

A diffusion kernel on a group is right–invariant if and only if ∼ is a right–invariant relation,
which is equivalent to saying that σ′∼ σ ⇐⇒ σ′σ−1 ∈ Q for some Q ⊂ Sn. To ensure symmetry, Q
must also be symmetric in the sense that π ∈Q ⇐⇒ π−1∈Q. The set Q can be interpreted as the
“elementary steps” σ 7→ πσ that one can take from any σ to reach its neighbors. In fact, for the
graph to be connected, Q must be a generating set of Sn. In this case the adjacency graph is known
as the Cayley graph induced by Q.

The natural generalization of the above to weighted graphs involves setting ∆σ′,σ = q(σ′σ−1),
where q is a function that must satisfy q(π−1) = q(π) and

∑
π∈Sn

q(π) = 0. The following result
characterizes all possible right–invariant diffusion kernels on Sn and shows how to compute them in
Fourier space.

Proposition 2 If ∆σ′,σ = q(σ′σ−1) and q satisfies the above two conditions, then the diffusion
kernel K(σ′, σ) = [eβ∆]σ′,σ is right–invariant, and K(σ′, σ) = κ(σ′σ−1), where κ̂(λ) = exp(β q̂(λ))
for each λ ` n.

Proposition 2 tells us that instead of exponentiating the n!-dimensional matrix ∆ (at a cost of
O(n!3)), it is more efficient to compute the diffusion kernel in Fourier space, where we only have to
exponentiate individual Fourier matrices (at a total cost of O(

∑
λ`n d 3

λ)). The question remains as
to what adjacency relation ∼ is appropriate for ranking problems.

A transposition (i, j) is a permutation that swaps i with j and leaves everything else fixed.
Since transpositions are in many ways the simplest non–trivial permutations, they seem like a natural
choice for Q. However, because transpositions form a conjugacy class (i.e., π ∈ Q ⇒ µ−1πµ ∈

2Naively, the complexity of computing a Fourier transform on Sn is O(n!2). Fast Fourier transforms, such
as Clausen’s FFT (Clausen, 1989), can bring this complexity down to O(n3n!) or even O(n2n!) (Maslen,
1998), but the the n! factor still makes using such kernels infeasible for large n, unless we can derive the
form of their Fourier transform analytically.
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Q ∀µ), the resulting Ktransp will be bi–invariant, so, for the reasons we discussed above, this type
of kernel is more appropriate for permutation learning than for ranking. From a purely algebraic
point of view, however, Ktransp is a canonical choice, showing some similarities with the Gaussian
RBF kernel on R

d. In fact, using a result on page 40 of (Diaconis, 1988), the Fourier transform of
this kernel can be derived in closed form.

Proposition 3 If Ktransp : Sn×Sn → R is the diffusion kernel induced by the class of transpositions,
then

κ̂transp(λ) = exp
(
−β

(
n
2

)
(1 − r(λ))

)
Idλ

, (12)

where r(λ) =
(
n
2

)−1 ∑
i

(
λi

2

)
−

(
λ′

i

2

)
, λ′ is the transpose of the partition λ, and Idλ

denotes the dλ–
dimensional identity matrix.

For ranking a better choice of kernel is Kadj, the diffusion kernel induced by the subset of adjacent

transpositions {τi := (i, i+1)}
n−1
i=1 . This is the kernel that we use in our experiments. Unfortu-

nately, we have no closed form expression for κ̂adj. While q̂adj is relatively easy to compute by a
direct Fourier transform since there are only n−1 adjacent transpositions, for large n exponentiating
these matrices might be problematic. Note, however, that this is a one–time computation.

A natural variant on Kadj is to give different adjacent transpositions different weights. In learning
from the top–k rankings returned by search engines, for example, we could give less weight to adjacent
transpositions between the first few rankings than those lower down, reflecting the fact that whether
something is ranked first or second is much more important than whether it is ranked, say 15th
or 16th. While we do not pursue this direction further in the rest of the paper, we note that our
computational results would hold for this variant of Kadj equally well.

4 Computing kernels in Fourier space

We started our discussion by stating that in typical ranking problems individual examples are not
total rankings, but partial rankings of k out of n items. The easiest and most general way to extend
the kernels of the previous section to this setting is to define the kernel between a pair of partial
rankings R and R′ as

K(R′, R) =
1

|R′ | |R |

∑

σ′∈R′

∑

σ∈R

K(σ′, σ), (13)

where, overloading notation somewhat, R and R ′ double as the set of all permutations satisfying
the two partial rankings.

The advantage of such an averaged kernel is its flexibility: R and R′ can be any type of partial
rankings (interleaving, top–k, or some multiranking combining elements of the former), and even
the orders (k and k′) of R and R′ may be different. This allows kernel–based ranking algorithms to
aggregate information from a diverse array of inputs.

The problem with (13) is that it appears to be very expensive to compute: naively, its complexity
is O((n−k)!(n−k′)!). The rest of the paper addresses this computational issue, showing that (13)
can be computed efficiently in Fourier space. We begin with the following two general lemmas that
both follow from the convolution theorem, which states that û ?v(λ) = û(λ) v̂(λ).

Lemma 4 If u,v ∈C[Sn] and w = uv, then ŵ(λ) = û(λ) v̂(λ) for each λ ` n.

Lemma 5 For any u,v ∈C[Sn],

〈u,v〉 =
1

n!

∑

λ`n

dλ tr
[
û(λ)† v̂(λ)

]
, (14)

where † denotes the Hermitian conjugate.

Using these lemmas it is easy to derive the Fourier form of our kernel.

Proposition 6 If K is right–invariant with K(σ′, σ)= κ(σ′σ−1), then (13) can be expressed as

K(R′, R) =
1

n!|R′||R|

∑

λ`n

dλ tr
[
R̂′(λ)† κ̂(λ) R̂(λ)

]
. (15)
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Proof. By right–invariance
∑

σ′∈R′

∑

σ∈R

K(σ′, σ) =
∑

σ′∈Sn

∑

σ∈Sn

R′(σ′)K(σ′, σ)R(σ) =
∑

σ′∈Sn

∑

σ∈Sn

R′(σ′)κ(σ′, σ−1)R(σ) = 〈R′,κR〉 ,

where, as before, R(σ) is the indicator function of the set R and R =
∑

σ∈R eσ is the corresponding
vector in the group algebra. Hence,

K(R′, R) = |R′ |
−1

|R |
−1

〈R′,κR〉 , (16)

and (15) follows by Lemmas 4 and 5. �

By itself, (15) does not make our kernel any easier to evaluate, since the combined size of the matrices

appearing under the sum is still O(n!). The key is to additionally exploit the sparsity of R̂ and R̂′.
We derive the structure of these Fourier transforms in two stages: first describing their matrix–level
sparsity, and then examining the row/column–level sparsity of their individual matrix components.

4.1 Matrix level sparsity

We say that a vector v ∈ C[Sn] (equivalently, the function v or the Fourier transform v̂) is ban-
dlimited to some subset Λ of {λ ` n} if the only non-zero components of v̂ are {v̂(λ)}λ∈Λ. Several
recent papers have used bandlimited functions to approximate distributions over permutations, most
notably in the context of multi–object tracking (Kondor et al., 2007; Huang et al., 2009; Huang &
Guestrin, 2009).

In the present paper bandlimitedness is not an approximation, but an inherent feature of our
problem. Typically, this is a sign of invariance to a subgroup, in our case, invariance to the ranking
position of the n−k items not involved in the partial ranking at hand. The key to unraveling this
structure are the factorizations (8)–(10), and specifically, the

�
n−k factors appearing in them.

Proposition 7 The group algebra element
�

n−k ∈ C[Sn] is bandlimited to the set Λn
n−k defined

Λn
n−k = { λ ` n | λ1 ≥ n − k }.

In terms of Young diagrams, Λn
n−k is the set of diagrams of n boxes with at least n−k boxes in their

first row. For example, Λ10
7 = {(10), (9, 1), (8, 2), (8, 1, 1), (7, 3), (7, 2, 1), (7, 1, 1, 1)}, so the Fourier

transform of
�

7 in C[S10] has just 7 non–zero components. An immediate consequence of Lemma 4
is that if u is Λu–bandlimited and v is Λv–bandlimited, then uv will be Λu∩Λv–bandlimited. Thus,
the k’th order partial ranking vectors (8)–(10) will all inherit the bandlimited structure of

�
n−k,

and the summation in (15) need only extend over Λn
n−min(k,k′), giving us the following result.

Proposition 8 If R and R′ are a pair of partial rankings of orders k and k′, respectively, then the
kernel (15) can be written as

K(R′, R) =
1

n!|R′||R|

∑

λ∈Λn
n−min(k,k′)

dλ tr
[
R̂′(λ)† κ̂(λ) R̂(λ)

]
. (17)

In particular, given R̂, R̂′ and κ̂, the kernel can be computed in
∑

λ∈Λn
n−min(k,k′)

2d3
λ operations.3

Several authors (Diaconis, 1988; Huang et al., 2009; Kondor et al., 2007) discuss that one possible
interpretation of the Fourier matrices is that they capture detail at different scales: given a distri-
bution p on Sn, (p̂(λ))λ∈Λn

n−k
is exactly the information needed to reconstruct p up to its k’th order

marginals. In this respect it is not surprising that (17) should involve exactly these Fourier matrices,
and our result fits nicely in the general theory of spectral analysis on permutations.

Unfortunately, in general, the dimensionality of the largest matrices in (R(λ))λ∈Λn
n−k

grows with

O(nk), so while Proposition 8 greatly reduces the number of Fourier matrices that need to be
summed over, for n greater than about a dozen evaluating (17) is still problematic (see Table 1).
This motivates a finer grained analysis, also taking the internal structure of the Fourier matrices
into account.

3Throughout this paper, in line with the literature, by a single operation we mean multiplying two scalars
and adding them to a third. We assume that multiplication by constants and copying information is free.
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̂�
3((5)) = (20) ̂�

3((4, 1)) =




20 0 0 0
0 20 0 0
0 0 0 0
0 0 0 0




̂�
3((3, 2)) =




20 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




̂�
3((3, 1, 1)) =




20 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




Figure 2: The non–zero Fourier matrices of
�

3 ∈ C[S5], relevant to any binary ranking out of 5
items. Any

�
n−2 ∈ C[Sn] would have the same structure except that for n > 5 the matrices would

be larger.

4.2 Row/column level sparsity

Ultimately, the sparsity of ̂�
n−k is a consequence of the way that the irreps of Sn reduce into a

direct sum of irreps of Sn−k on restriction to this subgroup. Specifically, a result called Young’s
branching rule tells us that if τ ∈ Sn−1, then

ρλ(τ) = T−1
[ ⊕

λ−∈λ↓n−1

ρλ−(τ)
]

T,

where λ ↓n−1 is the set of all partitions of n−1 that we can get from λ by removing a single box,
ρλ− is the irrep of Sn−1 indexed by λ−, and T is a unitary matrix that depends on exactly what
system of irreps we use. For simplicity, in the following we will assume that all irreps are from
Young’s Orthogonal Representation (YOR) (see supplement), in which case the T matrices
may be dropped because they are always equal to the identity.

Now if we establish a partial order on partitions according to which λ ≥ λ′ if and only λ′ is a
subdiagram of λ, recursively applying the branching rule down to n−k gives that for λ′ ` n−k and
τ ∈ Sn−k, ρλ′(τ) will be featured in the decomposition of ρλ(τ) if and only if λ≥ λ′. In particular,
ρ(n−k)(τ) appears whenever λ ≥ (n− k), which is equivalent to λ ∈ Λn

n−k. Proposition 7 follows
by considering that

∑
τ∈Sn−m

ρλ′(τ) = 0 for all λ′ ` n−k except for λ′ = (n−k) (see the proof of

Proposition 9 in the supplement).

The precise structure of ̂�
n−k can be uncovered by repeating this analysis on the level of in-

dividual matrix entries. First recall that the individual rows/columns of Fourier matrices such as

Ŝn−k(λ) are indexed by the standard Young tableaux (SYT) of shape λ, such as

t =
1 2 4 5 7
3 6 9
8 ,

which is a SYT of shape λ = (5, 3, 1). Just like partitions, SYT also have a natural inclusion order,

for example if t′ =
1 2 4 5 7

3 6 , then t ≥ t′ because t can be constructed from t′ by adding 8 and 9 . A
convenient shorthand for SYT are Yamanouchi symbols, in particular, [. . .]m denotes 1 2 3 . . . m .
Using these notations, the branching rule in YOR can be made more explicit as

[ρλ(τ)]t,t′ =

{
[ρλ−(τ)]u,u′ if u≤ t, u′ ≤ t′, and u and u′ are both of shape λ− `n−1,

0 otherwise.
(18)

Using this result we can derive the exact form of ̂�
n−k.

Proposition 9 For 0 ≤ k ≤ n−1 the Fourier transform of
�

n−k ∈ C[Sn] (in YOR) is of the form

[Ŝn−k(λ)]t,t′ =

{
(n−k)! if t = t′ and t ≥ [. . .]n−k ,

0 otherwise.
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In simple terms t ≥ [. . .]n−k means that the first m = n− k boxes in the first row of t must be
1 2 3 . . . m , which is a very severe restriction. Thus, not only is

�
n−k bandlimited to just a few

matrix components, even those components will have few non–zero entries. As an example, Figure
2 shows the actual Fourier matrices of

�
3 ∈ C[S5]. Taking advantage of this form of sparsity is more

difficult than just taking advantage of bandlimitedness because in expressions such as (8)
�

n−k is
multiplied from both the left and the right. To overcome this problem, we need to introduce adjoints.

Proposition 10 For any u,v,w ∈ C[Sn], there is a v† ∈ C[Sn] called the adjoint of v, such that

〈u,vw〉 = 〈v†u,w〉 and 〈u,wv〉 = 〈uv†,w〉.

Moreover, v†(σ) = v(σ−1)∗ for all σ ∈ Sn, and in YOR (̂v†)(λ) = v̂(λ)† for all λ ` n.

Substituting a pair of interleaving rankings Ai1,...,ik
and Ai′1,...,i′

k
for R and R′ in (16) we can now

rearrange the inner product as
〈
Ai′1,...,i′

k
,κAi1,...,ik

〉
=

〈
Πn

k

�
n−k πi′1,...,i′

k
, κΠn

k

�
n−k πi1,...,ik

〉
=

〈 �
n−k πi′1,...,i′

k
π

†
i1,...,ik

� †
n−k, Πn

k
†
κΠn

k

〉
=

〈 �
n−k πi′1,...,i′

k
π−1

i1,...,ik

�
n−k, Πn

k
†
κΠn

k

〉
,

where the last line follows from
� †

n−k =
�

n−k and π
†
i1,...,ik

= π−1
i1,...,ik

. Now the first argument of
the last inner product contains an expression sandwiched between two

�
n−k’s, which has the effect

of zeroing out all rows and columns indexed by t 6≥ [. . .]n−k. This dramatically reduces the effective
size of the Fourier matrices that we need to multiply together to compute the kernel. Introducing
the notation [M ]≥[...]n−k

for the submatrix of the Fourier matrix indexed by rows/columns indexed

by SYT descended from [. . .]n−k, we have the following result.

Proposition 11 If R = Ai1,i2,...,ik
and R′ = Ai′1,i′2,...,i′

k
, then the kernel (13) can be expressed as

K(R,R′) =
(n − k)!2

n! |R′||R|

∑

λ∈Λn
n−k

dλ

[
Ω̂(λ)

]
≥[...]n−k

�
[
κ̂(λ)

]
≥[...]n−k

, (19)

where Ω = πi′1,...,i′
k
π−1

i1,...,ik
, κ = Πn

k
†
κΠn

k and � denotes the matrix inner product A � B =∑
i,j Ai,jBi,j.

The restricted matrices appearing in (19) are much smaller than the matrices that we had to multiply
together in (15) (see Table 1), and what is particularly attractive is that their size is independent of

n. To be fair, (19) also requires computing [Ω̂(λ)]≥[...]n−k
. The next section explains how to do that

efficiently, with a complexity that does not grow with n, either.
Clearly, formulae similar to (19) also hold for the more general case k 6= k′, as well as for other

types of partial rankings. For example, if R and R′ are both top–k rankings, then all that we need
to change is to set κ = κ. If R is an interleaving ranking, but R ′ is a top-k ranking, then κ = κΠn

k ,
and so on.

5 Complexity

A function f : Sn → C is called right Sn−k–invariant if f(στ) = f(σ) for all τ ∈ Sn−k. Clearly, the
space spanned by these functions has dimension n!/(n−k)!. In (Kondor et al., 2009) it was argued

that such functions are bandlimited to {f̂(λ)}λ∈Λn
n−k

and that their Fourier transforms fully occupy

at least one column in each of these matrices. Therefore,
∑

λ∈Λn
n−k

dλ ≤ n!/(n−k)!, and thus, even

if we assume that κ̂(λ), R̂(λ) and R̂′(λ) have all been pre-computed, the complexity of computing
(17) is ∑

λ∈Λn
n−k

2d3
λ ≤ 2(n!/(n − k)!)3 = O(n3k)

for fixed k = k′. See Table 1 for the exact operation count for n = 20 and some small values of k.
In contrast, denoting the set of all SYT of shape λ by T λ, and denoting its subset of SYT

descended from [. . .]n−k by T λ
n−k, computing (19) only requires

∑
λ∈Λn

n−k
(T λ

n−k)2 operations. Now
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k 2 3 4 5 6 7
c0 2.0 ·107 1.8 ·1010 7.0 ·1012 4.2 ·1015 2.6 ·1017 2.6 · 1019

c1 7 34 209 1,546 13,327 130,922
c2 1068 8, 7 ·104 7.7 ·106 7.9 ·108 9.2 ·1010 1.2 ·1013

(2k)2k+2 4096 1.7 ·106 1.0 ·109 1.0 ·1012 1.3 ·1015 2.2 ·1018

Table 1: Comparison of the cost of computing the kernel with different methods. Here c0 is the
cost of computing (17) using naive matrix multiplication for n = 20. In contrast, c1 is the cost of

computing (19) given the Ω̂(λ) and κ̂(λ) Fourier matrices (irrespective of n). The maximum number

of operations required to compute [Ω̂(λ)]≥[...]n−k
as an input to (19) is c2. Finally, the last row is

our (loose) upper bound on c2.

assuming that n≥ 2k, imagine that we construct each t∈
⋃

λ∈Λn
n−k

T λ
n−k in two stages: first deciding

which of the numbers [n−k+1, n] should appear in row one, and then placing the remaining, say `,
numbers in subsequent rows. As a result of this placement, rows two and higher will form a diagram
λ′ of their own, and the number of ways that λ′ can be filled with the ` numbers is the same as
the number of ways that it could be filled with [1, `], i.e., | T λ′ |. In summary, the total number of
entries in the matrices appearing in (19) is

k∑

`=0

(
k

`

)2 ∑

λ′``

| T λ′ |2. (20)

By the unitarity of the Fourier transform, we know that the total size of the Fourier matrices must be

the same as the size of the group, so
∑

λ′``|T
λ′ |

2
= ` !, giving a complexity of

∑k
`=0

(
k
`

)2
` ! = O(k2k+1)

for computing all the matrix inner products in (19) (see “c1” in Table 1).

It remains to quantify the complexity of computing [Ω̂(λ)]≥[...]n−k
. This hinges on the special

structure of YOR, namely that if τ is an adjacent transposition, then ρλ(τ) has only two non–zero
elements in each row (or column) and therefore for any M ∈C

dλ×dλ the product ρλ(τ)M takes only
2d2

λ operations to compute. By a bubblesort type procedure (see, e.g., (Kondor et al., 2009) or
the original Sn FFT paper (Clausen, 1989)) any permutation can be decomposed into a product
of at most

(
n
2

)
transpositions, so if σ = πi′1,...,i′

k
π−1

i1,...,ik
, then σ̂(λ) can be computed in n(n− 1)d 2

λ

operations. Since, as we have seen, dλ = O(nk), computing Ω̂(λ) this way would make the total
complexity of kernel evaluations O(n2k+2), which is not much better than what we had for (15).

5.1 Relabeling

To address this problem we observe that the role of π−1
i1,...,ik

is to map [n− k +1, n] to some item

labels, and πi′1,...,i′
k

maps some of those labels back to [n− k +1, n]. However, when we sandwich

this product between two
�

n−k’s, where exactly we map [1, n−k], and what is mapped to [1, n−k]
does not matter. This lets us “relabel” our items so that the permutations only touch [n−2k+1, n].
More formally, we can find a pair of permutations µ and µ′ that fix [1, n−2k] and have the property
that �

n−k πi′1,...,i′
k
π−1

i1,...,ik

�
n−k =

�
n−k µ′µ−1 �

n−k. (21)

Once again, we find that in YOR the representation matrices of such permutations have a special
form. If T ⊂ T λ, then we say that [ρλ(σ)]T,T is a block in ρλ(σ) if [ρλ(σ)]t,t′ = 0 whenever t∈ T ,
but t′ 6∈ T or vice versa. By the definition of YOR, if τi is the adjacent transposition (i, i+1) and
[ρλ(τi)]t,t′ 6= 0, then t and t′ must differ by at most the position of i and i′ in their tableaux. In

particular, if t ∈ T λ
m, then the first row of t starts with boxes numbered 1, . . . ,m, so if i > m and

[ρλ(τi)]t,t′ 6= 0, then the first row of t′ must also start with 1, . . . ,m, i.e., [ρλ(τi)]T λ
m,T λ

m
is a block.

Since any σ that fixes [1,m] can be written as a product of such adjacent transpositions, we have
the following result.

Proposition 12 If σ ∈ Sn fixes [1,m], then in YOR [ρλ(τ)]T λ
m,T λ

m
is a block in ρλ(τ) for any λ ∈ Λn

m.

Letting σ = µ′µ−1 from (21), Proposition 12 tells us that [ρλ(σ)]T λ
n−2k

,T λ
n−2k

is a block, and clearly

[Ω̂(λ)]≥[...]n−k
needed by (19) is a submatrix of this block. Therefore, to compute [Ω̂(λ)]≥[...]n−k

we

need only construct this block and not the whole matrix Ω̂(λ). Using the same argument as what

lead to (20) and multiplying by the
(
2k
2

)
adjacent transpositions necessary we finally arrive at the

following result.
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Theorem 13 Given the exponentiated kernel Fourier matrices [κ̂(λ)]≥[...]n−k
, the kernel (13) can

be computed in Fourier space in

k(k−1)

k∑

`=0

(
2k

`

)2

` ! +

k∑

`=0

(
k

`

)2

` ! = O((2k)2k+3)

operations, including computing the {[Ω̂(λ)]≥[...]n−k
}λ∈Λn

n−k
matrices appearing in (19).

It should be stressed that (2k)2k+3 is only an upper bound on the cost of {[Ω̂(λ)]≥[...]n−k
}λ∈Λn

n−k
,

and in practice, the size of the [ρλ(σ)]T λ
n−2k

,T λ
n−2k

blocks does not grow as fast as implied by Theorem

13 (see “c2” in Table 1 for an exact operations count). We have not addressed the complexity of
computing [κ̂(λ)]≥[...]n−k

, because these are constant matrices that can be pre–computed before any
kernel evaluations take place. For top–k rankings the issue here is computing the diffusion kernel,

which is significantly accelerated by Proposition 2. For interleaving rankings the Π̂n
k (λ) also have to

be computed. In our experience for n around 10 all this takes just a few minutes. For much larger
n, however, some additional computational tricks or approximations will have to be employed.

6 Experiments

Fourier transforms on Sn can be computed with the open source FFT library Snob (Kondor, 2006).
However, Snob can only manipulate dense Fourier matrices, so to take advantage of the results
described in Section 4 it had to be substantially extended.

We tested our kernel Kadj on the “sushi” dataset, available at http://www.kamishima.net,
which is a dataset of 5000 total rankings of n = 10 sushi dishes ranked by different individuals. We
subsampled the data to produce 500 “3+2” multirankings, i.e., multirankings of the form (xi1 �
xi2 � xi3 , xi4 � xi5) and used 80% of the dataset for training and tested on the remaining 20%
to see how well we can predict whether a given individual will choose xi4 � xi5 or xi5 � xi4 given
that she ranked the sushis xi1 , xi2 , xi3 in the order xi1 � xi2 � xi3 . To solve this conditional
prediction problem we used an SVM, as in the introduction, which in this particular case, because
our prediction is just binary (xi4 � xi5 vs. xi5 � xi4), reduces to ordinary two-class classification.

As a baseline we used the same SVM with a kernel based on the correlation between partial
rankings as described in (Kamishima & Akaho, 2006). Our experiments showed that the SVM
trained with our method is relatively insensitive to the value of β and the regularization parameter
C, attaining about a 20% error rate (with 10–fold cross-validation) in a wide range of parameter
space. In contrast, the optimal performance of the baseline kernel was 42% error. While admit-
tedly preliminary, these experiments show that the adjacent transpositions based diffusion kernel is
promising for some types of applications.

Using the Fourier method and caching kernel values that have already been computed, generating
the entire 1000× 1000 Gram matrix on a desktop machine took less than five minutes. The bulk of
this time was taken up by exponentiating the kernel and computing the “riffled kernels” κ̂(λ), both
of which are pre-computations. Our kernel would have no trouble scaling to larger datasets or much
larger n, provided that κ̂(λ) can be computed ahead of time or approximated in some way.

7 Conclusions

In this paper we argued that kernels methods are a powerful framework for solving a wide variety of
learning tasks involving ranking and ordering. To establish such algorithms, we started by defining
some canonical kernels on permutations, namely the diffusion kernels induced from transpositions
and adjacent transpositions.

The difficulty with such kernels is that in most ranking problems individual training/test exam-
ples are not, in fact, total rankings of all n items under consideration, but partial rankings involving
only k items, and thus, naively, each kernel evaluation involves summing over many possibilities.
The main technical contribution of this paper was to address this computational issue by showing
that in Fourier space the kernel can be efficiently computed.

In particular, we showed that the indicator functions of partial rankings are bandlimited, and
that this reduces the complexity of kernel evaluations to O(n3k). While this result is novel, it is
in many ways a natural extension of spectral analysis on permutations developed in e.g. (Diaconis,
1988), and by itself would not be difficult to derive.

Our more surprising result is that by using techniques involving the group algebra, the complexity
can be further reduced to O((2k)2k+3), which does not involve n at all. This result applies to
averaging any right–invariant kernel over partial rankings, not just diffusion kernels. The reason we

462



elected to use diffusion kernels was (a) because we believe they are a canonical class of kernels on
permutations, and (b) because by Proposition 2 their Fourier transform is easy to pre–compute.

In practice the scaling behavior is much better than what is suggested by our (2k)2k+3 upper
bound. Still, computationally our kernels are limited to partial rankings of order up to about k = 7.
For problems where k is large, such as in merging long lists of results from different search engines,
it would be better to employ a method that reduces partial rankings to binary rankings or employs
a scoring function.

The strength of our method is that it is based purely on the algebra of permutations and does
not employ any reduction heuristic, which might cover up some of the structure in the data. Thus,
it is best suited to relatively small problems where a careful analysis of the data is required, such as
the evaluation of social surveys or voting schemes.

Our paper concentrated on just the kernel, rather than any specific algorithm that it is to be
plugged into. There is much room for research on the algorithms side, and on quantifying the
complexity of the function classes induced by our kernels. More generally, we feel that our results
on the spectral structure of partial rankings are relevant to not just the kernels approach, but to
other ranking methods, as well.
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Abstract

The causal Markov condition (CMC) is a postulate that links observations to causality. It describes
the conditional independences among the observations that are entailed by a causal hypothesis in
terms of a directed acyclic graph. In the conventional setting, the observations are random variables
and the independence is a statistical one, i.e., the information content of observations is measured in
terms of Shannon entropy. We formulate a generalized CMC for any kind of observations on which
independence is defined via an arbitrary submodular information measure. Recently, this has been
discussed for observations in terms of binary strings where information is understood in the sense of
Kolmogorov complexity. Our approach enables us to find computable alternatives to Kolmogorov
complexity, e.g., the length of a text after applying existing data compression schemes. We show
that our CMC is justified if one restricts the attention to a class of causal mechanisms that is adapted
to the respective information measure. Our justification is similar to deriving the statistical CMC
from functional models of causality, where every variable is a deterministic function of its observed
causes and an unobserved noise term.

Our experiments on real data demonstrate the performance of compression based causal inference.

1 Introduction

Explaining observations in the sense of inferring the underlying causal structure is among the most important
challenges of scientific reasoning. In practical applications it is generally accepted that causal conclusions
can be drawn from observing the influence of interventions. The more challenging task, however, is to infer
causal relations on the basis of non-interventional observations and research in this direction still is considered
with skepticism. It is therefore important to thoroughly formalize the assumptions and discuss the conditions
under which they are satisfied. For causal reasoning from statistical data, Spirtes et al. (2001) and Pearl
(2000) formalized the assumptions under which the task is solvable. With respect to a causal hypothesis in
terms of a directed acyclic graph (DAG) the most basic assumption is the causal Markov condition stating
that every variable is conditionally independent of its non-descendants, given its parents,

xj ⊥⊥ ndj |paj ,

for short. Pearl argues that this follows from a “functional model” of causality (or non-linear structure equa-
tions), where every node is a deterministic function of its parents pa j and an unobserved noise term nj (see
Fig. 1), i.e.,

xj = fj(paj , nj) . (1)

The causal Markov condition is then a consequence of the statistical independence of the noise terms, which
is called causal sufficiency. It can be justified by the assumption that every dependence between them requires
a common cause (as postulated by Reichenbach (1956)), which should then explicitly appear in the causal
model. From a more abstract point of view, condition (1) can be interpreted as saying that the node x j does
not add any more information that is not already contained in the parents and the noise together. If we restrict
the assumption to discrete variables, the corresponding information measure can be, for instance, the Shannon
entropy, but also other measures could make sense.

In (Janzing & Schölkopf, 2007) the probabilistic setting is generalized to the case where every observa-
tion is formalized by a binary string xj (without any statistical population). The information content of an
observation is then measured using Kolmogorov complexity (also “algorithmic information”) which gives
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rise to an algorithmic version of (conditional) mutual information. The corresponding functional model is
given by a Turing machine that computes the string x j from its parent strings paj and a noise nj .
The algorithmic information theory based approach generalizes the statistical framework since the average
algorithmic information content per instance of a sequence of i.i.d. observations converges to the Shannon
entropy, but on the other hand observations need not be generated by i.i.d. sampling.

Unfortunately, Kolmogorov complexity is uncomputable and practical causal inference schemes must
deal with other measures of information. In Section 2 we define general information measures and show that
they induce independence relations that satisfy the semi-graphoid axioms (Section 3). Then, in Section 4,
we phrase the causal Markov condition within our general setting and explore under which conditions it
is a reasonable postulate. To this end, we formulate an information theoretic version of functional models
observing that their decisive feature is that the joint information of a node, its parents and its noise is the
same as the joint information of its parents and noise alone. We demonstrate with examples how these
functional models restrict the set of allowed causal mechanisms to a certain class (Section 5). We emphasize
that the choice of the information measure determines this class and is therefore the essential prior decision
(which certainly requires domain knowledge). Thus, when applying our theory to real data, one first has to
think about the causal mechanisms to be explored and then design an information measure that is sufficiently
“powerful” to detect the generated dependences.
Section 6 discusses a modification for known independence based causal inference that is necessary for those
information measures for which conditioning can only decrease dependences. Section 7 describes one of
the most important intended applications of our theory, namely information measures based on compression
schemes (e.g. Lempel-Ziv). Applications of these measures using the PC algorithm for causal inference
to segments of English text demonstrate the strength of causal reasoning that goes beyond already known
applications of compression for the purpose of (hierarchical) clustering.

2 General information measures
In this section we define information from an axiomatic point of view and prove properties that will be useful
in the derivation of the causal Markov condition. We start by rephrasing the usual concept of measuring
statistical dependences. Let X be a set of discrete-valued random variables and Ω := 2X be the set of
subsets. For each A ∈ Ω let H(A) denote the joint Shannon entropy of the variables in A. For three disjoint
sets A, B, C the conditional mutual information between A and B given C then reads

I(A : B|C) := H(A ∪ C) + H(B ∪C)−H(A ∪B ∪C)−H(C) . (2)

The set of subsets constitutes a lattice (Ω,∨,∧) with respect to the operations of union and intersection and
H can be seen as a function on this lattice1. We observe that the non-negativity of (2) can be guaranteed if

H(D) + H(E) ≥ H(D ∨E) + H(D ∧ E) ,

for two sets D, E ∈ Ω. This submodularity condition is known to be true for Shannon entropy (Cover &
Thomas, 2006). Motivated by these remarks, we now introduce an abstract information measure defined on
the elements of a general lattice. Throughout this paper let (Ω,∧,∨) be a finite lattice and denote by 0 the
meet of all of its elements.

Definition 1 (information measure)
We say R : Ω→ R is an information measure if it satisfies the following axioms:

(1) normalization: R(0) = 0 ,

(2) monotonicity: s ≤ t implies R(s) ≤ R(t) for all s, t ∈ Ω ,

(3) submodularity: R(s) + R(t) ≥ R(s ∨ t) + R(s ∧ t) for all s, t ∈ Ω .

Note that submodular functions have been considered in different contexts, see for example (Lovász, 1983;
Matus, 1994; Madiman & Tetali, 2008).
Based on R we define a conditional version for all s, t ∈ Ω by

R(s|t) := R(s ∨ t)−R(t).

In analogy to (2), R gives rise to the following measure of independence:

Definition 2 (conditional mutual information) For s, t, u ∈ Ω the conditional mutual information of s and
t given u is defined by

I(s : t |u) := R(s ∨ u) + R(t ∨ u)−R(s ∨ t ∨ u)−R(u).

We say s and t are independent given u or equivalently s ⊥⊥ t |u if I(s : t |u) = 0.

1Also the information measures that are presented in this paper can all be rephrased as functions on the lattice of
subsets it is nevertheless notationally convenient to formulate the theory with respect to general lattices.
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Since the join on lattices is associative and commutative, for ease of notation we write R(s, t, u, . . .) instead
of R(s ∨ t ∨ u ∨ . . .) as well as R(S) := R(s1 ∨ . . . ∨ sn) for a subset S = {s1, . . . , sn} ⊆ Ω. Further
I(s1, . . . , sn : u) is to be read I((s1 ∨ . . . ∨ sn) : u). The following Lemmas generalize usual information
theory.

Lemma 1 (non-negativity of mutual information and conditioning) For s, t, u ∈ Ω we have

(a) I(s : t |u) ≥ 0 and (b) 0 ≤ R(s|t, u) ≤ R(s|t).
Proof: (a) By definition, I(s : t|u) ≥ 0 is equivalent to R(s, u) + R(t, u) ≥ R(s, t, u) + R(u). Defining
a = s ∨ u and b = t ∨ u and using associativity of ∨ we have a ∨ b = s ∨ t ∨ u. Further, using Lemma 4 in
Ch.1 from (Birkhoff, 1995), in any lattice

a ∧ b = (s ∨ u) ∧ (t ∨ u) ≥ u ∨ (s ∧ t) ≥ u

and hence by monotonicity of R: R(a ∧ b) ≥ R(u). Combining everything

R(s, u) + R(t, u) = R(a) + R(b) ≥ R(a ∨ b) + R(a ∧ b) ≥ R(s, t, u) + R(u),

where the first inequality uses submodularity of R.
(b) The first inequality follows from (a) by I(s : s|t, u) ≥ 0. The second inequality follows directly from
(a) and the definition of I . �

Lemma 2 (chain rule for mutual information) For s, t, u, x ∈ Ω

I(s : t ∨ u |x) = I(s : t |x) + I(s : u |t, x) . (3)

Proof: This is directly seen by using the definition of conditional mutual information on both sides.�

Lemma 3 (data processing inequality) Given s, t, x ∈ Ω it holds

R(s|t) = 0 ⇒ I(s : x |t) = 0 ⇒ I(s : x) ≤ I(t : x).

Proof: The first implication is clear. For the second we apply the chain rule for mutual information two times
and obtain

I(s : x) = I(s, t : x)− I(t : x |s) = I(t : x) + I(s : x |t)− I(t : x |s) ≤ I(t : x) ,

since the second summand is zero by assumption and conditional mutual information is non-negative. �

3 Submodular dependence measures and semi-graphoid axioms

The axiomatic approach to stochastic independence goes back to Dawid (1979) who stated four axioms of
conditional independence that are fulfilled for any kind of probability distribution. Later, any relation I on
triplets that satisfies the same axioms has been named semi-graphoid by Pearl (2000). It is easy to see that
the function I constructed from R in the last section satisfies these axioms.

Theorem 1 (I satisfies semi-graphoid axioms) The function I defined in the last section satisfies the semi-
graphoid axioms, namely for x, y, w, z ∈ Ω

(1) I(x : y |z) = 0 ⇒ I(y : x |z) = 0 (symmetry)

(2) I(x : y, w |z) = 0 ⇒
{

I(x : y |z) = 0
I(x : w |z)= 0

(decomposition)

(3) I(x : y, w |z) = 0 ⇒ I(x : y |z, w) = 0 (weak union)

(4)
I(x : w |z, y) = 0

I(x : y |z) = 0

}

⇒ I(x : w, y |z) = 0 (contraction)

Proof: Symmetry is clear and the remaining implications follow directly from the chain rule and non-
negativity. �

On the contrary, if we are given a function I : Ω × Ω × Ω → R+, what axioms do we need to define
a submodular information measure R from I? It turns out that the chain rule in eq. (3) together with non-
negativity I(a : b|c) ≥ 0 and symmetry I(a : b|c) = I(b : a|c) already implies that R(a) := I(a : a|0) is an
information measure and I coincides with the dependence measure introduced in Definition 2. We omit the
proof due to space constraints.
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Thus we characterized the type of dependence measures that we are able to incorporate into our frame-
work. To conclude, note that the chain rule is actually a strong restriction. As an example consider the lattice
of linear subspaces of some finite vector space, where the join of two subspaces is the subspace generated
by the set-theoretic union and the intersection is just the set-theoretic intersection. An independence measure
can be defined by

I(a : b |c) = dim
(

a|c⊥
)

∣

∣

(

b|c⊥
),

where a|b stands for the orthogonal projection of a onto b and c⊥ denotes the orthogonal complement of c.
This is a quantitative version of a notion of independence that satisfies the semi-graphoid axioms (Lauritzen,
1996) even though the chain rule does not hold.

4 Causal Markov condition for general information measures
In this section we define three versions of the causal Markov condition with respect to a general submodular
information measure and show that they are equivalent (similar to the statistical framework). Then we dis-
cuss under which conditions we expect it to be a reasonable postulate that links observations with causality.
Assume we are given observations x1, . . . , xk that are connected by a DAG. It is no restriction to consider
the observations as elements of a lattice, e.g. the lattice of their subsets.

Definition 3 (causal Markov condition (CMC), local version) Let G be a DAG that describes the causal
relations among observations x1, . . . , xk. Then the observations are said to fulfill the causal Markov condi-
tion with respect to the dependence measure I if

I(ndj : xj |paj) = 0 for all 1 ≤ j ≤ k,

where paj denotes the join of the parents of xj and ndj the join of its non-descendants (excluding the parents).

The intuitive meaning of the postulate is that conditioning on the direct causes of an observation screens
off its dependences from all its non-effects. The following theorem generalizes results in (Lauritzen, 1996)
for statistical independences and (Janzing & Schölkopf, 2007) for algorithmic independences. In particular it
states that if the causal Markov condition holds with respect to a graph G, then independence relations implied
by the CMC can be obtained through the convenient graph-theoretical criterion of d-separation (Pearl, 2000;
Spirtes et al., 2001). Two sets of nodes A and B of a DAG are d-separated given a set C disjoint from A and
B if every undirected path between A and B is blocked by C. A path that is described by the ordered tuple
of nodes (x1, x2, . . . , xr) with x1 ∈ A and xr ∈ B is blocked if at least one of the following is true

(1) there is an i such that xi ∈ C and xi−1 → xi → xi+1 or xi−1 ← xi ← xi+1 or xi−1 ← xi → xi+1 ,

(2) there is an i such that xi and its descendants are not in C and xi−1 → xi ← xi+1.

Theorem 2 (Equivalence of Markov conditions and information decomposition) Let the nodes x1, . . . , xk

of a DAG G be elements of some lattice Ω and R be an information measure on Ω. Then the following three
properties are equivalent

(1) x1, . . . , xk fulfill the (local) causal Markov condition.

(2) For every ancestral set2 A ⊆ {x1, . . . , xk}, R decomposes according to G:

R(A) =
∑

xi∈A

R(xi|pai).

(3) The global Markov condition holds, i.e., if two sets of nodes A and B are d-separated in G given a set
C disjoint from A and B, then

(

∨

a∈A

a

)

⊥⊥
(

∨

b∈B

b

)

∣

∣

(

∨

c∈C

c

)

.

We omit the proof due to space constraints. The second condition shows that the joint information of
observations can be recursively computed according to the causal structure. The third condition describes
explicitly which sets of independences are implications of the causal Markov condition.

Our next Theorem will show that the CMC follows from a general notion of a functional model. At its
basis is the following Lemma describing that the CMC on a given set of observations can be derived from the
causal Markov condition with respect to an extended causal graph (see Figure 1).

2A set A of nodes of a DAG G is called ancestral, if for every v ∈ A the parents of v are in A too.
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R(xi|pai, ni) = 0

Figure 1: On the left a causal model of four observations x1, . . . , x4 is shown together with the ’noise’ for each node.
In Lemma 4 it is shown that the causal Markov condition on this extended graph implies the CMC for x1, . . . , x4. On the
right hand side the functional model assumption is illustrated: The generation of xi from its parents pai and the ’noise’
does not produce additional information.

Lemma 4 (causal Markov condition from extended graph) Let the nodes x1, . . . , xk of a DAG G be el-
ements of a lattice Ω with an independence relation I that is monotone and satisfies the chain rule. If there
exist additional elements n1, . . . , nk ∈ Ω such that for all j

I(xj : ndj , n−j | paj, nj) = 0 , where n−j =
∨

i�=j

ni, (4)

and the nj are jointly independent in the sense that

I(nj : n−j) = 0 , (5)

then the x1, . . . , xk fulfill the causal Markov condition with respect to G.

Proof: Based on G we construct a new graph G ′ with node set {n1, . . . , nk}∪{x1, . . . , xk} and an additional
edge nj → xj for every j, (1 ≤ j ≤ k). We first show that the causal Markov condition holds for the nodes
of G′: By construction, the join of non-descendants nd ′

j of xj with respect to G′ is equal to n−j ∨ndj . Since
the join of the parents pa′

j of xj in G′ are paj ∨ nj , assumption (4) just states I(xj : nd′j |pa′
j) = 0 which is

the local CMC with respect to xj . To see that CMC also holds for nj , observe that the non-descendants of nj

are equal to the non-descendants of xj in G′ and since nj does not have any parents, we have to show

I(nj : nd′j) = 0. (6)

Using nd′
j = n−j ∨ ndj together with the chain rule for mutual information we get

I(nj : ndj , n−j) = I(nj : n−j) + I(nj : ndj |n−j) = I(nj : ndj |n−j),

where the last equality follows from (5). Let NDj = {xj1 , . . . , xjkj
} be the set of non-descendants of xj in

G. Note that NDj is ancestral, that is if x ∈ NDj , then so are the ancestors of x. We introduce a topological
order on NDj , such that if there is an edge xja → xjb

in G, then xja < xjb
. Using the chain rule for mutual

information iteratively we get

I(nj : ndj |n−j) =

kj
∑

a=1

I
(

nj : xja |x(<)
ja

, n−j

)

,

where x
(<)
ja

denotes the join of elements of NDj smaller than xja . By choice of our ordering the mutual

information of nj and xja is conditioned at least on its parents and we can write x
(<a)
ja

= paja ∨ pac
ja

, where
pac

ja
is the join of elements smaller than xja in NDj that are not its parents. Therefore, again by the chain

rule, each summand on the right hand side can be bounded from above by writing

I
(

nj : xja |x(<a)
ja

, n−j

) ≤ I
(

n−ja , pac
ja

: xja |paja , nja

)

≤ I
(

n−ja , ndja : xja |paja , nja

)

= 0,

where the second inequality is true because by construction pa c
ja

is the join of non-descents of xja . The right
hand side vanishes because of assumption (4). This proves (6) and therefore the causal Markov condition
with respect to G′.
By Theorem 2, d-separation on G ′ implies independence. Due to the special structure of G ′ one can check
that d-separation in G implies d-separation in the extended graph G ′. Again by Theorem 2, d-separation
implies the causal Markov condition for G, which proves the lemma. �

Now we formalize the intuition that in a generalized functional model a node only contains information
that is already contained in the direct causes and the noise together (see Figure 1):
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Definition 4 (functional model) Let G be a DAG with nodes x1, . . . , xk in the lattice Ω. If there exists an
additional node nj ∈ Ω for each xj , such that the nj are jointly independent and

R(xj , paj, nj) = R(paj, nj) for all j, (1 ≤ j ≤ k) (7)

then G together with n1, . . . , nk is called a functional model of the x1, . . . , xk.

If we restrict our attention to causal mechanism of the above form, the CMC is justified:

Theorem 3 (functional model implies CMC) If there exists a functional model for the nodes x1, . . . , xk of
a DAG G then they fulfill the causal Markov condition with respect to G.

Proof: In the functional model with noise nodes n i it holds R(xj , paj, nj) = R(paj , nj) for all j. This
implies I(ndj : xj |paj , nj) = 0. Since the nj in a functional model are assumed to be jointly independent,
Lemma 4 can be applied and proves the theorem. �

The following section describes examples of causal mechanisms that can be seen as functional models
with respect to various information measures.

5 Examples of information measures and their functional models

Let S = {x1, . . . , xk} be a finite set of observations which are in a canonical way elements of the lattice of
subsets (2S,∪,∩). Let the causal structure be a DAG with x1, . . . , xk as nodes.

5.1 Shannon entropy of random variables

Let the xi be discrete random variables with joint probability mass function p(x 1, . . . , xk). For a subset
A ⊆ {x1, . . . , xk} denote by xA := ×xi∈Axi the random variable with distribution pA := p((xi)xi∈A).
The Shannon entropy for the subset A is defined as H(A) := −Ep log pA. Monotonicity as well as sub-
modularity are well-known properties (Cover & Thomas, 2006). The corresponding notion of independence
is the familiar (conditional) stochastic independence, its information-theoretic quantification I being mutual
information. Then H(xi, pai, ni) = H(pai, ni) is equivalent to the existence of some function f i with

xi = fi(pai, ni) .

This restricts the set of mechanisms to those which were deterministic if one could take all latent factors into
account. Note that continuous Shannon entropy is not monotone under restriction to subsets. Nevertheless, in
this case the chain rule and non-negativity is true and therefore the CMC can be motivated by independences
with respect to an extended causal model (Lemma 4 of the previous section).

5.2 Kolmogorov complexity of binary strings

Let the xi be binary strings and the information measure be the Kolmogorov complexity as information
measure. More explicitly, for a subset of strings A ⊆ S denote by xA a concatenation of the strings in a
prefix free manner (which guarantees that the concatenation can be uniquely decoded into its components).
The Kolmogorov complexity K(xA) is then defined as the length of the shortest program that generates
the concatenated string xA on a universal prefix-free Turing machine. It is submodular up to a logarithmic
constant (Hammer et al., 2000). For two strings s, t the conditional Kolmogorov complexity K(s|t) of
s, given t is defined as the length of the shortest program that computes s from the input t. It must be
distinguished from K(s|t∗), the length of the shortest program that computes s from the shortest compression
of t. Note that defining R(s) := K(s) implies that the conditional information reads R(s|t) = K(s|t ∗) due
to (Chaitin, 1975)

K(s, t)
+
= K(t) + K(s|t∗) ,

see also (Gács et al., 2001). Then

K(xi, pai, ni)
+
= K(pai, ni) is equivalent to K(xi|(pai, ni)

∗) +
= 0 ,

which, in turn, is equivalent to the existence of a program of length O(1) that computes x i from the shortest
compression of (pai, ni). Here we have considered the number k of nodes as a constant, which ensures that
the order of the strings does not matter. Such an “algorithmic model of causality”(Janzing & Schölkopf,
2007) restricts causal influences to computable ones. Uncomputable mechanisms can easily be defined (as
in the halting problem). However, in the spirit of the Church-Turing thesis, we will assume that they don’t
exist in nature and conjecture that the algorithmic model of causality is the most general model of a causal
mechanism as long as we restrict the attention to the non-quantum world (where the model could be replaced
with a quantum Turing machine).
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5.3 Period length of time series

We now present an example of an information measure on a lattice of observations different from the lattice
of subsets. Let every observation be a natural number x i ∈ N and consider them elements of the lattice of
natural numbers where ∨ denotes the least common multiple and ∧ the greatest common divisor, hence for
S ⊆ {x1, . . . , xk}

xS := ∨xi∈Sxi := lcm(S) .

We define an information measure by
R(xS) := log xS .

Non-negativity and monotonicity of R are clear and submodularity even holds with equality: For a, b ∈ N

R(a ∨ b) + R(a ∧ b) = log lcm(a, b) + log gcd(a, b) = log
ab

gcd(a, b)
+ log gcd(a, b)

= R(a) + R(b).

The corresponding conditional dependence measure reads

I(a : b|c) = R
(

gcd(a, b)/gcd(a, b, c)
)

= log gcd(a, b)− log gcd(a, b, c),

so a and b are independent given c if c contains all prime factors that are shared by a and b (with at least the
same multiplicity).
We define a functional model where every node x i contains only prime factors that are already contained
in its parents and its noise node (with at least the same multiplicity) and the noise terms are assumed to be
relatively prime.

Such a lattice of observations can occur in real-life if x i denotes the period length of a periodic time series
over Z. Then the period length of the joint time series defined by a set of nodes is obviously the least common
multiple. If every time series at node i is a function F i of its parents and noise node (each being a time series)
and Fi is time-covariant, xi divides their period lengths.

Assuming that the period lengths of the noise time series are relatively prime is indeed a strong restriction,
but if we assume that the periods are large numbers and interpret independence in the approximate sense

log lcm(x1, . . . , xk) ≈
k

∑

i=1

log xi ,

we obtain the condition that their periods have no large factors in common. This seems to be a reasonable
assumption if the noise time series have no common cause.

One can easily think of generalizations where every observation x i is characterized by a symmetry group
and the join of nodes by the group intersection describing the joint symmetry. One may then define functional
models where every node inherits all those symmetries that are shared by all its parents and the noise node.

5.4 Size of vocabulary in a text

Let every observation xi be a text and for every collection of texts S ⊆ {x1, . . . , xk} let R(S) be the
number of different meaningful words in S. Here, meaningful means that we ignore words like articles and
prepositions. To see that R is submodular we observe that it is just the number of elements of a set.

We can use R to explore which author has copied parts of the texts written by other authors: Let every x i

be written by another author and a causal arrow from x i to xj means that the author of xi was influenced by
xi when writing xj .

The noise ni can be interpreted as the set of words the author usually uses and the condition R(x i, pai, ni)
= R(pai, ni) then means that he/she combines only words from the texts he/she has seen with the own
vocabulary.

To conclude this section we want to emphasize that the above example refers to a dependence measure that
is non-increasing under conditioning, that is for collections S, T, U and V of texts I(S : T |U) ≥ I(S : T |V )
whenever U ⊆ V . This is because I(S : T |U) is equal to the number of meaningful words contained in S
and T , but not in U .3 We will elaborate on this point in the next section because it imposes special challenges
for causal inference.

3In general, the above information measure can be viewed as rank or height function on the lattice of sets of meaningful
words and it can be shown that dependence measures originating from information functions that are rank functions on
distributive lattices are always non-increasing under conditioning.
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6 Faithfulness for monotone dependence measures

Apart from the CMC, the essential postulate of independence based causal inference is usually causal faith-
fulness. It states that all observed independence relations are structural, that is, they are induced by the true
causal DAG through d-separation. This postulate allows the identification of causal DAGs up to “Markov
equivalence classes” imposing the same independences.

Faithfulness has already been defined for abstract conditional independence statements and we start by
rephrasing the definition following (Spirtes et al. (2001), p.81).

Definition 5 (faithfulness) A DAG G is said to represent a set of conditional independence relations L on
a set of observations X faithfully, if L consists exactly of the independence relations implied by G through
d-separation. Further, a set of observations X is said to be faithful (w.r.t. a given dependence measure), if
there exists a causal DAG that represents X faithfully.

The above definition of faithfulness makes sense for the probabilistic and algorithmic notions of dependence,
but there is a problem with respect to dependence measures on which conditioning can only decrease infor-
mation. As mentioned above, rank functions of distributive lattices lead to this kind of dependence measures,
that we will call monotone in the following. To see the problem, consider for three observations a, b, c a
causal DAG G of the form a → b ← c. By d-separation, a is independent of c and for a monotone de-
pendence measure this implies a ⊥⊥ c |b, which is not an independence induced by d-separation. Hence, G
does not faithfully represent the objects and one can easily check that a faithful representation does not exist
(e.g. using the theorem below). However, we can modify faithfulness such that it also accounts for those
independences that follow from monotonicity under conditioning:

Definition 6 (monotone faithfulness) A DAG G is said to represent a set L of conditional independences of
observations X monotonically faithful, if the following condition is true for all disjoint subsets S, T, U ⊆ X
whose join is denoted by s, t and u: Whenever s ⊥⊥ t |u is in L and u is minimal among all the sets that
render s and t independent, then s and t are d-separated by u in G. Further, a set of observations X is said
to be monotonically faithful (w.r.t. a given dependence measure), if there exists a causal DAG that represents
X monotonically faithful.

Note that, trivially, every faithful representation is a monotonically faithful representation, hence faithful ob-
servations are monotonically faithful observations. Faithful representations have already been characterized
(Theorem 3.4 in (Spirtes et al., 2001)) and we prove an equivalent characterization that holds simultaneously
for monotonically faithful and for faithful observations.

Theorem 4 (characterization of monotonically faithful representations) A set of (monotonically) faithful
observations X is represented (monotonically) faithfully by a DAG G if and only if (1) and (2) holds, where:

(1) two observations a and b are adjacent in G if and only if they can not be made independent by condi-
tioning on any join of observations in X\{a, b}.

(2) for three observations a, b, c, such that a is adjacent to b, b is adjacent to c and a is not adjacent to c, it
holds that a → b ← c in G if and only if there exists a set U ⊆ X\{a, b, c} such that a is independent
of c given the join of the observations in U .

We omit the proof due to space constraints. The theorem implies in particular, that every monotonically
faithful representation of faithful objects is already a faithful representation.
The PC algorithm (Spirtes & Glymour, 1991; Spirtes et al., 2001) for causal inference takes a set of condi-
tional independences on faithful objects and returns the equivalence class of faithful representations. Since
the above theorem is used to prove the correctness of the algorithm in the faithful case, we conclude that the
algorithm correctly returns monotonically faithful representations given monotonically faithful observations.
We apply the PC-algorithm with respect to compression based information functions in the following section.
Also they are not monotone in a strict theoretical sense, empirical observations indicate that it is unlikely for
the mutual information to increase.

7 Compression based information

In this section we demonstrate that our framework enables us to do causal inference on single objects (coded
as binary strings) without relying on the uncomputable measure of Kolmogorov complexity. To this end,
instead of defining complexity with respect to a universal Turing machine we explicitly limit ourselves to
specific production processes of strings. The underlying measure of information is motivated by universal
compression algorithms like LZ77 (Ziv & Lempel, 1977) and grammar based compression (Yang & Kieffer,
2000) that detect repeated occurrences of identical substrings within a given input string and encode them
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more efficiently. The choice of a compression scheme can be seen as a prior analogously to the choice of
a universal Turing machine in the case of algorithmic information. The measures considered in this section
quantifiy the information of an observation (string) in terms of the diversity of its substrings and entail the
following assumption on causal processes: A mechanism that produces a string y from a string x is considered
as simple, if it constructs y by concatenating a small number of substrings from x (see Lemma 6 below for a
formal statement). Further, the amount of dependence of observations is approximately given by the number
of substrings that they share.

We are going to describe two specific measures of information that are closely related to the total length
of the compressed string, but have better formal properties than the latter. This way our conclusions will
be independent of the actual implementation of the compression scheme and proving theoretical results gets
easier.
In the last part of this section we describe experiments on real data in which the PC algorithm is applied to
infer the causal structure using either of the two introduced measures of information.
Note that distance metrics based on compression length have already been used to cluster various kinds of data
(see (Cilibrasi & Vitányi, 2005) for computable distance metrics motivated by algorithmic mutual information
or (Hanus et al., 2007) for an application to molecular biology). These metrics can be used to reconstruct trees
(hierarchical clustering) but if two nodes are linked by more than one path a measure of conditional mutual
information is needed to reconstruct the data-generation process. To the best of our knowledge, methods that
rely on compression based conditional mutual information have not been used before to infer non-tree-like
DAGs.

7.1 Lempel-Ziv information (LZ-information)

LZ-information has been introduced as a complexity measure for strings in (Ziv & Lempel, 1976). It has
been applied to quantify the complexity of time series in biomedical signal analysis (Aboy et al., 2006) and
distance measures based on versions of LZ-information have been used to analyze neural spike train data
(Blanc et al., 2008) and to reconstruct phylogenetic trees (Zhen et al., 2009). We start by defining

Definition 7 (production and reproduction from prefix) Let s = xy be a string. We say s is reproducible
from its prefix x and write x → s if y is a substring of xy, where y is equal to y without its last symbol. We
say s is producible from x and write x⇒ s if x→ s, where s is equal to s without its last symbol.

Contrary to reproducibility, producibility allows for the generation of new substrings, for if x ⇒ s, the last
symbol of s can be arbitrary.

s = 0 0 1 0 1 0 0
x y

new Example: For a given string s = xy let s be the string without its last symbol.
The figure on the left shows that s is producible from its prefix x by copying the
second symbol of x to the first of y and so on. The string s itself is not producible
from x, but reproducible.

Informally, LZ-information counts the minimal number of times during the process of parsing the input string
from left to right, in which the string can not be reproduced from its prefix and a production step is needed.

Definition 8 (LZ-information, (Ziv & Lempel, 1976)) Let s be a string of length n. Denote by s i the i-th
symbol of s and by s(i, j) the substring sisi+1 · · · sj . A production history Hs of s is a partition of s into
substrings s = s(h0, h1)s(h1 + 1, h2) · · · s(hk + 1, hk+1) with h0 = 1 and hk+1 = n, such that

s(1, hi)⇒ s(1, hi+1) for all i ∈ {1, . . . , k}.
A history Hs is called exhaustive if additionally

s(1, hi) �→ s(1, hi+1) for all i ∈ {1, . . . , k − 1}.
The substrings s(hi + 1, hi+1), (0 ≤ i ≤ k) will be called components of Hs and the length |Hs| of Hs is
defined as the number of its components.
The LZ-information of s, denoted by c(s), is defined as the length of its (unique) exhaustive history.

In an exhaustive history, each hi is chosen maximal such that s(1, hi − 1) is reproducible from its prefix
s(1, hi−1). As an example, for s = 000100101100110 the exhaustive history partitions s into

s = (0)(001)(00101)(10011)(0),

hence c(s) = 5.
In the original paper of Ziv and Lempel (1976) it was shown that c is subadditive: for two strings x and y
the information of the concatenated string xy is at most the information of x plus the information of y. This
already suggests to define the non-negative unconditional dependency measure i(x : y) = c(x)+c(y)−c(xy).
As it turns out, non-negativity of conditional information holds up to a negligible constant independent of the
involved string lengths:
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Lemma 5 (non-negativity of conditional LZ-information, asymmetric version) Let x, y, z be finite strings
over some alphabet A. Further let α and β be symbols not contained in A that will be used as separators.
Then

i(x : y|z) := c(zαx) + c(zαy)− c(zαxβy)− c(z) ≥ −1. (8)

Proof: Let Ezα be the exhaustive history of zα. The exhaustive history of zαx is of the form E zαx =
[Ezα, Ex|z], where Ex|z describes the partition of x induced by Ezαx. This is because α is not part of
the alphabet, hence the component in Ezαx containing α must be of the form (tα) for some substring t.
Analogously Ezαy = [Ezα, Ey|z]. It is not difficult to see that

Hzαxβy = [Ezα, Ex|z, β, Ey|z].
is a production history of zαxβy. Theorem 1 in (Ziv & Lempel, 1976) states that a production history is at
least as long as the exhaustive history, hence

∣

∣[Ezα, Ex|z, β, Ey|z]
∣

∣ ≥ |Ezαxβy| = c(zαxβy),

Further, c(z) ≤ |Ezα| and so (8) can be bounded from below by

c(zαx) + c(zαy)− c(zαxβy)− c(z) ≥ ∣

∣[Ezα, Ex|z]
∣

∣ +
∣

∣[Ezα, Ey|z]
∣

∣− ∣

∣[Ezα, Ex|z, β, Ey|z]
∣

∣− |Ez |
= −1.

�

The above Lemma shows, that for two sets of strings A = {z, x} and B = {z, y} the LZ-information of
A ∪B and A ∩B (represented by the information of strings zαxβy and z) exceeds the LZ-information of A
and B (represented by the information of the strings zαx and zαy) by at most one. This can be interpreted
as approximate ’submodularity’ with respect to A and B.
Within the functional models introduced before a node x i was assumed to contain at most as much informa-
tion as its parents pai and an independent noise ni. The following Lemma states that if xi is produced by con-
catenating complex substrings of pai and ni, this is approximately the case with respect to LZ-information.

Lemma 6 (functional model for LZ-information, asymmetric version) Let pai and ni be two strings over
an alphabetA and construct a third string string xi by concatenating k substrings of pai and ni. Then

c(pai α ni β xi) ≤ c(pai α niβ) + k,

where α and β are symbols not in A used as separators.

Proof: A production history of pa iαniβxi can be generated by concatenating the exhaustive history of
paiαniβ with the list of the at most k substrings out of which xi is constructed. The length of this his-
tory is c(paiαni) + k + 1 and bounds c(paiαniβxi) from above by Theorem 1 in (Ziv & Lempel, 1976). �

In particular, if xy is producible from x, by appending y, the information is at most increased by one.
Hence, if we restrict the mechanisms that generate a node to consist of a limited number of concatenations
of substrings from its parents and the independent noise (compared to the amounts of information involved)
the causal Markov condition would follow if c were an information function. This is not the case since c
is not defined on sets of strings (in particular it is not symmetric (c(xy) �= c(yx)), therefore we define the
LZ-information of a set of strings to be the LZ-information of their concatenation with respect to a given
order (e.g. lexicographic).

Definition 9 (LZ-information, set version) Let {x1, . . . , xk} be a set of strings over some alphabet A.
Choose k distinct symbols α1, . . . , αk not contained in A that will be used as separators.
Let X = {xi1 , . . . , xim} be a subset and assume xi1 ≤ xi2 ≤ . . . ≤ xim with respect to a given order on the
set of strings over A. We define the LZ-information of X as

LZ(X) = c
(

xi1 αi1 · · ·xim αim

)

,

where the argument of c is understood as the concatenation of the strings.

LZ is not monotone and submodular in a strict sense. However, empirical observations suggest that for suf-
ficiently large strings the violations of submodularity induced by the asymmetries like c(xαy) �= c(yαx) are
negligible compared to the amounts of information.

Hypothesis: For practical purposes LZ(·) is an information measure up to constants that are negligible
compared to the amounts of information of the strings involved. The associated independence measure I is
monotonically decreasing (through conditioning).

We close by mentioning that the calculation of the LZ-information is very inefficient for large strings
since one has to search over all substrings of the part of the string already parsed. In our implementation we
therefore considered only substrings of length limited by a constant (we chose 30 for strings of English text,
since it is unlikely that a substring of length 30 is repeated exactly).
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7.2 Grammar based information

In the grammar based approach to compression an input string x is transformed into a context-free grammar
that generates x. This grammar is then compressed for example using arithmetic codes. We discuss this
approach because it has been successfully applied to compress RNA data (e.g. (Liu et al., 2008)). Further
the LZ-based compression discussed in the previous section can be rephrased into this framework. As there
are many grammars that produce a given string, it is essential that the transformation of strings to grammars
produces economic representations of x (for an overview see (Lehman & Shelat, 2002)) We implemented the
so called greedy grammar transform from Yang and Kieffer (2000). It constructs the grammar iteratively by
parsing the input string x. Due to space restrictions we just give an example of a string and its generated
grammar.
Example: The binary string x = 1001110001000 is transformed using the greedy grammar transform from
Yang and Kieffer (2000) to the grammar G(x) :

s0 → s111s2s2

s1 → 100

s2 → s10,

where s0, s1 and s2 are variables of the grammar and x can be reconstructed by starting from s 0 and then
iteratively substituting si by the right hand side of each production rule above. The length of a grammar
|G(x)| is defined as the sum of all symbols on the right of every production rule, so for the above example
|G(x)| = 10. We view the length of the constructed grammar as information measure of the string that it
produces and define analog to the LZ-information

Definition 10 (grammar based information) Let {x1, . . . , xk} be a set of strings over some alphabet A.
Choose k distinct symbols α1, . . . , αk not contained in A that will be used as separators.
Let X = {xi1 , . . . , xim} be a subset and assume xi1 ≤ xi2 ≤ . . . ≤ xim with respect to a given order on the
set of strings over A. We define the grammar based information of X as

GR(X) =
∣

∣G
(

xi1 αi1 · · ·xim αim

)
∣

∣,

where the input of the grammar construction G is understood as the concatenation of the strings.

By definition GR is non-negative. However, experiments show that submodularity is violated, but the amount
of violation still allows to draw causal conclusions for sufficiently large strings.

7.3 Experiments

This section reports the results on causal inference using the introduced LZ-information and grammar based
information measures. Matlab code of the algorithms used in the experiments can be downloaded from the
homepage of the first author.

Experiment 1: Markov chains of English texts
We start with a string of English text s0 from which we construct further strings s1, . . . , sk as follows: To
generate si+1 we translate si using an automatic translator from Google4 to a randomly chosen European
language. Then si+1 is defined as the string that we obtain when we translate si back to English using the
same translator. Since si+1 is determined by si, the process can be modeled by a ’Markov’ chain s 0 → · · · →
sk. We then apply the PC algorithm5 to infer the corresponding equivalence class of (monotonically) faithful
causal models consisting of the DAGs:

s0 ← · · · ← si → · · · → sk for 0 ≤ i ≤ k.

In our experiments we chose several starting texts of 1000 to 5000 symbols (e.g. news articles and the
abstract of this paper) and generated three strings (k = 3) using the described procedure. In every string we
transformed all non-space characters to numbers 0, . . . , 8 using a modulo operation on the ASCII value to
reduce the alphabet size. Repeated spaces were deleted and the space character has been encoded separately
by the number 9 to ensure that words of the string remain separated.
Results: Based on the two information measures, the PC algorithm returned the correct class of DAGs in
every case. For LZ-information the chosen threshold used to determine independence did not even have to
depend on the starting texts s0. Grammar based information seems to be more sensitive to the string lengths
involved and we had to choose a different threshold for every chosen text s 0. Further, we successfully tried
the method on the chain of preliminary versions of the abstract of this paper.

4accessible at http://translate.google.de/
5Our implementation of the PC algorithm for causal inference was based on the BNT-Toolbox for Matlab written by

Kevin Murphy and available at http://code.google.com/p/bnt/.
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Finally note that methods based on compression distance could also be applied to recover the correct
equivalence class. The crucial difference to our approach consists in the fact that we did not have to assume
that the underlying graph is a tree.

Experiment 2: Four-node networks
We want to infer the equivalence classes of (monotonically) faithful causal models depicted in Figures (a)
and (b) below. To this end we randomly choose segments of a large English text and then construct the
strings corresponding to the nodes a, b, c and d in a way that ensures the resulting observation {a, b, c, d} to
be (monotonically) faithful. Explicitely, we choose segments sx and sxy for each node x and for each edge
between nodes x and y respectively. Further, for every ordered triple of nodes (x, y, z) whose subgraph is
not equal to x → y ← z, we pick a segment sxyz. This way we obtain the following segments with respect
to the graph in Figure (a):

sa, sb, sc, sd, sab, sac, sbd, scd, sbac, sabd, sacd

and with respect to the graph in Figure (b) we get segments

sa, sb, sc, sd, sac, sad, sbc, sbd, scad, scbd.

Finally, the string at a node is constructed as the concatenation of all segments that contain the name of the
node in its index (the order is arbitrary), e.g. in the case of Figure (a)

b = sbsabsbdsbacsabd.

As text source we chose an English version of Anna Karenina by Lev Tolstoi 6. We then transformed all
non-space characters to numbers from 0, . . . , 8 using a modulo operation on the ASCII value to reduce the
size of the alphabet. Repeated spaces were deleted and the space character has been encoded separately by
the number 9 to ensure that words of the string remain separated. The resulting string consisted of a total of
approximately two million symbols. Using the above construction, we generated 100 observations {a, b, c, d}
with respect to each graph and applied the PC algorithm. The length N of the randomly chosen segments
was chosen uniformly between 100 and 200 in the first run and between 300 and 500 in the second run. The
choice of the threshold to determine independence depended only on the information measure and on the
two possible ranges of N , but not on the individual observations. Further, the graph of Figure (b) implies an
unconditional independence of a and b. Since two disjoint segments of English text can not be expected to be
independent, we conditioned all informations that we calculate on background knowledge in terms of fixed
segment of length 5000.

(a)
b

a

c

d

Correct answers of PC:
N ∈ [100, 200]
LZ : 98%
GR : 53%

N ∈ [300, 500]
LZ : 100%
GR : 56%

(b)
c

a

d

b

Correct answers of PC:
N ∈ [100, 200]
LZ : 95%
GR : 97%

N ∈ [300, 500]
LZ : 100%
GR : 99%

Results: Above, the percentages of correct results from the PC-algorithm are shown. Note that using LZ-
information we were able to recover the correct equivalence class in almost all runs independently of the
graph structure and segment length. Grammar based inference did not perform quite as well, but in the
majority of cases in which it did not return the correct Markov equivalence class most of the independences
still were detected correctly.

8 Conclusions

We have introduced conditional dependence measures that originate from submodular measures of infor-
mation. We argued that these notions of conditional dependence (generalizing statistical dependence) can
be used to infer the causal structure among observations even if the latter are not generated by i.i.d. sam-
pling. To this end, we formulated a generalized causal Markov condition (with significant formal analogies
to the statistical one) and proved that the condition is justified provided that the attention is restricted to a
class of causal mechanisms that depends on the underlying measure of information. We demonstrated that
existing compression schemes like Lempel-Ziv define interesting notions of information and described the
class of mechanisms that justify the causal Markov condition in this case. Accordingly, we showed that the
PC-algorithm successfully infers causal relations among texts when based on a notion of dependence that is
induced by compression schemes.

6The text is available at http://www.gutenberg.org/etext/1399.
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Abstract

We consider the problem of planning in a stochastic and discounted environment with a limited
numerical budget. More precisely, we investigate strategies exploring the set of possible sequences
of actions, so that, once all available numerical resources (e.g. CPU time, number of calls to a
generative model) have been used, one returns a recommendation on the best possible immediate
action to follow based on this exploration. The performance of a strategy is assessed in terms of
its simple regret, that is the loss in performance resulting from choosing the recommended action
instead of an optimal one. We first provide a minimax lower bound for this problem, and show
that a uniform planning strategy matches this minimax rate (up to a logarithmic factor). Then we
propose a UCB (Upper Confidence Bounds)-based planning algorithm, called OLOP (Open-Loop
Optimistic Planning), which is also minimax optimal, and prove that it enjoys much faster rates
when there is a small proportion of near-optimal sequences of actions. Finally, we compare our
results with the regret bounds one can derive for our setting with bandits algorithms designed for
an infinite number of arms.

1 Introduction
We consider the problem of planning in general stochastic and discounted environments. More precisely, the
decision making problem consists in an exploration phase followed by a recommendation. First, the agent
explores freely the set of possible sequences of actions (taken from a finite set A of cardinality K), using a
finite budget of n actions. Then the agent makes a recommendation on the first action a(n) ∈ A to play. This
decision making problem is described precisely in Figure 1. The goal of the agent is to find the best way to
explore its environment (first phase) so that, once the available resources have been used, he is able to make
the best possible recommendation on the action to play in the environment.

During the exploration of the environment, the agent iteratively selects sequences of actions, under the
global constraint that he can not take more than n actions in total, and receives a reward after each action.
More precisely, at time step t during the mth sequence, the agent played am1:t = am1 . . . amt ∈ At = A× . . . A
and receives a discounted reward γtY mt where γ ∈ (0, 1) is the discount factor. We make a stochastic
assumption on the generating process for the reward: given am1:t, Yt is drawn from a probability distribution
ν(am1:t) on [0, 1]. Given a ∈ At, we write µ(a) for the mean of the probability ν(a).

The performance of the recommended action a(n) ∈ A is assessed in terms of the so-called simple regret
rn, which is the performance loss resulting from choosing this sequence and then following an optimal path
instead of following an optimal path from the beginning:

rn = V − V (a(n)),

where V (a(n)) is the (discounted) value of the action (or sequence) a(n), defined for any finite sequence of
actions a ∈ Ah as:

V (a) = sup
u∈A∞:u1:h=a

∑
t≥1

γtµ(u1:t), (1)

and V is the optimal value, that is the maximum expected sum of discounted rewards one may obtain (i.e. the
sup in (1) is taken over all sequences in A∞).

Note that this simple regret criterion has already been studied in multi-armed bandit problems, see Bubeck
et al. (2009a); Audibert et al. (2010).
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Exploration in a stochastic and discounted environment.

Parameters available to the agent: discount factor γ ∈ (0, 1), number of actions K, number
of rounds n.

Parameters unknown to the agent: the reward distributions ν(a), a ∈ A∗.

For each episode m ≥ 1; for each moment in the episode t ≥ 1;

(1) If n actions have already been performed then the agent outputs an action a(n) ∈ A
and the game stops.

(2) The agent chooses an action am
t ∈ A.

(3) The environment draws Y m
t ∼ ν(am

1:t) and the agent receives the reward γtY m
t .

(4) The agent decides to either move the next moment t + 1 in the episode or to reset to
its initial position and move the next episode m+ 1.

Goal: maximize the value of the recommended action (or sequence): V (a(n)) (see (1) for
the definition of the value of an action).

Figure 1: Exploration in a stochastic and discounted environment.

An important application of this framework concerns the problem of planning in Markov Decision Pro-
cesses (MDPs) with very large state spaces. We assume that the agent possesses a generative model which
enables to generate a reward and a transition from any state-action to a next state, according to the underlying
reward and transition model of the MDP. In this context, we propose to use the generative model to perform
a planning from the current state (using a finite budget of n calls to a generative model) to generate a near-
optimal action a(n) and then apply a(n) in the real environment. This action modifies the environment and
the planning procedure is repeated from the next state to select the next action and so on. From each state,
the planning consists in the exploration of the set of possible sequences of actions as described in Figure 1,
where the generative model is used to generate the rewards.

Note that, using control terminology, the setting described above (from a given state) is called “open-
loop” planning, because the class of considered policies (i.e. sequences of actions) are only function of time
(and not of the underlying resulting states). This open-loop planning is in general sub-optimal compared
to the optimal (closed-loop) policy (mapping from states to actions). However, here, while the planning is
open-loop (i.e. we do not take into consideration the subsequent states in the planning), the resulting general
policy is closed-loop (since the chosen action depends on the current state).

This approach to MDPs has already been investigated as an alternative to usual dynamic programming
approaches (which approximate the optimal value function to design a near optimal policy) to circumvent the
computational complexity issues. For example, Kearns et al. describe a sparse sampling method that uses
a finite amount of computational resources to build a look-ahead tree from the current state, and returns a
near-optimal action with high probability.

Another field of application is POMDPs (Partially Observable Markov Decision Problems), where from
the current belief state an open-loop plan may be built to select a near-optimal immediate action (see e.g. Yu
et al. (2005); Hsu et al. (2007)). Note that, in these problems, it is very common to have a limited budget
of computational resources (CPU time, memory, number of calls to the generative model, ...) to select the
action to perform in the real environment, and we aim at making an efficient use of the available resources to
perform the open-loop planning.

Moreover, in many situations, the generation of state-transitions is computationally expensive, thus it is
critical to make the best possible use of the available number of calls to the model to output the action. For
instance, an important problem in waste-water treatment concerns the control of a biochemical process for
anaerobic digestion. The chemical reactions involve hundreds of different bacteria and the simplest models
of the dynamics already involve dozens of variables (for example, the well-known model called ADM1 Bat-
stone et al. (2002) contains 32 state variables) and their simulation is numerically heavy. Because of the curse
of dimensionality, it is impossible to compute an optimal policy for such model. The methodology described
above aims at a less ambitious goal, and search for a closed-loop policy which is open-loop optimal at each
time step. While this policy is suboptimal, it is also a more reasonable target in terms of computational
complexity. The strategy considered here proposes to use the model to simulate transitions and perform a
complete open-loop planning at each time step.
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The main contribution of the paper is the analysis of an adaptive exploration strategy of the search space,
called Open-Loop Optimistic Planning (OLOP), which is based on the “optimism in the face of uncertainty”
principle, i.e. where the most promising sequences of actions are explored first. The idea of optimistic
planning has already been investigated in the simple case of deterministic environments, Hren and Munos
(2008). Here we consider the non-trivial extension of this optimistic approach to planning in stochastic
environments. For that purpose, upper confidence bounds (UCBs) are assigned to all sequences of actions,
and the exploration expands further the sequences with highest UCB. The idea of selecting actions based
on UCBs comes from the multi-armed bandits literature, see Lai and Robbins (1985); Auer et al. (2002).
Planning under uncertainty using UCBs has been considered previously in Chang et al. (2007) (the so-called
UCB sampling) and in Kocsis and Szepesvari (2006), where the resulting algorithm, UCT (UCB applied
to Trees), has been successfully applied to the large scale tree search problem of computer-go, see Gelly
et al. (2006). However, its regret analysis shows that UCT may perform very poorly because of overly-
optimistic assumptions in the design of the bounds, see Coquelin and Munos (2007). Our work is close in
spirit to BAST (Bandit Algorithm for Smooth Trees), Coquelin and Munos (2007), the Zooming Algorithm,
Kleinberg et al. (2008) and HOO (Hierarchical Optimistic Optimization), Bubeck et al. (2009b). Like in these
previous works, the performance bounds of OLOP are expressed in terms of a measure of the proportion of
near-optimal paths.

However, as we shall discuss in Section 4, these previous algorithms fail to obtain minimax guarantees
for our problem. Indeed, a particularity of our planning problem is that the value of a sequence of action
is defined as the sum of discounted rewards along the path, thus the rewards obtained along any sequence
provides information, not only about that specific sequence, but also about any other sequence sharing the
same initial actions. OLOP is designed to use this property as efficiently as possible, to derive tight upper-
bounds on the value of each sequence of actions.

Note that our results does not compare with traditional regret bounds for MDPs, such as the ones proposed
in Auer et al. (2009). Indeed, in this case one compares to the optimal closed-loop policy, and the resulting
regret usually depends on the size of the state space (as well as on other parameters of the MDP).

Outline. We exhibit in Section 2 the minimax rate (up to a logarithmic factor) for the simple regret in
discounted and stochastic environments: both lower and upper bounds are provided. Then in Section 3 we
describe the OLOP strategy, and show that if there is a small proportion of near-optimal sequences of actions,
then faster rates than minimax can be derived. In Section 4 we compare our results with previous works and
present several open questions. Finally the Appendix contains the analysis of OLOP.

Notations To shorten the equations we use several standard notations over alphabets. We collect them here:
A0 = {∅}, A∗ is the set of finite words over A (including the null word ∅), for a ∈ A∗ we note h(a) the
integer such that a ∈ Ah(a), aAh = {ab, b ∈ Ah}, for a ∈ Ah and h′ > h we note a1:h′ = a∅ . . . ∅ and
a1:0 = ∅.

2 Minimax optimality
In this section we derive a lower bound on the simple regret (in the worst case) of any agent, and propose a
simple (uniform) forecaster which attains this optimal minimax rate (up to a logarithmic factor). The main
purpose of the section on the uniform planning is to show explicitly the special concentrations property that
our model enjoys.

2.1 Minimax lower bound
We propose here a new lower bound, whose proof follows from a simple adaptation of the technique devel-
oped in Auer et al. (2003). Note that this lower bound is not a particular case of the ones derived in Kleinberg
et al. (2008) or Bubeck et al. (2009b) in a more general framework, as we shall see in Section 4.

Theorem 1 Any agent satisfies:

sup
ν

Ern =


Ω
((

logn
n

) log 1/γ
logK

)
if γ
√
K > 1,

Ω
(√

logn
n

)
if γ
√
K ≤ 1.

2.2 Uniform Planning
To start gently, let us consider first (and informally) a naive version of the uniform planning. One can choose
a depth H , uniformly test all sequences of actions in AH (with (n/H)/KH samples for each sequence), and

479



then return the empirical best sequence. Cutting the sequences at depth H implies an error of order γH , and

relying on empirical estimates with (n/H)/KH samples adds an error of order
√

HKH

n , leading to a simple

regret bounded as O
(
γH +

√
HKH

n

)
. Optimizing over H yields an upper bound on the simple regret of the

naive uniform planning of order:

O

((
log n
n

) log 1/γ
logK+2 log 1/γ

)
, (2)

which does not match the lower bound. The cautious reader probably understands why this version of uni-
form planning is suboptimal. Indeed we do not use the fact that any sequence of actions of the form ab gives
information on the sequences ac. Hence, the concentration of the empirical mean for short sequences of
actions is much faster than for long sequences. This is the critical property which enables us to fasten the
rates with respect to traditional methods, see Section 4 for more discussion on this.

We describe now the good version of uniform planning. Let H ∈ N be the largest integer such that
HKH ≤ n. Then the procedure goes as follows: For each sequence of actions a ∈ AH , the uniform planning
allocates one episode (of length H) to estimate the value of the sequence a, that is it receives Y at ∼ ν(a1:t),
1 ≤ t ≤ H (drawn independently). At the end of the allocation procedure, it computes for all a ∈ Ah,
h ≤ H , the empirical average reward of the sequence a:

µ̂(a) =
1

KH−h

∑
b∈AH :b1:h=a

Y bh .

(obtained with KH−h samples.) Then, for all a ∈ AH , it computes the empirical value of the sequence a:

V̂ (a) =
H∑
t=1

γtµ̂(a1:t).

It outputs a(n) ∈ A defined as the first action of the sequence arg maxa∈AH V̂ (a) (ties break arbitrarily).

This version of uniform planning makes a much better use of the reward samples than the naive version.
Indeed, for any sequence a ∈ Ah, it collects the rewards Y bh received for sequences b ∈ aAH−h to estimate
µ(a). Since |aAH−h| = KH−h, we obtain an estimation error for µ(a) of order

√
Kh−H . Then, thanks

to the discounting, the estimation error for V (a), with a ∈ AH , is of order K−H/2
∑H
h=1(γ

√
K)h. On the

other hand, the approximation error for cutting the sequences at depthH is still of order γH . Thus, sinceH is
the largest depth (given n and K) at which we can explore once each node, we obtain the following behavior:
When K is large, precisely γ

√
K > 1, then H is small and the estimation error is of order γH , resulting in a

simple regret of order n−(log 1/γ)/ logK . On the other hand, if γ is small, precisely γ
√
K < 1, then the depth

H becomes less important, and the estimation error is of order K−H/2, resulting in a simple regret of order
n−1/2. This reasoning can easily be made precise to prove the following Theorem.

Theorem 2 The (good) uniform planning satisfies:

Ern ≤



O

(√
log n

(
logn
n

) log 1/γ
logK

)
if γ
√
K > 1,

O

(
(logn)2√

n

)
if γ
√
K = 1,

O

(
logn√
n

)
if γ
√
K < 1.

Remark 1 We do not know whether the
√

log n (respectively (log n)3/2 in the case γ
√
K = 1) gap between

the upper and lower bound comes from a suboptimal analysis (either in the upper or lower bound) or from a
suboptimal behavior of the uniform forecaster.

3 OLOP (Open Loop Optimistic Planning)
The uniform planning described in Section 2.2 is a static strategy, it does not adapt to the rewards received in
order to improve its exploration. A stronger strategy could select, at each round, the next sequence to explore
as a function of the previously observed rewards. In particular, since the value of a sequence is the sum
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of discounted rewards, one would like to explore more intensively the sequences starting with actions that
already yielded high rewards. In this section we describe an adaptive exploration strategy, called Open Loop
Optimistic Planning (OLOP), which explores first the most promising sequences, resulting in much stronger
guarantees than the one derived for uniform planning.

OLOP proceeds as follows. It assigns upper confidence bounds (UCBs), called B-values, to all sequences
of actions, and selects at each round a sequence with highest B-value. This idea of a UCB-based exploration
comes from the multi-armed bandits literature, see Auer et al. (2002). It has already been extended to hi-
erarchical bandits, Chang et al. (2007); Kocsis and Szepesvari (2006); Coquelin and Munos (2007), and to
bandits in metric (or even more general) spaces, Auer et al. (2007); Kleinberg et al. (2008); Bubeck et al.
(2009b).

Like in these previous works, we express the performance of OLOP in terms of a measure of the pro-
portion of near-optimal paths. More precisely, we define κc ∈ [1,K] as the branching factor of the set of
sequences in Ah that are cγ

h+1

1−γ -optimal, where c is a positive constant, i.e.

κc = lim sup
h→∞

∣∣∣∣{a ∈ Ah : V (a) ≥ V − c γ
h+1

1− γ

}∣∣∣∣1/h . (3)

Intuitively, the set of sequences a ∈ Ah that are γh+1

1−γ -optimal are the sequences for which the perfect

knowledge of the discounted sum of mean rewards
∑h
t=1 γ

tµ(a1:t) is not sufficient to decide whether a
belongs to an optimal path or not, because of the unknown future rewards for t > h. In the main result,
we consider κ2 (rather than κ1) to account for an additional uncertainty due to the empirical estimation of∑h
t=1 γ

tµ(a1:t). In Section 4, we discuss the link between κ and the other measures of the set of near-optimal
states introduced in the previously mentioned works.

3.1 The OLOP algorithm
The OLOP algorithm is described in Figure 2. It makes use of some B-values assigned to any sequence of
actions in AL. At time m = 0, the B-values are initialized to +∞. Then, after episode m ≥ 1, the B-values
are defined as follows: For any 1 ≤ h ≤ L, for any a ∈ Ah, let

Ta(m) =
m∑
s=1

1{as1:h = a}

be the number of times we played a sequence of actions beginning with a. Now we define the empirical
average of the rewards for the sequence a as:

µ̂a(m) =
1

Ta(m)

m∑
s=1

Y sh1{as1:h = a},

if Ta(m) > 0, and 0 otherwise. The corresponding upper confidence bound on the value of the sequence of
actions a is by definition:

Ua(m) =
h∑
t=1

(
γtµ̂a1:t(m) + γt

√
2 logM
Ta1:t(m)

)
+
γh+1

1− γ
,

if Ta(m) > 0 and +∞ otherwise. Now that we have upper confidence bounds on the value of many sequences
of actions we can sharpen these bounds for the sequences a ∈ AL by defining the B-values as:

Ba(m) = inf
1≤h≤L

Ua1:h(m).

At each episode m = 1, 2, . . . ,M , OLOP selects a sequence am ∈ AL with highest B–value, ob-
serves the rewards Y mt ∼ ν(am1:t), t = 1, . . . , L provided by the environment, and updates the B–values.
At the end of the exploration phase, OLOP returns an action that has been the most played, i.e. a(n) =
argmaxa∈A Ta(M).

3.2 Main result
Theorem 3 (Main Result) Let κ2 ∈ [1,K] be defined by (3). Then, for any κ′ > κ2, OLOP satisfies:

Ern =


Õ

(
n
− log 1/γ

log κ′

)
if γ
√
κ′ > 1,

Õ

(
n−

1
2

)
if γ
√
κ′ ≤ 1.

(We say that un = Õ(vn) if there exists α, β > 0 such that un ≤ α(log(vn))βvn)
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Open Loop Optimistic Planning:

Let M be the largest integer such that MdlogM/(2 log 1/γ)e ≤ n. Let L =
dlogM/(2 log 1/γ)e.

For each episode m = 1, 2, . . . ,M ;

(1) The agent computes the B–values at time m− 1 for sequences of actions in AL (see
Section 3.1) and chooses a sequence that maximizes the corresponding B–value:

am ∈ argmax
a∈AL

Ba(m− 1).

(2) The environment draws the sequence of rewards Y m
t ∼ ν(am

1:t), t = 1, . . . , L.

Return an action that has been the most played: a(n) = argmaxa∈A Ta(M).

Figure 2: Open Loop Optimistic Planning

Remark 2 One can see that the rate proposed for OLOP greatly improves over the uniform planning when-
ever there is a small proportion of near-optimal paths (i.e. κ is small). Note that this does not contradict the
lower bound proposed in Theorem 1. Indeed κ provides a description of the environment ν, and the bounds
are expressed in terms of that measure, one says that the bounds are distribution-dependent. Nonetheless,
OLOP does not require the knowledge of κ, thus one can take the supremum over all κ ∈ [1,K], and see that
it simply replaces κ by K, proving that OLOP is minimax optimal (up to a logarithmic factor).

Remark 3 In the analysis of OLOP, we relate the simple regret to the more traditional cumulative regret,

defined at round n as Rn =
∑M
m=1

(
V − V (am)

)
. Indeed, in the proof of Theorem 3, we first show

that rn = Õ
(
Rn
n

)
, and then we bound (in expectation) this last term. Thus the same bounds apply to

ERn with a multiplicative factor of order n. In this paper, we focus on the simple regret rather than on
the traditional cumulative regret because we believe that it is a more natural performance criterion for the
planning problem considered here. However note that OLOP is also minimax optimal (up to a logarithmic
factor) for the cumulative regret, since one can also derive lower bounds for this performance criterion using
the proof of Theorem 1.

Remark 4 One can also see that the analysis carries over to rLn = V −V (argmaxa∈AL Ta(M)), that is we
can bound the simple regret of a sequence of actions in AL rather than only the first action a(n) ∈ A. Thus,
using n actions for the exploration of the environment, one can derive a plan of length L (of order log n) with
the optimality guarantees of Theorem 3.

4 Discussion
In this section we compare the performance of OLOP with previous algorithms that can be adapted to our
framework. This discussion is summarized in Figure 3. We also point out several open questions raised by
these comparisons.

Comparison with Zooming Algorithm/HOO: In Kleinberg et al. (2008) and Bubeck et al. (2009b), the
authors consider a very general version of stochastic bandits, where the set of arms X is a metric space (or
even more general spaces in Bubeck et al. (2009b)). When the underlying mean-payoff function is 1-Lipschitz
with respect to the metric (again, weaker assumption are derived in Bubeck et al. (2009b)), the authors
propose two algorithms, respectively the Zooming Algorithm and HOO, for which they derive performances
in terms of either the zooming dimension or the near-optimality dimension. In a metric space, both of these
notions coincide, and the corresponding dimension d is defined such that the number of balls of diameter ε
required to cover the set of arms that are ε-optimal is of order ε−d. Then, for both algorithms, one obtains a
simple regret of order Õ(n−1/(d+2)) (thanks to Remark 3).

Up to minor details, one can see our framework as a A∞-armed bandit problem, where the mean-payoff
function is the sum of discounted rewards. A natural metric ` on this space can be defined as follows: For
any a, b ∈ A∞, `(a, b) = γh(a,b)+1

1−γ , where h(a, b) is the maximum depth t ≥ 0 such that a1:t = b1:t. One
can very easily check that the sum of discounted reward is 1-Lipschitz with respect to that metric, since
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∑
t≥1 γ

t|µ(a1:t)−µ(b1:t)| =
∑
t≥h(a,b)+1 γ

t|µ(a1:t)−µ(b1:t)| ≤ `(a, b). We show now that κ2, defined by
(3), is closely related to the near-optimality dimension. Indeed, note that the set aA∞ can be seen as a ball of
diameter γ

h(a)+1

1−γ . Thus, from the definition of κ2, the number of balls of diameter γ
h+1

1−γ required to cover the

set of 2γ
h+1

1−γ -optimal paths is of order of κh, which implies that the near-optimality dimension is d = log κ
log 1/γ .

Thanks to this result, we can see that applying the Zooming Algorithm or HOO in our setting yield a simple
regret bounded as:

Ern = Õ(n−1/(d+2)) = Õ(n−
log 1/γ

log κ+2 log 1/γ ). (4)
Clearly, this rate is always worse than the ones in Theorem 3. In particular, when one takes the supremum

over all κ, we find that (4) gives the same rate as the one of naive uniform planning in (2). This was expected
since these algorithms do not use the specific shape of the global reward function (which is the sum of rewards
obtained along a sequence) to generalize efficiently across arms. More precisely, they do not consider the
fact that a reward sample observed for an arm (or sequence) ab provides strong information about any arm in
aA∞. Actually, the difference between HOO and OLOP is the same as the one between the naive uniform
planning and the good one (see Section 2.2).

However, although things are obvious for the case of uniform planning, in the case of OLOP, it is much
more subtle to prove that it is indeed possible to collect enough reward samples along sequences ab, b ∈ A∗
to deduce a sharp estimation of µ(a). Indeed, for uniform planning, if each sequence ab, b ∈ Ah is chosen
once, then one may estimate µ(a) using Kh reward samples. However in OLOP, since the exploration is
expected to focus on promising sequences rather than being uniform, it is much harder to control the number
of times a sequence a ∈ A∗ has been played. This difficulty makes the proof of Theorem 3 quite intricate
compared to the proof of HOO for instance.

Comparison with UCB-AIR: When one knows that there are many near-optimal sequences of actions
(i.e. when κ is close toK), then one may be convinced that among a certain number of paths chosen uniformly
at random, there exists at least one which is very good with high probability. This idea is exploited by the
UCB-AIR algorithm of Wang et al. (2009), designed for infinitely many-armed bandits, where at each round
one chooses either to sample a new arm (or sequence in our case) uniformly at random, or to re-sample an arm
that has already been explored (using a UCB-like algorithm to choose which one). The regret bound of Wang
et al. (2009) is expressed in terms of the probability of selecting an ε-optimal sequence when one chooses
the actions uniformly at random. More precisely, the characteristic quantity is β such that this probability
is of order of εβ . Again, one can see that κ2 is closely related to β. Indeed, our assumption says that the
proportion of ε-optimal sequences of actions (with ε = 2γ

h+1

1−γ ) is O(κh), resulting in κ = Kγβ . Thanks to
this result, we can see that applying UCB-AIR in our setting yield a simple regret bounded as:

Ern =

{
Õ(n−

1
2 ) if κ > Kγ

Õ(n−
1

1+β ) = Õ(n−
log 1/γ

logK/κ+log 1/γ ) if κ ≤ Kγ
As expected, UCB-AIR is very efficient when there is a large proportion of near-optimal paths. Note that
UCB-AIR requires the knowledge of β (or equivalently κ).

Figure 3 shows a comparison of the exponents in the simple regret bounds for OLOP, uniform planning,
UCB-AIR, and Zooming/HOO (in the case Kγ2 > 1). We note that the rate for OLOP is better than UCB-
AIR when there is a small proportion of near-optimal paths (small κ). Uniform planning is always dominated
by OLOP and corresponds to a minimax lower bound for any algorithm. Zooming/HOO are always strictly
dominated by OLOP and they do not attain minimax performances.

Comparison with deterministic setting: In Hren and Munos (2008), the authors consider a deterministic
version of our framework, precisely they assume that the rewards are a deterministic function of the sequence
of actions. Remarkably, in the case κγ2 > 1, we obtain the same rate for the simple regret as Hren and Munos
(2008). Thus, in this case, we can say that planning in stochastic environments is not harder than planning in
deterministic environments (moreover, note that in deterministic environments there is no distinction between
open-loop and closed-loop planning).

Open questions: We identify four important open questions. (i) Is it possible to attain the performances
of UCB-AIR when κ is unknown? (ii) Is it possible to improve OLOP if κ is known? (iii) Can we combine
the advantages of OLOP and UCB-AIR to derive an exploration strategy with improved rate in intermediate
cases (i.e. when 1/γ2 < κ < γK)? (iv) What is a problem-dependent lower bound (in terms of κ or other
measures of the environment) in this framework? Obviously these problems are closely related, and the
current behavior of the bounds suggests that question (iv) might be tricky. As a side question, note that
OLOP requires the knowledge of the time-horizon n, we do not know whether it is possible to obtain the
same guarantees with an anytime algorithm.
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Figure 3: Comparison of the exponent rate of the bounds on the simple regret for OLOP, (good) uniform
planning, UCB-AIR, and Zooming/HOO, as a function of κ ∈ [1,K], in the case Kγ2 > 1.
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Appendix. Proof of Theorem 3
The proof of Theorem 3 is quite subtle. To present it in a gentle way we adopt a pyramidal proof rather than
a pedagogic one. We propose seven lemmas, which we shall not motivate in depth, but prove in details. The
precise architecture of the proof is as follows: Lemma 4 is a preliminary step, it justifies Remark 3. Then
Lemma 5 underlines the important cases that we have to treat to show that suboptimal arms are not pulled
too often. Lemma 6 takes care of one of these cases. Then, from Lemma 7 to 10, each Lemma builds on its
predecessor. The main result eventually follows from Lemma 4 and 10 together with a simple optimization
step.

We introduce first a few notations that will be useful. Let 1 ≤ H ≤ L and a∗ ∈ AL such that V (a∗) = V .
We define now some useful sets for any 1 ≤ h ≤ H and 0 ≤ h′ < h;

I0 = {∅}, Ih =
{
a ∈ Ah : V − V (a) ≤ 2γh+1

1− γ

}
, Jh =

{
a ∈ Ah : a1:h−1 ∈ Ih−1 and a 6∈ Ih

}
.

Note that, from the definition of κ2, we have that for any κ′ > κ2, there exists a constant C such that for
any h ≥ 1,

|Ih| ≤ Cκ′. (5)
Now for 1 ≤ m ≤M , and a ∈ At with t ≤ h, write

Pah,h′(m) =
{
b ∈ aAh−t ∩ Jh : Tb(m) ≥ 8

γ2
(h+ 1)2γ2(h′−h) logM + 1

}
.

Finally we also introduce the following random variable:

τah,h′(m) = 1

{
Ta(m− 1) <

8
γ2

(h+ 1)2γ2(h′−h) logM + 1 ≤ Ta(m)
}
.

Lemma 4 The following holds true,

rn ≤
2KγH+1

1− γ
+

3K
M

H∑
h=1

∑
a∈Jh

γh

1− γ
Ta(M).

Proof: Since a(n) ∈ arg maxa∈A Ta(M), and
∑
a∈A Ta(M) = M , we have Ta(n)(M) ≥M/K, and thus:

M

K

(
V − V (a(n))

)
≤
(
V − V (a(n))

)
Ta(n)(M) ≤

M∑
m=1

V − V (am).

Hence, we have, rn ≤ K
M

∑M
m=1 V − V (am). Now remark that, for any sequence of actions a ∈ AL, we

have either:
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• a1:H ∈ IH ; which implies V − V (a) ≤ 2γH+1

1−γ .

• or there exists 1 ≤ h ≤ H such that a1:h ∈ Jh; which implies V−V (a) ≤ V−V (a1:h−1)+ γh

1−γ ≤
3γh

1−γ .

Thus we can write:

M∑
m=1

(V − V (am)) =
M∑
m=1

(V − V (am))
(
1{am ∈ IH}+ 1{∃1 ≤ h ≤ H : am1:h ∈ Jh}

)

≤ 2γH+1

1− γ
M + 3

H∑
h=1

∑
a∈Jh

γh

1− γ
Ta(M),

which ends the proof of Lemma 4.

The rest of the proof is devoted to the analysis of the term E
∑
a∈Jh Ta(M). In the stochastic bandit

literature, it is usual to bound the expected number of times a suboptimal action is pulled by the inverse sub-
optimality (of this action) squared, see for instance Auer et al. (2002) or Bubeck et al. (2009b). Specialized
to our setting, this implies a bound on ETa(M), for a ∈ Jh, of order γ−2h. However, here, we obtain much
stronger guarantees, resulting in the faster rates. Namely we show that E

∑
a∈Jh Ta(M) is of order (κ′)h

(rather than (κ′)hγ−2h with previous methods).

The next lemma describes under which circumstances a suboptimal sequence of actions in Jh can be
selected.

Lemma 5 Let 0 ≤ m ≤ M − 1, 1 ≤ h ≤ L and a ∈ Jh. If am+1 ∈ aA∗ then it implies that one the three
following propositions is true:

∃1 ≤ h′ ≤ L : Ua∗
1:h′

(m) < V, (6)

or

h∑
t=1

γtµ̂a1:t(m) ≥ V (a) +
h∑
t=1

γt

√
2 logM
Ta1:t(m)

, (7)

or

2
h∑
t=1

γt

√
2 logM
Ta1:t(m)

>
γh+1

1− γ
. (8)

Proof: If am+1 ∈ aA∗ then it implies that Ua(m) ≥ inf1≤h′≤L Ua∗
1:h′

(m). That is either (6) is true or

Ua(m) =
h∑
t=1

γtµ̂a1:t(m) + γt

√
2 logM
Ta1:t(m)

+
γh+1

1− γ
≥ V.

In the latter case, if (7) is not satisfied, it implies

V (a) + 2
h∑
t=1

γt

√
2 logM
Ta1:t(m)

+
γh+1

1− γ
> V. (9)

Since a ∈ Jh we have V − V (a) − γh+1

1−γ ≥
γh+1

1−γ which shows that equation (9) implies (8) and ends the
proof.

We show now that both equations (6) and (7) have a vanishing probability of being satisfied.

Lemma 6 The following holds true, for any 1 ≤ h ≤ L and m ≤M ,

P(equation (6) or (7) is true) ≤ m(L+ h)M−4 = Õ(M−3).
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Proof: Since V ≤
∑h
t=1 γ

tµ(a∗1:t) + γh+1

1−γ , we have,

P(∃ 1 ≤ h ≤ L : Ua∗1:h(m) ≤ V )

≤ P
(
∃ 1 ≤ h ≤ L :

h∑
t=1

γt

(
µ̂a∗1:t(m) +

√
2 logM
Ta∗1:t(m)

)
≤

h∑
t=1

γtµ(a∗1:t) and Ta∗1:h(m) ≥ 1
)

≤ P
(
∃ 1 ≤ t ≤ L : µ̂a∗1:t(m) +

√
2 logM
Ta∗1:t(m)

≤ µ(a∗1:t) and Ta∗1:t(m) ≥ 1
)

≤
L∑
t=1

P
(
µ̂a∗1:t(m) +

√
2 logM
Ta∗1:t(m)

≤ µ(a∗1:t) and Ta∗1:t(m) ≥ 1
)
.

Now we want to apply a concentration inequality to bound this last term. To do it properly we exhibit a
martingale and apply the Hoeffding-Azuma inequality for martingale differences (see Hoeffding (1963)). Let

Sj = min{s : Ta∗1:t(s) = j}, j ≥ 1.

If Sj ≤ M , we define Ỹj = Y
Sj
t , and otherwise Ỹj is an independent random variable with law ν(a∗1:t). We

clearly have,

P
(
µ̂a∗1:t(m) +

√
2 logM
Ta∗1:t(m)

≤ µ(a∗1:t) and Ta∗1:t(m) ≥ 1
)

= P
(

1
Ta∗1:t(m)

Ta∗1:t
(m)∑

j=1

Ỹj +

√
2 logM
Ta∗1:t(m)

≤ µ(a∗1:t) and Ta∗1:t(m) ≥ 1
)

≤
m∑
u=1

P
(

1
u

u∑
j=1

Ỹj +

√
2 logM

u
≤ µ(a∗1:t)

)
.

Now we have to prove that Ỹj − µ(a∗1:t) is martingale differences sequence. This follows via an optional
skipping argument, see (Doob, 1953, Chapter VII, Theorem 2.3). Thus we obtain

P(equation (6) is true) ≤
L∑
t=1

m∑
u=1

exp
(
−2u

2 logM
u

)
= LmM−4.

The same reasoning gives
P(equation (7) is true) ≤ mhM−4,

which concludes the proof.

The next lemma proves that, if a sequence of actions has already been pulled enough, then equation (8)
is not satisfied, and thus using lemmas 5 and 6 we deduce that with high probability this sequence of actions
will not be selected anymore. This reasoning is made precise in Lemma 8.

Lemma 7 Let 1 ≤ h ≤ L, a ∈ Jh and 0 ≤ h′ < h. Then equation (8) is not satisfied if the two following
propositions are true:

∀0 ≤ t ≤ h′, Ta1:t(m) ≥ 8
γ2

(h+ 1)2γ2(t−h) logM, (10)

and

Ta(m) ≥ 8
γ2

(h+ 1)2γ2(h′−h) logM. (11)

Proof: Assume that (10) and (11) are true. Then we clearly have:

2
h∑
t=1

γt

√
2 logM
Ta1:t(m)

= 21h′>0

h′∑
t=1

γt

√
2 logM
Ta1:t(m)

+ 2
h∑

t=h′+1

γt

√
2 logM
Ta1:t(m)

≤ γh+1

h+ 1
h′ +

γh+1

h+ 1

h∑
t=h′+1

γt−h
′

≤ γh+1

h+ 1

(
h′ +

γ

1− γ

)
≤ γh+1

1− γ
,
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which proves the result.

Lemma 8 Let 1 ≤ h ≤ L, a ∈ Jh and 0 ≤ h′ < h. Then τah,h′(m+ 1) = 1 implies that either equation (6)
or (7) is satisfied or the following proposition is true:

∃0 ≤ t ≤ h′ : |Pa1:t
h,h′(m)| < γ2(t−h′). (12)

Proof: If τah,h′(m + 1) = 1 then it means that am+1 ∈ aA∗ and (11) is satisfied. By Lemma 5 this implies
that either (6), (7) or (8) is true and (11) is satisfied. Now by Lemma 7 this implies that (6) is true or (7) is
true or (10) is false. We now prove that if (12) is not satisfied then (10) is true, which clearly ends the proof.
This follows from: For any 0 ≤ t ≤ h′,

Ta1:t(m) =
∑

b∈a1:tAh−t

Tb(m) ≥ γ2(t−h′) 8
γ2

(h+ 1)2γ2(h′−h) logM =
8
γ2

(h+ 1)2γ2(t−h) logM.

The next lemma is the key step of our proof. Intuitively, using lemmas 5 and 8, we have a good control on
sequences for which equation (12) is satisfied. Note that (12) is a property which depends on sub-sequences
of a from length 1 to h′. In the following proof we will iteratively ”drop” all sequences which do not satisfy
(12) from length t onwards, starting from t = 1. Then, on the remaining sequences, we can apply Lemma 8.

Lemma 9 Let 1 ≤ h ≤ L and 0 ≤ h′ < h. Then the following holds true,

E|P∅h,h′(M)| = Õ

γ−2h′1h′>0

h′∑
t=0

(γ2κ′)t + (κ′)hM−2

 .

Proof: Let h′ ≥ 1 and 0 ≤ s ≤ h′. We introduce the following random variables:

ma
s = min

(
M,min

{
m ≥ 0 : |Pah,h′(m)| ≥ γ2(s−h′)

})
.

We will prove recursively that,

|P∅h,h′(m)| ≤
s∑
t=0

γ2(t−h′)|It|+
∑
a∈Is

∣∣∣∣Pah,h′ \ ∪st=0P
a1:t
h,h′(m

a1:t
t )

∣∣∣∣. (13)

The result is true for s = 0 since I0 = {∅} and by definition of m∅0,

|P∅h,h′(m)| ≤ γ−2h′ + |P∅h,h′(m) \ P∅h,h′(m
∅
0)|.

Now let us assume that the result is true for s < h′. We have:∑
a∈Is

∣∣∣∣Pah,h′(m) \ ∪st=0P
a1:t
h,h′(m

a1:t
t )

∣∣∣∣ =
∑

a∈Is+1

∣∣∣∣Pah,h′(m) \ ∪st=0P
a1:t
h,h′(m

a1:t
t )

∣∣∣∣
≤

∑
a∈Is+1

γ2(s+1−h′) +
∣∣∣∣Pah,h′(m) \ ∪s+1

t=0P
a1:t
h,h′(m

a1:t
t )

∣∣∣∣
= γ2(s+1−h′)|Is+1|+

∑
a∈Is+1

∣∣∣∣Pah,h′(m) \ ∪s+1
t=0P

a1:t
h,h′(m

a1:t
t )

∣∣∣∣,
which ends the proof of (13). Thus we proved (by taking s = h′ and m = M ):

|P∅h,h′(M)| ≤
h′∑
t=0

γ2(t−h′)|It|+
∑
a∈Ih′

∣∣∣∣Pah,h′(M) \ ∪s+1
t=0P

a1:t
h,h′(m

a1:t
t )

∣∣∣∣
=

h′∑
t=0

γ2(t−h′)|It|+
∑
a∈Jh

∣∣∣∣Pah,h′(M) \ ∪s+1
t=0P

a1:t
h,h′(m

a1:t
t )

∣∣∣∣
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Now, for any a ∈ Jh, let m̃ = max0≤t≤h′ m
a1:t
t . Note that for m ≥ m̃, equation (12) is not satisfied. Thus

we have∣∣∣∣Pah,h′ \ ∪s+1
t=0P

a1:t
h,h′(m

a1:t
t )

∣∣∣∣ =
M−1∑
m=m̃

τah,h′(m+ 1) =
M−1∑
m=0

τah,h′(m+ 1) 1{(12) is not satisfied}

≤
M−1∑
m=0

τah,h′(m+ 1) 1{(6) or (7) is satisfied}.

where the last inequality results from Lemma 8. Hence, we proved:

|P∅h,h′ | ≤
h′∑
t=0

γ2(t−h′)|It|+
M−1∑
m=0

∑
a∈Jh

1{(6) or (7) is satisfied}.

Taking the expectation, using (5) and applying Lemma 6 yield the claimed bound for h′ ≥ 1.

Now for h′ = 0 we need a modified version of Lemma 8. Indeed in this case one can directly prove
that τah,0(m + 1) = 1 implies that either equation (6) or (7) is satisfied (this follows from the fact that
τah,0(m+ 1) = 1 always imply that (10) is true for h′ = 0). Thus we obtain:

|P∅h,h′ | =
M−1∑
m=0

∑
a∈Jh

τah,0(m+ 1) ≤
M−1∑
m=0

∑
a∈Jh

1{(6) or (7) is satisfied}.

Taking the expectation and applying Lemma 6 yield the claimed bound for h′ = 0 and ends the proof.

Lemma 10 Let 1 ≤ h ≤ L. The following holds true,

E
∑
a∈Jh

Ta(M) = Õ

(
γ−2h

h∑
h′=1

(γ2κ′)h
′
+ (κ′)h(1 + γ−2hM−2)

)
.

Proof: We have the following computations:

∑
a∈Jh

Ta(M) =
∑

a∈Jh\P∅h,h−1

Ta(M) +
h−1∑
h′=1

∑
a∈P∅

h,h′\P
∅
h,h′−1

Ta(M) +
∑

a∈P∅h,0

Ta(M)

≤ 8
γ2

(h+ 1)2γ2(h−1−h)|Jh|+
h−1∑
h′=1

8
γ2

(h+ 1)2γ2(h′−1−h) logM |P∅h,h′ |+M |P∅h,0|

= Õ

(
(κ′)h + γ−2h

h−1∑
h′=1

γ2h′ |P∅h,h′ |+M |P∅h,0|

)
.

Taking the expectation and applying the bound of Lemma 9 gives the claimed bound.

Thus by combining Lemma 4 and 10 we obtain for κ′γ2 ≤ 1:

Ern = Õ
(
γH + γ−HM−1 + (κ′)Hγ−HM−3

)
,

and for κ′γ2 > 1:
Ern = Õ

(
γH + (κ′γ)HM−1 + (κ′)Hγ−HM−3

)
.

Thus in the case κ′γ2 ≤ 1, taking H = blogM/(2 log 1/γ)c yields the claimed bound; while for κ′γ2 > 1
we take H = blogM/ log κ′c. Note that in both cases we have H ≤ L (as it was required at the beginning
of the analysis).

489



Principal Component Analysis with Contaminated Data:
The High Dimensional Case

Huan Xu

The University of Texas at Austin
huan.xu@mail.utexas.edu

Constantine Caramanis

The University of Texas at Austin
caramanis@mail.utexas.edu

Shie Mannor

Technion, Israel
shie@ee.technion.ac.il

Abstract

We consider the dimensionality-reduction problem (finding a subspace approximation of
observed data) for contaminated data in the high dimensional regime, where the num-
ber of observations is of the same magnitude as the number of variables of each obser-
vation, and the data set contains some (arbitrarily) corrupted observations. We propose
a High-dimensional Robust Principal Component Analysis (HR-PCA) algorithm that is
tractable, robust to contaminated points, and easily kernelizable. The resulting subspace
has a bounded deviation from the desired one, achieves maximal robustness – a break-
down point of 50% while all existing algorithms have a breakdown point of zero, and unlike
ordinary PCA algorithms, achieves optimality in the limit case where the proportion of
corrupted points goes to zero.

1 Introduction

The analysis of very high dimensional data – data sets where the dimensionality of each observation is
comparable to or even larger than the number of observations – has drawn increasing attention in the
last few decades (Donoho, 2000; Johnstone, 2001). For example, observations on individual instances
can be curves, spectra, images or even movies, where a single observation has dimensionality ranging
from thousands to billions. Practical high dimensional data examples include DNA Microarray data,
financial data, climate data, web search engine, and consumer data. In addition, the nowadays
standard “Kernel Trick” (Schölkopf & Smola, 2002) transforms virtually every data set to a high
dimensional one. Efforts of extending traditional statistical tools (designed for the low dimensional
case) into this high-dimensional regime are generally unsuccessful. This fact has stimulated research
on formulating new data-analysis techniques able to cope with such a “dimensionality explosion.”

Principal Component Analysis (PCA) is one of the most widely used statistical techniques for
dimensionality reduction. Work on PCA dates back as early as Pearson (1901), and has become one
of the most important techniques for data compression and feature extraction. It is widely used in
statistical data analysis, communication, pattern recognition, and image processing (Jolliffe, 1986).
The standard PCA algorithm constructs the optimal (in a least-square sense) subspace approxima-
tion to observations by computing the eigenvectors or Principal Components (PCs) of the sample
covariance or correlation matrix. Its broad application can be attributed to primarily two features:
its success in the classical regime for recovering a low-dimensional subspace even in the presence of
noise, and also the existence of efficient algorithms for computation. It is well-known, however, that
precisely because of the quadratic error criterion, standard PCA is exceptionally fragile, and the
quality of its output can suffer dramatically in the face of only a few (even a vanishingly small frac-
tion) grossly corrupted points. Such non-probabilistic errors may be present due to data corruption
stemming from sensor failures, malicious tampering, or other reasons. Attempts to use other error
functions growing more slowly than the quadratic that might be more robust to outliers, results in
non-convex (and intractable) problems.

In this paper, we consider a high-dimensional counterpart of Principal Component Analysis
(PCA) that is robust to the existence of arbitrarily corrupted or contaminated data. We start
with the standard statistical setup: a low dimensional signal is (linearly) mapped to a very high
dimensional space, after which a high-dimensional Gaussian noise is added, to produce points that
no longer lie on a low dimensional subspace. At this point, we deviate from the standard setting
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in two important ways: (1) a constant fraction of the points are arbitrarily corrupted in a possibly
non-probabilistic manner. We emphasize that these “outliers” can be entirely arbitrary, rather
than from the tails of any particular distribution, e.g., the noise distribution; we call the remaining
points “authentic”; (2) the number of data points is of the same order as (or perhaps considerably
smaller than) the dimensionality. As we discuss below, these two points confound (to the best of
our knowledge) all tractable existing robust PCA algorithms.

A fundamental feature of the high dimensionality is that the noise is large in some direction,
with very high probability, and therefore standard definitions of “outliers” are of limited use in this
setting. Another important property of this setup is that the signal-to-noise ratio (SNR) can go
to zero, as the ℓ2 norm of the high-dimensional Gaussian noise scales as the square root of the
dimensionality. In the standard (i.e., low-dimensional case), a low SNR generally implies that the
signal cannot be recovered, even without any corrupted points.

The Main Result

In this paper, we give a surprisingly optimistic message: contrary to what one might expect given
the brittle nature of classical PCA, and in stark contrast to previous algorithms, it is possible
to recover such low SNR signals, in the high-dimensional regime, even in the face of a constant
fraction of arbitrarily corrupted data. Moreover, we show that this can be accomplished with an
efficient (polynomial time) algorithm, which we call High-Dimensional Robust PCA (HR-PCA). The
algorithm we propose here is tractable, provably robust to corrupted points, and asymptotically
optimal, recovering the exact low-dimensional subspace when the number of corrupted points scales
more slowly than the number of “authentic” samples – to the best of our knowledge, the only
algorithm of this kind. Moreover, it is easily kernelizable.

Organization and Notation

In Section 2 we discuss past work and the reasons that classical robust PCA algorithms fail to extend
to the high dimensional regime. In Section 3 we present the setup of the problem, and the HR-PCA
algorithm. We also provide finite sample and asymptotic performance guarantees. The performance
guarantees are proved in Section 4. Kernelization, simulation and some technical details in the
derivation of the performance guarantees are postponed to the full version (Xu et al., 2010).

Capital letters and boldface letters are used to denote matrices and vectors, respectively. A k×k
unit matrix is denoted by Ik. For c ∈ R, [c]+ , max(0, c). We let Bd , {w ∈ R

d|‖w‖ ≤ 1}, and
Sd be its boundary. We use a subscript (·) to represent order statistics of a random variable. For
example, let v1, · · · , vn ∈ R. Then v(1), · · · , v(n) is a permutation of v1, · · · , vn, in a non-decreasing
order.

2 Relation to Past Work

In this section, we discuss past work and the reasons that classical robust PCA algorithms fail to
extend to the high dimensional regime.

Much previous robust PCA work focuses on the traditional robustness measurement known as
the “breakdown point” (Huber, 1981), i.e., the percentage of corrupted points that can make the
output of the algorithm arbitrarily bad. To the best of our knowledge, no other algorithm can handle
any constant fraction of outliers with a lower bound on the error in the high-dimensional regime.
That is, the best-known breakdown point for this problem is zero. We show that the algorithm we
provide has breakdown point of 50%, which is the best break-down point possible for any algorithm.
In addition to this, we focus on providing explicit lower bounds on the performance, for all corruption
levels up to the breakdown point.

In the low-dimensional regime where the observations significantly outnumber the variables of
each observation, several robust PCA algorithms have been proposed (e.g., Devlin et al., 1981; Xu
& Yuille, 1995; Yang & Wang, 1999; Croux & Hasebroeck, 2000; De la Torre & Black, 2001; De la
Torre & Black, 2003; Croux et al., 2007; Brubaker, 2009).

We discuss three main pitfalls these and other existing algorithms face in high dimensions.
Diminishing Breakdown Point: If an algorithm’s breakdown point has an inverse dependence on

the dimensionality, then it is unsuitable in our regime. Many algorithms fall into this category.
In Donoho (1982), several covariance estimators including M-estimator (Maronna, 1976), Convex
Peeling (Barnett, 1976; Bebbington, 1978), Ellipsoidal Peeling (Titterington, 1978; Helbling, 1983),
Classical Outlier Rejection (Barnett & Lewis, 1978; David, 1981), Iterative Deletion (Dempster &
Gasko-Green, 1981) and Iterative Trimming (Gnanadesikan & Kettenring, 1972; Devlin et al., 1975)
are all shown to have breakdown points upper-bounded by the inverse of the dimensionality, hence
not useful in the regime of interest.
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Noise Explosion: In the basic PCA model, zero mean standard Gaussian noise is added to each
sample observed. Concentration results for Gaussian vectors promise that the noise magnitude will
sharply concentrate around the ball of radius equal to square root of the dimension. This can be
significantly larger than what we call the “signal strength,” namely, the magnitude of the signal
before noise was added. Thus, the ratio of the signal strength to the noise level quickly goes to
zero as we scale the dimensionality up. Because of this, several perhaps counter-intuitive properties
hold in this regime. First, any given authentic point is with overwhelming probability very close
to orthogonal to the signal space (i.e., to the true principal components). Second, it is possible
for a constant fraction of corrupted points all with a small Mahalanobis distance to significantly
change the output of PCA. Indeed, by aligning the entire fraction of corrupted points magnitude
some constant multiple of what we have called the signal strength, it is easy to see that the output
of PCA can be strongly manipulated. On the other hand, since the noise magnitude is much larger,
and in a direction perpendicular to the principal components, the Mahalanobis distance of each
corrupted point will be very small. Third, the same example as above shows that it is possible for a
constant fraction of corrupted points all with small Stahel-Donoho (S-D) outlyingness to significantly
change the output of PCA, where recall that S-D outlyingness of a sample yi is defined as:

ui , sup
‖w‖=1

|w⊤
yi − medj(w

⊤
yj)|

medk|w⊤
yk − medj(w⊤

yj)|
.

Here medk stands for taking median over all k.
The Mahalanobis distance and the S-D outlyingness are extensively used in existing robust PCA

algorithms. For example, Classical Outlier Rejection, Iterative Deletion and various alternatives of
Iterative Trimmings all use the Mahalanobis distance to identify possible outliers. Depth Trimming
(Donoho, 1982) weights the contribution of observations based on their S-D outlyingness. More re-
cently, the ROBPCA algorithm proposed in Hubert et al. (2005) selects a subset of observations with
least S-D outlyingness to compute the d-dimensional signal space. Thus, in the high-dimensional
case, these algorithms may run into problems since neither Mahalanobis distance nor S-D outlying-
ness are valid indicators of outliers. Indeed, as shown in the simulations, the empirical performance
of such algorithms can be worse than standard PCA, because they remove the authentic samples.

Algorithmic Tractability: There are algorithms that do not rely on Mahalanobis distance or S-
D outlyingness, and have a non-diminishing breakdown point, namely Minimum Volume Ellipsoid
(MVE), Minimum Covariance Determinant (MCD) (Rousseeuw, 1984) and Projection-Pursuit (Li &
Chen, 1985). MVE finds the minimum volume ellipsoid that covers a certain fraction of observations.
MCD finds a fraction of observations whose covariance matrix has a minimal determinant. Projection
Pursuit maximizes a certain robust univariate variance estimator over all directions.

MCD and MVE are combinatorial, and hence (as far as we know) computationally intractable as
the size of the problem scales. More difficult yet, MCD and MVE are ill-posed in the high-dimensional
setting where the number of points (roughly) equals the dimension, since there exist infinitely many
zero-volume (determinant) ellipsoids satisfying the covering requirement. Nevertheless, we note that
such algorithms work well in the low-dimensional case, and hence can potentially be used as a post-
processing procedure of our algorithm by projecting all observations to the output subspace to fine
tune the eigenvalues and eigenvectors we produce.

Maximizing a robust univariate variance estimator as in Projection Pursuit, is also non-convex,
and thus to the best of our knowledge, computationally intractable. In Croux and Ruiz-Gazen
(2005), the authors propose a fast Projection-Pursuit algorithm, avoiding the non-convex optimiza-
tion problem of finding the optimal direction, by only examining the directions of each sample.
While this is suitable in the classical regime, in the high-dimensional setting this algorithm fails,
since as discussed above, the direction of each sample is almost orthogonal to the direction of true
principal components. Such an approach would therefore only be examining candidate directions
nearly orthogonal to the true maximizing directions.

Low Rank Techniques: Finally, we discuss the recent (as of yet unpublished) paper (Candès
et al., 2009). In this work, the authors adapt techniques from low-rank matrix approximation, and
in particular, results similar to the matrix decomposition results of Chandrasekaran et al. (2009),
in order to recover a low-rank matrix L0 from highly corrupted measurements M = L0 + S0, where
the noise term, S0, is assumed to have a sparse structure. This models the scenario where we
have perfect measurement of most of the entries of L0, and a small (but constant) fraction of the
entries are arbitrarily corrupted. This work is much closer in spirit, in motivation, and in terms of
techniques, to the low-rank matrix completion and matrix recovery problems in Candès and Recht
(2009); Recht (2009); Recht et al. (2010) than the setting we consider and the work presented herein.
In particular, in our setting, even one corrupted point can change every element of the measurement
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M .

3 HR-PCA: The Algorithm

The algorithm of HR-PCA is presented in this section. We start with the mathematical setup of
the problem in Section 3.1. The HR-PCA algorithm as well as its performance guarantee are then
given in Section 3.2.

3.1 Problem Setup

We now define in detail the problem described above.

• The “authentic samples” z1, . . . , zt ∈ R
m are generated by zi = Axi + ni, where xi ∈ R

d

(the “signal”) are i.i.d. samples of a random variable x, and ni (the “noise”) are independent
realizations of n ∼ N (0, Im). The matrix A ∈ R

m×d and the distribution of x (denoted by µ)
are unknown. We do assume, however, that the distribution µ is absolutely continuous with
respect to the Borel measure, it is spherically symmetric (and in particular, x has mean zero
and variance Id) and it has light tails, specifically, there exist constants K and C > 0 such that
Pr(‖x‖ ≥ x) ≤ K exp(−Cx) for all x ≥ 0. Since the distribution µ and the dimension d are
both fixed, as m, n scale, the assumption that µ is spherically symmetric can be easily relaxed,
and the expense of potentially significant notational complexity.

• The outliers (the corrupted data) are denoted o1, . . . ,on−t ∈ R
m and as emphasized above, they

are arbitrary (perhaps even maliciously chosen). We denote the fraction of corrupted points by

λ
△
= (n − t)/n.

• We only observe the contaminated data set

Y , {y1 . . . ,yn} = {z1, . . . , zt}
⋃

{o1, . . . ,on−t}.

An element of Y is called a “point”.

Given these contaminated observations, we want to recover the principal components of A, i.e., the
top eigenvectors, w1, . . . ,wd of AA⊤. That is, we seek a collection of orthogonal vectors w1, . . . ,wd,
that maximize the performance metric called the Expressed Variance (E.V.):

E.V.(w1, . . . ,wd) ,

∑d
j=1 w

⊤
j AA⊤

wj
∑d

j=1 w
⊤
j AA⊤

wj

=

∑d
j=1 w

⊤
j AA⊤

wj

trace(AA⊤)
.

The E.V. is always less than one, with equality achieved exactly when the vectors w1, . . . ,wd have
the span of the true principal components {w1, . . . ,wd}. When d = 1, the Expressed Variance
relates to another natural performance metric — the angle between w1 and w1 — since by definition
E.V.(w1) = cos2(∠(w1, w1)).

1 The Expressed Variance represents the portion of signal Ax being
expressed by w1, . . . ,wd. Equivalently, 1 − E.V. is the reconstruction error of the signal.

It is natural to expect that the ability to recover vectors with a high expressed variance depends
on λ, the fraction of corrupted points — in addition, it depends on the distribution, µ generating the
(low-dimensional) points x, through its tails. If µ has longer tails, outliers that affect the variance
(and hence are far from the origin) and authentic samples in the tail of the distribution, become
more difficult to distinguish. To quantify this effect, we define the following “tail weight” function
V : [0, 1] → [0, 1]:

V(α) ,

∫ cα

−cα

x2µ(dx);

where µ is the one-dimensional margin of µ (recall that µ is spherically symmetric), and cα is such
that µ([−cα, cα] = α). Since µ has a density function, cα is well defined. Thus, V(·) represents how
the tail of µ contributes to its variance. Notice that V(0) = 0, V(1) = 1, and V(·) is continuous in
[0, 1] since µ has a density function. For notational convenience, we simply let V(x) = 0 for x < 0,
and V(x) = ∞ for x > 1.

The bounds on the quality of recovery, given in Theorems 1 and 2 below, are functions of η and
the function V(·).

1This geometric interpretation does not extend to the case where d > 1, since the angle between two
subspaces is not well defined.
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High Dimensional Setting and Asymptotic Scaling

In this paper, we focus on the case where n ∼ m ≫ d and trace(A⊤A) ≫ 1. That is, the number of
observations and the dimensionality are of the same magnitude, and much larger than the dimen-
sionality of x; the trace of A⊤A is significantly larger than 1, but may be much smaller than n and
m. In our asymptotic scaling, n and m scale together to infinity, while d remains fixed. The value
of trace(A⊤A) also scales to infinity, but there is no lower bound on the rate at which this happens
(and in particular, the scaling of trace(A⊤A) can be much slower than the scaling of m and n).

While we give finite-sample results, we are particularly interested in the asymptotic perfor-
mance of HR-PCA when the dimension and the number of observations grow together to infinity.
Our asymptotic setting is as follows. Suppose there exists a sequence of sample sets {Y(j)} =
{Y(1),Y(2), . . . }, where for Y(j), n(j), m(j), A(j), d(j), etc., denote the corresponding values of
the quantities defined above. Then the following must hold for some positive constants c1, c2:

lim
j→∞

n(j)

m(j)
= c1; d(j) ≤ c2; m(j) ↑ +∞;

trace(A(j)⊤A(j)) ↑ +∞.

(1)

While trace(A(j)⊤A(j)) ↑ +∞, if it scales more slowly than
√

m(j), the SNR will asymptotically
decrease to zero.

3.2 Key Idea and Main Algorithm

For w ∈ Sm, we define the Robust Variance Estimator (RVE) as V t̂(w) ,
1
n

∑t̂
i=1 |w

⊤
y|2(i). This

stands for the following statistics: project yi onto the direction w, replace the furthest (from original)
n − t̂ samples by 0, and then compute the variance. Notice that the RVE is always performed on
the original observed set Y.

The main algorithm of HR-PCA is as given below.

Algorithm 1 HR-PCA

Input: Contaminated sample-set Y = {y1, . . . ,yn} ⊂ R
m, d, T , t̂.

Output: w
∗
1 , . . . ,w

∗
d.

Algorithm:

1. Let ŷi := yi for i = 1, . . . n; s := 0; Opt := 0.

2. While s ≤ T , do

(a) Compute the empirical variance matrix

Σ̂ :=
1

n − s

n−s
∑

i=1

ŷiŷ
⊤
i .

(b) Perform PCA on Σ̂. Let w1, . . . ,wd be the d principal components of Σ̂.

(c) If
∑d

j=1 V t̂(wj) > Opt, then let Opt :=
∑d

j=1 V t̂(wj) and let w
∗
j := wj for

j = 1, · · · , d.
(d) Randomly remove a point from {ŷi}

n−s
i=1 according to

Pr(ŷi is removed) ∝
d
∑

j=1

(w⊤
j ŷi)

2;

(e) Denote the remaining points by {ŷi}
n−s−1
i=1 ;

(f) s := s + 1.

3. Output w
∗
1, . . . ,w

∗
d. End.

Intuition on Why The Algorithm Works

On any given iteration, we select candidate directions based on standard PCA – thus directions
chosen are those with largest empirical variance. Now, given a candidate direction, w, our robust
variance estimator measures the variance of the (n − t̂)-smallest points projected in that direction.
If this is large, it means that many of the points have a large variance in this direction – the points
contributing to the robust variance estimator, and the points that led to this direction being selected
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by PCA. If the robust variance estimator is small, it is likely that a number of the largest variance
points are corrupted, and thus removing one of them randomly, in proportion to their distance in
the direction w, will remove a corrupted point.

Thus in summary, the algorithm works for the following intuitive reason. If the corrupted points
have a very high variance along a direction with large angle from the span of the principal com-
ponents, then with some probability, our algorithm removes them. If they have a high variance
in a direction “close to” the span of the principal components, then this can only help in finding
the principal components. Finally, if the corrupted points do not have a large variance, then the
distortion they can cause in the output of PCA is necessarily limited.

The remainder of the paper makes this intuition precise, providing lower bounds on the proba-
bility of removing corrupted points, and subsequently upper bounds on the maximum distortion the
corrupted points can cause, i.e., lower bounds on the expressed variance of the principal components
the algorithm recovers.

There are two parameters to tune for HR-PCA, namely t̂ and T . Basically, t̂ affects the per-
formance of HR-PCA through Inequality 2, and as a rule of thumb we can set t̂ = t if no a priori
information of µ exists. (Note that our algorithm does assume knowledge of at least a lower bound
on the number of authentic points, or, equivalently, an upper bound on λ, the fraction of corrupted
points.) T does not affect the performance as long as it is large enough, hence we can simply set
T = n−1, although when λ is small, a smaller T leads to the same solution with less computational
cost.

The correctness of HR-PCA is shown in the following theorems for both the finite-sample bound,
and the asymptotic performance.

Theorem 1 (Finite Sample Performance) Let the algorithm above output {w1, . . . ,wd}. Fix a
κ > 0, and let τ = max(m/n, 1). There exists a universal constant c0 and a constant C which can

possible depend on t̂/t, λ, d, µ and κ, such that for any γ < 1, if n/ log4 n ≥ log6(1/γ), then with
probability 1 − γ the following holds

E.V.{w1, . . . ,wd} ≥





V
(

1 − λ(1+κ)
(1−λ)κ

)

(1 + κ)



×





V
(

t̂
t −

λ
1−λ

)

V
(

t̂
t

)





−





8
√

c0τd

V
(

t̂
t

)



 (trace(AA⊤))−1/2 −





2c0τ

V
(

t̂
t

)



 (trace(AA⊤))−1 − C
log2 n log3(1/γ)

√
n

.

The last three terms go to zero as the dimension and number of points scale to infinity, i.e., as
n and m → ∞. Therefore, we immediately obtain:

Theorem 2 (Asymptotic Performance) Given a sequence of {Y(j)}, if the asymptotic scaling
in Expression (1) holds, and lim sup λ(j) ≤ λ∗, then the following holds in probability when j ↑ ∞
(i.e., when n and m ↑ ∞),

lim inf
j

E.V.{w1(j), . . . ,wd(j)} ≥ max
κ





V
(

1 − λ∗(1+κ)
(1−λ∗)κ

)

(1 + κ)



×





V
(

t̂
t −

λ∗

1−λ∗

)

V
(

t̂
t

)



 . (2)

Remark

1. The bounds in the two bracketed terms in the asymptotic bound may be, roughly, explained
as follows. The first term is due to the fact that the removal procedure may well not remove
all large-magnitude corrupted points, while at the same time, some authentic points may be
removed. The second term accounts for the fact that not all the outliers may have large
magnitude. These will likely not be removed, and will have some (small) effect on the principal
component directions reported in the output.

2. The terms in the second line of Theorem 1 go to zero as n and m increases, and therefore
Theorem 1 immediately implies Theorem 2.

3. If λ(j) ↓ 0, i.e., the number of corrupted points scales sublinearly (in particular, this holds when
there are a fixed number of corrupted points), then the right-hand-side of Inequality (2) equals
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1,2 i.e., HR-PCA is asymptotically optimal. This is in contrast to PCA, where the existence
of even a single corrupted point is sufficient to bound the output arbitrarily away from the
optimum.

4. The breakdown point of HR-PCA converges to 50%. Note that since µ has a density function,
V(α) > 0 for any α ∈ (0, 1]. Therefore, for any λ < 1/2, if we set t̂ to any value in (λn, t],
then there exists κ large enough such that the right-hand-side is strictly positive (recall that
t = (1 − λ)n). The breakdown point hence converges to 50%. Thus, HR-PCA achieves the
maximal possible break-down point (note that a breakdown point greater than 50% is never
possible, since then there are more outliers than samples.

The graphs in Figure 1 illustrate the lower-bounds of asymptotic performance if the 1-dimension
marginal of µ is the Gaussian distribution or the Uniform distribution.
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Figure 1: Lower Bounds of Asymptotic Performance.

We briefly discuss kernelizing HR-PCA : given a feature mapping Υ(·) : R
m → H equipped

with a kernel function k(·, ·), we perform the dimensionality reduction in the feature space H
without knowing the explicit form of Υ(·). Notice that HR-PCA involves finding a set of PCs
w1, . . . ,wd ∈ H, and evaluating 〈wq, Υ(·)〉 (The RVE is a function of 〈wq, Υ(yi)〉, and random
removal depends on 〈wq, Υ(ŷi)〉). The former can be kernelized by applying the Kernel PCA algo-
rithm introduced by Schölkopf et al. (1999), where each of the output PCs admits a representation

wq =
∑n−s

j=1 αj(q)Υ(ŷj). Thus, 〈wq, Υ(·)〉 is easily evaluated by 〈wq, Υ(v)〉 =
∑n−s

j=1 αj(q)k(ŷj ,v),

for all v ∈ R
m, implying that HR-PCA can be kernelized. We leave the details to the full version (Xu

et al., 2010). Due to space constraints, numerical simulations are also deferred to the full version (Xu
et al., 2010).

4 Proof of the Main Result

In this section we provide the main steps of the proof of the finite-sample and asymptotic performance
bounds, including the precise statements and the key ideas in the proof, but deferring some of the
more standard or tedious elements to the full version (Xu et al., 2010). The proof consists of three
steps which we now outline. In what follows, we let d, m/n, λ, t̂/t, and µ be fixed. We can fix a
λ ∈ (0, 0.5) without loss of generality, due to the fact that if a result is shown to hold for λ, then
it holds for λ′ < λ. The letter c is used to represent a constant, and ǫ is a constant that decreases
to zero as n and m increase to infinity. The values of c and ǫ can change from line to line, and can
possibly depend on d, m/n, λ, t̂/t, and µ.

1. The blessing of dimensionality, and laws of large numbers: The first step involves two ideas; the
first is the well-known fact (e.g., Davidson & Szarek, 2001) as n and m scale, the expectation
of the covariance of the noise is bounded independently of m. The second involves appealing to
laws of large numbers to show that sample estimates of the covariance of the noise, n, of the
signal, x, and then of the authentic points, z = Ax+n, are uniformly close to their expectation,
with high probability. Specifically, we prove that:

2We can take κ(j) =
p

λ(j) and note that since µ has a density, V(·) is continuous.
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(a) With high probability, the largest eigenvalue of the variance of noise matrix is bounded.
That is,

sup
w∈Sm

1

n

t
∑

i=1

(w⊤
ni)

2 ≤ c.

(b) With high probability, both the largest and the smallest eigenvalue of the signals in the
original space converge to 1. That is

sup
w∈Sd

|
1

t

t
∑

i=1

(w⊤
xi)

2 − 1| ≤ ǫ.

(c) Under 1b, with high probability, RVE is a valid variance estimator for the d−dimensional
signals. That is,

sup
w∈Sd

∣

∣

1

t

t̂
∑

i=1

|w⊤
x|2(i) − V

(

t̂

t

)

∣

∣ ≤ ǫ.

(d) Under 1a and 1c, RVE is a valid estimator of the variance of the authentic samples. That
is, the following holds uniformly over all w ∈ Sm,

(1 − ǫ)‖w⊤A‖2V

(

t′

t

)

− c‖w⊤A‖ ≤
1

t

t′
∑

i=1

|w⊤
z|2(i) ≤ (1 + ǫ)‖w⊤A‖2V

(

t′

t

)

+ c‖w⊤A‖.

2. The next step shows that with high probability, the algorithm finds a “good” solution within
a bounded number of steps. In particular, this involves showing that if in a given step the
algorithm has not found a good solution, in the sense that the variance along a principal
component is not mainly due to the authentic points, then the random removal scheme removes
a corrupted point with probability bounded away from zero. We then use martingale arguments
to show that as a consequence of this, there cannot be many steps with the algorithm finding at
least one “good” solution, since in the absence of good solutions, most of the corrupted points
are removed by the algorithm.

3. The previous step shows the existence of a “good” solution. The final step shows two things:
first, that this good solution has performance that is close to that of the optimal solution, and
second, that the final output of the algorithm is close to that of the “good” solution. Combining
these two steps, we derive the finite-sample and asymptotic performance bounds for HR-PCA.

4.1 Step 1

We state the main results for Step 1a and 1b. The proofs are deferred to the full version (Xu et al.,
2010). In a nutshell, they hold by applying Theorem II.13 of Davidson and Szarek (2001), and
Theorem 2.1 of Mendelson and Pajor (2006), respectively.

Theorem 3 There exist universal constants c and c′ such that for any γ > 0, with probability at
least 1 − γ, the following holds:

sup
w∈Sm

1

t

t
∑

i=1

(w⊤
ni)

2 ≤ c +
c′ log 1

γ

n
.

Theorem 4 There exists a constant c that only depends on µ and d, such that for any γ > 0, with
probability at least 1 − γ,

sup
w∈Sd

∣

∣

1

t

t
∑

i=1

(w⊤
xi)

2 − 1
∣

∣ ≤
c log2 n log3 1

γ√
n

.

The next theorem is the main result for Step 1c. Briefly speaking, since d is fixed, the result
holds due to a standard uniform convergence argument. See Xu et al. (2010) for details.

Theorem 5 Fix η < 1. There exists a constant c that depends on d, µ and η, such that for all
γ < 1, t, the following holds with probability at least 1 − γ:

sup
w∈Sd,t≤ηt

∣

∣

∣

∣

∣

∣

1

t

t
∑

i=1

|w⊤
x|2(i) − V

(

t

t

)

∣

∣

∣

∣

∣

∣

≤ c

√

log n + log 1/γ

n
+ c

log5/2 n log7/2(1/γ)

n
.
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Recall that zi = Axi + ni. Algebraic manipulation yields Theorem 6, which is the main result
of Step 1d, and Corollary 7.

Theorem 6 Let t′ ≤ t. If there exists ǫ1, ǫ2, c such that (I) sup
w∈Sd

∣

∣

1
t

∑t′

i=1 |w
⊤
x|2(i) −V( t′

t )
∣

∣ ≤ ǫ1;

(II) sup
w∈Sd

∣

∣

1
t

∑t
i=1 |w

⊤
xi|

2 − 1
∣

∣ ≤ ǫ2; (III) sup
w∈Sm

1
t

∑t
i=1 |w

⊤
ni|

2 ≤ c, then for all w ∈ Sm

the following holds:

(1 − ǫ1)‖w
⊤A‖2V

(

t′

t

)

− 2‖w⊤A‖
√

(1 + ǫ2)c

≤
1

t

t′
∑

i=1

|w⊤
z|2(i) ≤ (1 + ǫ1)‖w

⊤A‖2V

(

t′

t

)

+ 2‖w⊤A‖
√

(1 + ǫ2)c + c.

Corollary 7 Let t′ ≤ t. If there exists ǫ1, ǫ2, c such that (I) sup
w∈Sd

∣

∣

1
t

∑t′

i=1 |w
⊤
x|2(i) − V( t′

t )
∣

∣ ≤

ǫ1; (II) sup
w∈Sd

∣

∣

1
t

∑t
i=1 |w

⊤
xi|2 − 1

∣

∣ ≤ ǫ2; (III) sup
w∈Sm

1
t

∑t
i=1 |w

⊤
ni|2 ≤ c, then for any

w1, · · · ,wd ∈ Sm, and let H(w1, · · · ,wd) ,
∑d

j=1 ‖w
⊤
j A‖2, the following holds

(1 − ǫ1)V

(

t′

t

)

H(w1, · · · ,wd) − 2
√

(1 + ǫ2)cdH(w1, · · · ,wd)

≤
d
∑

j=1

1

t

t′
∑

i=1

|w⊤
j z|2(i) ≤ (1 + ǫ1)V

(

t′

t

)

H(w1, · · · ,wd) + 2
√

(1 + ǫ2)cdH(w1, · · · ,wd) + c.

Letting t′ = t we immediately have the following corollary.

Corollary 8 If there exists ǫ, c such that (I) sup
w∈Sd

∣

∣

1
t

∑t
i=1 |w

⊤
x|2 − 1

∣

∣ ≤ ǫ; and

(II) sup
w∈Sm

1
t

∑t
i=1 |w

⊤
ni|2 ≤ c, then for any w1, · · · ,wd ∈ Sm the following holds:

(1 − ǫ)H(w1, · · · ,wd) − 2
√

(1 + ǫ)cdH(w1, · · · ,wd)

≤
d
∑

j=1

1

t

t
∑

i=1

|w⊤
j zi|

2 ≤ (1 + ǫ)H(w1, · · · ,wd) + 2
√

(1 + ǫ)cdH(w1, · · · ,wd) + c.

4.2 Step 2

The next step shows that the algorithm finds a good solution in a small number of steps. Proving this
involves showing that at any given step, either the algorithm finds a good solution, or the random
removal eliminates one of the corrupted points with high probability (i.e., probability bounded away
from zero). The intuition then, is that there cannot be too many steps without finding a good
solution, since too many of the corrupted points will have been removed. This section makes this
intuition precise.

Let us fix a κ > 0. Let Z(s) and O(s) be the set of remaining authentic samples and the set
of remaining corrupted points after the sth stage, respectively. Then with this notation, Y(s) =
Z(s)

⋃

O(s). Observe that |Y(s)| = n − s. Let r(s) = Y(s − 1)\Y(s), i.e., the point removed at
stage s. Let w1(s), . . . ,wd(s) be the d PCs found in the sth stage — these points are the output of
standard PCA on Y(s− 1). These points are a good solution if the variance of the points projected
onto their span is mainly due to the authentic samples rather than the corrupted points. We denote
this “good output event at step s” by E(s), defined as follows:

E(s) = {
d
∑

j=1

∑

zi∈Z(s−1)

(wj(s)
⊤
zi)

2 ≥
1

κ

d
∑

j=1

∑

oi∈O(s−1)

(wj(s)
⊤
oi)

2}.

We show in the next theorem that with high probability, E(s) is true for at least one “small” s, by
showing that at every s where it is not true, the random removal procedure removes a corrupted
point with probability at least κ/(1 + κ).

Theorem 9 With probability at least 1 − γ, event E(s) is true for some 1 ≤ s ≤ s0, where

s0 , (1 + ǫ)
(1 + κ)λn

κ
; ǫ =

16(1 + κ) log(1/γ)

κλn
+ 4

√

(1 + κ) log(1/γ)

κλn
.
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Remark: When κ and λ are fixed, we have s0/n → (1 + κ)λ/κ. Therefore, s0 ≤ t for (1 + κ)λ <
κ(1 − λ) and n large.

When s0 ≥ n, Theorem 9 holds trivially. Hence we focus on the case where s0 < n. En route to
proving this theorem, we first prove that when E(s) is not true, our procedure removes a corrupted
point with high probability. To this end, let Fs be the filtration generated by the set of events until
stage s. Observe that O(s),Z(s),Y(s) ∈ Fs. Furthermore, since given Y(s), performing a PCA is
deterministic, E(s + 1) ∈ Fs.

Theorem 10 If the complimentary of E(s), denoted by Ec(s), is true, then

Pr({r(s) ∈ O(s − 1)}|Fs−1) >
κ

1 + κ
.

Proof: If Ec(s) is true, then
d
∑

j=1

∑

zi∈Z(s−1)

(wj(s)
⊤
zi)

2 <
1

κ

d
∑

j=1

∑

oi∈O(s−1)

(wj(s)
⊤
oi)

2,

which is equivalent to

κ

1 + κ

[

∑

zi∈Z(s−1)

d
∑

j=1

(wj(s)
⊤
zi)

2 +
∑

oi∈O(s−1)

d
∑

j=1

(wj(s)
⊤
oi)

2
]

<
∑

oi∈O(s−1)

d
∑

j=1

(wj(s)
⊤
oi)

2.

Note that
Pr({r(s) ∈ O(s − 1)}|Fs−1)

=
∑

oi∈O(s−1)

Pr(r(s) = oi|Fs−1)

=
∑

oi∈O(s−1)

∑d
j=1(wj(s)

⊤
oi)

2

∑

zi∈Z(s−1)

∑d
j=1(wj(s)⊤zi)2 +

∑

oi∈O(s−1)

∑d
j=1(wj(s)⊤oi)2

>
κ

1 + κ
.

Here, the second equality follows from the definition of the algorithm, and in particular, that in

stage s, we remove a point y with probability proportional to
∑d

j=1(wj(s)
⊤
y)2, and independent

of other events.

As a consequence of this theorem, we can now prove Theorem 9. The intuition is rather straight-
forward: if the events were independent from one step to the next, then since “expected corrupted
points removed” is at least κ/(1 + κ), then after s0 = (1 + ǫ)(1 + κ)λn/κ steps, with exponentially
high probability all the outliers would be removed, and hence we would have a good event with
high probability, for some s ≤ s0. Since subsequent steps are not independent, we have to rely on
martingale arguments.

Let T = min{s|E(s) is true}. Note that since E(s) ∈ Fs−1, we have {T > s} ∈ Fs−1. Define the
following random variable

Xs =

{

|O(T − 1)| + κ(T−1)
1+κ , if T ≤ s;

|O(s)| + κs
1+κ , if T > s.

Lemma 11 {Xs,Fs} is a supermartingale.

Proof: The proof essentially follows from the definition of Xs, and the fact that if E(s) is true,
then |O(s)| decreases by one with probability κ/(1 + κ). The full details are deferred to the full
version (Xu et al., 2010).

From here, the proof of Theorem 9 follows straightforwardly.
Proof: Note that

Pr

(

s0
⋂

s=1

E(s)c

)

= Pr (T > s0) ≤ Pr

(

Xs0
≥

κs0

1 + κ

)

= Pr (Xs0
≥ (1 + ǫ)λn) , (3)

where the inequality is due to |O(s)| being non-negative. Recall that X0 = λn. Thus the probability
that no good events occur before step s0 is at most the probability that a supermartingale with
bounded incremements increases in value by a constant factor of (1 + ǫ), from λn to (1 + ǫ)λn. An
appeal to Azuma’s inequality shows that this is exponentially unlikely. The details are left to the
long version (Xu et al., 2010).
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4.3 Step 3

Let w1, . . . ,wd be the eigenvectors corresponding to the d largest eigenvalues of AA⊤, i.e., the
optimal solution. Let w

∗
1, . . . ,w

∗
d be the output of the algorithm. Let w1(s), . . . ,wd(s) be the

candidate solution at stage s. Recall that H(w1, · · · ,wd) ,
∑d

j=1 ‖w
⊤
j A‖2, and for notational

simplification, let H , H(w1, · · · ,wd), Hs , H(w1(s), . . . ,wd(s)), and H∗
, H(w∗

1 , . . . ,w
∗
d).

The statement of the finite-sample and asymptotic theorems (Theorems 1 and 2, respectively)
lower bound the expressed variance, E.V., which is the ratio H∗/H. The final part of the proof
accomplishes this in two main steps. First, Lemma 12 lower bounds Hs in terms of H, where s is
some step for which E(s) is true, i.e., the principal components found by the sth step of the algorithm
are “good.” By Theorem 9, we know that there is a “small” such s, with high probability. The final
output of the algorithm, however, is only guaranteed to have a high value of the robust variance
estimator, V — that is, even if there is a “good” solution at some intermediate step s, we do not
necessarily have a way of identifying it. Thus, the next step, Lemma 13, lower bounds the value of
H∗ in terms of the value H of any output w

′
1, . . . ,w

′
d that has a smaller value of the robust variance

estimator.
We give the statement of all the intermediate results, leaving the details to the full version (Xu

et al., 2010).

Lemma 12 If E(s) is true for some s ≤ s0, and there exists ǫ1, ǫ2, c such that (I) sup
w∈Sd

∣

∣

1
t

∑t−s0

i=1 |w⊤
x|2(i)−

V
(

t−s0

t

) ∣

∣ ≤ ǫ1; (II) sup
w∈Sd

∣

∣

1
t

∑t
i=1 |w

⊤
xi|2 − 1

∣

∣ ≤ ǫ2; (III) sup
w∈Sm

1
t

∑t
i=1 |w

⊤
ni|2 ≤ c, then

1

1 + κ

[

(1 − ǫ1)V

(

t − s0

t

)

H − 2

√

(1 + ǫ2)cdH

]

≤ (1 + ǫ2)Hs + 2
√

(1 + ǫ2)cdHs + c.

Lemma 13 Fix a t̂ ≤ t. If
∑d

j=1 V t̂(wj) ≥
∑d

j=1 V t̂(w
′
j), and there exists ǫ1, ǫ2, c such that (I)

sup
w∈Sd

∣

∣

1
t

∑t̂
i=1 |w

⊤
x|2(i)−V( t̂

t )
∣

∣ ≤ ǫ1; (II) sup
w∈Sd

∣

∣

1
t

∑t̂− λt
1−λ

i=1 |w⊤
x|2(i)−V

(

t̂
t −

λ
1−λ

)

∣

∣ ≤ ǫ1; (III)

sup
w∈Sd

∣

∣

1
t

∑t
i=1 |w

⊤
xi|2 − 1

∣

∣ ≤ ǫ2; (IV) sup
w∈Sm

1
t

∑t
i=1 |w

⊤
ni|2 ≤ c, then

(1 − ǫ1)V

(

t̂

t
−

λ

1 − λ

)

H(w′
1 · · · ,w′

d) − 2
√

(1 + ǫ2)cdH(w′
1 · · · ,w′

d)

≤(1 + ǫ1)H(w1 · · · ,wd)V

(

t̂

t

)

+ 2
√

(1 + ǫ2)cdH(w1 · · · ,wd) + c.

Theorem 14 If
⋃s0

s=1 E(s) is true, and there exists ǫ1 < 1, ǫ2, c such that (I) sup
w∈Sd

∣

∣

1
t

∑t−s0

i=1 |w⊤
x|2(i)−

V( t−s0

t )
∣

∣ ≤ ǫ1; (II) sup
w∈Sd

∣

∣

1
t

∑t̂
i=1 |w

⊤
x|2(i) − V( t̂

t )
∣

∣ ≤ ǫ1; (III) sup
w∈Sd

∣

∣

1
t

∑t̂− λt
1−λ

i=1 |w⊤
x|2(i) −

V
(

t̂
t −

λ
1−λ

)

∣

∣ ≤ ǫ1; (IV) sup
w∈Sd

∣

∣

1
t

∑t
i=1 |w

⊤
xi|2 − 1

∣

∣ ≤ ǫ2; (V) sup
w∈Sm

1
t

∑t
i=1 |w

⊤
ni|2 ≤ c,

then

H∗

H
≥

(1 − ǫ1)
2V
(

t̂
t −

λ
1−λ

)

V
(

t−s0

t

)

(1 + ǫ1)(1 + ǫ2)(1 + κ)V
(

t̂
t

)

−





(2κ + 4)(1 − ǫ1)V
(

t̂
t −

λ
1−λ

)

√

(1 + ǫ2)cd + 4(1 + κ)(1 + ǫ2)
√

(1 + ǫ2)cd

(1 + ǫ1)(1 + ǫ2)(1 + κ)V
(

t̂
t

)



 (H)−1/2

−





(1 − ǫ1)V
(

t̂
t −

λ
1−λ

)

c + (1 + ǫ2)c

(1 + ǫ1)(1 + ǫ2)V
(

t̂
t

)



 (H)−1.

(4)

By bounding all diminishing terms in the r.h.s. of (4), it reduces to Theorem 1. Theorem 2
follows immediately.

5 Concluding Remarks

In this paper we investigated the dimensionality-reduction problem in the case where the number and
the dimensionality of samples are of the same magnitude, and a constant fraction of the points are
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arbitrarily corrupted (perhaps maliciously so). We proposed a High-dimensional Robust Principal
Component Analysis algorithm that is tractable, robust to corrupted points, easily kernelizable
and asymptotically optimal. The algorithm iteratively finds a set of PCs using standard PCA and
subsequently removes a point randomly with a probability proportional to its expressed variance.
We provided both theoretical guarantees and favorable simulation results about the performance of
the proposed algorithm.

To the best of our knowledge, previous efforts to extend existing robust PCA algorithms to
the high-dimensional case were unsuccessful. Such algorithms are designed for low dimensional
data sets where the observations significantly outnumber the variables of each dimension. When
applied to high-dimensional data sets, they either lose statistical consistency due to lack of sufficient
observations, or become intractable. This motivates our work of proposing a new robust PCA
algorithm that takes into account the inherent difficulty in analyzing high-dimensional data.
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Abstract

We derive generalization bounds for learning algorithms based on their robustness: the
property that if a testing sample is “similar” to a training sample, then the testing error is
close to the training error. This provides a novel approach, different from the complexity
or stability arguments, to study generalization of learning algorithms. We further show
that a weak notion of robustness is both sufficient and necessary for generalizability, which
implies that robustness is a fundamental property for learning algorithms to work.

1 Introduction

The key issue in the task of learning from a set of observed samples is the estimation of the risk
(i.e., generalization error) of learning algorithms. Typically, since the learned hypothesis depends on
the training data, its empirical measurement (i.e., training error) provides an optimistically biased
estimation, especially when the number of training samples is small. Several approaches have been
proposed to bound the deviation of the risk from its empirical measurement, among which methods
based on uniform convergence and stability are most widely used.

Uniform convergence of empirical quantities to their mean (e.g., Vapnik and Chervonenkis 1974;
1991) provides ways to bound the gap between the expected risk and the empirical risk by the com-
plexity of the hypothesis set. Examples to complexity measures are the Vapnik-Chervonenkis (VC)
dimension (e.g., Vapnik & Chervonenkis, 1991; Evgeniou et al., 2000), the fat-shattering dimension
(e.g., Alon et al., 1997; Bartlett, 1998), and the Rademacher complexity (Bartlett & Mendelson,
2002; Bartlett et al., 2005). Another well-known approach is based on stability. An algorithm is
stable if its output remains “similar” for different sets of training samples that are identical up to
removal or change of a single sample. The first results that relate stability to generalizability track
back to Devroye and Wagner (1979a; 1979b). Later, McDiarmid’s concentration inequalities (McDi-
armid, 1989) facilitated new bounds on generalization error (e.g., Bousquet & Elisseeff, 2002; Poggio
et al., 2004; Mukherjee et al., 2006).

In this paper we explore a different approach which we term algorithmic robustness. Briefly
speaking, an algorithm is robust if its solution has the following property: it achieves “similar”
performance on a testing sample and a training sample that are “close”. This notion of robustness is
rooted in robust optimization (Ben-Tal & Nemirovski, 1998; Ben-Tal & Nemirovski, 1999; Bertsimas
& Sim, 2004) where a decision maker aims to find a solution x that minimizes a (parameterized)
cost function f(x, ξ) with the knowledge that the unknown true parameter ξ may deviate from the

observed parameter ξ̂. Hence, instead of solving minx f(x, ξ̂) one solves minx[maxξ̃∈∆ f(x, ξ̃)], where
∆ includes all possible realizations of ξ. Robust optimization was introduced in machine learning
tasks to handle exogenous noise (e.g., Bhattacharyya et al., 2004; Shivaswamy et al., 2006; Globerson
& Roweis, 2006), i.e., the learning algorithm only has access to inaccurate observation of training
samples. Later on, Xu et al. (2010; 2009) showed that both Support Vector Machine(SVM) and
Lasso have robust optimization interpretation, i.e., they can be reformulated as

min
h∈H

max
(δ1,··· ,δn)∈∆

n
∑

i=1

l(h, zi + δi),

for some ∆. Here zi are the observed training samples and l(·, ·) is the loss function (hinge-loss
for SVM, and squared loss for Lasso), which means that SVM and Lasso essentially minimize the
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empirical error under the worst possible perturbation. Indeed, as Xu et al. (2010; 2009) showed,
this reformulation leads to requiring that the loss of a sample “close” to zi is small, which further
implies statistical consistency of these two algorithms. In this paper we adopt this approach and
study the (finite sample) generalization ability of learning algorithms by investigating the loss of
learned hypotheses on samples that slightly deviate from training samples.

Of special interest is that robustness is more than just another way to establish generalization
bounds. Indeed, we show that a weaker notion of robustness is a necessary and sufficient condition of
(asymptotic) generalizability of (general) learning algorithms. While it is known having a finite VC-
dimension (Vapnik & Chervonenkis, 1991) or equivalently being CVEEEloo stable (Mukherjee et al.,
2006) is necessary and sufficient for the Empirical Risk Minimization (ERM) to generalize, much
less is known in the general case. Recently, Shalev-Shwartz et al. (2009) proposed a weaker notion
of stability that is necessary and sufficient for a learning algorithm to be consistent and generalizing,
provided that the problem itself is learnable. However, learnability requires that the convergence rate
is uniform with respect to all distributions, and is hence a fairly strong assumption. In particular,
the standard supervised learning setup where the hypothesis set is the set of measurable functions is
not learnable since no algorithm can achieve a uniform convergence rate (cf. Devroye et al., 1996).
Indeed, as Shalev-Shwartz et al. (2009) stated, for supervised learning problems learnability is
equivalent to the generalizability of ERM, and hence reduce to the aforementioned results on ERM
algorithms.

In particular, our main contributions are the following:

1. We propose a notion of algorithmic robustness. Algorithmic robustness is a desired property for
a learning algorithm since it implies a lack of sensitivity to (small) disturbances in the training
data.

2. Based on the notion of algorithmic robustness, we derive generalization bounds for IID samples.

3. To illustrate the applicability of the notion of algorithmic robustness, we provide some examples
of robust algorithms, including SVM, Lasso, feed-forward neural networks and PCA.

4. We propose a weaker notion of robustness and show that it is both necessary and sufficient for
a learning algorithm to generalize. This implies that robustness is an essential property needed
for a learning algorithm to work.

Note that while stability and robustness are similar on an intuitive level, there is a difference
between the two: stability requires that identical training sets with a single sample removed lead to
similar prediction rules, whereas robustness requires that a prediction rule has comparable perfor-
mance if tested on a sample close to a training sample. Simply put, stability compares two prediction
rules, whereas robustness investigates one prediction rule.

This paper is organized as follows. We define the notion of robustness in Section 2, and prove
generalization bounds for robust algorithms in Section 3. In Section 4 we propose a relaxed notion of
robustness, which is termed as pseudo-robustness, and provide corresponding generalization bounds.
Examples of learning algorithms that are robust or pseudo-robust are provided in Section 5. Finally,
we show that robustness is necessary and sufficient for generalizability in Section 6. Due to space
constraints, some of the proofs are deferred to the full version (Xu & Mannor, 2010).

1.1 Preliminaries

We consider the following general learning model: a set of training samples are given, and the
goal is to pick a hypothesis from a hypothesis set. Unless otherwise mentioned, throughout this
paper the size of training set is fixed as n. Therefore, we drop the dependence of parameters on
the number of training samples, while it should be understood that parameters may vary with the
number of training samples. We use Z and H to denote the set from which each sample is drawn,
and the hypothesis set, respectively. Throughout the paper we use s to denote the training sample
set consists of n training samples (s1, · · · , sn). A learning algorithm A is thus a mapping from Zn

to H. We use As to represent the hypothesis learned (given training set s). For each hypothesis
h ∈ H and a point z ∈ Z, there is an associated loss l(h, z). We ignore the issue of measurability
and further assume that l(h, z) is non-negative and upper-bounded uniformly by a scalar M .

In the special case of supervised learning, the sample space can be decomposed as Z = Y × X ,
and the goal is to learn a mapping from X to Y, i.e., to predict the y-component given x-component.
We hence use As(x) to represent the prediction of x ∈ X if trained on s. We call X the input space
and Y the output space. The output space can either be Y = {−1, +1} for a classification problem,
or Y = R for a regression problem. We use |x and |y to denote the x-component and y-component
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of a point. For example, si|x is the x-component of si. To simplify notations, for a scaler c, we use

[c]+ to represent its non-negative part, i.e., [c]+ , max(0, c).
We recall the following standard notion of covering number from van der Vaart and Wellner

(2000).

Definition 1 (cf. van der Vaart & Wellner, 2000) For a metric space S, ρ and T ⊂ S we say

that T̂ ⊂ S is an ǫ-cover of T , if ∀t ∈ T , ∃t̂ ∈ T̂ such that ρ(t, t̂) ≤ ǫ. The ǫ-covering number of T is

N (ǫ, T, ρ) = min{|T̂ | : T̂ is an ǫ − cover of T }.

2 Robustness of Learning Algorithms

Before providing a precise definition of what we mean by “robustness” of an algorithm, we provide
some motivating examples which share a common property: if a testing sample is close to a training
sample, then the testing error is also close, a property we will later formalize as “robustness”.

We first consider large-margin classifiers: Let the loss function be l(As, z) = 1(As(z|x) 6= z|y).
Fix γ > 0. An algorithm As has a margin γ if for j = 1, · · · , n

As(x) = As(sj|x); ∀x : ‖x − sj|x‖2 < γ.

That is, any training sample is at least γ away from the classification boundary.

Example 1 Fix γ > 0 and put K = 2N (γ/2,X , ‖ · ‖2). If As has a margin γ, then Z can be
partitioned into K disjoint sets, denoted by {Ci}K

i=1, such that if sj and z ∈ Z belong to a same Ci,
then |l(As, sj) − l(As, z)| = 0.

Proof: By the definition of covering number, we can partition X into N (γ/2,X , ‖ · ‖2) subsets

(denoted X̂i) such that each subset has a diameter less or equal to γ. Further, Y can be partitioned
to {−1} and {+1}. Thus, we can partition Z into 2N (γ/2,X , ‖ · ‖2) subsets such that if z1, z2

belong to a same subset, then y1|y = y2|y and ‖x1|y − x2|y‖ ≤ γ. By the definition of the margin,
this guarantees that if sj and z ∈ Z belong to a same Ci, then |l(As, sj) − l(As, z)| = 0.

The next example is a linear regression algorithm. Let the loss function be l(As, z) = |z|y −
As(z|x)|, and let X be a bounded subset of R

m and fix c > 0. The norm-constrained linear regression
algorithm is

As = min
w∈Rm:‖w‖2≤c

n
∑

i=1

|si|y − w⊤si|x|, (1)

i.e., minimizing the empirical error among all linear classifiers whose norm is bounded.

Example 2 Fix ǫ > 0 and let K = N (ǫ/2,X , ‖ · ‖2) × N (ǫ/2,Y, | · |). Consider the algorithm as
in (1). The set Z can be partitioned into K disjoint sets, such that if sj and z ∈ Z belong to a same
Ci, then

|l(As, sj) − l(As, z)| ≤ (c + 1)ǫ.

Proof: Similarly to the previous example, we can partition Z to N (ǫ/2,X , ‖ · ‖2) ×N (ǫ/2,Y, | · |)
subsets, such that if z1, z2 belong to a same Ci, then ‖z1|x − z2|x‖2 ≤ ǫ, and |z1|y − z2|y| ≤ ǫ. Since
‖w‖2 ≤ c, we have

|l(w, z1) − l(w, z2)| =
∣

∣|z1|y − w⊤z1|x| − |z2|y − w⊤z2|x|
∣

∣

≤
∣

∣(z1|y − w⊤z1|x) − (z2|y − w⊤z2|x)
∣

∣

≤|z1|y − z2|y| + ‖w‖2‖z1|x − z2|x‖2

≤(1 + c)ǫ,

whenever z1, z2 belong to a same Ci.

The two motivating examples both share a property: we can partition the sample set into finite
subsets, such that if a new sample falls into the same subset as a training sample, then the loss of
the former is close to the loss of the latter. We call an algorithm having this property “robust.”

Definition 2 Algorithm A is (K, ǫ(s)) robust if Z can be partitioned into K disjoint sets, denoted
by {Ci}K

i=1, such that ∀s ∈ s,

s, z ∈ Ci, =⇒ |l(As, s) − l(As, z)| ≤ ǫ(s). (2)

In the definition, both K and the partition sets {Ci}K
i=1 do not depend on the training set s. Note

that the definition of robustness requires that (2) holds for every training sample. Indeed, we can
relax the definition, so that the condition needs only hold for a subset of training samples. We call
an algorithm having this property “pseudo robust.” See Section 4 for details.
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3 Generalization Properties of Robust Algorithms

In this section we investigate generalization of robust algorithms. In particular, in the following
subsections we derive PAC bounds for robust algorithms under two different conditions: (1) The
ubiquitous learning setup where the samples are i.i.d. and the goal of learning is to minimize expected
loss. (2) The learning goal is to minimize quantile loss. Indeed, the fact that we can provide results
in (2) indicates the fundamental nature of robustness as a property of learning algorithms.

3.1 IID samples and expected loss

In this section, we consider the standard learning setup, i.e., the sample set s consists of n i.i.d.
samples generated by an unknown distribution µ, and the goal of learning is to minimize expected

test loss. Let l̂(·) and lemp(·) denote the expected error and the training error, i.e.,

l̂(As) , Ez∼µl(As, z); lemp(As) ,
1

n

∑

si∈s

l(As, si).

Recall that the loss function l(·, ·) is upper bounded by M .

Theorem 3 If s consists of n i.i.d. samples, and A is (K, ǫ(s))-robust, then for any δ > 0, with
probability at least 1 − δ,

∣

∣

∣
l̂(As) − lemp(As)

∣

∣

∣
≤ ǫ(s) + M

√

2K ln 2 + 2 ln(1/δ)

n
.

Proof: Let Ni be the set of index of points of s that fall into Ci. Note that (|N1|, · · · , |NK |) is an
IID multinomial random variable with parameters n and (µ(C1), · · · , µ(CK)). The following holds
by the Breteganolle-Huber-Carol inequality (cf Proposition A6.6 of(van der Vaart & Wellner, 2000)):

Pr

{

K
∑

i=1

∣

∣

∣

∣

|Ni|

n
− µ(Ci)

∣

∣

∣

∣

≥ λ

}

≤ 2K exp(
−nλ2

2
).

Hence, the following holds with probability at least 1 − δ,

K
∑

i=1

∣

∣

∣

∣

|Ni|

n
− µ(Ci)

∣

∣

∣

∣

≤

√

2K ln 2 + 2 ln(1/δ)

n
. (3)

We have
∣

∣

∣
l̂(As) − lemp(As)

∣

∣

∣

=

∣

∣

∣

∣

∣

K
∑

i=1

E
(

l(As, z)|z ∈ Ci

)

µ(Ci) −
1

n

n
∑

i=1

l(As, si)

∣

∣

∣

∣

∣

(a)

≤

∣

∣

∣

∣

∣

K
∑

i=1

E
(

l(As, z)|z ∈ Ci

) |Ni|

n
−

1

n

n
∑

i=1

l(As, si)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

K
∑

i=1

E
(

l(As, z)|z ∈ Ci

)

µ(Ci) −
K
∑

i=1

E
(

l(As, z)|z ∈ Ci

) |Ni|

n

∣

∣

∣

∣

∣

(b)

≤

∣

∣

∣

∣

∣

∣

1

n

K
∑

i=1

∑

j∈Ni

max
z2∈Ci

|l(As, sj) − l(As, z2)|

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

max
z∈Z

|l(As,z)|
K
∑

i=1

∣

∣

∣

|Ni|

n
− µ(Ci)

∣

∣

∣

∣

∣

∣

∣

∣

(c)

≤ǫ(s) + M

K
∑

i=1

∣

∣

∣

∣

|Ni|

n
− µ(Ci)

∣

∣

∣

∣

,

(4)

where (a), (b), and (c) are due to the triangle inequality, the definition of Ni, and the definition of

ǫ(s) and M , respectively. The right-hand-side of (4) is upper-bounded by ǫ(s)+ M
√

2K ln 2+2 ln(1/δ)
n

with probability at least 1 − δ due to (3). The theorem follows.

Theorem 3 requires that we fix a K a priori. However, it is often worthwhile to consider adaptive
K. For example, in the large-margin classification case, typically the margin is known only after s is
realized. That is, the value of K depends on s. Because of this dependency, we needs a generalization
bound that holds uniformly for all K.
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Corollary 4 If s consists of n i.i.d. samples, and A is (K, ǫK(s)) robust for all K ≥ 1, then for
any δ > 0, with probability at least 1 − δ,

∣

∣

∣
l̂(As) − lemp(As)

∣

∣

∣
≤ inf

K≥1



ǫK(s) + M

√

2K ln 2 + 2 ln K(K+1)
δ

n



 .

Proof: Let

E(K) ,







∣

∣

∣
l̂(As) − lemp(As)

∣

∣

∣
> ǫK(s) + M

√

2K ln 2 + 2 ln K(K+1)
δ

n







.

From Theorem 3 we have Pr(E(K)) ≤ δ/(K(K + 1)) = δ/K − δ/(K + 1). By the union bound we
have

Pr







⋃

K≥1

E(K)







≤
∑

K≥1

Pr (E(K)) ≤
∑

K≥1

[

δ

K
−

δ

K + 1

]

= δ,

and the corollary follows.

If ǫ(s) does not depend on s, we can sharpen the bound given in Corollary 4.

Corollary 5 If s consists of n i.i.d. samples, and A is (K, ǫK) robust for all K ≥ 1, then for any
δ > 0, with probability at least 1 − δ,

∣

∣

∣
l̂(As) − lemp(As)

∣

∣

∣
≤ inf

K≥1



ǫK + M

√

2K ln 2 + 2 ln 1
δ

n



 .

Proof: Take K∗ that minimizes the right hand side, and note that it does not depend on s.
Therefore, plugging K∗ into Theorem 3 establishes the corollary.

3.2 Quantile Loss

So far we considered the standard expected loss setup. In this section we consider some less exten-
sively investigated loss functions, namely quantile value and truncated expectation (see the following
for precise definitions). These loss functions are of interest because they are less sensitive to the
presence of outliers than the standard average loss (Huber, 1981).

Definition 6 For a non-negative random variable X, the β-quantile value is

Q
β(X) , inf

{

c ∈ R : Pr
(

X ≤ c
)

≥ β
}

.

The β-truncated mean is

T
β(X) ,







E
[

X · 1(X < Q
β(X))

]

if Pr
[

X = Q
β(X)

]

= 0;

E
[

X · 1(X < Q
β(X))

]

+
β−Pr

[

X<Q
β(X)

]

Pr
[

X=Qβ(X)
] Q

β(X) otherwise.

In words, the β−quantile loss is the smallest value that is larger or equal to X with probability
at least β. The β-truncated mean is the contribution to the expectation of the leftmost β fraction
of the distribution. For example, suppose X is supported on {c1, · · · , c10} (c1 < c2 < · · · < c10)
and the probability of taking each value equals 0.1. Then the 0.63-quantile loss of X is c7, and the
0.63-truncated mean of X equals 0.1(

∑6
i=1 ci + 0.3c7).

Given h ∈ H, β ∈ (0, 1), and a probability measure µ on Z, let

Q(h, β, µ) , Q
β(l(h, z)); where: z ∼ µ;

and
T (h, β, µ) , T

β(l(h, z)); where: z ∼ µ;

i.e., the β-quantile value and β-truncated mean of the (random) testing error of hypothesis h if
the testing sample follows distribution µ. We have the following theorem that is a special case of
Theorem 10, hence we omit the proof.
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Theorem 7 (Quantile Value & Truncated Mean) Suppose s are n i.i.d. samples drawn ac-

cording to µ, and denote the empirical distribution of s by µemp. Let λ0 =
√

2K ln 2+2 ln(1/δ)
n . If

0 ≤ β−λ0 ≤ β +λ0 ≤ 1 and A is (K, ǫ(s)) robust, then with probability at least 1− δ, the followings
hold

(I) Q (As, β − λ0, µemp) − ǫ(s) ≤ Q (As, β, µ) ≤ Q (As, β + λ0, µemp) + ǫ(s);

(II) T (As, β − λ0, µemp) − ǫ(s) ≤ T (As, β, µ) ≤ T (As, β + λ0, µemp) + ǫ(s).

In words, Theorem 7 essentially means that with high probability, the β-quantile value/truncated
mean of the testing error (recall that the testing error is a random variable) is (approximately)
bounded by the (β ± λ0)-quantile value/truncated mean of the empirical error, thus providing a
way to estimate the quantile value/truncated expectation of the testing error based on empirical
observations.

4 Pseudo Robustness

In this section we propose a relaxed definition of robustness that accounts for the case where Equa-
tion (2) holds for most of training samples, as opposed to Definition 2 where Equation (2) holds for
all training samples. Recall that the size of training set is fixed as n.

Definition 8 Algorithm A is (K, ǫ(s), n̂(s)) pseudo robust if Z can be partitioned into K disjoint
sets, denoted as {Ci}K

i=1, and there exists a subset of training samples ŝ with |ŝ| = n̂(s) such that
∀s ∈ ŝ,

s, z ∈ Ci, =⇒ |l(As, s) − l(As, z)| ≤ ǫ(s).

Observe that (K, ǫ(s))-robust is equivalent to (K, ǫ(s), n) pseudo robust.

Theorem 9 If s consists of n i.i.d. samples, and A is (K, ǫ(s), n̂(s)) pseudo robust, then for any
δ > 0, with probability at least 1 − δ,

∣

∣

∣
l̂(As) − lemp(As)

∣

∣

∣
≤

n̂(s)

n
ǫ(s) + M

(

n − n̂(s)

n
+

√

2K ln 2 + 2 ln(1/δ)

n

)

.

Proof: Let Ni and N̂i be the set of indices of points of s and ŝ that fall into the Ci, respectively.
Similarly to the proof of Theorem 3, we note that (|N1|, · · · , |NK |) is an IID multinomial random
variable with parameters n and (µ(C1), · · · , µ(CK)). And hence due to Breteganolle-Huber-Carol
Inequality, the following holds with probability at least 1 − δ,

K
∑

i=1

∣

∣

∣

∣

|Ni|

n
− µ(Ci)

∣

∣

∣

∣

≤

√

2K ln 2 + 2 ln(1/δ)

n
. (5)

Furthermore, we have
∣

∣

∣
l̂(As) − lemp(As)

∣

∣

∣

=

∣

∣

∣

∣

∣

K
∑

i=1

E
(

l(As, z)|z ∈ Ci

)

µ(Ci) −
1

n

n
∑

i=1

l(As, si)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

K
∑

i=1

E
(

l(As, z)|z ∈ Ci

) |Ni|

n
−

1

n

n
∑

i=1

l(As, si)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

K
∑

i=1

E
(

l(As, z)|z ∈ Ci

)

µ(Ci) −
K
∑

i=1

E
(

l(As, z)|z ∈ Ci

) |Ni|

n

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

1

n

K
∑

i=1

[

|Ni| × E
(

l(As, z)|z ∈ Ci

)

−
∑

j∈N̂i

l(As, sj) −
∑

j∈Ni,j 6∈N̂i

l(As, sj)
]

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

max
z∈Z

|l(As,z)|
K
∑

i=1

∣

∣

∣

|Ni|

n
− µ(Ci)

∣

∣

∣

∣

∣

∣

∣

∣

.
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Note that due to the triangle inequality as well as the assumption that the loss is non-negative and
upper bounded by M , the right-hand side can be upper bounded by

∣

∣

∣

∣

∣

∣

1

n

K
∑

i=1

∑

j∈N̂i

max
z2∈Ci

|l(As, sj) − l(As, z2)|

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

n

K
∑

i=1

∑

j∈Ni,j 6∈N̂i

max
z2∈Ci

|l(As, sj) − l(As, z2)|

∣

∣

∣

∣

∣

∣

+ M

K
∑

i=1

∣

∣

∣

∣

|Ni|

n
− µ(Ci)

∣

∣

∣

∣

≤
n̂(s)

n
ǫ(s) +

n − n̂(s)

n
M + M

K
∑

i=1

∣

∣

∣

∣

|Ni|

n
− µ(Ci)

∣

∣

∣

∣

.

where the inequality holds due to definition of Ni and N̂i. The theorem follows by applying (5).

Similarly, Theorem 7 can be generalized to the pseudo robust case. See the full version (Xu &
Mannor, 2010) for the proof.

Theorem 10 (Quantile Value & Truncated Expectation) Suppose s has n samples drawn i.i.d.

according to µ, and denote the empirical distribution of s as µemp. Let λ0 =
√

2K ln 2+2 ln(1/δ)
n . Sup-

pose 0 ≤ β − λ0 − (n− n̂)/n ≤ β + λ0 + (n− n̂)/n ≤ 1 and A is (K, ǫ(s), n̂(s)) pseudo robust. Then
with probability at least 1 − δ, the followings hold

(I) Q

(

As, β − λ0 −
n − n̂(s)

n
, µemp

)

− ǫ(s) ≤ Q (As, β, µ) ≤ Q

(

As, β + λ0 +
n − n̂(s)

n
, µemp

)

+ ǫ(s);

(II) T

(

As, β − λ0 −
n − n̂(s)

n
, µemp

)

− ǫ(s) ≤ T (As, β, µ) ≤ T

(

As, β + λ0 +
n − n̂(s)

n
, µemp

)

+ ǫ(s).

5 Examples of Robust Algorithms

In this section we provide some examples of robust algorithms. The proofs of the examples can
be found in the full version (Xu & Mannor, 2010). Our first example is Majority Voting (MV)
classification (cf Section 6.3 of Devroye et al., 1996) that partitions the input space X and labels
each partition set according to a majority vote of the training samples belonging to it.

Example 3 (Majority Voting) Let Y = {−1, +1}. Partition X to C1, · · · , CK, and use C(x) to
denote the set to which x belongs. A new sample xa ∈ X is labeled by

As(xa) ,

{

1, if
∑

si∈C(xa) 1(si|y = 1) ≥
∑

si∈C(xa) 1(si|y = −1);
−1, otherwise.

If the loss function is l(As, z) = f(z|y,As(z|x)) for some function f , then MV is (2K, 0) robust.

MV algorithm has a natural partition of the sample space that makes it robust. Another class of
robust algorithms are those that have approximately the same testing loss for testing samples that
are close (in the sense of geometric distance) to each other, since we can partition the sample space
with norm balls. The next theorem states that an algorithm is robust if two samples being close
implies that they have similar testing error.

Theorem 11 Fix γ > 0 and metric ρ of Z. Suppose A satisfies

|l(As, z1) − l(As, z2)| ≤ ǫ(s), ∀z1, z2 : z1 ∈ s, ρ(z1, z2) ≤ γ,

and N (γ/2,Z, ρ) < ∞. Then A is
(

N (γ/2,Z, ρ), ǫ(s)
)

-robust.

Proof:Let {c1, · · · , cN (γ/2,Z,ρ)} be a γ/2-cover of Z. whose existence is guaranteed by the defi-

nition of covering number. Let Ĉi = {z ∈ Z|ρ(z, ci) ≤ γ/2}, and Ci = Ĉi

⋂
(
⋃i−1

j=1 Ĉj

)c
. Thus,

C1, · · · , CN (γ/2,Z,ρ) is a partition of Z, and satisfies

z1, z2 ∈ Ci =⇒ ρ(z1, z2) ≤ ρ(z1, ci) + ρ(z2, ci) ≤ γ.

Therefore,
|l(As, z1) − l(As, z2)| ≤ ǫ(s), ∀z1, z2 : z1 ∈ s, ρ(z1, z2) ≤ γ,
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implies
z1 ∈ s z1, z2 ∈ Ci =⇒ |l(As, z1) − l(As, z2)| ≤ ǫ(s),

and the theorem follows.

Theorem 11 immediately leads to the next example: if the testing error given the output of an
algorithm is Lipschitz continuous, then the algorithm is robust.

Example 4 (Lipschitz continuous functions) If Z is compact w.r.t. metric ρ, l(As, ·) is Lips-
chitz continuous with Lipschitz constant c(s), i.e.,

|l(As, z1) − l(As, z2)| ≤ c(s)ρ(z1, z2), ∀z1, z2 ∈ Z,

then A is
(

N (γ/2,Z, ρ), c(s)γ
)

-robust for all γ > 0.

Theorem 11 also implies that SVM, Lasso, feed-forward neural network and PCA are robust, as
stated in Example 5 to Example 8. The proofs are deferred to Appendix.

Example 5 (Support Vector Machines) Let X be compact. Consider the standard SVM for-
mulation (Cortes & Vapnik, 1995; Schölkopf & Smola, 2002)

Minimize:w,d c‖w‖2
H +

1

n

n
∑

i=1

ξi

s. t. 1 − si|y[〈w, φ(si|x)〉 + d] ≤ ξi;

ξi ≥ 0.

Here φ(·) is a feature mapping, ‖ · ‖H is its RKHS kernel, and k(·, ·) is the kernel function.

Let l(·, ·) be the hinge-loss, i.e., l
(

(w, d), z
)

= [1 − z|y(〈w, φ(z|x)〉 + d)]+, and define fH(γ) ,

max
a,b∈X ,‖a−b‖2≤γ

(

k(a,a) + k(b,b)− 2k(a,b)
)

. If k(·, ·) is continuous, then for any γ > 0, fH(γ)

is finite, and SVM is (2N (γ/2,X , ‖ · ‖2),
√

fH(γ)/c) robust.

Example 6 (Lasso) Let Z be compact and the loss function be l(As, z) = |z|y − As(z|x)|. Lasso
(Tibshirani, 1996), which is the following regression formulation:

min
w

:
1

n

n
∑

i=1

(si|y − w⊤si|x)2 + c‖w‖1, (6)

is
(

N (γ/2,Z, ‖ · ‖∞), (Y (s)/c + 1)γ
)

-robust for all γ > 0, where Y (s) ,
1
n

∑n
i=1 si|y

2 .

Example 7 (Feed-forward Neural Networks) Let Z be compact and the loss function be l(As, z) =
|z|y −As(z|x)|. Consider the d-layer neural network (trained on s), which is the following predicting
rule given an input x ∈ X

x0 := z|x

∀v = 1, · · · , d − 1 : xv
i := σ(

Nv−1
∑

j=1

wv−1
ij xv−1

j ); i = 1, · · · , Nv;

As(x) := σ(

Nd−1
∑

j=1

wd−1
j xd−1

j );

If there exists α and β such that the d-layer neural network satisfying that |σ(a) − σ(b)| ≤ β|a − b|,

and
∑Nv

j=1 |w
v
ij | ≤ α for all v, i, then it is

(

N (γ/2,Z, ‖ · ‖∞), αdβdγ
)

-robust, for all γ > 0.

We remark that in Example 7, the number of hidden units in each layer has no effect on the
robustness of the algorithm and consequently the bound on the testing error. This indeed agrees
with Bartlett (1998), where the author showed (using a different approach based on fat-shattering
dimension) that for neural networks, the weight plays a more important role than the number of
hidden units.

The next example considers an unsupervised learning algorithm, namely the principal component
analysis algorithm. We show that it is robust if the sample space is bounded. This does not contradict
with the well known fact that the principal component analysis is sensitive to outliers which are far
away from the origin.
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Example 8 (Principal Component Analysis (PCA)) Let Z ⊂ R
m be such that maxz∈Z ‖z‖2 ≤

B. If the loss function is l((w1, · · · , wd), z) =
∑d

k=1(w
⊤
k z)2, then finding the first d principal com-

ponents, which solves the following optimization problem over d vectors w1, · · · , wd ∈ R
m,

Maximize:

n
∑

i=1

d
∑

k=1

(w⊤
k si)

2

Subject to: ‖wk‖2 = 1, k = 1, · · · , d;

w⊤
i wj = 0, i 6= j.

is (N (γ/2,Z, ‖ · ‖2), 2dγB)-robust.

The last example is large-margin classification, which is a generalization of Example 1. We need
the following standard definition (e.g., Bartlett, 1998) of the distance of a point to a classification
rule.

Definition 12 Fix a metric ρ of X . Given a classification rule ∆ and x ∈ X , the distance of x to
∆ is

D(x, ∆) , inf{c ≥ 0|∃x′ ∈ X : ρ(x, x′) ≤ c, ∆(x) 6= ∆(x′)}.

A large margin classifier is a classification rule such that most of the training samples are “far
away” from the classification boundary.

Example 9 (Large-margin classifier) If there exist γ and n̂ such that

n
∑

i=1

1

(

D(si|x,As) > γ
)

≥ n̂,

then algorithm A is (2N (γ/2,X , ρ), 0, n̂) pseudo robust, provided that N (γ/2,X , ρ) < ∞.

Proof: Set ŝ as
ŝ , {si ∈ s|D(si,As) > γ}.

And let c1, · · · , cN (γ/2,X ,ρ) be a γ/2 cover of X . Thus, we can partition Z to 2N (γ/2,X , ρ) subsets
{Ci}, such that if

z1, z2 ∈ Ci; =⇒ y1 = y2; & ρ(x1, x2) ≤ γ.

This implies that:

z1 ∈ ŝ, z1, z2 ∈ Ci; =⇒ y1 = y2; As(x1) = As(x2); =⇒ l(As, z1) = l(As, z2).

By definition, A is (2N (γ/2,X , ρ), 0, n̂) pseudo robust.

Note that by taking ρ to be the Euclidean norm, and letting n̂ = n, we recover Example 1.

6 Necessity of Robustness

Thus far we have considered finite sample generalization bounds of robust algorithms. We now turn
to asymptotic analysis, i.e., we are given an increasing set of training samples s = (s1, s2, · · · ) and
are tested on an increasing set of testing samples t = (t1, t2, · · · ). We use s(n) and t(n) to denote
the first n elements of training samples and testing samples respectively. For succinctness, we let
L(·, ·) to be the average loss given a set of samples, i.e., for h ∈ H,

L(h, t(n)) ≡
1

n

n
∑

i=1

l(h, ti).

We show in this section that robustness is an essential property of successful learning. In partic-
ular, a (weaker) notion of robustness characterizes generalizability, i.e., a learning algorithm gener-
alizes if and only if it is weakly robust. To make this precise, we define the notion of generalizability
and weak robustness first.

Definition 13 1. A learning algorithm A generalizes w.r.t. s if

lim sup
n

{

Et

(

l(A
s(n), t)

)

− L(A
s(n), s(n))

}

≤ 0.
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2. A learning algorithm A generalize w.p. 1 if it generalize w.r.t. almost every s.

We remark that the proposed notion of generalizability differs slightly from the standard one in
the sense that the latter requires that the empirical risk and the expected risk converges in mean,
while the proposed notion requires convergence w.p.1. It is straightforward that the proposed notion
implies the standard one.

Definition 14 1. A learning algorithm A is weakly robust w.r.t s if there exists a sequence of
{Dn ⊆ Zn} such that Pr(t(n) ∈ Dn) → 1, and

lim sup
n

{

max
ŝ(n)∈Dn

[

L(A
s(n), ŝ(n)) − L(A

s(n), s(n))
]

}

≤ 0.

2. A learning algorithm A is a.s. weakly robust if it is robust w.r.t. almost every s.

We briefly comment on the definition of weak robustness. Recall that the definition of robustness
requires that the sample space can be partitioned into disjoint subsets such that if a testing sample
belongs to the same partitioning set of a training sample, then they have similar loss. Weak robust-
ness generalizes such notion by considering the average loss of testing samples and training samples.
That is, if for a large (in the probabilistic sense) subset of Zn, the testing error is close to the training
error, then the algorithm is weakly robust. It is easy to see, by Breteganolle-Huber-Carol lemma,
that if for any fixed ǫ > 0 there exists K such that A is (K, ǫ) robust, then A is weakly robust.

We now establish the main result of this section: weak robustness and generalizability are equiv-
alent.

Theorem 15 An algorithm A generalizes w.r.t. s if and only if it is weakly robust w.r.t. s.

Proof: We prove the sufficiency of weak robustness first. When A is weakly robust w.r.t. s,
by definition there exists {Dn} such that for any δ, ǫ > 0, there exists N(δ, ǫ) such that for all
n > N(δ, ǫ), Pr(t(n) ∈ Dn) > 1 − δ, and

sup
ŝ(n)∈Dn

L(A
s(n), ŝ(n)) − L(A

s(n), s(n)) < ǫ. (7)

Therefore, the following holds for any n > N(δ, ǫ),

Et

(

l(A
s(n), t)

)

− L(A
s(n), s(n))

=E
t(n)

(

L(A
s(n), t(n))

)

− L(A
s(n), s(n))

=Pr(t(n) 6∈ Dn)E
(

L(A
s(n), t(n))|t(n) 6∈ Dn

)

+ Pr(t(n) ∈ Dn)E
(

L(A
s(n), t(n))|t(n) ∈ Dn

)

− L(A
s(n), s(n))

≤δM + sup
ŝ(n)∈Dn

{

L(A
s(n), ŝ(n)) − L(A

s(n), s(n))
}

≤ δM + ǫ.

Here, the first equality holds since t(n) are i.i.d., and the second equality holds by conditional
expectation. The inequalities hold due to the assumption that the loss function is upper bounded
by M , as well as (7).

We thus conclude that the algorithm A generalizes for s, because ǫ and δ can be arbitrary.
Now we turn to the necessity of weak robustness. First, we establish the following lemma.

Lemma 16 Given s, if algorithm A is not weakly robust w.r.t. s, then there exists ǫ∗, δ∗ > 0 such
that the following holds for infinitely many n,

Pr
(

L(A
s(n), t(n)) ≥ L(A

s(n), s(n)) + ǫ∗
)

≥ δ∗. (8)

Proof: We prove the lemma by contradiction. Assume that such ǫ∗ and δ∗ do not exist. Let
ǫv = δv = 1/v for v = 1, 2 · · · , then there exists a non-decreasing sequence {N(v)}∞v=1 such that

for all v, if n ≥ N(v) then Pr
(

L(A
s(n), t(n)) ≥ L(A

s(n), s(n)) + ǫv

)

< δv. For each n, define the

following set:

Dv
n , {ŝ(n)|L(A

s(n), ŝ(n)) − L(A
s(n), s(n)) < ǫv}.
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Thus, for n ≥ N(v) we have

Pr(t(n) ∈ Dv
n) = 1 − Pr

(

L(A
s(n), t(n)) ≥ L(A

s(n), s(n)) + ǫv

)

> 1 − δv.

For n ≥ N(1), define Dn , D
v(n)
n , where: v(n) , max

(

v|N(t) ≤ n; v ≤ n
)

. Thus for all n ≥ N(1)
we have that Pr(t(n) ∈ Dn) > 1− δv(n) and sup

ŝ(n)∈Dn
L(A

s(n), ŝ(n))−L(A
s(n), s(n)) < ǫv(n). Note

that v(n) ↑ ∞, it follows that δv(n) → 0 and ǫv(n) → 0. Therefore, Pr(t(n) ∈ Dn) → 1, and

lim sup
n→∞

{

sup
ŝ(n)∈Dn

L(A
s(n), ŝ(n)) − L(A

s(n), s(n))
}

≤ 0.

That is, A is weakly robust w.r.t. s, which is a desired contradiction.

We now prove the necessity of weak robustness. Recall that l(·, ·) is uniformly bounded. Thus
by Hoeffding’s inequality we have that for any ǫ and δ, there exists n∗ such that for any n > n∗,

with probability at least 1− δ, we have
∣

∣

∣

1
n

∑n
i=1 l(A

s(n), ti)−Et(l(As(n), t))
∣

∣

∣
≤ ǫ. This implies that

L(A
s(n), t(n)) − Etl(As(n), t)

Pr
−→ 0. (9)

Since algorithm A is not weakly robust, Lemma 16 implies that (8) holds for infinitely many n. This,
combined with Equation (9) implies that for infinitely many n,

Etl(As(n), t) ≥ L(A
s(n), s(n)) +

ǫ∗

2
,

which means that A does not generalize. Thus, the necessity of weak robustness is established.

Theorem 15 immediately leads to the following corollary.

Corollary 17 An algorithm A generalizes w.p. 1 if and only if it is a.s. weakly robust.

7 Discussion

In this paper we investigated the generalization of learning algorithm based on their robustness:
the property that if a testing sample is “similar” to a training sample, then its loss is close to the
training error. This provides a novel approach, different from complexity or stability arguments,
in studying the performance of learning algorithms. We further showed that a weak notion of
robustness characterizes generalizability, which implies that robustness is the fundamental property
that makes learning algorithms work.

Before concluding the paper, we outline several directions for future research.

• Adaptive partition: In Definition 2 when the notion of robustness was introduced, we required
that the partitioning of Z into K sets is fixed. That is, regardless of the training sample set,
we partition Z into the same K sets. A natural and interesting question is what if such fixed
partition does not exist, while instead we can only partition Z into K sets adaptively, i.e., for
different training set we will have a different partitioning of Z. Adaptive partition setup can be
used to study algorithms such as k-NN. Our current proof technique does not straightforwardly
extend to such a setup, and we would like to understand whether a meaningful generalization
bound under this weaker notion of robustness can be obtained.

• Mismatched datasets: One advantage of algorithmic robustness framework is the ability to
handle non-standard learning setups. For example, in Section 3.2 we derived generalization
bounds for quantile loss. A problem of the same essence is the mismatched datasets, also called
as domain adaption, see Ben-David et al. (2007), Mansour et al. (2009) and reference therein.
Here the training samples are generated according to a distribution slightly different from that of
the testing samples, e.g., the two distributions may have a small K-L divergence. We conjecture
that in this case a generalization bound similar to Theorem 3 would be possible, with an extra
term depending on the magnitude of the difference of the two distributions.

• Outlier removal: One possible reason that the training samples is generated differently from
the testing sample is corruption by outliers. It is often the case that the training sample set is
corrupted by some outliers. In addition, algorithms designed to be outlier resistent abound in
the literature (Huber, 1981; Rousseeuw & Leroy, 1987). The robust framework may provide a
novel approach in studying both the generalization ability and the outlier resistent property of
these algorithms. In particular, the results reported in Section 3.2 can serve as a starting point
of future research in this direction.
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• Consistency: We addressed in this paper the relationship between robustness and generaliz-
ability. An equally important feature of learning algorithms is consistency: the property that a
learning algorithm guarantees to recover the global optimal solution as the size of the training set
increases. While it is straightforward that if an algorithm minimizes the empirical error asymp-
totically and also generalizes (or equivalently is weakly robust), then it is consistent, much less
is known for a necessary condition for an algorithm to be consistent. It is certainly interesting
to investigate the relationship between consistency and robustness, and in particular whether
robustness is necessary for consistency, at least for algorithms that asymptotically minimize the
empirical error.

• Other robust algorithms: The proposed robust approach considers a general learning setup.
However, except for PCA, the algorithms investigated in Section 5 are in the supervised learning
setting. One natural extension is to investigate other robust unsupervised and semi-supervised
learning algorithms. One difficulty is that compared to supervised learning case, the analysis
of unsupervised/semi-supervised learning algorithms can be challenging, due to the fact that
many of them are random iterative algorithms (e.g., k-means).
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Learning to create is as hard as learning to appreciate

David Xiao
∗

Abstract

We explore the relationship between a natural notion of unsupervised learning studied
by Kearns et al. (STOC ’94), which we call here “learning to create” (LTC), and the
standard PAC model of Valiant (CACM ’84), which is a form of supervised learning and
can be thought of as a formalization of “learning to appreciate”. Our main theorem states
that “if learning to appreciate is hard, then so is learning to create”. That is, we prove
that if PAC learning with respect to efficiently samplable input distributions is hard, then
solving the LTC problem is also hard. We also investigate ways in which our result are
tight.

1 Introduction

The P vs. NP question is often cast in the intuitively appealing language of “creativity” and
whether “creativity can be automated” (see e.g. the survey of Wigderson [28]). To explain this
view, one often uses as an analogy a great artist, say Beethoven, who produced widely appreciated
works of music. We model the process of deciding whether a piece of music is pleasing by an efficient
circuit fmusic. Then the process of creating pleasing music amounts to finding a satisfying assignment
to fmusic, while appreciating music only requires evaluating fmusic on a given input.1 Therefore, if
P = NP, one can automate the task of composing pleasing music because there would be an efficient
algorithm that found pleasing pieces of music (i.e. the satisfying assignments of fmusic).

The above analogy is not the only way one can view creativity through a computational lens. In
this paper we explore the question of automating creativity from a learning-theoretic point of view.
We will explore two models of learning that correspond to “learning to appreciate” and “learning
to create”. Both the studied models are standard: the first is the PAC model of Valiant [27], while
the second is a form of unsupervised learning, which we call “learning to create” (LTC), whose
complexity-theoretic study was initiated by Kearns et al. [16].

PAC learning is a “label prediction” problem, and in particular is a form of supervised learning.
In the PAC model, the learning algorithm is given examples labelled according to a hidden function
f and is supposed to learn how to label new examples as f would. For example, we might try to learn
how a particular person Alice appreciates music. In this case, we model Alice’s taste by a function
fAlice

music
that takes input a piece of music and outputs whether or not Alice finds it pleasing. The

learning task would be, given a set of examples of music each labelled fAlice
music

, to output a hypothesis
that labels new pieces of music the same way as fAlice

music
would. Of course, Alice’s taste may be very

different from another person Bob, so the same learning algorithm should successfully learn fp
music

for all persons p, given examples labelled according to fp
music

.
LTC is a “pattern reconstruction ” problem, and in particular is a form of unsupervised learn-

ing. In the LTC model, the learning algorithm is given many unlabelled examples drawn from a
hidden distribution D, and is supposed to construct a circuit that generates new examples that are

∗LRI, Université Paris-Sud, dxiao@lri.fr
1Of course the analogy is not entirely accurate since we believe that P 6= NP while, presumably,

Beethoven was bound by the Extended Church-Turing Hypothesis and could not solve NP-hard prob-
lems. But let us ignore this detail and suppose that Beethoven’s creativity was indeed the result of solving
an NP-hard problem.

516



distributed close to D. One can think of D as say generating a piece of music as Beethoven would.
Of course, the Beethoven’s distribution of music DBeethoven is very different from, say, DJohn Lennon,
and the learning algorithm should learn using examples how to produce music according to one style
or the other.

In this paper, when we refer to the PAC or LTC problem, we mean solving these problems for
“complete” concept classes (unless we specifically say otherwise). For instance, we study whether it
is possible to PAC learn all labellings computable by SIZE(n2) circuits, and whether it is possible
to solve LTC for the class of distributions samplable by SIZE(n2) circuits.

Our first result says roughly that if PAC is hard, then so is LTC.

Theorem 1.1 (LTC is as hard as PAC learning, informal). If the PAC learning problem with respect
to efficiently samplable input distributions cannot be solved by a polynomial-time algorithm, then the
LTC problem cannot be solved by a polynomial-time algorithm.

This theorem holds even for the more stringent requirement of agnostic learning. In addition
to our analogy about learning to create vs. learning to appreciate, one can also interpret our result
as saying that “unsupervised learning is as hard as supervised learning” in the context of these
particular models.

One may ask whether Theorem 1.1 can be strengthened to say that for every concept class F ,
if it is hard to PAC learn F , then it is also hard to solve LTC for the class F . 2 This is a stronger
statement than Theorem 1.1, since, as we will see, the proof of Theorem 1.1 will take a class F
that is hard in the PAC model and transform it into a (more complex) class F ′ that is hard in the
LTC model. We show that this stronger statement is false by exhibiting concrete concept classes for
which it does not hold.

Theorem 1.2 (PAC vs. LTC for specific concept classes, informal). Under standard cryptographic
assumptions, there exist concept classes for which PAC learning (even with respect to the uniform
input distribution) is hard while LTC is easy.

Another weakness in Theorem 1.1 is that it considers only PAC learning with respect to efficiently
samplable input distributions. In general, PAC learning allows the examples given to the learning
algorithm to be generated from any distribution; Theorem 1.1 adds the restriction that the examples
must be generated from a distribution that can be sampled by, say, a SIZE(n2) circuit.

In our last result, we study whether Theorem 1.1 can be generalized to encompass PAC learning
with respect to unsamplable input distributions. We show this is unlikely: we exhibit an oracle
relative to which LTC is easy (and therefore PAC learning is easy for all efficiently samplable input
distributions), but there exist functions that are hard to learn with respect to an unsamplable
distribution.

Theorem 1.3 (Separating LTC and PAC learning unsamplable input distributions). There exists

an oracle O relative to which solving LTC for SIZE
O(n2) is easy, while there is a function f ∈

SIZE
O(n2) that is an efficiently computable function that is hard to PAC learn on an unsamplable

input distribution.

1.1 Relation to previous work

Hardness of learning. It is widely believed that both the PAC and LTC problems are hard.
Both problems can be proven hard if one assumes the existence of cryptography [27, 17] or the
weaker assumption that zero knowledge is non-trivial [1] (see also Corollary 2.11). However, to the
best of our knowledge, prior to this work there were no results establishing a relationship between
the hardness of PAC learning and the LTC problem.

Previous work on complexity of LTC. The computational complexity of PAC learning has
been studied extensively since its first appearance [27, 15, 22, 17, 4]. The complexity of LTC was first
studied in [16] but overall is less well-understood. One question about LTC that has received some
attention is its relation to a related notion of “learning to evaluate probabilities”: given samples as
in the LTC problem, construct a hypothesis h : {0, 1}n → [0, 1] such that h(x) = Pr[D = x], i.e.
the hypothesis evaluates the probability that x is drawn from D. It is known that under reasonable
assumptions, there is a concrete concept class for which “learning to evaluate probabilities” is hard
and LTC is easy [16], while there is also a concept class for which “learning to evaluate probabilities”
is easy yet LTC is hard [20].

2Since LTC deals with classes of functions with multi-bit outputs while PAC deals with classes of functions
with single-bit outputs, it must be clarified how we obtain both single- and multi-bit functions from a single
class F . We defer this discussion to Section 4.
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Complexity of learning via complete problems. Much of the literature comparing different
learning models has focused on concrete problems. In this kind of comparison, one exhibits a
single concept class that is learnable in one model but not in another (under some reasonable
complexity assumption). This has led to valuable insights into the complexity of various models,
including the power of membership oracles [5], faulty vs. perfect membership oracles [25, 6], and the
aforementioned difference between learning to evaluate probabilities and LTC [16, 20]. Furthermore,
this kind of comparison is perhaps the most reasonable when comparing models where one model
is obviously more complex than the other, and the goal is to show that this relationship is in some
sense strict (e.g. [5], where clearly having a membership oracle makes the learning task easier).

On the other hand, this approach has the drawback that in some cases it can lead to conflicting
evidence, as in the case of learning to evaluate probabilities and LTC, where looking at one concept
class suggests that the learning in the first model is harder than in the second model, but looking
at a different concept class suggests the opposite.

A different approach to understanding the complexity of the learning model is to examine a
complete problem for the model. Namely, if we consider the problem of learning a “complete”
concept class (e.g. SIZE(n2) circuits) in learning model M , then the existence of any hard-to-learn
concept class for M would imply that learning SIZE(n2) is hard. This approach was explored in
Applebaum et al. [1], Xiao [29, 30] to understand the complexity of PAC learning relative to the
complexity of NP, auxiliary-input one-way functions [21], and zero knowledge. In this paper we
apply this approach to the complete problems for PAC learning and for LTC.

PAC learning with respect to efficient distributions. We already noted that Theorem 1.1
only relates LTC to PAC learning or agnostic learning with respect to efficiently samplable input
distributions. We believe that this is a reasonable restriction: according to the strong Church-Turing
thesis, all physical phenomena can be explained by efficient (polynomial-time) computation. There-
fore, one can suppose that from whatever source one obtains the examples to be learned, if one can
suppose that they are i.i.d. samples from a distribution then one may as well suppose that this distri-
bution is polynomial-time samplable. Furthermore, Theorem 1.3 says that no relativizing reduction
can strengthen Theorem 1.1 to include PAC learning with respect to unsamplable distributions.

1.2 Our techniques

1.2.1 Proving Theorem 1.1

Cryptography using circuits. Our Theorem 1.1 is proven using a variation of standard cryp-
tographic techniques. Standard cryptography is based on uniform cryptographic primitives: for
example, one-way functions or pseudo-random functions that are computable using one Turing Ma-
chine for all input lengths. This is because in order to use these primitives, one needs an efficient
way to compute them for any desired input size. On the other hand, it is often required that these
primitives are hard-to-break even for non-uniform families of polynomial-size circuits, since it may
happen that the adversary has some side-information about the cryptosystem that is best modelled
as non-uniform advice.

Because we are looking at things from a learning-theoretic point of view, we consider analogues of
one-way functions and pseudorandom functions that are computable by circuits (with non-uniform
advice), but which are only required to be secure against uniform adversaries. Such primitives,
which we call one-way circuits or pseudorandom circuits in this paper, were studied in the context
of zero knowledge, first in Ostrovsky and Wigderson [21] and later in Vadhan [26], who used a
slightly different definition. (They were called auxiliary-input one-way functions in these contexts.)
The connection between one-way circuits and learning theory (also linking learning theory to zero
knowledge) was explored in Applebaum et al. [1], Xiao [29, 30]. The main fact about one-way
circuits we use to prove Theorem 1.1 is that if one-way circuits exist, then the LTC problem is hard
(Corollary 2.11).

Circuit agnostic learning. Another ingredient in the proof of Theorem 1.1 is a variation of the
standard PAC/agnostic learning problem that we call circuit agnostic learning, implicit in [1] and
made explicit in [30] (see Definition 3.1). Whereas in the standard PAC/agnostic learning models,
the learning algorithm only receives a collection of labelled examples, in the circuit agnostic learning
model the learning algorithm is given a circuit that samples the distribution of labelled examples.
Notice that this does not trivialize the problem: knowing a circuit that generates labelled examples
does not necessarily reveal how to label examples. See Section 3.1 for more discussion.

We know that if one-way circuits exist, then PAC learning is hard [1], but the converse is
unknown to hold, namely it is unknown whether the hardness of PAC learning implies that one-way
circuits exists (and in fact, it was shown in [29] that this converse cannot be proven by relativizing
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techniques). However, the converse does hold if we consider circuit agnostic learning: if PAC learning
is hard, then the circuit agnostic learning problem is hard (see Lemma 3.2). This is the second main
ingredient that we use in the proof of Theorem 1.1.

Proof idea behind Theorem 1.1. Combining the above two tools, the proof idea for Theorem 1.1
is to use a LTC algorithm to solve PAC learning with respect to efficiently samplable distributions
as follows. First, obtain a set of labelled examples, and use the LTC algorithm on this set of labelled
examples to obtain a circuit C that samples the distribution from which these labelled examples
were drawn. Note that such a circuit exists because we are promised that the PAC learning instance
is on an input distribution that is efficiently samplable. This effectively transforms the original PAC
learning problem into an instance of the circuit agnostic learning problem. Next, combining our
two theorems about one-way circuits (Corollary 2.11) and circuit agnostic learning (Lemma 3.2), it
is possible to use the LTC algorithm to solve this circuit agnostic learning problem, which in turn
solves the original PAC learning problem as well.

1.2.2 Understanding Theorem 1.3

Oracle separations. Theorems such as Theorem 1.3 are called oracle separations, and have long
been used in theoretical computer science to “separate” various classes. Baker et al. [2] showed an
oracle separation between P and NP and Impagliazzo and Rudich [14] showed an oracle separation
between one-way permutations and the intuitively harder task of key exchange. More recently, such
oracle separations were also used in learning theory to separate PAC learning from the hardness of
zero knowledge [29].

The motivation behind such oracle separations is as follows. There are very few unconditional
separations in theoretical computer science (and almost non-existent when going beyond weak com-
plexity classes such as AC0). On the other hand, many if not most complexity results are proved
using relativizing techniques (for example black-box reductions and diagonalization). Therefore by
proving an oracle separation between classes A and B, one shows that in order to prove A re-
duces to B, one would need to come up with a non-relativizing technique. This arguably attests
to the difficulty of the task.3 In this spirit, we interpret Theorem 1.3 to mean that strengthen-
ing Theorem 1.1 to encompass PAC learning even with respect to unsamplable distributions would
require new non-relativizing techniques.

2 Preliminaries

2.1 Notation and basic lemmas

If X is a probability distribution, then let supp(X) denote the support of X , i.e. the values that
X takes on with positive probability. For two distributions X1, X2, the total variation distance (or
statistical distance) is defined as ∆(X1, X2) = 1

2

∑

x |Pr[X1 = x] − Pr[X2 = x]|, where the sum is
taken over all x in the supports of X1, X2. We let Un denote the uniform distribution {0, 1}n. For
finite sets S, we will sometimes abuse notation and let S also stand for the uniform distribution over
S. For a circuit C : {0, 1}m → {0, 1}n, we say that C samples a distribution X if C(Um) = X . We let

SIZE(q(n)) denote the set of (functions computable by) circuits of size q(n), and we let SIZE
O(q(n))

denote the same where the circuits are allowed oracle gates O at unit cost.
We will use the following lemma of Borel-Cantelli, which says that if a countable sequence of

events each have small probability of occuring, then the probability that an infinite number of them
occurs is 0.

Theorem 2.1 (Borel-Cantelli lemma). Let {En}n∈N be a sequence of events. Suppose
∑∞

n=1 Pr[En]
exists and is finite. Then Pr[∃I ⊆ N, |I| =∞, ∀n ∈ I, En occurs] = 0.

2.2 PAC learning (or learning to appreciate)

Define the learning error of a function f : {0, 1}n → {0, 1} with respect to a distribution (X, Y ) over
{0, 1}n+1 to be err((X, Y ), f) = PrX,Y [f(X) 6= Y ]. For a class of functions F , define err((X, Y ),F) =
minf∈F err((X, Y ), f).

Definition 2.2 (PAC Learning). An algorithm A PAC learns the concept class F if the following
holds for every n ∈ N, ε > 0, f ∈ F , and every distribution X over {0, 1}n. Given access to an
example oracle that generates labelled examples according to (X, f(X)), A produces with success
probability≥ 1−2−n an ε-good hypothesis h (represented as a circuit), namely err((X, f(X)), h) ≤ ε.
Furthermore, A runs in time poly(n, 1/ε).

3Of course, such a result does not imply that the task is impossible. Indeed, many of the most surprising
results bypass oracle separations or other notions of separation (for example [19, 24, 3]).
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Definition 2.3. We say that A learns F w.r.t. efficient distributions if the PAC learning guarantee
is only required to hold for all X = C(Um), where m = poly(n) and C is a polynomial-size circuit.

Worst possible error is 1/2: we will assume that A always outputs a hypothesis h such that
err((X, f(X)), h) ≤ 1/2. One can assure that this occurs with probability ≥ 1 − 2−n by checking
whether the majority of labels output by h agrees with the majority on the examples drawn from
the oracle, and if they disagree outputting 1− h instead of h.

A word on padding: In this paper we use SIZE(n2), the class of functions computable by size n2

circuits, as a complete concept class. This class is complete for functions computable by polynomial-
size circuits because of a padding argument. For example, in order to learn circuits of size nc, it

suffices to pad an example x of length n to x0nc/2−n which has length n′ = nc/2, and then running
the learner for SIZE(n2). This same kind of padding works for the LTC setting defined below.

Agnostic learning: we will also work with an even more demanding notion of learning, called
agnostic learning, defined in Kearns et al. [17], where the examples may not be labelled according
to any fixed function. Here, the goal is to obtain a hypothesis that performs (almost) as well as the
best hypothesis in a concept class.

Definition 2.4 (Agnostic Learning). A procedure A agnostically learns the concept class F if the
following holds for every n ∈ N, ε > 0, and every distribution (X, Y ) over {0, 1}n+1. Given access
to an example oracle that generates labelled examples according to (X, Y ), A produces with success
probability ≥ 1 − 2−n an ε-good hypothesis h (represented as a circuit), namely err((X, Y ), h) ≤
err((X, Y ),F) + ε. Furthermore, A runs in time poly(n, 1/ε).

Definition 2.5. We say that A agnostically learns F w.r.t. efficient distributions if the agnostic
learning guarantee holds for all (X, Y ) = C(Um), where m = poly(n) and C is a polynomial-size
circuit.

2.3 Learning to create

Definition 2.6 (LTC). A procedure A solves LTC for the concept class F if the following holds
for every n ∈ N, ε > 0, and f ∈ F , where f : {0, 1}m → {0, 1}n. Given access to an oracle
that generates samples according to f(Um), A outputs with probability 1− ε an ε-close hypothesis

h : {0, 1}m
′

→ {0, 1}n (represented as a circuit), namely ∆(f(Um), h(Um′)) ≤ ε. 4 Furthermore, A
runs in time poly(n, 1/ε).

The accuracy of the hypotheses: our definition of PAC learning requires a strong notion of
accuracy: for an example oracle (X, Y ), we require the hypothesis h to satisfy err((X, Y ), h) ≤
1/poly(n). In the PAC model we know one may apply Boosting [23, 7, 8] to show that “strong PAC
learning” is equivalent to “weak PAC learning”, where the hypothesis is only required to satisfy
err((X, Y ), h) ≤ 1

2 − 1/poly(n). In contrast, there is no known equivalent boosting technique for the
LTC problem, so we must acknowledge that our definition that ∆(f(Um), h(Um′)) ≤ 1/poly(n) is
indeed a strong requirement, and this is necessary for our results.

2.4 Cryptography using circuits

We assume the reader is familiar with the standard notions of one-way functions and pseudorandom
functions/permutations, and refer to [9] for further details.

Definition 2.7. Pseudorandom circuits (PRC) exist if for every efficient uniform algorithm D, there
exists an infinite collection W of functions where for every f ∈ W , f : {0, 1}n × {0, 1}n → {0, 1}, f
is computable by a circuit of size s(n) = poly(n) and it holds that

∣

∣

∣

∣

∣

Pr
D,k

R
←Un

[Dfk(f, 1s) = 1]− Pr
D,φ

[Dφ(f, 1s) = 1]

∣

∣

∣

∣

∣

≤ s−ω(1) (2.1)

where f is passed to D as a circuit, fk = f(k, ·) and φ is a truly random function from {0, 1}n →
{0, 1}.

f is a (uniform) pseudorandom permutation (PRP) if f : {0, 1}n × {0, 1}n → {0, 1}n, fk is a
permutation for all k, f is computable by a uniform Turing Machine, and Equation 2.1 holds for all
efficient D.

4Kearns et al. [16] defined closeness using KL divergence. We use statistical distance as this is sufficient
in most applications and simplifies our presentation. All of our results also hold for KL divergence with
appropriate (but qualitatively equivalent) scaling of parameters.
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Definition 2.8. Distributional one-way circuits (DOWC) exist if for every efficient algorithm I,
there exists a polynomial p(s) and an infinite collection W of functions where for every f ∈ W ,
f : {0, 1}n → {0, 1}m, f is computable by a circuit of size s(n) = poly(n) and it holds that

∆((x, f(x)), (I(f, y), y | y = f(x))) > 1/p(s)

over random choice of x←R Un and the random coins of I, and f is given to I as a circuit.

Our definition is based on [21] (although we require the inverter to distributionally invert the
circuit, i.e. it must output a nearly-uniform preimage rather than an arbitrary preimage). One-
wayness and pseudorandom functions are known to be equivalent for the uniform case [11, 10, 13],
and the reductions establishing this extend immediately to the non-uniform case.

Theorem 2.9 ([11, 10, 13]). DOWC exist if and only if PRC exist.

2.5 Solving LTC implies inverting circuits

It was shown in Kearns et al. [16] that one can use an algorithm solving LTC in order to distinguish
PRP from truly random functions. By looking at their proof, we observe that it also applies to PRC.

Theorem 2.10 (Kearns et al. [16]). If LTC is efficiently solvable for the class SIZE(n2), then PRC
do not exist, i.e. there is a polynomial-time algorithm that distinguishes any efficient circuit from a
truly random function.

Corollary 2.11 (Follows from Theorem 2.10 and Theorem 2.9). If LTC is efficiently solvable for the
class SIZE(n2), then no family of circuits is distributionally one-way, i.e. there is a polynomial-time
algorithm that distributionally inverts any polynomial-size circuit.

3 Solving LTC implies solving agnostic learning w.r.t. efficient

distributions

The idea of our proof of Theorem 1.1 is that we can use an LTC solver to learn the circuit that
samples the distribution of labelled examples. This makes the PAC learning problem easier because
we now have a circuit generating labelled examples (rather than just a set of labelled examples),
and we show that the LTC solver can also be used to solve this relaxed PAC learning problem.

3.1 Circuit agnostic learning

To prove Theorem 1.1, we use a tool called “circuit agnostic learning”. In standard notions of
learning, the learning algorithm is given access only to examples drawn from the distribution (X, Y ).
One can also ask what happens when the learning algorithm gets access to a circuit that samples from
the distribution (X, Y ). For the setting of agnostic learning, we call this relaxed (and potentially
easier) problem circuit agnostic learning:

Definition 3.1. A procedure A circuit-agnostic-learns a concept class F if on input circuit C of
size s sampling a distribution (X, Y ) over {0, 1}n+1, A outputs a hypothesis h such that

err((X, Y ), h) ≤ err((X, Y ),F) + ε

and A runs in time poly(s, 1/ε).

At first glance it might seem that this model is trivially easy because the learning algorithm
has access to C, which allows the learning algorithm to generate labelled examples by himself and
may allow the learning algorithm to create a good hypothesis. However the problem remains non-
trivial because C generates an example and its label simultaneously, while the problem the learning
algorithm must solve is to compute the label on an example given as input.5

The following lemma implicitly was proved in [1] and explicitly appears in Xiao [30]

Lemma 3.2 ([1] (see also [30], Lemma 3.5.1)). If there is an efficient algorithm that distributionally
inverts all polynomial-size circuits, then there is an algorithm running in time poly(n, 1/ε) that
circuit-agnostically-learns SIZE(n2).

5To see a concrete example of a class for which circuit-agnostic learning is hard, consider the concept class
in Section 4.2. For this concept class the standard PAC learning problem and the circuit agnostic learning
problem are equivalent, since after O(log n) samples in the standard PAC model one can obtain the modulus
N , which using Algorithm 4.8 allows one to construct a circuit sampling the input distribution (Un, fN (Un)).
This means that the Quadratic Residuosity assumption implies that the circuit agnostic learning problem
for this concept class is hard.
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3.2 Proof of Theorem 1.1

Theorem 3.3 (Theorem 1.1, formal). If there exists a polynomial-time algorithm ALTC that solves
LTC for the class SIZE(n2), then there exists a polynomial-time algorithm AAgn that solves agnostic
learning with respect to the concept class SIZE(n2) and with respect to all distributions samplable by
SIZE(n2) circuits.

Proof of Theorem 3.3. By hypothesis there exists a polynomial-time algorithm ALTC that solves LTC
for the class SIZE(n2). By Corollary 2.11 it follows that there is a polynomial-time algorithm I that
distributionally inverts all circuits. By Lemma 3.2 there is a polynomial-time algorithm ACircLearn

that circuit-agnostically-learns SIZE(n2).

Defining the agnostic learning algorithm: the algorithm AAgn that learns agnostically w.r.t.
efficiently samplable distributions does the following. By padding, we may assume that the in-
put distribution X, Y is sampled by a circuit of size n2. First, AAgn obtains enough samples
(x1, y1), . . . , (xt(n), yt(n)) from the example oracle to run ALTC with error parameter ε/2. Let C
be its output. Run ACircLearn on C with error ε/2, and let h be the output of ACircLearn. Output h.

Analyzing AAgn: since ALTC solves LTC for the concept class SIZE(n2), we get with probability
1 − 2−n a hypothesis C : {0, 1}m → {0, 1}n such that ∆(C(Um), (X, Y )) ≤ ε/2. Letting (X ′, Y ′)
be the distribution samples by C, this implies that ∆((X ′, Y ′), (X, Y )) ≤ ε/2. Since ACircLearn

solves CircLearn
SIZE(n2), it follows that with probability 1 − 2−n, the output hypothesis h satisfies

err((X ′, Y ′), h) ≤ ε/2. Together, it follows that err((X, Y ), h) ≤ ε.

Remark 3.4. All of the ingredients used in the proof of Theorem 3.3 relativize, and therefore the
statement of Theorem 3.3 also relativizes. Namely, relative to any oracle O, if solving LTC for the
class SIZE

O(n2) is easy, then PAC learning SIZE
O(n2) with respect to input distributions samplable

by SIZE
O(poly(n)) circuits is easy.

4 LTC and PAC learning for concrete classes

In this section we show that, in contrast to Theorem 1.1, if one studies concrete concept classes that
are not complete, then it is possible that PAC learning is harder than LTC.

Because PAC learning deals with single-bit output function while LTC deals with multi-bit
output functions, in order to compare the two models for concrete concept classes we use two
different ways to obtain both single- and multi-bit output functions from a single concept class:

1. Direct products: let F be a class of single-bit output functions. Then we compare PAC learning
the class F to solving LTC for the class Fℓ where each function f ∈ Fℓ maps {0, 1}n → {0, 1}ℓ

and can be decomposed as f(x) = (f1(x), . . . , fℓ(x)) where each fi ∈ F . Here, the number of
copies ℓ(n) satisfies ω(log n) ≤ ℓ(n) ≤ poly(n).

2. Generating labelled examples: let F be a class of single-bit output functions and let D be a
class of distributions that are efficiently samplable. Then we compare PAC learning F with
respect to input distributions in D to solving LTC for the class of distributions of the form
(X, f(X)) where X ∈ D and f ∈ F .

To motivate the above notions, the direct product notion is natural when thinking of F as being
a syntactic complexity class, such as DNF formulas or AC0 circuits. Thus, in the PAC model the
function to be learned has complexity F , and similarly in the LTC problem each bit of output in
the output distribution has complexity F .

The “generating labelled examples” notion is motivated by the proof of Theorem 1.1. In the
proof of Theorem 1.1, the first step is to apply the LTC algorithm to produce a circuit that generates
(approximately) the distribution of labelled examples. By considering this notion, we will see that
the proof of Theorem 1.1 does not immediately generalize to hold for concrete concept classes.

Since we have no unconditional lower bounds for polynomial-time computation (which would be
necessary to show that polynomial-time algorithms cannot solve PAC or LTC), all of the following
results are conditional, i.e. they assume that some (standard) computational problem is hard.
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4.1 Direct product

Proposition 4.1. Assuming one-way functions exist, then there exists a concept class F that is
hard to learn in the PAC model but such that solving LTC for the class Fℓ is easy.

Proof. Since we assume one-way functions exist, therefore [11, 10, 18] implies that there exists a
(uniform) pseudorandom permutation of the form f : {0, 1}n× {0, 1}n → {0, 1}n (we use the short-
hand fk(x) = f(k, x)) such that fk is a permutation, and for all efficient distinguishers D,

| Pr
φ,D

[Dφ(1n) = 1]− Pr
k,D

[Dfk(1n) = 1]| ≤ ε(n)

where the distinguishing advantage ε(n) = n−ω(1) is negligible. We make the following claim, which
says that there exists an infinite collection of keys K such that fk is hard-to-compute for all k ∈ K:

Lemma 4.2. Let {fk}k∈{0,1}∗ be a collection of pseudorandom permutations with distinguishing
advantage ε(n). Then there exists an infinite set K = {kn}n∈N such that ∀k ∈ K, n = |k|, it holds
for all efficient algorithms A that for large enough n,

Pr
A

[Afkn = h and err((Un, fkn
(Un)), h) ≤ 1/2− 2

√

ε(n)] ≤ n2
√

ε(n)

We will prove this lemma shortly, first we use it to define F and prove Proposition 4.1.

Defining F : let K = {kn}n∈N be the set of hard keys defined by Lemma 4.2. Let fkn
(x)i denote

the i’th bit of fkn
(x). We define

F =
⋃

n∈N

{gi : {0, 1}n → {0, 1}, gi(x) = fkn
(x)i | i ∈ [n]}

Claim 4.3. PAC learning F is hard.

This follows from Lemma 4.2: if there were an algorithm that PAC learns F , then it could in
particular be used to compute fkn

for all n: given oracle access to fkn
, one can simulate example

oracles (Un, gi(Un)) for all i ∈ [n], and using the PAC learning algorithm for F with error 1/n2

one could obtain with high probability hypotheses hi such that Pr[hi(Un) = gi(Un)] ≥ 1 − 1/n2.
Letting h = (h1, . . . , hn), we see that err((Un, fkn

(Un)), h) ≤ 1/n, which contradicts Lemma 4.2

since 1/n≪ 1/2− 2
√

ε(n).

Claim 4.4. Solving LTC for the class Fℓ is easy.

Fix any function (gi1 , . . . , giℓ
) ∈ Fℓ. Since fkn

is a permutation, fkn
(Un) is uniform. Therefore,

gip
(Un) and giq

(Un) are independent uniform bits if ip 6= iq, and they are always equal if ip = iq.

We now describe an algorithm that solves LTC for the class Fℓ. Let D be the distribution to
be learned, D = (gi1(r), . . . , giq

(r) | r ←R Un).

1. Initialize a graph G on n vertices to be the complete graph, where the vertices are labelled
1, . . . , n.

2. Repeat the following t = n log
(

n
2

)

times. Sample x ←R D, and for every pair u, v ∈ [n] such
that xu 6= xv, remove the edge (u, v) from G.

3. The output hypothesis h does the following: for each connected component of G, sample a
random bit. Output x where xu equals the bit of the connected component containing u.

We claim that with all but probably 2−n, the distribution sampled by h will be exactly the
distribution generated by (gi1 , . . . , giℓ

). The only time that this hypothesis will be different is if
there is some pair u, v such that iu 6= iv and yet, for all examples x that the algorithm draws, it
holds that xiu

= xiv
. Since for each sample this happens independently with probably 1/2, and

since there are t = n log
(

n
2

)

samples, by a union bound over all edges this happens with probably

at most
(

n
2

)

2−n log (n

2) ≤ 2−n.

Proof of Lemma 4.2. For an algorithm A and a key k of length n, let

pA,k = Pr
A

[Afk = h and err((Un, fk(Un)), h) ≤ 1/2− 2
√

ε(n)]

where the probability is only over the random coins of A. It must hold that:

Claim 4.5. For all sufficiently large n, Prk←R{0,1}n [pA,k > n2
√

ε(n)] ≤ 1/n2
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This claim holds because otherwise one could use A to break the pseudorandomness of f by the
following distinguisher D. First D runs A to obtain h. Then, D queries its oracle on a new uniform
x ←R Un; let b be the oracle’s response. D accepts if b = h(x) and rejects otherwise. It is easy to
compute Prφ,D[Dφ(1n) = 1] ≤ 1

2 +p(n)2−n where p(n) = poly(n) is the maximum number of queries

made by A. On the other hand, if Claim 4.5 does not hold, then Prk,D[Dfk(1n) = 1] ≥ 1
2 + 2ε(n).

We can assume w.l.o.g. that ε ≥ 2−n/2 (Lemma 4.2 only gets weaker if we increase ε), therefore this
gives a distinguishing probability 2ε− p(n)2−n ≫ ε(n), contradicting the pseudorandomness of fk.

Define pA = Prk1,k2,...[For inifinitely many n, pA,kn
> n2

√

ε(n)] where kn ←R {0, 1}n. Since
the series

∑∞
n=1 1/n2 < ∞, applying Theorem 2.1 and Claim 4.5 implies that pA = 0. Since there

is a countable number of algorithms A, this implies

Pr
k1,k2,...

[∃A, For infinitely many n, pA,kn
> n2

√

ε(n)] ≤
∑

A

pA = 0

Therefore, a random choice of K will satisfy the conclusion of Lemma 4.2 with probability 1.

4.2 Generating labelled examples

Our result for this model is based on the hardness of quadratic residuosity over Blum integers. We
say that N = pq is a Blum integer of length n if p, q are prime, ⌈log N⌉ = n, n − ⌈log p⌉ ≤ 2,
n − ⌈log q⌉ ≤ 2 and p ≡ q ≡ 3 (mod 4). We say that x is a quadratic residue mod a if ∃y ∈ ZN

such that x = y2 mod a for a ∈ N. The Legendre symbol (x
p ) is equal to 0 if x = 0 mod p, it is

equal to 1 if x is a quadratic residue mod p and −1 if x is a quadratic non-residue mod p. The
Jacobi symbol is defined ( x

N ) = (x
p )(x

q ). It is possible to efficiently compute the Jacobi symbol using

Euclid’s algorithm. It is known that for a Blum integer N , (−1
N ) = 1 but −1 is not a quadratic

residue mod N .
Let QR(N, x) = 1 if x = y2 mod N and 0 otherwise, and write QRN (x) = QR(N, x). The

hardness of quadratic residuosity over Blum integers says that there is no polynomial time algorithm
that evaluates QRN (x) given a Blum integer N and x ∈ ZN .6 7

Proposition 4.6. Assuming that Quadratic Residuosity is hard over Blum integers, there is a
concept class F for which PAC learning with respect to the uniform distribution is hard while solving
LTC for distributions (Un, f(Un)) where f ∈ F is easy.

Proof. Define the functions fN : ZN × [⌈log N⌉]× {0, 1} → {0, 1} where

fN (x, i, b) =

{

QRN (x) b = 0

Ni b = 1

where Ni denotes the i’th bit of N . Let n the input length of fN and letF = {fN | N is a Blum integer}.

Claim 4.7. PAC learning F is hard for the uniform distribution.

Suppose we have a PAC learning algorithm A for F (it even suffices if A only works for uniformly
distributed inputs). Given N , one can simulate an example oracle for (Un, fN (Un)) as follows:

Algorithm 4.8 (Sampling from (Un, fN (Un)):).

1. Pick x′ ←R ZN , i←R [⌈log N⌉], b←R {0, 1}.

2. If b = 1 then output ((x′, i, b), Ni), otherwise compute the Jacobi symbol (x′

N ).

3. If (x′

N ) 6= 1, then output ((x′, i, b), 0).

4. If (x′

N ) = 1, then sample r ←R ZN , a←R {−1, 1}, and output ((ar2, i, b), 1+a
2 ).

This simulated example oracle is identical to a true example oracle for fN .

6Here, the fact that the factorization N is unknown to the algorithm is necessary to ensure hardness.
Indeed, it is possible to compute QR

N
(x) using an efficient circuit that has the factorization p, q as advice.

This is, for instance, why the class F defined in Proposition 4.6 is efficiently computable.
7This example can also be phrased in terms of the generic assumption that trapdoor permutations exist,

but the presentation using Quadratic Residuosity is simpler.
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Using a PAC learner to define an algorithm A′ solving quadratic residuosity: on input
(x, N), A′ first checks if ( x

N ) 6= 1, and if so outputs 0. Otherwise, use Algorithm 4.8 to simulate
an example oracle for (Un, fN(Un)), then run A on this example oracle to obtain a hypothesis h.
Finally, A′ picks a random r ←R ZN , i←R [n] and outputs h(xr2, i, 0).

We claim that A′ solves quadratic residuosity. Let S1 be the set of quadratic residues in ZN ,
and let S−1 be the set of quadratic non-residues y ∈ ZN with Jacobi symbol ( y

N ) = 1. Observe that
Pry←RZN

[y ∈ S1] = Pry←RZN
[y ∈ S−1] = 1/4 + o(1). Therefore, for all a ∈ {−1, 1}, it holds over

uniform i that

err(((Sa, i, 0), fN(Sa, i, 0)), h) ≤ (8 + o(1))err((Un, fN (Un)), h) ≤ 9ε

for large enough n. Since for a ∈ {−1, 1} and every x ∈ Sa, the variable xr2 mod N for random
r is distributed uniformly in Sa, this implies that A′ outputs QRN (x) correctly with probability
1− 9ε− 2−n.

Claim 4.9. Solving LTC for (Un, fN (Un)) for fN ∈ F is easy.

After seeing O((log N)2) = poly(n) samples, with all but negligible probability, N is revealed.
Given N , one can sample from (Un, fN(Un)) using Algorithm 4.8.

5 PAC learning unsamplable distributions

Our construction of O will be randomized: we will select R from a distribution of oracles and
show that with high probability that the oracle O = (R,PSPACE) satisfies Theorem 1.3. The
distribution will be as follows:

Definition 5.1. On input length n, let R : {0, 1}n × {0, 1}n → {0, 1} be chosen as follows: select
z ←R {0, 1}n. Pick the set Sz from the following distribution: for each x ∈ {0, 1}n, put x into Sz

with probability 2−n/2. Then, for each x ∈ Sz, let Rz(x) = R(z, x) = 1 with probability 1/2 and 0
otherwise. For all z′ 6= z, let Rz′(x) = 0 for all x ∈ {0, 1}n.

Intuitively, for each input length we first pick a “hard instance” z, then we pick a “hard set” Sz

that is a sparse random subset of {0, 1}n of size roughly 2n/2. We then define Rz to be a random
function on Sz and 0 elsewhere, and also Rz′ is identically zero for all z′ 6= z. We remark that the
definition of this oracle was also proposed by Impagliazzo [12], but as an alternative oracle for the
main result of [29]. It was not studied with respect to the question of this paper, and the analyses
we provide below are new.

Proof of Theorem 1.3. We will show that with overwhelming probability over choice of such R,
solving LTC relative toO = (R,PSPACE) is easy, but PAC learning relative toO = (R,PSPACE)
with respect to unsamplable distributions is hard.

Lemma 5.2 (PAC learning unsamplable distribution is hard). With probability 1 over R, for all
efficient algorithms A with oracle access to O = (R,PSPACE), and for all but finitely many n, let
z ∈ {0, 1}n be the hard instance on length n, then

Pr
A

[AO given access to (Sz ,Rz(Sz)) outputs h s.t. err((Sz,Rz(Sz)), h) ≤ 1
2 − n− log n] ≤ n− log n

The proof of this deferred to the full version. The intuition is that Rz(x) looks like a random
bit: the only way an algorithm could predict Rz(x) is either if x was one of the examples it was
given in the set of labelled examples, or if the learning algorithm finds the value z so that it can
query the oracle at Rz(x). The first case is unlikely because |Sz| ≈ 2n/2, while the second is unlikely
because z is chosen uniformly at random and therefore hard for the learning algorithm to find.

On the other hand, the following also holds:

Lemma 5.3 (Solving LTC easy). There is an efficient AO such that with probability 1 over the

choice of R where O = (R,PSPACE), AO solves LTC for the concept class SIZE
O(n2).

We sketch the proof of this lemma shortly. Together, these two lemmas imply Theorem 1.3.
Notice that we did not need to prove separately that Sz is unsamplable; this follows immediately since
learning w.r.t. Sz is hard while learning w.r.t efficiently samplable distributions is easy: Remark 3.4
and Lemma 5.3 imply that there is an efficient algorithm that solves PAC learning for the concept
class SIZE

O(n2) with respect to efficiently samplable distributions.
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Proof of Lemma 5.3. The maximum likelihood approach: We will use a maximum likelihood
approach to solve LTC. The maximum likelihood algorithm says that, given a sample T = (x1, . . . , xt)
that was obtained from one distribution out of a class of distributions D, it suffices to pick the D ∈ D
such that Pr[Dt = T ] is maximized.

More formally, let MLD(x1, . . . , xt) = argmaxD∈D{Pr[Dt = (x1, . . . , xt)]}. The following holds:

Claim 5.4 (Folklore). Fix D of size |D| ≤ 2poly(n) and such that for every D ∈ D and every
x ∈ supp(D), Pr[D = x] ≥ 2−poly(n). Then for t = poly(n, 1/ε) and for any D ∈ D, it holds that:

Pr
x1,...,xt←RD

[MLD(x1, . . . , xt) = D′ ∧∆(D′, D) > ε] ≤ 2−n

We defer a proof to the full version.

Let DO be the class of distributions sampled by circuits in SIZE
O(n2). To solve LTC for

SIZE
O(n2), we would like to run the maximum likelihood approach over DO. However, in order

to calculate or even roughly approximate Pr[(DO)t = (x1, . . . , xt)] for distributions DO that might
be sampled by circuits including O gates, one would need to know how O = (R,PSPACE) behaves
everywhere, and this requires querying R exponentially many times.

Our approach is to still use the maximum likelihood approach, but rather than applying the
approach using DO as the class of distributions, we apply it to a related class D′q = {D′q,n}n∈N for
which having a PSPACE oracle is sufficient to calculate the maximum likelihood hypothesis.

Defining D′q using truncated oracles: D′q,n will be the following class of distributions. For

z ∈ {0, 1}n, S ⊆ {0, 1}n, define the function Rz,S
n : {0, 1}n × {0, 1}n → {0, 1} to be Rz,S

n (z, x) = 1 if
x ∈ S and zero elsewhere. Note that Rz,S

n can be concisely represented if |S| = poly(n). The class
of q(n)-truncated oracles on length n is the following:

Rq,n =
{

R = (Rz1,S1

1 , . . . , Rzn,Sn

n ) | ∀i ∈ [n], zi ∈ {0, 1}i, Si ⊆ {0, 1}i, |Si| ≤ q(n)
}

A distribution D is in D′q,n if there exists an R ∈ Rq,n2 and oracle circuit of size n2 that has (in
addition to AND, OR, and NOT gates) PSPACE gates and R gates. Note that the circuit is
allowed oracle gates only for a single R ∈ Rq,n2 , or in other words it cannot have two different kind
of oracle gates evaluating two different R 6= R′ ∈ Rε,n2 . Also note that because we can explicitly

represent Si, each of these circuits is contained in SIZE
PSPACE(n3(1 + q)).

The following straightforward claim says that, with a PSPACE oracle, it is possible to efficiently
evaluate the probability that D ∈ D′q,n generates a particular sample:

Claim 5.5. There exists an algorithm using a PSPACE oracle that runs in time poly(n, 1/ε) and
computes MLD′

q,n
.

This follows from the simple fact that calculating Pr[D = x] for a distribution D that is sam-

plable by a SIZE
PSPACE(poly(n)) circuit can be efficiently done with a PSPACE oracle. Since, as

remarked above, D′q,n can be sampled by SIZE
PSPACE(n3(1 + q)) circuits, this suffices to build the

algorithm in Claim 5.5.
It therefore remains to prove that, with high probability over the choice of funtion R, the class

D′q,n is a good approximation for the class DO = {DOn }n∈N sampled by circuits in SIZE
O(n2). We say

that DOn is ε-approximable by D′ if for every D ∈ DOn , there exists D′ ∈ D′ such that ∆(D, D′) ≤ ε.

Lemma 5.6. For all n, ε, let q = 16n9/ε3, then PrR[DOn is ε-approximable by D′q,n] > 1− 2−n.

We defer the proof of this lemma to the full version. We briefly sketch the intuition here: let
C ∈ SIZE

O(n2) be the circuit sampling D. Following an idea of [29], we prove that it is only necessary
to know the queries that C makes to R that are “heavy”, i.e. that occur with large probability.
Then we can simply replace R gates by a truth table that includes values for all the heavy queries.
This modified circuit is a circuit in D′q, and we show that this modification does not change the
behavior of the output distribution by much.

Next use Lemma 5.6 to prove the theorem.

526



The learning algorithm ALTC. We now combine our claims to obtain the following algorithm:

Algorithm 5.7.

Algorithm ALTC: input size n, error parameter ε.
1. Let t = poly(n, 2/ε) be the appropriate polynomial to apply Claim 5.4 with error ε/2. ALTC

draws t examples x1, . . . , xt from D.

2. Using the algorithm of Claim 5.5, set q = 16n9(2t/ε)3 and compute D′ = MLD′

q,n
(x1, . . . , xt).

Output D′.

Proof of correctness: We prove that ALTC indeed solves the LTC problem for SIZE
O(n2). By

Theorem 2.1, it suffices to show that for all n, with probability 1−2−n over the choice of R, it holds
for all D ∈ DOn that

Pr
x1,...,xt←RD

[ALTC(x1, . . . , xt) = D′ ∧ ∆(D′, D) > ε] ≤ ε (5.1)

(This error can be reduced to 2−n by repeating ALTC and taking the best hypothesis it output.)
For q = 16n9(2t/ε)3, Lemma 5.6 implies that with probability 1− 2−n over the choice of R, DOn is
(ε/2t)-approximable by D′q,n. In this case, for every D ∈ DOn , there exists D′ ∈ D′q,n such that by

the triangle inequality it holds that ∆(Dt, (D′)t) ≤ ε/2. Therefore

Pr
x1,...,xt←RD

[ALTC = D′ ∧∆(D′, D) > ε] ≤ Pr
x1,...,xt←RD′

[ALTC = D′′ ∧∆(D′′, D) > ε] + ε/2

≤ Pr
x1,...,xt←RD′

[ALTC = D′′ ∧∆(D′′, D′) > ε− ε/(2t)] + ε/2

≤ 2−n + ε/2 ≤ ε

where penultimate inequality follows from Claim 5.4, since D′ ∈ D′q,n and ALTC evaluates MLD′

q,n

(the conditions of the hypothesis are satisfied because D is samplable by a polynomial-size oracle
circuit). This proves Equation 5.1. Furthermore, observe that Claim 5.5 implies that ALTC runs in
polynomial time using a (R,PSPACE) oracle.

6 Acknowledgements

The author would like to thank the anonymous referees for their helpful comments.

References

[1] B. Applebaum, B. Barak, and D. Xiao. On basing lower-bounds for learning on worst-case
assumptions. In Proc. FOCS ’08, pages 211–220, 2008.

[2] T. Baker, J. Gill, and R. Solovay. Relativizations of the P =?NP question.
SIAM Journal on Computing, 4(4):431–442, 1975. doi: 10.1137/0204037. URL
http://link.aip.org/link/?SMJ/4/431/1.

[3] B. Barak. How to go beyond the black-box simulation barrier. In Proc. 42nd FOCS, pages
106–115. IEEE, 2001.

[4] A. Blum, M. L. Furst, M. J. Kearns, and R. J. Lipton. Cryptographic primitives based on hard
learning problems. In CRYPTO ’93, pages 278–291, 1993. ISBN 3-540-57766-1.

[5] V. Feldman. On the power of membership queries in agnostic learning. J. Mach. Learn. Res.,
10:163–182, 2009. ISSN 1532-4435.

[6] V. Feldman and S. Shah. Separating models of learning with faulty teachers. Theor. Comput.
Sci., 410(19):1903–1912, 2009. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/j.tcs.2009.01.
017.

[7] Y. Freund. Boosting a weak learning algorithm by majority. In Proc. COLT ’90, pages 202–216,
San Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc. ISBN 1-55860-146-5.

[8] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting,. Journal of Comp. and Sys. Sci., 55(1):119–139, 1997.

[9] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.
Earlier version available on http://www.wisdom.weizmann.ac.il/~oded/frag.html .

[10] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the
ACM, 33(4):792–807, 1986. ISSN 0004-5411. Preliminary version in FOCS’ 84.

[11] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any
one-way function. SIAM J. of Com., 28(4):1364–1396, 1999. Preliminary versions appeared in
STOC’ 89 and STOC’ 90.

527

http://link.aip.org/link/?SMJ/4/431/1
http://www.wisdom.weizmann.ac.il/~oded/frag.html


[12] R. Impagliazzo. Private communication, 2009.
[13] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based cryptography

(extended abstract). In Proc. 30th FOCS, pages 230–235, 1989.
[14] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permutations.

In STOC ’89, pages 44–61. ACM, 1989. ISBN 0-89791-307-8. doi: http://doi.acm.org/10.1145/
73007.73012.

[15] M. Kearns and L. Valiant. Cryptographic limitations on learning boolean formulae and finite
automata. In Proc. STOC ’89, pages 433–444, New York, NY, USA, 1989. ACM. ISBN 0-
89791-307-8. doi: http://doi.acm.org/10.1145/73007.73049.

[16] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. E. Schapire, and L. Sellie. On the learnability
of discrete distributions. In STOC ’94: Proceedings of the twenty-sixth annual ACM symposium
on Theory of computing, pages 273–282, New York, NY, USA, 1994. ACM. ISBN 0-89791-663-8.
doi: http://doi.acm.org/10.1145/195058.195155.

[17] M. J. Kearns, R. E. Schapire, and L. M. Sellie. Toward efficient agnostic learning. In COLT ’92,
pages 341–352, 1992. ISBN 0-89791-497-X. doi: http://doi.acm.org/10.1145/130385.130424.

[18] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom
functions. SIAM J. of Com., 17(2):373–386, 1988. Preliminary version in STOC’ 86.

[19] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems.
In Proc. 31st FOCS, pages 2–10. IEEE, 1990.

[20] M. Naor. Evaluation may be easier than generation (extended abstract). In STOC ’96: Proceed-
ings of the twenty-eighth annual ACM symposium on Theory of computing, pages 74–83, New
York, NY, USA, 1996. ACM. ISBN 0-89791-785-5. doi: http://doi.acm.org/10.1145/237814.
237833.

[21] R. Ostrovsky and A. Wigderson. One-way functions are essential for non-trivial zero-knowledge.
Technical Report TR-93-073, International Computer Science Institute, Berkeley, CA, Nov.
1993. Preliminary version in Proc. 2nd Israeli Symp. on Theory of Computing and Systems,
1993, pp. 3–17.

[22] L. Pitt and M. K. Warmuth. Prediction-preserving reducibility. J. Comput. Syst. Sci., 41(3):
430–467, 1990. ISSN 0022-0000. doi: http://dx.doi.org/10.1016/0022-0000(90)90028-J.

[23] R. Schapire. The strength of weak learnability. Proc. FOCS ’89, pages 28–33, 1989. doi:
http://doi.ieeecomputersociety.org/10.1109/SFCS.1989.63451.

[24] A. Shamir. Ip = pspace. J. ACM, 39(4):869–877, 1992. ISSN 0004-5411. doi: http://doi.acm.
org/10.1145/146585.146609.

[25] H.-U. Simon. How many missing answers can be tolerated by query learners? In STACS ’02:
Proceedings of the 19th Annual Symposium on Theoretical Aspects of Computer Science, pages
384–395, London, UK, 2002. Springer-Verlag. ISBN 3-540-43283-3.

[26] S. P. Vadhan. An unconditional study of computational zero knowledge. FOCS ’04, pages 176–
185, 2004. ISSN 0272-5428. doi: http://doi.ieeecomputersociety.org/10.1109/FOCS.2004.13.

[27] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984. ISSN
0001-0782. doi: http://doi.acm.org/10.1145/1968.1972.

[28] A. Wigderson. P, NP, and mathematics - a computational complexity perspective. In Pro-
ceedings of the ICM ’06, volume 1, pages 665–712, Zurich, Switzerland, 2006. EMS Publishing
House.

[29] D. Xiao. On basing ZK 6= BPP on the hardness of PAC learning. In In Proc. CCC ’09, pages
304–315, 2009.

[30] D. Xiao. New Perspectives on the Complexity of Computational Learning, and Other Problems
in Theoretical Computer Science. PhD thesis, Princeton University, 2009.

528



Author Index 
 

Abernethy, Jacob .......................................................... 318 
Ackerman, Margareta ................................................... 270 
Agarwal, Alekh ............................................................... 28 
Akavia, Adi ................................................................... 381 
Alon, Noga ...................................................................... 27 
Audibert, Jean-Yves ....................................................... 41 
Awasthi, Pranjal ............................................................ 359 
Balcan, Maria Florina ................................................... 282 
Barbosa, Marconi .......................................................... 451 
Belkin, Mikhail ............................................................. 407 
Ben-David, Shai ............................................................ 270 
Blum, Avrim ................................................................. 359 
Bubeck, Sebastien ................................................... 41, 477 
Caramanis, Constantine ................................................ 490 
Case, John ..................................................................... 181 
Cesa-Bianchi, Nicolo ............................................ 218, 320 
Chakrabarti, Deepayan.................................................. 295 
Crammer, Koby ...................................................... 80, 168 
de Rooij, Steven ............................................................ 106 
Dekel, Ofer ............................................................. 28, 346 
Duchi, John C. ........................................................ 14, 257 
Even-Dar, Eyal ............................................................. 168 
Freydenberger, Dominik D. .......................................... 194 
Gavinsky, Dmitry ......................................................... 207 
Gentile, Claudio .................................................... 320, 346 
Geulen, Sascha .............................................................. 132 
Golovin, Daniel............................................................. 333 
Gottlieb, Lee-Ad ........................................................... 433 
Grunwald, Peter ............................................................ 106 
Gupta, Anupam ............................................................. 394 
Gupta, Pramod .............................................................. 282 
Gyorgy, Andras............................................................. 231 
Hazan, Elad ................................................... 144, 257, 314 
Honda, Junya .................................................................. 67 
Janzing, Dominik .......................................................... 464 
Kale, Satyen .......................................................... 144, 314 
Kanade, Varun .............................................................. 155 
Kivinen, Jyrki ................................................................. 93 
Klivans, Adam .............................................................. 368 
Koenig, Sven ................................................................ 312 
Koltchinskii, Vladimir .................................................. 420 
Kondor, Risi .................................................................. 451 
Kontorovich, Aryeh (Leonid) ....................................... 433 
Koolen, Wouter M. ......................................................... 93 
Kotlowski, Wojciech .................................................... 106 
Kötzing, Timo ............................................................... 181 
Krause, Andreas ............................................................ 333 
Krauthgamer, Robert .................................................... 433 
Lafferty, John ................................................................ 394 
Langford, John .............................................................. 316 
Lee, Homin K. ...................................................... 310, 368 
Liu, Han ........................................................................ 394 
Loker, David ................................................................. 270 
Mannor, Shie .................................................. 80, 490, 503 
Mansour, Yishay ..................................................... 80, 168 
McMahan, H. Brendan ................................................. 244 

Minsker, Stas ................................................................ 420 
Moore, Andrew W. ....................................................... 295 
Munos, Remi .......................................................... 41, 477 
Neu, Gergely ................................................................. 231 
Reidenbach, Daniel ....................................................... 194 
Rigollet, Philippe ............................................................ 54 
Ryabko, Daniil .............................................................. 119 
Sarkar, Purnamrita ........................................................ 295 
Schapire, Robert E. ....................................................... 308 
Scholkopf, Bernhard ..................................................... 464 
Shalev-Shwartz, Shai ...................................... 14, 218, 441 
Shamir, Ohad ........................................................ 218, 441 
Sheffet, Or .................................................................... 359 
Shie Mannor,  ............................................................... 503 
Singer, Yoram ......................................................... 14, 257 
Sinha, Kaushik .............................................................. 407 
Sridharan, Karthik ............................................ 1, 346, 441 
Steudel, Bastian ............................................................ 464 
Streeter, Matthew.......................................................... 244 
Szepesvari, Csaba ......................................................... 231 
Takemura, Akimichi ....................................................... 67 
Tewari, Ambuj ............................................................ 1, 14 
Valiant, Leslie G. .......................................................... 155 
Vaughan, Jennifer Wortman ................................. 155, 168 
Vitale, Fabio ................................................................. 320 
Výocking, Berthold ...................................................... 132 
Wan, Andrew ................................................................ 368 
Warmuth, Manfred K. .................................... 93, 144, 314 
Wasserman, Larry ......................................................... 394 
Winkler, Melanie .......................................................... 132 
Xiao, David ................................................................... 516 
Xiao, Lin ......................................................................... 28 
Xu, Huan............................................................... 490, 503 
Xu, Min ........................................................................ 394 
Zappella, Giovanni ....................................................... 320 
Zeevi, Assaf .................................................................... 54 

529




	001 title copyright_bates
	002 colt10-forward_bates
	003 052Sridharan_bates
	004 057Duchi_bates
	005 invited_alon_bates
	006 037agarwal_bates
	007 059Audibert_bates
	008 095rigollet_bates
	009 29honda_bates
	010 063evendar_bates
	011 033koolen_bates
	012 069Kotlowski_bates
	013 076ryabko_bates
	014 105geulen_bates
	015 094-hazan_bates
	016 036kanade_bates
	017 034vaughan_bates
	018 011koetzing_bates
	019 126Freydenberger_bates
	020 002gavinsky_bates
	021 009Shamir_bates
	022 125neu_bates
	023 104mcmahan_bates
	024 023Duchi_bates
	Introduction
	The Adaptive Gradient Algorithm
	Improvement and Motivating Examples
	Framework and Outline of Results
	Related Work

	Adaptive Proximal Functions
	Diagonal Matrix Proximal Functions
	Full Matrix Proximal Functions
	Lowering the Regret for Strongly Convex Functions
	Experiments
	Conclusions

	025 119Ackerman_bates
	026 101balcan_bates
	027 114Sarkar_bates
	028 OpenProblemSchapire_bates
	029 OpenProblemLee_bates
	030 OpenProblemKoenig_bates
	031 OpenProblemKale_bates
	032 OpenProblemLangford_bates
	033 OpenProblemAbernethy_bates
	034 67Vitale_bates
	035 111golovin_bates
	036 077Sridharan_bates
	037 081blum_bates
	038 085Lee_bates
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Our Approach

	2 Preliminaries
	2.1 Sparse Polynomials
	2.2 Agnostic learning

	3 Approximating DNFs using univariate polynomial interpolation
	3.1 A Simple Case: Read-Once DNF Formulas

	4 Mansour's Conjecture for Random DNF Formulas
	5 Mansour's Conjecture for Read-k DNF Formulas
	6 Pseudorandomness

	039 005akavia_bates
	040 074lafferty_bates
	041 082sinha_bates
	042 042Koltchinskii_bates
	Introduction
	Preliminaries
	Bounding approximation error
	Bounding Random Error

	043 031Gottlieb_bates
	044 010Shamir_bates
	045 115Kondor_bates
	046 062Steudel_bates
	047 014Bubeck_bates
	048 040Xu_bates
	049 030Xu_bates
	049a 70Xiao_bates
	050 author index_bates



