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Abstract. We pose the problem of determining the rate of convergence at which AdaBoost mini-
mizes exponential loss.

Boosting is the problem of combining many “weak,” high-error hypotheses to generate a single “strong”
hypothesis with very low error. The AdaBoost algorithm of Freund and Schapire (1997) is shown in Figure 1.
Here we are given m labeled training examples (x1, y1), . . . , (xm, ym) where the xi’s are in some domain
X , and the labels yi ∈ {−1,+1}. On each round t, a distribution Dt is computed as in the figure over the
m training examples, and a weak hypothesis ht : X → {−1,+1} is found, where our aim is to find a weak
hypothesis with low weighted error εt relative toDt. In particular, for simplicity, we assume that ht minimizes
the weighted error over all hypotheses belonging to some finite class of weak hypothesesH = {~1, . . . , ~N}.

The final hypothesis H computes the sign of a weighted combination of weak hypotheses F (x) =∑T
t=1 αtht(x). Since each ht is equal to ~jt for some jt, this can also be rewritten as F (x) =

∑N
j=1 λj~j(x)

for some set of values λ = 〈λ1, . . . λN 〉. It was observed by Breiman (1999) and others (Frean & Downs,
1998; Friedman et al., 2000; Mason et al., 1999; Onoda et al., 1998; Rätsch et al., 2001; Schapire & Singer,
1999) that AdaBoost behaves so as to minimize the exponential loss

L(λ) =
1
m

m∑
i=1

exp

− N∑
j=1

λjyi~j(xi)


over the parameters λ. In particular, AdaBoost performs coordinate descent, on each round choosing a
single coordinate jt (corresponding to some weak hypothesis ht = ~jt ) and adjusting it by adding αt to it:
λjt ← λjt + αt. Further, AdaBoost is greedy, choosing jt and αt so as to cause the greatest decrease in the
exponential loss.

In general, the exponential loss need not attain its minimum at any finite λ (that is, at any λ ∈ RN ). For
instance, for an appropriate choice of data (with N = 2 and m = 3), we might have

L(λ1, λ2) = 1
3

(
eλ1−λ2 + eλ2−λ1 + e−λ1−λ2

)
.

The first two terms together are minimized when λ1 = λ2, and the third term is minimized when λ1 + λ2 →
+∞. Thus, the minimum of L in this case is attained when we fix λ1 = λ2, and the two weights together
grow to infinity at the same pace.

Let λ1,λ2, . . . be the sequence of parameter vectors computed by AdaBoost in the fashion described
above. It is known that AdaBoost asymptotically converges to the minimum possible exponential loss (Collins
et al., 2002). That is,

lim
t→∞

L(λt) = inf
λ∈RN

L(λ).

However, it seems that only extremely weak bounds are known on the rate of convergence, for the most
general case. In particular, Bickel, Ritov and Zakai (2006) prove a very weak bound of the formO(1/

√
log t)

on this rate. Much better bounds are proved by Rätsch, Mika and Warmuth (2002) using results from Luo and
Tseng (1992), but these appear to require that the exponential loss be minimized by a finite λ, and also depend
on quantities that are not easily measured. Shalev-Shwartz and Singer (2008) prove bounds for a variant of
AdaBoost. Zhang and Yu (2005) also give rates of convergence, but their technique requires a bound on the
step sizes αt. Many classic results are known on the convergence of iterative algorithms generally (see for
instance, Luenberger and Ye (2008), or Boyd and Vandenberghe (2004)); however, these typically start by
assuming that the minimum is attained at some finite point in the (usually compact) space of interest.

When the weak learning assumption holds, that is, when it is assumed that the weighted errors εt are
all upper bounded by 1/2 − γ for some γ > 0, then it is known (Freund & Schapire, 1997; Schapire &
Singer, 1999) that the exponential loss is at most e−2tγ2

after t rounds, so it clearly quickly converges to the



Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}
spaceH = {~1, . . . , ~N} of weak hypotheses ~j : X → {−1,+1}

Initialize: D1(i) = 1/m for i = 1, . . . ,m.
For t = 1, . . . , T :
• Train weak learner using distribution Dt; that is, find weak hypothesis ht ∈ H that minimizes the

weighted error εt = Pri∼Dt [ht(xi) 6= yi].
• Choose αt = 1

2 ln ((1− εt)/εt).
• Update, for i = 1, . . . ,m: Dt+1(i) = Dt(i) exp(−αtyiht(xi))/Zt

where Zt is a normalization factor (chosen so that Dt+1 will be a distribution).
Output the final hypothesis: H(x) = sign

(∑T
t=1 αtht(x)

)
.

Figure 1: The boosting algorithm AdaBoost.

minimum possible loss in this case. However, here our interest is in the general case when the weak learning
assumption might not hold.

This problem of determining the rate of convergence is relevant in the proof of the consistency of Ada-
Boost given by Bartlett and Traskin (2007), where it has a direct impact on the rate at which AdaBoost
converges to the Bayes optimal classifier (under suitable assumptions).

We conjecture that there exists a positive constant c and a polynomial poly() such that for all training sets
and all finite sets of weak hypotheses, and for all B > 0,

L(λt) ≤ min
λ:‖λ‖1≤B

L(λ) +
poly(logN,m,B)

tc
.

Said differently, the conjecture states that the exponential loss of AdaBoost will be at most ε more than
that of any other parameter vector λ of `1-norm bounded by B in a number of rounds that is bounded by a
polynomial in logN , m, B and 1/ε. (We require logN rather than N since the number of weak hypotheses
N = |H| will typically be extremely large.) The open problem is to determine if this conjecture is true or
false, in general, for AdaBoost. The result should be general and apply in all cases, even when the weak
learning assumption does not hold, and even if the minimum of the exponential loss is not realized at any
finite vector λ. The prize for a new result proving or disproving the conjecture is US$100.
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Rätsch, G., Onoda, T., & Müller, K.-R. (2001). Soft margins for AdaBoost. Machine Learning, 42, 287–320.
Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions. Machine Learn-

ing, 37, 297–336.
Shalev-Shwartz, S., & Singer, Y. (2008). On the equivalence of weak learnability and linear separability: New relaxations

and efficient boosting algorithms. 21st Annual Conference on Learning Theory.
Zhang, T., & Yu, B. (2005). Boosting with early stopping: Convergence and consistency. Annals of Statistics, 33,

1538–1579.


