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Abstract

Recent advances in large-margin classification of data residing in general metric spaces (rather than
Hilbert spaces) enable classification under various natural metrics, such as edit and earthmover dis-
tance. The general framework developed for this purpose by von Luxburg and Bousquet [JMLR,
2004] left open the question of computational efficiency andproviding direct bounds on classifica-
tion error.

We design a new algorithm for classification in general metric spaces, whose runtime and accu-
racy depend on the doubling dimension of the data points. It thus achieves superior classification
performance in many common scenarios. The algorithmic coreof our approach is an approxi-
mate (rather than exact) solution to the classical problemsof Lipschitz extension and of Nearest
Neighbor Search. The algorithm’s generalization performance is established via the fat-shattering
dimension of Lipschitz classifiers.

1 Introduction

A recent line of work extends the large-margin classification paradigm from Hilbert spaces to less structured
ones, such as Banach or even metric spaces [HBS05, vLB04, DL07]. In this metric approach, data is presented
as points with distances but without requiring the additional structure of inner products. The potentially
significant advantage is that the metric can be carefully suited to the type of data, e.g. earthmover distance
for images, or edit distance for sequences.

However, much of the existing machinery of generalization bounds [CV95, SS02] depends strongly on
the inner-product structure of the Hilbert space. von Luxburg and Bousquet [vLB04] developed a powerful
framework of large-margin classification for a general metric spaceX . First, they show that the natural
hypotheses (classifiers) to consider in this context are maximally smooth Lipschitz functions; indeed, they
reduce classification (of points in a metric spaceX ) to finding a Lipschitz function (f : X → R) consistent
with the data, which is a classic problem in Analysis, known as Lipschitz extension. Next, they establish
error bounds in the form of expected-loss. Finally, the computational problem of evaluating the classification
function is reduced, assuming zero training error, to exact1-nearest neighbor search. This matches a common
classification heuristic, see e.g. [CH67], and the analysisof [vLB04] may be viewed as a rigorous explanation
for the empirical success of this heuristic.

An important question left open by the work of [vLB04] is the efficient computation of the classifier.
Specifically, exact nearest neighbor search in general metrics might require time that is linear in the sam-
ple size, and it is algorithmically nontrivial to deal with training error. In particular, the task of choosing
which points will be misclassified by the hypothesis (i.e. optimizing the bias-variance tradeoff) remains to be
addressed.

Our contribution. We solve the problems delineated above by showing that data with a low doubling di-
mension admits accurate and computationally efficient classification. In fact, this is the first time in which the
doubling dimension of the data points is tied to either classification error or algorithmic runtime. (Previously,
the doubling dimension of the space of classifiers was controlled by the VC dimension of the classifier space
[BLL09].) We first give an alternate generalization bound for Lipschitz classifiers, which directly bounds the
classification error, rather than expected loss. (A similarbound can in fact be derived from the analysis of
[vLB04].) Our bound is based on an elementary analysis of thefat-shattering dimension, see Section 3.
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We then present our main contribution, and give an efficient computational implementation of the Lips-
chitz classifier. In Section 4 we prove that once a Lipschitz classifier has been chosen, the classifier can be
computed (evaluated) quickly on any new pointx ∈ X , by utilizing approximate nearest neighbor search
(which is known to be fast when points have a low doubling dimension). In Section 5 we further show how
to quickly compute a near-optimal classifier (in terms of classification error bound), even when the training
error is nonzero. In particular, this necessitates the optimization of the number of incorrectly labeled exam-
ples – and moreover, their identity – as part of the bias-variance tradeoff. In Section 6 we give an example to
illustrate the potential power of our approach.

2 Definitions and notation

We use standard notation and definitions throughout.

Metric spaces. A metric ρ on a setX is a positive symmetric function satisfying the triangle inequality
ρ(x, y) ≤ ρ(x, z)+ρ(z, y); together the two comprise the metric space(X , ρ). The diameter of a setA ⊆ X ,
is defined bydiam(A) = supx,y∈A ρ(x, y). The Lipschitz constant of a functionf : X → R, denoted by
‖f‖Lip, is defined to be the smallestL > 0 that satisfies|f(x) − f(y)| ≤ Lρ(x, y) for all x, y ∈ X .

Doubling dimension. For a metric(X , ρ), let λ be the smallest value such that every ball inX can be
covered byλ balls of half the radius. Thedoubling dimensionof X is ddim(X ) = log2 λ. A metric is
doublingwhen its doubling dimension is bounded. Note that while a lowEuclidean dimension implies a
low doubling dimension (Euclidean metrics of dimensiond have doubling dimensionO(d) [GKL03]), low
doubling dimension is strictly more general than low Euclidean dimension.

The following packing property can be demonstrated via a repetitive application of the doubling property:
For setS with doubling dimensionddim(X ), if the minimum interpoint distance inS is at leastα, and
diam(S) ≤ β, then|S| ≤ ⌈β/α⌉ddim(X )+1 (see, for example [KL04]).

Learning. Our setting in this paper is a generalization of PAC known asprobabilistic concept learning
[KS94]. In this model, examples are drawn independently from X × {−1, 1} according to some unknown
probability distributionP , and the learner, having observedn such pairs(x, y) produces a hypothesish :
X → {−1, 1}. Thegeneralization erroris the probability of misclassifying a new point drawn fromP :

P {(x, y) : h(x) 6= y} .

The quantity above is random (since it depends on a random sequence) and we wish to upper-bound it in
probability. Most bounds of this sort contains asample errorterm (corresponding in statistics to bias), which
is the fraction of observed examples misclassified byh and ahypothesis complexityterm (corresponding to
variance in statistics) which measures the richness of the class of all admissible hypotheses [Was06]. Keeping
in line with the literature, we ignore the measure-theoretic technicalities associated with taking suprema over
uncountable function classes.

3 Generalization bounds

In this section, we take a preliminary step towards our efficient classification algorithm by deriving general-
ization bounds for Lipschitz classifiers over doubling spaces. As noted by [vLB04] Lipschitz functions are
the natural object to consider in an optimization/regularization framework. The basic intuition behind our
proofs is that the Lipschitz constant plays the role of the inverse margin in the confidence of the classifier.
As in [vLB04], small Lipschitz constant corresponds to large margin, which in turn yields low hypothesis
complexity and variance. In retrospect, our generalization bound (Corollary 5 below) can be derived as a
consequence of [vLB04, Theorem 18] in conjunction with [BM02, Theorem 5(b)].

We apply tools from generalized Vapnik-Chervonenkis theory to the case of Lipschitz classifiers. LetF
be a collection of functionsf : X → R and recall the definition of the fat-shattering dimension [ABCH97,
BS99]: a setX ⊂ X is said to beγ-shattered byF if there exists some functionr : X → R such that for
each label assignmenty ∈ {−1, 1}X there is anf ∈ F satisfyingy(x)(f(x)− r(x)) ≥ γ > 0 for all x ∈ X .
Theγ-fat-shattering dimension ofF , denoted byfatγ(F), is the cardinality of the largest setγ-shattered by
F .

For the case of Lipschitz functions, we will show that the notion of fat-shattering dimension may be
somewhat simplified. We say that a setX ⊂ X is γ-shatteredat zeroby a collection of functionsF if for
eachy ∈ {−1, 1}X there is anf ∈ F satisfyingy(x)f(x) ≥ γ for all x ∈ X . (This is the definition above
with r ≡ 0.) We writefat0γ(F) to denote the cardinality of the largest setγ-shattered at zero byF and show
that for Lipschitz function classes the two complexity measures are the same.

Lemma 1 LetF be the collection of allf : X → R with ‖f‖Lip ≤ L. Thenfatγ(F) = fat0γ(F).



Proof: We begin by recalling the classic Lipschitz extension result, essentially due to McShane and Whitney
[McS34, Whi34]. Any real-valued functionf defined on a subsetX of a metric spaceX has an extensionf∗

to all ofX satisfying‖f∗‖Lip = ‖f‖Lip. Thus, in what follows we will assume that any functionf defined on
X ⊂ X is also defined on all ofX via some Lipschitz extension (in particular, to bound‖f‖Lip it suffices to
bound the restricted‖f |X‖

Lip
).

Consider some finiteX ⊂ X . If X is γ-shattered at zero byF then by definition it is alsoγ-shattered.
Now assume thatX is γ-shattered byF . Thus, there is some functionr : X → R such that for each
y ∈ {−1, 1}X there is anf = fr,y ∈ F such thatfr,y(x) ≥ r(x) + γ if y(x) = +1 andfr,y(x) ≤ r(x) − γ

if y(x) = −1. Let us define the functioñfy onX and as per above, on all ofX , by f̃y(x) = γy(x). It is clear

that the collection
{

f̃y : y ∈ {−1, 1}X
}

γ-fat-shattersX at zero; it only remains to verify that̃fy ∈ F , i.e.,

sup
y∈{−1,1}X

∥

∥

∥
f̃y

∥

∥

∥

Lip
≤ sup

y∈{−1,1}X

‖fr,y‖Lip
.

Indeed,

sup
y∈{−1,1}X ,x,x′∈X

fr,y(x) − fr,y(x′)

ρ(x, x′)
≥ sup

x,x′∈X

r(x) − r(x′) + 2γ

ρ(x, x′)
≥ sup

x,x′∈X

2γ

ρ(x, x′)
= sup

y∈{−1,1}X

∥

∥

∥
f̃y

∥

∥

∥

Lip
.

A consequence of Lemma 1 is that in considering the generalization properties of Lipschitz functions
we need only bound theγ-fat-shattering dimension at zero. The latter follows fromthe observation that the
packing number of a metric space controls the fat-shattering dimension of Lipschitz functions defined over
the metric space. LetM(X , ρ, ε) be defined as theε-packing number ofX , the cardinality of the largest
ε-separated subset ofX .

Theorem 2 Let(X , ρ) be a metric space. Fix someL > 0, and letF be the collection of allf : X → R with
‖f‖Lip ≤ L. Then for allγ > 0,

fatγ(F) = fat0γ(F) ≤ M(X , ρ, 2γ/L).

Proof: Suppose thatS ⊆ X is fatγ-shattered at zero. The case|S| = 1 is trivial, so we assume the existence
of x 6= x′ ∈ S andf ∈ F such thatf(x) ≥ γ > −γ ≥ f(x′). The Lipschitz property then implies that
ρ(x, x′) ≥ 2γ/L, and the claim follows.

Corollary 3 Let metric spaceX have doubling dimensionddim(X ), and letF be the collection of real-
valued functions overX with Lipschitz constant at mostL. Then for allγ > 0,

fatγ(F) ≤
⌈

Ldiam(X )

2γ

⌉ddim(X )+1

.

Proof: The claim follows immediately from Theorem 2 and the packingproperty of doubling spaces.

Equipped with these estimates for the fat-shattering dimension of Lipschitz classifiers, we can invoke a
standard generalization bound stated in terms of this quantity. For the remainder of this section, we take
γ = 1 and say that a functionf classifies an example(xi, yi) correctly if

yif(xi) ≥ 1. (1)

The following generalization bounds appear in [BS99]:

Theorem 4 LetF be a collection of real-valued functions over some setX , defined = fat1/16(F) and let
andP be some probability distribution onX × {−1, 1}. Suppose that(xi, yi), i = 1, . . . , n are drawn from
X × {−1, 1} independently according toP and that somef ∈ F classifies then examples correctly, in the
sense of (1). Then with probability at least1 − δ

P {(x, y) : sgn(f(x)) 6= y} ≤ 2

n
(d log2(34en/d) log2(578n) + log2(4/δ)) .

Furthermore, iff ∈ F is correct on all butk examples, we have with probability at least1 − δ

P {(x, y) : sgn(f(x)) 6= y} ≤ k/n +

√

2

n
(d ln(34en/d) log2(578n) + ln(4/δ)).



Applying Corollary 3, we obtain the following consequence of Theorem 4:

Corollary 5 Let metric spaceX have doubling dimensionddim(X ), and letF be the collection of real-
valued functions overX with Lipschitz constant at mostL. Then for anyf ∈ F that classifies a sample of
sizen correctly, we have with probability at least1 − δ

P {(x, y) : sgn(f(x)) 6= y} ≤ 2

n
(d log2(34en/d) log2(578n) + log2(4/δ)) .

Likewise, iff is correct on all butk examples, we have with probability at least1 − δ

P {(x, y) : sgn(f(x)) 6= y} ≤ k/n +

√

2

n
(d ln(34en/d) log2(578n) + ln(4/δ)). (2)

In both cases,d = fat1/16(F) ≤ ⌈8Ldiam(X )⌉ddim(X )+1.

4 Lipschitz extension classifier

Given a labeled set(X, Y ) ⊂ X×{−1, 1}, we construct our classifier in a similar manner to [vLB04, Lemma
12], via a Lipschitz extension of the labelsY to all ofX . LetS+, S− ⊂ X be the sets of positive and negative
labeled points that the classifier correctly labels. Our starting point is the same extension function used in
[vLB04], namely, for allα ∈ [0, 1]

fα = α min
i

(

yi + 2
d(x, xi)

d(S+, S−)

)

+ (1 − α)max
j

(

yj − 2
d(x, xj)

d(S+, S−)

)

.

However, evaluating the exact value offα(x) for each pointx ⊂ X (or even the sign offα(x) at this point)
requires an exact nearest neighbor search, and in arbitrarymetric space nearest neighbor search may require
Θ(|X |) time.

In this section, we give a classifier whose sign can be evaluated using a(1 + ε)-approximate nearest
neighbor search. There exists a search structure for ann point set that can be built in2O(ddim(X ))n log n time
and supports approximate nearest neighbor searches in time2O(ddim(X )) log n+ε−O(ddim(X )) [CG06, HM06]
(see also [KL04, BKL06]). In constructing the classifier, weassume that the sample points have already been
partitioned in a manner that yields a favorable bias-variance tradeoff, as in Section 5 below. Therefore, the
algorithm below takes as input a set of pointS1 ⊂ X that must be correctly classified, and a set of error points
S0 = X − S1 that may be ignored in the classifier construction (but whichaffect the resulting generalization
bound).

Theorem 6 LetX be a metric space, and fix0 < ε ≤ 1
2 . Given a labeled sampleS = (xi, yi) ∈ X×{−1, 1},

i = 1, . . . , n, let S be partitioned intoS0 andS1, of sizesk andn− k, whereS0 contains points that may be
misclassified, andS1 contains points that may not be misclassified. DefineS+

1 , S−
1 ⊂ S1 according to their

labels and defineL = 2/d(S+
1 , S−

1 ). Then there exists a binary classification functionh : X → {−1, 1}
satisfying the following:

(a) h(x) can be evaluated at eachx ∈ X via a single(1 + ε)-nearest neighbor query. In particu-
lar, h(x) can be evaluated in time2O(ddim(X )) log n + ε−O(ddim(X )), after an initial computation of
(2O(ddim(X )) log n + ε−O(ddim(X )))n time.

(b) With probability at least1 − δ

P {(x, y) : h(x) 6= y} ≤ 2

(

k

n
+

√

2

n
(d ln(34en/d) log2(578n) + ln(4/δ))

)

whered = ⌈8(1 + ε)Ldiam(X )⌉ddim(X )+1.

Proof: Let the distance functioñd(·, ·) be the approximate distance between a point and a set (or between
two sets), as determined by a fixed(1 + ε

4 )-nearest neighbor search structure. Let

f̃1(x) := min
i

(

yi + 2
d̃(x, xi)

d̃(S+
1 , S−

1 )

)

,

and let the classifier beh(x) := sgn(f̃1(x)). h(x) can be evaluated via an approximate nearest neighbor
query in time2O(ddim(X )) log n + ε−O(ddim(X )), assuming that a search structure has been precomputed in



time 2O(ddim(X ))n log n, andd̃(S+
1 , S−

1 ) has been precomputed viaO(n) nearest neighbor searches in time
(2O(ddim(X )) log n + ε−O(ddim(X )))n.

It remains to bound the generalization error ofh. To this end, define

f+
1 (x) = (1 + ε)f1(x) + ε = (1 + ε)min

i

(

yi + 2
d(x, xi)

d(S+
1 , S−

1 )

)

+ ε,

f−
1 (x) = (1 + ε)f1(x) − ε = (1 + ε)min

i

(

yi + 2
d(x, xi)

d(S+
1 , S−

1 )

)

− ε.

Note thatf+
1 (x) > f−

1 (x). Bothf+
1 (x) andf−

1 (x) correctly classify all labeled points ofS1 and have Lips-
chitz constant(1 + ε)L, so their classification bounds are given by Corollary 5 withthis Lipschitz constant.

We claim thath(x) always agrees with the sign of at least one off+
1 (x) and f−

1 (x): If f+
1 (x) and

f−
1 (x) disagree in their sign, then the claim follows trivially. Assume then that the signs off+

1 (x) and

f−
1 (x) agree. Suppose thatf+

1 (x) andf−
1 (x) are positive, which implies thatyj + 2

d(x,xj)

d(S+

1
,S−

1
)

> ε
1+ε for

all j. Now recall thatf̃1(x) = mini

(

yi + 2 d̃(x,xi)

d̃(S+,S−)

)

≥ mini

(

yi + 2
(1+ε/4)2

d(x,xi)
d(S+,S−)

)

. If yi = +1,

then trivially h(x) is positive. Ifyi = −1, we have that2 d(x,xi)
d(S+,S−) > ε

1+ε + 1 = 1+2ε
1+ε , and sof̃1(x) ≥

mini

(

yi + 2
(1+ε/4)2

d(x,xi)
d(S+,S−)

)

> −1 + 1
(1+ε/4)2

(

1+2ε
1+ε

)

> 0, and we are done. Suppose then thatf+
1 (x)

andf−
1 (x) are negative, which implies thatyj + 2

d(x,xj)

d(S+

1
,S−

1
)

< − ε
1+ε for some fixedj. Now it must be that

yj = −1, and so2
d(x,xj)

d(S+,S−) < − ε
1+ε + 1 = 1

1+ε . Now recall thatf̃1(x) = mini

(

yi + 2 d̃(x,xi)

d̃(S+,S−)

)

≤
(

yj + 2(1 + ε/4)2
d(x,xj)

d(S+,S−)

)

< −1 + (1 + ε/4)2
(

1
1+ε

)

< 0, and we are done.

It follows that if h(x) misclassifiesx, thenx must be misclassified by at least one off+
1 (x) andf−

1 (x).
Hence, the generalization bound ofh(x) is not greater than the sum of the generalization bounds off+

1 (x)
andf−

1 (x).

5 Bias-variance tradeoffs

In this section, we show how to efficiently construct a classifier that optimizes the bias-variance tradeoff
implicit in Corollary 5, equation (2). LetX be a metric space, and assume we are given a labeled sample
S = (xi, yi) ∈ X × {−1, 1}. For any Lipschitz constantL, let k(L) be the minimal sample error ofS over
all classifiers with Lipschitz constantL. We rewrite the generalization bound as follows:

G(L) = P {(x, y) : sgn(f(x)) 6= y} ≤ k(L)/n +

√

2

n
(d ln(34en/d) log2(578n) + ln(4/δ))

whered = ⌈8Ldiam(X )⌉ddim(X )+1. This bound contains a free parameter,L, which may be tuned to
optimize the bias-variance tradeoff. More precisely, decreasingL drives the bias term (number of mistakes)
up and the variance term (fat-shattering dimension) down. For some optimal values ofL, G(L) achieves a
minimum value. The following theorem gives our bias-variance tradeoff.

Theorem 7 LetX be a metric space. Given a labeled sampleS = (xi, yi) ∈ X × {−1, 1}, i = 1, . . . , n,
there exists a binary classification functionh : X → {−1, 1} satisfying the following properties:

(a) h(x) can be evaluated at eachx ∈ X in time2O(ddim(X )) log n, after an initial computation ofO(n2 log n)
time.

(b) The generalization error ofh is bound by

P {(x, y) : sgn(f(x)) 6= y} ≤ c · inf
L>0

(

k(L)/n +

√

2

n
(d ln(34en/d) log2(578n) + ln(4/δ))

)

.

for some constantc, and whered = d(L) = ⌈8Ldiam(X )⌉ddim(X )+1.

We proceed with a description of the algorithm. We will first give an algorithm with runtimeO(n4.376),
and then improve the runtime toO(n2 log n).



Algorithm description. Here we give a randomized algorithm that finds an optimal value L∗, that is
G(L∗) = infL>0 G(L). The runtime of this algorithm isO(n4.376) with high probability.

First note the behavior ofk(L) asL increases.k(L) may decrease when the value ofL crosses some
critical value: This critical value is determined by point pairs xi ∈ S+, xj ∈ S− (that is,L = 2

d(xi,xj)
)

and implies that the classification function can correctly classify both these points. There areO(n2) critical
values ofL, and these can be determined by enumerating all interpoint distances between setsS+, S− ⊂ S.

Below, we will show that for any givenL, the valuek(L) can be computed in randomized timeO(n2.376).
More precisely, we will show how to compute a partition ofS into setsS1 (with Lipschitz constantL) and
S0 (of sizek(L)) in this time. Given setsS0, S1 ⊂ S, we can construct the classifier of Corollary 5. Since
there areO(n2) critical values ofL, we can calculatek(L) for each critical value inO(n4.376) total time,
and thereby determineL∗. Then by Corollary 5, we may compute a classifier with a bias-variance tradeoff
arbitrarily close to optimal.

It is left to describe how valuek(L) is computed for anyL in randomized timeO(n2.376). Consider the
following algorithm: Construct a bipartite graphG = (V +, V −, E). The vertex setsV +, V − correspond
to the labeled setsS+, S− ∈ S, respectively. The length of edgee = (u, v) connecting verticesu ∈ V +

andv ∈ V − is equal to the distance between the points, andE includes all edges of length less than2/L.
(E can be computed inO(n2 log n) time.) Now, for all edgese ∈ E, a classifier with Lipschitz constantL
necessarily misclassifies at least one endpoint ofe. Hence, the problem of finding a classifier with Lipschitz
constantL that misclassifies a minimum number of points inS is equivalent to finding a minimum vertex
cover for bipartite graphG. By König’s theorem, minimum bipartite vertex cover is itself equivalent to the
maximum matching problem on bipartite graphs. An exact solution to the bipartite matching problem may
be computed in randomized timeO(n2.376) [MS04]. This solution immediately identifies setsS0, S1, which
allows us to compute a classifier with a bias-variance tradeoff arbitrarily close to optimal.

Improved algorithmic runtime. The runtime given above can be reduced from randomizedO(n4.376) to
deterministicO(n2 log n), if we are willing to settle for a generalization boundG(L) within a constant factor
of the optimalG(L∗).

The first improvement is in the runtime of the vertex cover algorithm. It is well known that a2-
approximation to the minimum vertex cover on an arbitrary graph can be computed by a greedy algorithm in
timeO(|V + + V −|+ |E|) = O(n2) [GJ77]. Hence, we may evaluate inO(n2) time a functionk′(L) which
satisfiesk(L) ≤ k′(L) ≤ 2k(L).

The second improvement uses a binary search over the values of L, which allows us to evaluatek′(L) for
only O(log n) values ofL, as opposed to allΘ(n2) values above. Now, we seek the a value ofL for which

G′(L) = k′(L)/n +

√

2

n
(d ln(34en/d) log2(578n) + ln(4/δ))

is minimal. Call this valueL′. Also note that for allL, G′(L) ≤ 2G(L), from which it follows thatG′(L′) ≤
2G(L∗). While we cannot efficiently findL′, we are able to use a binary search to find a valueL for which
G′(L) ≤ 2G′(L′) ≤ 4G(L∗). In particular we seek the minimum value ofL for which

k′(L)/n ≤
√

2

n
(d ln(34en/d) log2(578n) + ln(4/δ)).

Now, decreasingL can only increasek′(L), so the solution to the inequality above necessarily yieldsanL
for which G′(L) ≤ 2G′(L′) ≤ 4G(L∗). The solution to the inequality can be computed through a binary
search on all values ofL. By Corollary 5, we can construct a classifier with a bias-variance tradeoff within a
factor4(1 + ε) of optimal. The total runtime isO(n2 log n).

6 Example: Earthmover metric

To illustrate the potential power of our approach, we now analyze the doubling dimension of an earthmover
metricXk that is often used in computer vision applications. (k ≥ 2 is a parameter.) Each point inXk is a
multiset of sizek in the unit square in the Euclidean plane, formallyS ⊂ [0, 1]2 and|S| = k (allowing and
counting multiplicities). The distance between such setsS, T (i.e. two points inXk) is given by

EMD(S, T ) = min
π:S→T

{

1
k

∑

s∈S

‖s − π(s)‖2

}

,

where the minimum is over all one-to-one mappingsπ : S → T . In other words,EMD(S, T ) is the
minimum-cost matching between the two setsS, T , where costs correspond to Euclidean distance.

Lemma 8 The earthmover metricX above satisfiesdiam(Xk) ≤
√

2, andddim(Xk) ≤ O(k log k).



Proof: For the rest of this proof, a point refers to the unit square, not Xk. Fix r > 0 and consider a ball (in
Xk) of radiusr around someS. Let N be anr/2-net of the unit square[0, 1]2. Now consider all multisetsT
of sizek of the unit square which satisfy the following condition: every point inT belongs to the netN and
is within (Euclidean) distance(k + 1/2)r from at least one point ofS. Points in such a multisetT are chosen

from a collection of size at mostk ·
⌈

(k+1/2)r
r/2

⌉O(1)

≤ kO(1) (by the packing property in the Euclidean plane).

Thus, the number of such multisetsT is at mostλ ≤ (kO(1))k = kO(k).
We complete the proof of the lemma, by showing that ther-ball (in Xk) aroundS is covered by theλ

balls of radiusr/2 whose centers are given by the above multisetsT . To see this, consider a multisetS′ such
thatEMD(S, S′) ≤ r, and let us show thatS′ is contained in anr/2-ball around one of the above multisets
T . Observe that every point inS′ is within distance at mostkr from at least one point ofS. By “mapping”
each point inS′ to its nearest point in the netN , we get a multisetT as above withEMD(S′, T ) ≤ r/2.
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