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Abstract

Recent advances in large-margin classification of datdiresin general metric spaces (rather than
Hilbert spaces) enable classification under various nituetrics, such as edit and earthmover dis-
tance. The general framework developed for this purposeobylwixburg and Bousquet [JMLR,
2004] left open the question of computational efficiency praviding direct bounds on classifica-
tion error.

We design a new algorithm for classification in general metpaces, whose runtime and accu-
racy depend on the doubling dimension of the data pointiuk tichieves superior classification
performance in many common scenarios. The algorithmic obi@ur approach is an approxi-
mate (rather than exact) solution to the classical problehspschitz extension and of Nearest
Neighbor Search. The algorithm’s generalization perforcess established via the fat-shattering
dimension of Lipschitz classifiers.

1 Introduction

A recent line of work extends the large-margin classifiaaparadigm from Hilbert spaces to less structured
ones, such as Banach or even metric spaces [HBS05, vLB04|DIrxhis metric approach, data is presented
as points with distances but without requiring the addalostructure of inner products. The potentially
significant advantage is that the metric can be carefullieduio the type of data, e.g. earthmover distance
for images, or edit distance for sequences.

However, much of the existing machinery of generalizationrixs [CV95, SS02] depends strongly on
the inner-product structure of the Hilbert space. von Lugtand Bousquet [vLB04] developed a powerful
framework of large-margin classification for a general metpaceX’. First, they show that the natural
hypotheses (classifiers) to consider in this context areimmely smooth Lipschitz functions; indeed, they
reduce classification (of points in a metric spackto finding a Lipschitz functionf : X — R) consistent
with the data, which is a classic problem in Analysis, knowrLgschitz extension. Next, they establish
error bounds in the form of expected-loss. Finally, the cotaponal problem of evaluating the classification
function is reduced, assuming zero training error, to exawtarest neighbor search. This matches a common
classification heuristic, see e.g. [CH67], and the anabfdis_B04] may be viewed as a rigorous explanation
for the empirical success of this heuristic.

An important question left open by the work of [vLB04] is thifi@ent computation of the classifier.
Specifically, exact nearest neighbor search in generalicaatright require time that is linear in the sam-
ple size, and it is algorithmically nontrivial to deal wittaining error. In particular, the task of choosing
which points will be misclassified by the hypothesis (i.etimjzing the bias-variance tradeoff) remains to be
addressed.

Our contribution.  We solve the problems delineated above by showing that digieaow doubling di-
mension admits accurate and computationally efficiensdiaation. In fact, this is the first time in which the
doubling dimension of the data points is tied to either éfeesgion error or algorithmic runtime. (Previously,
the doubling dimension of the space of classifiers was ctiedrby the VC dimension of the classifier space
[BLLO9].) We first give an alternate generalization boundlfgschitz classifiers, which directly bounds the
classification error, rather than expected loss. (A sinbtaund can in fact be derived from the analysis of
[vLBO4].) Our bound is based on an elementary analysis ofdtishattering dimension, see Section 3.
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We then present our main contribution, and give an efficiemgutational implementation of the Lips-
chitz classifier. In Section 4 we prove that once a LipscHazgifier has been chosen, the classifier can be
computed (evaluated) quickly on any new paint X, by utilizing approximate nearest neighbor search
(which is known to be fast when points have a low doubling disien). In Section 5 we further show how
to quickly compute a near-optimal classifier (in terms ofslfication error bound), even when the training
error is nonzero. In particular, this necessitates therpstion of the number of incorrectly labeled exam-
ples — and moreover, their identity — as part of the biasavene tradeoff. In Section 6 we give an example to
illustrate the potential power of our approach.

2 Definitions and notation
We use standard notation and definitions throughout.

Metric spaces. A metric p on a setY is a positive symmetric function satisfying the triangleduality
plx,y) < p(z, z)+ p(z, y); together the two comprise the metric spéae p). The diameter of aset C X,
is defined bydiam(A) = sup, ,c 4 p(x,y). The Lipschitz constant of a functioh: X — R, denoted by

| f1l;,» is defined to be the smallebt> 0 that satisfiesf (z) — f(y)| < Lp(x,y) forall z,y € X.

Doubling dimension. For a metric(X, p), let A be the smallest value such that every balliincan be
covered by\ balls of half the radius. Thdoubling dimensiorof X' is ddim(X) = log, A. A metric is
doublingwhen its doubling dimension is bounded. Note that while a Kwelidean dimension implies a
low doubling dimension (Euclidean metrics of dimensibhave doubling dimensio®(d) [GKLO03]), low
doubling dimension is strictly more general than low Eueéid dimension.

The following packing property can be demonstrated via atitiye application of the doubling property:
For setS with doubling dimensiorldim (), if the minimum interpoint distance i is at leastw, and

diam(S) < 8, then|S| < [B/a] ™) T (see, for example [KLO4]).

Learning. Our setting in this paper is a generalization of PAC knowrmpababilistic concept learning
[KS94]. In this model, examples are drawn independentlynffié x {—1, 1} according to some unknown
probability distributionP, and the learner, having observeduch pairgz, y) produces a hypothesis :
X — {—1,1}. Thegeneralization erroiis the probability of misclassifying a new point drawn frdm

P{(z,y) : h(z) # y}.
The quantity above is random (since it depends on a randooeseq) and we wish to upper-bound it in
probability. Most bounds of this sort containsample errotterm (corresponding in statistics to bias), which
is the fraction of observed examples misclassifiedhland ahypothesis complexitgrm (corresponding to
variance in statistics) which measures the richness ofiiss of all admissible hypotheses [Was06]. Keeping
in line with the literature, we ignore the measure-theortthnicalities associated with taking suprema over
uncountable function classes.

3 Generalization bounds

In this section, we take a preliminary step towards our effittlassification algorithm by deriving general-
ization bounds for Lipschitz classifiers over doubling gmacAs noted by [vLBO04] Lipschitz functions are
the natural object to consider in an optimization/regakion framework. The basic intuition behind our
proofs is that the Lipschitz constant plays the role of theeiee margin in the confidence of the classifier.
As in [vLBO04], small Lipschitz constant corresponds to krgargin, which in turn yields low hypothesis
complexity and variance. In retrospect, our generalizatiound (Corollary 5 below) can be derived as a
consequence of [vLB04, Theorem 18] in conjunction with [BMTheorem 5(b)].

We apply tools from generalized Vapnik-Chervonenkis tiggorthe case of Lipschitz classifiers. L&t
be a collection of functiong : X — R and recall the definition of the fat-shattering dimensioB{ZH97,
BS99]: a setX C X is said to bey-shattered byF if there exists some function: X — R such that for
each label assignmente {1, 1}X thereis anf € F satisfyingy(x)(f(z) —r(z)) >~ > 0forallz € X.
The~-fat-shattering dimension of, denoted byat, (F), is the cardinality of the largest setshattered by
F.

For the case of Lipschitz functions, we will show that theimotof fat-shattering dimension may be
somewhat simplified. We say that a SétC X is y-shatteredat zeroby a collection of functionsF if for
eachy € {—1,1}" thereis anf € F satisfyingy(z)f(z) > ~ forall z € X. (This is the definition above
with r = 0.) We Writefatg(]-') to denote the cardinality of the largest seshattered at zero hf and show
that for Lipschitz function classes the two complexity megas are the same.

Lemma 1 LetF be the collection of alf : X — R with || ||, < L. Thenfat, (F) = fatg(]-').



Proof: We begin by recalling the classic Lipschitz extension regsisentially due to McShane and Whitney
[McS34, Whi34]. Any real-valued functiofi defined on a subséf of a metric spac&’ has an extensiofi*
to all of X' satisfying|| f*[| ;, = [|f[|,- Thus, in what follows we will assume that any functibuefined on

X C X is also defined on all ok’ via some Lipschitz extension (in particular, to boypfd] ,, it suffices to
bound the restrictef f| || ,,)-

Consider some finit& ¢ X. If X is~y-shattered at zero h§ then by definition it is alse/-shattered.
Now assume thak is y-shattered byF. Thus, there is some function: X — R such that for each

y € {—1,1}" thereis anf = fry € Fsuchthatf, ,(z) > r(z) +vif y(x) = +1landf, ,(z) < r(z) — v
if y(z) = —1. Letus define the functiofi, on X and as per above, on all &f, by f,(z) = vy(z). Itis clear
that the coIIectior{fy cy € {-1, 1}X} ~-fat-shattersX at zero; it only remains to verify th@ﬁ, e F, e,

sup Hf < sup ||fr,y| Lip *
ye{-1,1}% Lip ye{—1,1}¥
Indeed,
_ ' — () + 2 2 -
sup fr,y(x) f/r,y(x) 2 sup T((E) ’f‘(l’ /) + v Z sup v ; = sup H 1 .
ye{-1,1}  zz'eX p(z, z') z,a'eX pla; ') zarex P(T, ') ye{-1,1}% Hp
[ |

A consequence of Lemma 1 is that in considering the genatatiz properties of Lipschitz functions
we need only bound the-fat-shattering dimension at zero. The latter follows frthra observation that the
packing number of a metric space controls the fat-shaggetimension of Lipschitz functions defined over
the metric space. Lel/ (X, p,e) be defined as the-packing number oft, the cardinality of the largest
e-separated subset 4f.

Theorem 2 Let (X, p) be a metric space. Fix sonie> 0, and let7 be the collection of alf : X — R with
]l < L- Then for ally > 0,

fat, (F) = fat](F) < M (X, p,2v/L).

Proof: Suppose that C X is faty-shattered at zero. The cas# = 1 is trivial, so we assume the existence
of x # 2’ € Sandf € F such thatf(z) > v > —y > f(2'). The Lipschitz property then implies that
p(z,z’) > 2v/L, and the claim follows. |

Corollary 3 Let metric spacet have doubling dimensioddim(X), and letF be the collection of real-
valued functions ovel’ with Lipschitz constant at mo&t Then for ally > 0,

Ldiam(X) ddim(X)+1
i () < LA 40
Proof: The claim follows immediately from Theorem 2 and the paclpngperty of doubling spaces. B

Equipped with these estimates for the fat-shattering daioenof Lipschitz classifiers, we can invoke a
standard generalization bound stated in terms of this gyarior the remainder of this section, we take
~ = 1 and say that a functiofi classifies an example:;, y;) correctly if

yif(z:) = 1. 1)
The following generalization bounds appear in [BS99]:

Theorem 4 Let F be a collection of real-valued functions over someXetlefined = fat, ;14(F) and let

and P be some probability distribution o’ x {—1,1}. Suppose thatz;, y;), i = 1,...,n are drawn from
X x {-1,1} independently according t& and that som¢g € F classifies the: examples correctly, in the
sense of (1). Then with probability at ledst- 6

P{(y) ssgn(f@) £y} S (dlogy(3len/d) logy(5T8n) +logy(4/5)).

Furthermore, iff € F is correct on all butt examples, we have with probability at ledst ¢

P{(z,y) :sgn(f(x)) £y} < k/n+ \/% (d1In(34en/d)log, (578n) + In(4/9)).



Applying Corollary 3, we obtain the following consequené&beorem 4:
Corollary 5 Let metric spacet have doubling dimensioddim(X), and letF be the collection of real-

valued functions oveit’ with Lipschitz constant at modét. Then for anyf € F that classifies a sample of
sizen correctly, we have with probability at least— §

P{(r,y) :sen(F(@) # 9} < = (dlogy(3en/d) logy(578n) + logy(4/5))

Likewise, iff is correct on all butc examples, we have with probability at least ¢

P{(z,y) :sgn(f(z)) #y} < k/n+ \/ % (dIn(34en/d)logy (578n) + In(4/6)). @)
In both casesd = fat1/16 (]—') < (8Ld1am(Xﬂ ddim(X)-i—l'

4 Lipschitz extension classifier

Given alabeled sétX,Y) C X x{—1, 1}, we construct our classifier in a similar manner to [vLBO4rrirea
12], via a Lipschitz extension of the labélsto all of X. Let ST, S~ C X be the sets of positive and negative
labeled points that the classifier correctly labels. Ourtistg point is the same extension function used in
[vLB04], namely, for allo € [0, 1]

fo = armin (y + 2%) + (1 — o) max (yj - 2%) '

However, evaluating the exact value £f(x) for each pointz C X (or even the sign of,,(z) at this point)
requires an exact nearest neighbor search, and in arbitretryc space nearest neighbor search may require
O(]X]) time.

In this section, we give a classifier whose sign can be evaduasing a(1 + ¢)-approximate nearest
neighbor search. There exists a search structure foraint set that can be built 27 (14m(X))p, 1og 1 time
and supports approximate nearest neighbor searches ia €™ (*)) log n+¢—C(ddim(¥)) [CG06, HMOB]
(see also [KL0O4, BKLO6]). In constructing the classifier, assume that the sample points have already been
partitioned in a manner that yields a favorable bias-vagamnadeoff, as in Section 5 below. Therefore, the
algorithm below takes as input a set of patitC X that must be correctly classified, and a set of error points
So = X — 51 that may be ignored in the classifier construction (but whiifact the resulting generalization
bound).

Theorem 6 Let.X be a metric space, and fix< ¢ < 1. Given alabeled samplg = (z;, ;) € Xx{—1,1},
i=1,...,n,letS be partitioned intoS, and .S, of sizesk andn — k, whereS, contains points that may be
misclassified, and; contains points that may not be misclassified. DefifieS;” C S; according to their

labels and defind. = 2/d(S;", Sy ). Then there exists a binary classification functlon X — {—1,1}
satisfying the following:

(@) h(z) can be evaluated at each € X via a single(1 + ¢)-nearest neighbor query. In particu-
lar, h(z) can be evaluated in timg@(ddim(¥) jogp 4 £=O(Adim(X)) " after an initial computation of
(20(ddin(X) 1og ¢y, 4 g~ Oddim(X)) )y, time,

(b) With probability at least — §

P{(z,y): h(z) #y} < 2 <% + \/% (dIn(34en/d)log,(578n) + 1n(4/5))>

whered = [8(1 + £) Ldiam(x)]44m )+,

Proof: Let the distance functioﬁ(-, -) be the approximate distance between a point and a set (oebetw
two sets), as determined by a fixgld+ §)-nearest neighbor search structure. Let

f(x) == min | v M
hley=m (wzd(Sf,S;))’

and let the classifier be(z) := sgn(fi(z)). h(z) can be evaluated via an approximate nearest neighbor
query in time20(ddim()) |5 4 ¢=O(ddim(X)) "agsuming that a search structure has been precomputed in



time 20(ddim(X))y, 1ogn, andd(S;, Sy ) has been precomputed \i¥n) nearest neighbor searches in time
(20(dim(2) | py 4 £=O(ddim(X))) .

It remains to bound the generalization errohofTo this end, define

, d(z,z;) )

@) = fala) e = (1<) min (3+ 2022 ) e

d(z, x;) ) .

sy, sv))
Note thatf," (z) > f; (z). Both £, (z) and f; () correctly classify all labeled points ¢f and have Lips-
chitz constantl + )L, so their classification bounds are given by Corollary 5 ik Lipschitz constant.
We claim thath(z) always agrees with the sign of at least onefgf(x) and f, (z): If f;"(x) and
f (z) disagree in their sign, then the claim follows trivially. $s8ne then that the signs ¢f" (z) and

fi (z) agree. Suppose thdf (x) and f; (z) are positive, which implies that; + 2;;?2312) > 5 for

all j. Now recall thatfi () = min; (yl—i—? d(o.z:) ) > min; @ﬂ#w) Ify; = +1,

@) = (14 2)i(e) — = (1-+ )i (342

d(s+,57) T¥e/5)? d(5T,57)
then trivially k() is positive. Ify;, = —1, we have thaﬂ% et 1= 11125 and sofy (z) >
min; (yl + W%) > —1+ m (ﬁ*—fj) > 0, and we are done. Suppose then tfatz)
and f; (z) are negative, which implies thg} + 2;;??2) < —13 for some fixedj. Now it must be that
1°%1
y; = —1, and 502% < -t tl= % Now recall thatfl(:c) = min; (yﬁﬂ%) <

1
(y7 +2(1+¢/4)? dfsi”g))) < =14 (14¢/4)? (1+8) < 0, and we are done.
It follows that if () misclassifiesr, thenz must be misclassified by at least onef@f(z) and f; (z).

Hence, the generalization bound/efr) is not greater than the sum of the generalization bounds ¢f)
andf; (x). |

5 Bias-variance tradeoffs

In this section, we show how to efficiently construct a cléesithat optimizes the bias-variance tradeoff
implicit in Corollary 5, equation (2). Le& be a metric space, and assume we are given a labeled sample
S = (x;,y;) € X x {—1,1}. For any Lipschitz constart, let k(L) be the minimal sample error ¢f over

all classifiers with Lipschitz constaiiit We rewrite the generalization bound as follows:

G(L) = P{(z,y) : sen(f(z)) #y} < k(L)/n+ \/% (dIn(34en/d)log,(578n) + In(4/9))

whered = (8Ldiam()(ﬂdd‘m(x)“. This bound contains a free paramettr, which may be tuned to
optimize the bias-variance tradeoff. More precisely, dasingL drives the bias term (number of mistakes)
up and the variance term (fat-shattering dimension) dovar.sbme optimal values df, G(L) achieves a
minimum value. The following theorem gives our bias-vacaitradeoff.

Theorem 7 Let X’ be a metric space. Given a labeled samfle- (z;,y;) € X x {-1,1},i =1,...,n,
there exists a binary classification functibn X — {—1, 1} satisfying the following properties:

(a) h(x) can be evaluated at eaghc X in time20(ddim(X) 1og 1, after an initial computation ab(n? log n)
time.

(b) The generalization error df is bound by

P{(z,y) :sgn(f(x)) £y} < ec- ir;fo (k(L)/n + \/% (dIn(34en/d)log,(578n) + 1n(4/6))> .

for some constant, and wherel = d(L) = [8Ldiam(Xx)] ™)+,

We proceed with a description of the algorithm. We will firgtegan algorithm with runtime (n*-376),
and then improve the runtime @(n? log n).



Algorithm description. Here we give a randomized algorithm that finds an optimal e/dlt}, that is
G(L*) = inf1~o G(L). The runtime of this algorithm i (n*-376) with high probability.

First note the behavior df(L) as L increases.k(L) may decrease when the value lofcrosses some
critical value: This critical value is determined by poirgifs z; € S*,z; € S~ (thatis,L = d(%,mj))

and implies that the classification function can correckhgsify both these points. There avén?) critical
values ofL, and these can be determined by enumerating all interpisitatrttes between sefs™, S~ C S.

Below, we will show that for any giveh, the valuek(L) can be computed in randomized tién2-376).
More precisely, we will show how to compute a partition$fnto setsS; (with Lipschitz constant.) and
So (of sizek(L)) in this time. Given set$), S; C S, we can construct the classifier of Corollary 5. Since
there areO(n?) critical values ofL, we can calculaté(L) for each critical value irO(n*79) total time,
and thereby determing*. Then by Corollary 5, we may compute a classifier with a biasance tradeoff
arbitrarily close to optimal.

It is left to describe how valug(L) is computed for any. in randomized time)(n?376). Consider the
following algorithm: Construct a bipartite gragh = (V*+,V~, E). The vertex set¥ ™, V~ correspond
to the labeled set§*, S~ € S, respectively. The length of edge= (u,v) connecting vertices € V+
andv € V~ is equal to the distance between the points, Bnidcludes all edges of length less thahl.

(E can be computed i®(n?logn) time.) Now, for all edges € E, a classifier with Lipschitz constaiit
necessarily misclassifies at least one endpoiat éfence, the problem of finding a classifier with Lipschitz
constantZ that misclassifies a minimum number of pointsSris equivalent to finding a minimum vertex
cover for bipartite graplds. By Konig's theorem, minimum bipartite vertex cover isifsequivalent to the
maximum matching problem on bipartite graphs. An exacttsmiuto the bipartite matching problem may
be computed in randomized tind&n2-37%) [MS04]. This solution immediately identifies sefs, S1, which
allows us to compute a classifier with a bias-variance tréidebitrarily close to optimal.

Improved algorithmic runtime. ~ The runtime given above can be reduced from randomized-37) to
deterministiaO(n? log n), if we are willing to settle for a generalization bouGdL) within a constant factor
of the optimalG(L*).

The first improvement is in the runtime of the vertex coveroalthpm. It is well known that a2-
approximation to the minimum vertex cover on an arbitragpdrcan be computed by a greedy algorithm in
timeO(|V*T +V~| +|E|) = O(n?) [GJI77]. Hence, we may evaluated{n?) time a functionk’(L) which
satisfiesk(L) < k'(L) < 2k(L).

The second improvement uses a binary search over the védldesubich allows us to evaluaté (L) for
only O(log n) values ofL, as opposed to ah(n?) values above. Now, we seek the a valud.dbr which

G'(L)=FK(L)/n+ \/% (d1In(34en/d)log,(578n) + In(4/4))

is minimal. Call this valud.’. Also note that for all, G’(L) < 2G(L), from which it follows thatG’(L’) <
2G(L*). While we cannot efficiently find.’, we are able to use a binary search to find a vdlder which
G'(L) <2G'(L") < 4G(L*). In particular we seek the minimum value bffor which

K'(L)/n < \/% (d1In(34en/d)log,(578n) + In(4/4)).

Now, decreasind. can only increasé’(L), so the solution to the inequality above necessarily yiallg
for which G'(L) < 2G'(L') < 4G(L*). The solution to the inequality can be computed through aryin
search on all values df. By Corollary 5, we can construct a classifier with a biasarare tradeoff within a
factor4(1 + ) of optimal. The total runtime i©(n? logn).

6 Example: Earthmover metric

To illustrate the potential power of our approach, we now\areathe doubling dimension of an earthmover
metric X, that is often used in computer vision application's.X 2 is a parameter.) Each point ki, is a
multiset of sizek in the unit square in the Euclidean plane, formaly- [0, 1]? and|S| = k (allowing and
counting multiplicities). The distance between such $efs (i.e. two points inX}) is given by

EMD(S,7) = min, {£>[ls ~m(s)]l .
ses

where the minimum is over all one-to-one mappings S — T. In other words,EMD(S,T) is the
minimum-cost matching between the two s6t§", where costs correspond to Euclidean distance.

Lemma 8 The earthmover metri& above satisfiediam(A},) < /2, andddim(&) < O(klog k).



Proof: For the rest of this proof, a point refers to the unit squacg¢ X).. Fix » > 0 and consider a ball (in
X)) of radiusr around some. Let N be anr/2-net of the unit squarf, 1]2. Now consider all multiset®’
of sizek of the unit square which satisfy the following conditioneey point in7" belongs to the nelV and
is within (Euclidean) distancg: + 1/2)r from at least one point of. Points in such a multisét are chosen

- - kt+1/2)r1°0 _ 1 on - - ,
from a collection of size at moét: [TW < k90 (by the packing property in the Euclidean plane).

Thus, the number of such multiséfsis at most\ < (kM) = O*),

We complete the proof of the lemma, by showing thatstHell (in X%) aroundsS is covered by the\
balls of radius-/2 whose centers are given by the above multiget3o see this, consider a multisgt such
thatEMD(S, S”) < r, and let us show tha’ is contained in am/2-ball around one of the above multisets
T. Observe that every point ifi’ is within distance at mogir from at least one point o§. By “mapping”
each point inS’ to its nearest point in the n@f, we get a multisef” as above wittEMD(S", T) < r/2. R
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