
Learning with Global Cost in Stochastic Environments

Eyal Even-dar
Google Research

evendar@google.com

Shie Mannor∗
Technion

shie@ee.technion.ac.il

Yishay Mansour†
Tel Aviv Univ.

mansour@cs.tau.ac.il

Abstract

We consider an online learning setting where at each time step the decision maker has to choose how
to distribute the future loss between k alternatives, and then observes the loss of each alternative,
where the losses are assumed to come from a joint distribution. Motivated by load balancing and job
scheduling, we consider a global cost function (over the losses incurred by each alternative), rather
than a summation of the instantaneous losses as done traditionally in online learning. Specifically,
we consider the global cost functions: (1) the makespan (the maximum over the alternatives) and
(2) the Ld norm (over the alternatives) for d > 1. We design algorithms that guarantee logarithmic
regret for this setting, where the regret is measured with respect to the best static decision (one
selects the same distribution over alternatives at every time step). We also show that the least
loaded machine, a natural algorithm for minimizing the makespan, has a regret of the order of

√
T .

We complement our theoretical findings with supporting experimental results.

1 Introduction

Consider a decision maker that has to repeatedly select between multiple actions, while having uncertainty
regarding the results of its action. This basic setting motivated a large body of research in machine learning, as
well as theoretical computer science, operation research, game theory, control theory and elsewhere. Online
learning in general, and regret minimization in particular, focus on this case. In regret minimization, in each
time step the decision maker has to select between N actions, and only then observes the loss of each action.
The cumulative loss of the decision maker is the sum of its losses at the various time steps. The main goal of
regret minimization is to compare the decision maker’s cumulative loss to the best strategy in a benchmark
class, which many times is simply the set of all actions (i.e., each strategy will play the same action in every
time step). The regret is the difference between the performance of the decision maker and the best strategy in
the benchmark class. The main result is that if we allow the decision maker to play a mixture of the actions,
the decision maker can guarantee to almost match the best single action even in the case that the losses
are selected by an adversary: the regret would be of the order of O(

√
T logN). (See [3] for an excellent

exposition of the topic.)
In this work we are interested in extending the regret minimization framework to handle the case where

the global cost is not simply additive across the time steps as was initiated in [4] for adverserial environments.
The best motivating examples are load balancing and job scheduling. Assume that each action is a machine,
and at each time step we need to map an incoming task to one of the machines, without knowing the cost that
it will introduce on each machine (where the cost can be a function of the available resources on the machine
and the resources the task requires). In such a setting we are interested in the load of each machine, which
is the sum of the costs of the tasks map to it. A natural measure of the imbalance between the machines
(actions) is either the makespan (the maximum load) or the Ld norm of the loads, both widely studied in

∗This research was partially supported by the Israel Science Foundation under contract 890015 and by a Horev Fel-
lowship and the EU under a Reintegration Grant.
†This work was supported in part by a grant from the Ministry of Science grant No. 3-6797, by a grant from the

Israel Science Foundation (grant No. 709/09) and grant No. 2008-321 from the United States-Israel Binational Science
Foundation (BSF), and by the IST Programme of the European Community, under the PASCAL2 Network of Excellence,
IST-2007-216886. This publication reflects the authors’ views only.

job scheduling.1 This setup, in the adversarial model where losses are assumed to be a deterministic (but
unknown) sequence that is possibly even generated by an adversary, was introduced and studied in [4]. It was
proved that a regret of the order of O(

√
TN) can be guaranteed where T is the time horizon and N is the

number of actions or machines. For the specific case of makespan an improved regret of O(logN
√
T) can

be achieved.
In our model losses are generated from a joint distribution D. After every stage the decision maker

observes the sampled loss vector and we are interested in both cases of full and partial information (that is:
both cases where D is known and D is not known are of interest). The main result of our work is to show
a logarithmic regret bounds for general cost functions (makespan and Ld norm). Contrary to most bandits
setups, the distribution D can have arbitrary correlations between the losses of various actions, capturing the
idea that some instances are inherently harder or easier. Note that the decision maker observes the entire loss
vector, and thus our work is in the perfect observation model. We emphasize that the regret is never negative,
and in the case that the decision maker global cost is less than the static optimum global cost then the regret
is zero. Namely, the runs in which the decision maker outperforms the best static strategy are regraded as
having zero regret.

To better understand our setting and results, it would be helpful to consider the following example where
there are two actions and the global cost function is the makespan. The distribution D with probability half
returns the loss vector (0, 1), where action 1 has zero loss and action 2 has a loss of one, and with probability
half D returns the loss vector (1, 0). A realization of D of size T , will have T/2 + ∆ losses of type (0, 1)
and T/2 − ∆ losses of type (1, 0). The most natural strategy the decision maker can use is to fix the best
static strategy for D, and use it in all time steps. In this case the best strategy would be (1/2, 1/2), and if
there are T/2 + ∆ losses of type (0, 1) and T/2 − ∆ losses of type (1, 0) then the load on action 1 would
be T/4 + ∆/2, the load on action 2 would be T/4 − ∆/2 and the makespan would be T/4 + |∆|/2. One
can show that the best static strategy in hindsight would have both actions with the same load and both loads
would be at most T/4. Since we expect that |∆| be of the order of

√
T , this would give a regret bound

of Θ(
√
T). At the other extreme we can use a dynamic strategy that greedily selects at each time step the

action with the lower load. This is the well-known Least Loaded Machine (LLM) strategy. For the analysis
of the LLM we can consider the sum of the loads, since in the LLM strategy the max is just half of the sum
for two machines. Since at each time step the LLM strategy selects deterministically an action, the sum of
loads would be the sum of T Bernoulli random variables, which would be T/2 + ∆. Since with constant
probability we have ∆ = Θ(

√
T), the regret would be Ω(

√
T). The starting point of this research is whether

the decision maker can do better than Θ(
√
T) regret? The main result of this work is an affirmative answer

to this question, showing logarithmic regret bounds.
In this work we consider two stochastic models, in the known distribution model the distribution D is

known to the decision maker, while in the unknown distribution model the decision maker only knows that
there is some distributionD that generates the examples. We consider two global cost function, the makespan,
where the global cost is the maximum load on any action, and Ld norm for d > 1, where the global cost is
an Ld norm of the loads. For both the makespan and the Ld norm we devise algorithms with a regret bound
of O(log T log log T). In the unknown distribution model we show a regret bound of O(log2 T log log T).
The above regret bounds depend on knowing the exact number of time steps T in advance, and hold only at
the last time step. We define anytime regret to be the case where we are given a bound T on the number of
time steps and the regret bound has to hold at any time t < T . We present an algorithm with an anytime
regret bound of O(T 1/3). We analyze the LLM strategy, showing that it has an anytime regret upper of
O(
√
T log T) and lower bound of Ω(

√
T). We also perform experiments that support our theoretical finding,

and show the benefits of the algorithms that we developed.
It would be instructive to compare our stochastic model and results to other regret minimization models in

stochastic environments under additive loss. First, note that in the known distribution model, the best action is
known, and therefore the optimal algorithm for the additive loss would simply select the best action in every
time step. For the makespan or Ld norm global cost functions, the online algorithm needs to compensate for
the stochastic variations in the loss sequence, even in the known distribution model. Second, in the unknown
distribution model, when the decision maker observes all the losses, i.e., the perfect observation model, the
simple greedy algorithm is optimal. The greedy algorithm for makespan is the LLM, and we show that its re-
gret is at least Ω(

√
T) and at mostO(

√
T log T). Finally, most of the work regarding stochastic environments

was devoted to the multi-armed bandit problem, where the key issue is partial observation (which induces the
exploration vs exploitation tradeoff): the decision maker observes only the loss of the action (arm) it chooses.
The multi-armed bandit has been studied since [6] with the main result being logarithmic regret ([5] and [1]),

1We remark that our information model differs from the classical job scheduling model in that we observe the costs
only after we select an action, while in job scheduling you first observe the costs and only then select the action (machine).

with a constant that is a function of the distribution.
Regret for stochastic environments with memory has been studied in [2, 7] in the context of Markov

decision problems (MDPs). The algorithms developed there obtain logarithmic regret but requires a finite
state space and require that the MDP is either unichain or irreducible. Our problem can also be modelled
as an MDP where the states are the load vector (or their differences) and the costs are additive. The state
space in such a model is, however, continuous2 and is neither unichain nor irreducible. Moreover, efficient
exploration of the state space which is the hallmark of these works is not really relevant to online learning
with global cost that is more focused on taking advantage of the local stochastic deviations from expected
behavior.

2 Model
We consider an online learning setup where a scheduler has a finite set N = {1, . . . , n} of n actions (ma-
chines) to choose from. At each time step t ∈ [1, T], the scheduler A selects a distribution αAt ∈ ∆(N)
over the set of actions (machines) N , where ∆(N) is the set of distributions over N . Following that a
vector of losses (loads) `t ∈ [0, 1]n is drawn from a fixed distribution D, such that p(i) = E[`t(i)] and
pmin = mini∈N p(i). We consider both cases where D is known and unknown. We stress that D is an
arbitrary distribution over [0, 1]n, and can have arbitrary correlations between the losses of different actions.
We do assume that loss vectors of different time steps are drawn independently from D.

Our goal is to minimize a given global cost function C which is defined over the average loss (or load)
of each action. In order to define this more formally we will need to introduce a few notations. Denote the
average loss (or load) of the online scheduler A on action (machine) i by LAT (i) = 1

T

∑T
t=1 α

A
t (i)`t(i) and

its average loss (or load) vector is LAT = (LAT (1), . . . , LAT (n)).
We now introduce global cost functions. In this work we consider two global cost functions, the makespan,

i.e., C∞(x) = maxi∈N x(i) or the Ld norm, i.e., Cd(x) = (
∑
i∈N x(i)d)1/d for d > 1. This implies that the

objective of the online scheduler A is to minimize either the makespan, i.e., C∞(LAT) = maxi∈N LAT (i) or
the Ld norm, i.e., Cd(LAT) = (

∑
i∈N (LAT (i)d)1/d. Note that both the makespan and the Ld norm introduce a

very different optimization problem in contrast to traditional online learning setup (adversarial or stochastic)
where the cost is an additive function, i.e.,

∑n
i=1 L

A
T (i).

In order to define a regret we need to introduce a comparison class. Our comparison class is the class
of static allocations for α ∈ ∆(N). Again, we need to first introduce a few notations. Denote the average
loss (or load) of machine i by LT (i) = 1

T

∑T
t=1 `t(i). The loss vector of a static allocation α ∈ ∆(N) is

LαT = α � LT where x � y = (x(1)y(1), . . . , x(n)y(n)). We define the optimal cost function C∗(LT) as
the minimum over α ∈ ∆(N) of C(LαT) and denote by α∗C(LT) a minimizing α ∈ ∆(N), called the optimal
static allocation, i.e,

C∗(LT) = min
α∈∆(N)

C(LαT) = min
α∈∆(N)

C(α� LT).

For the makespan we denote the optimal cost by C∗∞ and by α∗∞ the optimal static allocation, i.e., we have

C∗∞(LT) = min
α∈∆(N)

max
i∈N

α(i)LT (i) = max
i∈N

α∗∞(i)LT (i).

Similarly for the Ld-norm we denote the optimal cost by C∗d and by α∗d.
As we mentioned before, We distinguish between two cases. In the known distribution model the sched-

uler A has as an input p = (p(1), . . . , p(n)), the expected loss of each action, while in the unknown distribu-
tion model A has no information (and has to estimate these quantities from data). We stress that in the known
distribution model the online algorithm does not know the realization of the losses but has access only to the
expectation under the distribution D.

The regret of scheduler A at time T after the loss sequence LT is defined as,

RT (LT , A) = max{C(LAT)− C∗(LT), 0}.

The following claim proved in [4], prescribes the static optimum of makespan and Ld norm explicitly.

Claim 1 ([4]) For the makespan global cost function, we haveα∗∞(LT) = (1/LT (i)Pk
i=1 1/LT (j)

)i∈K andC∗∞(LT) =

(1Pk
j=1 1/LT (j)

). For theLd norm we haveC∗d(LT) = (1Pk
j=1 1/L

d
d−1
j

)
d−1
d andα∗d(LT) = (1/LT (i)

d
d−1Pk

j=1 1/LT (j)
d
d−1

)i∈K .

The functions C∞ and Cd are convex and the functions C∗∞ and C∗d are concave.

2Even if one discretizes the MDP, the size will grow with time.

The following lemma is a standard concentration bound.

Lemma 2 (concentration bound - additive) Let Z1, . . . , Zm be i.i.d. random variable in [0, 1] with mean
µ. Then, for any γ > 0, Pr

[
| 1
m

∑m
i=1 Zi − µ| > γ

]
≤ 2e−2γ2m

3 A Generic Load Balancing Algorithm
In this section we describe a generic load balancing algorithm G with low regret. The algorithm is described
in a parametrized way. Later on we will provide concrete instances of G with regret rates for both of known
and unknown distribution models and for the makespan and the Ld-norm global cost functions.

3.1 Overview
The basic idea of the generic algorithm is to partition the time in to m phases, where the length of phase k is
T k time steps.

In the known distribution model it is tempting to use always the optimal weights w∗ derived from the
expectations, essentially assuming that the realization will exactly match the expectation. In this case the
regret would depend on the difference between the realization and the expectation. Such a strategy will
yield a regret of the order of O(

√
T), which is the order of the deviations we are likely to observe between

the realization and the expectation of the losses. Our main goal is to have a much lower regret, namely a
logarithmic regret.

The main idea is the following. We start with the base weights derived fromw∗. In phase k we perturb the
base weightsw∗ depending on the deviation betweenw∗ and optk−1, the optimal weights given the realization
in phase k − 1. At first sight it could appear counterintuitive that we can use the optimal allocation optk−1

of phase k − 1 to perturb the weights in phase k. Essentially, the optimal allocations in different phases are
independent, given the known loss distribution D. However, consider the makespan for illustration, then any
suboptimal allocation will have the load of some actions strictly larger than the loads of other actions. This
suggests that for the actions with observed lower loads we can increase the weight, since we are concerned
only with the action whose load is maximal. Essentially, our perturbations attempt to take advantage of those
imbalances in order to improve the performance of the online algorithm and make it match better the optimal
static allocation.

3.2 Generic Load Balancing Algorithm
The generic algorithm G depends on the following parameters: (1) C and C∗, the global cost and the optimal
cost functions, respectively; (2) the number of phases m; (3) the phases’ lengths, (T 1, . . . , Tm) where T k is
the length of phase k; and (4) w∗ ∈ ∆(N) which is a distribution over the actions N .

The generic algorithm G runs in m phases where the length of the k-th phase is T k. Let qk(i) be the
observed average loss of action i at phase k, i.e., qk(i) =

∑
t∈Tk `t(i)/T

k. Let optk(i) be the weight of
action i in the optimal allocation for phase k and let OPT k(i) = optk(i)qk(i)T k be the load on action i in
phase k using the optimal allocation for phase k.

The generic algorithmG has a parameterw∗ ∈ ∆(N) that is the base weight vector (different applications
ofGwill use different base weightsw∗). During phase k the weight of action i the algorithm does not change,
and it equals

wk(i) = w∗(i) +
1

qk−1(i)
OPT k−1(i)−Xk−1(i)

T k
= w∗(i) +

T k−1

T k
(optk−1(i)− w∗(i)), (1)

where Xk−1(i) = w∗(i)qk−1(i)T k−1 if all wk(i)’s are positive. Otherwise we set wk(i) = w∗. First note
that G has all the information to compute the weights. Second, note that Xk−1(i) depends on w∗(i) and not
on wk−1(i). Third, at first sight it might look that wk(i) and w∗(i) can be very far apart, however, in the
analysis we will require that optk−1(i) and w∗(i) are close, and therefore wk(i) and w∗(i) will be close.

3.3 Analysis of the Generic Algorithm
We now turn to deriving the properties of the generic algorithm G that will be used later for specific setups.
Before we start the analysis of the generic algorithm G we would like to state a few properties that will be
essential to our analysis. Some of the properties depend on the realized losses while other depend on the
behaviour of the algorithm G and its parameters.

Definition 3 Phase k of an algorithm is (α, β)-opt-stable if it has the following properties:

P1 For any action i we have that |qk(i)− p(i)| ≤ β/
√
T k and that qk(i) > 0;

P2 For any action i we have that |w∗(i)− optk(i)| = εk(i), where εk(i) < α/
√
T k; and

P3 The phase lengths satisfies that T k−1 ≤ 4T k.

Let us explain and motivate the above properties. Property P1 is a property of the realization of the losses
in a phase, and it states that the empirical frequency of the losses are close their true expectations. Property P3
depends solely on the parameters ofG and relates the length of adjacent phases, requiring that the length does
not shrink too fast. Property P2 requires the base weights to be close to the optimal weight for all actions. In
this section we assume that all properties hold, while for each instance of G we will need to show that they
indeed hold for most of the phases, with high probability, for the specified parameters.

The first step in the analysis is to show that the weights assigned by the generic algorithm G are indeed
valid. First note that if we had a negative value in Eq. (1) (i.e., w∗(i) + Tk−1

Tk
(optk−1(i)−w∗(i)) < 0), then

we set wk(i) = w∗ and the weights are valid by definition. Claim 4 shows that the weights always sum to 1.
Claim 5 shows that Eq. (1) is non-negative if the phase is (α, β)-opt-stable.

Claim 4 For any phase k we have
∑
i∈N w

k(i) = 1.

Proof: First note that if we set wk = w∗ then the the claim holds. The proof follows from the following
identities.∑

i∈N
wk(i) =

∑
i∈N

[
w∗(i) +

T k−1

T k
(w∗(i) +

∑
i∈N

optk−1(i)− w∗(i))

]

= 1 +
T k−1

T k

∑
i∈N

optk−1(i)− T k−1

T k

∑
i∈N

w∗(i) = 1.

The following claim shows that wk(i) in Eq. (1) are non-negative and close to the base weights w∗(i).

Claim 5 If phase k is (α, β)-opt-stable and Tk > (4α
w∗(i))2 then for every action i, we have

|wk(i)− w∗(i)| ≤ T k−1

T k
α√
T k
≤ 4α√

T k
.

Proof: First note that if we set wk(i) = w∗(i) then the the claim holds. Otherwise

wk(i) ≥ w∗(i)− T k−1

T k
|optk−1

i − w∗(i)| ≥ w∗(i)− T k−1

T k
α√
T k
≥ 0,

where the first inequality uses P2 and the last uses property P3 that T k−1/T k ≤ 4 and the fact that Tk >
(4α/w∗(i))2 .

The most important observation is made in the next lemma that considers the increase in the load due to
the generic algorithm G. It shows that the increase in the load of action i in phase k can be decomposed to
three parts. The first is the optimal cost of action i in the previous phase, phase k − 1. The second is the
difference between the load of the base weight in phase k and k − 1. The third can be viewed as a constant,
and will contribute at the end to the regret.

Lemma 6 Suppose that phase k is (α, β)-opt-stable. Then the increase for action i in the phase is bounded
by

OPT k−1(i) +Xk(i)−Xk−1(i) + αβ

(
1 +

√
T k−1

T k

)
.

Proof: The increase of the load of the online algorithm for action i during phase k is wk(i)qk(i)T k. Now,

wk(i)qk(i)T k = w∗(i)qk(i)T k +
qk(i)
qk−1(i)

(OPT k−1(i)−Xk−1(i))

= Xk(i) + (1 +
qk(i)− qk−1(i)

qk−1(i)
)(OPT k−1(i)−Xk−1(i))

= Xk(i) +OPT k−1(i)−Xk−1(i) +
qk(i)− qk−1(i)

qk−1(i)
(OPT k−1(i)−Xk−1(i))

= Xk(i) +OPT k−1(i)−Xk−1(i) + (qk(i)− qk−1(i))(optk−1
i − w∗(i))T k−1

= Xk(i) +OPT k−1(i)−Xk−1(i) + (qk(i)− qk−1(i))εk−1(i)T k−1

≤ Xk(i) +OPT k−1(i)−Xk−1(i) + (β/
√
T k + β/

√
T k−1)(α/

√
T k−1)T k−1

= Xk(i) +OPT k−1(i)−Xk−1(i) + αβ + αβ

√
T k−1

T k
,

where the inequality is due to properties P1 and P2.

The following theorem summarizes the performance of the generic algorithm G, showing that its regret
depends on two parts, the regret of the base weights in the last phase and a term which in linear in the number
of phases.

Theorem 7 Assume that C∗ is concave, C is convex, and C(a, . . . , a) = a for a > 0. Suppose that
phases 1 . . .m′ of the generic algorithm G with its parameters are (α, β)-opt-stable and that Tm

′ ≥
maxi(4α/w∗(i))2. Then its cost in these phases is bounded by

OPT +Rm
′
+ 3m′αβ,

where OPT is the optimal cost, Rm
′

= maxiRm
′
(i) and Rm

′
(i) = max{Xm′(i) − OPTm′(i), 0}. Fur-

thermore, if m′ < m then its cost is bounded by

OPT + 3m′αβ +
m∑

k=m′

Rk.

Proof: Since C is convex, for any Z > 0

C

(
m∑
k=1

OPT k(1) + Z, . . . ,

m∑
k=1

OPT k(N) + Z

)
≤

m∑
k=1

C(OPT k(1), . . . , OPT k(N)) + Z .

Let Lk be the losses in phase k. By definition, C(OPT k(1), . . . , OPT k(N)) = C∗(Lk). Since C∗ is
concave

m∑
k=1

C∗(Lk) ≤ C∗(
m∑
k=1

Lk) = OPT.

We first deal with regret in the first m′ rounds. By Lemma 6, the increase of load at the kth phase is
bounded by

Xk(i) +OPT k−1(i)−Xk−1(i) + αβ(1 +

√
T k−1

T k
) ≤ Xk(i) +OPT k−1(i)−Xk−1(i) + 3αβ.

Summing over the different phases we obtain that the loss of G on action i is at most

[
m′∑
k=1

OPT k(i) + 3αβ] +Xm′(i)−OPTm
′
(i).

Applying the cost C to this we bound the cost on the G online algorithm by

C(LGT) ≤ OPT +Rm
′
+ 3m′αβ.

For the last m−m′ phases since C is convex and C∗ is concave the total regret is bounded by the sum of the
regrets over the phases completing the proof of the second part of the theorem.

We can summarize the theorem in the following corollary, for the cases that are of interest to us, the
makespan and the Ld norm.

Corollary 8 Assuming that the first m′ phases of the generic algorithm G with its parameters are (α, β)-
opt-stable with probability at least 1− δ and Tm

′ ≥ maxi(4α/w∗(i))2 for the makespan and Ld norm, then
its regret is bounded by

3mαβ +
m∑

k=m′

T k,

with probability at least 1− δ.

4 Makespan
In this section we consider the makespan as the global cost function. We first analyze the case of where the
distribution is known and then turn to the case of where the distribution is unknown.

4.1 Known distribution
To apply the generic algorithm G we need to specify its parameters: (1) the number of phases and their
duration, and (2) the base weights.

• Set w∗(i) = 1/p(i)
P , where P =

∑n
i=1 1/p(i), i.e., the optimal allocation for p.

• Set the number of phases m = log(T).

• Set the length of phase k to be T k = T/2k for k ∈ [1,m].

Let Gkn∞ be the generic algorithm G with the above parameters and the cost functions makespan.
The analysis divides the phases into two sets: we show that the first log T/A phases, where A will

be defined shortly, are (α, β)-opt-stable with high probability; for the remaining phases we show that∑m
k=log T/A T

k is small; the result would follow from Corollary 8.

Let A = dmax{4β2/p2
min,maxi 4α2/w∗(i)2}e, β =

√
(1/2) ln(1/η), and α = 6β/(Np4

min), where
η is a parameter that controls the success probability. Since for the first log T/A phases we have T k >
4α2/w∗(i)2, once we show that with high probability all the first log T/A phases are (α, β)-opt-stable, we
establish the following theorem.

Theorem 9 Suppose we run Algorithm Gkn∞ with parameters α = 6β/(Np4
min), β =

√
(1/2) ln(1/η), and

η = δ/Nm. Then with probability at least 1− δ the regret is bounded by

O

(
log(T) log

(
N log T

δ

)
1

Np4
min

+
1

p10
min

log
(
N log T

δ

))
= O(log T log log T).

The next sequence of lemmas show that the first phases ofGkn∞ is (α, β)-opt-stable, where the last lemma
bounds the contribution fro the last phases.

The simplest claim is showing that P3 holds, which is immediate from the definition of T k.

Claim 10 Gkn∞ satisfies property P3.

The additive concentration bound (Lemma 2) together with the fact that T k ≥ max{4β2/p2
min, 4α

2/w∗(i)2}
for the first log T/A phases imply that for these phases property P1 is satisfied with high probability.

Claim 11 With probability 1 −mNη, for any phase k < log T/A and action i we have, |qk(i) − p(i)| <
β/
√
T k and qk(i) > 0 where β =

√
(1/2) ln(1/η).

The following lemma proves that property P2 is satisfied.

Lemma 12 With probability 1−Nmη, for any phase k < log T/A and action i,

|w∗(i)− optk(i)| ≤ α√
T k

,

where β =
√

1
2 ln(1/η) and α = 6β/(Np4

min).

Proof: First, ∣∣∣∣ 1
p(i)
− 1
qk(i)

∣∣∣∣ =
|p(i)− qk(i)|
p(i)qk(i)

≤ β√
T k

2
(p(i))2

,

where we used the bound on |p(i) − qk(i)| from Claim 11 and the fact that for the first log T/A phases we
have T k ≥ max{4β2/p2

min, 4α
2/w∗(i)2} implies that qk(i) ≥ p(i)− β/

√
T k ≥ p(i)/2 for these phases.

Second, we show that,∣∣P −Qk∣∣ =

∣∣∣∣∣
n∑
i=1

1
p(i)
− 1
qk(i)

∣∣∣∣∣ ≤
n∑
i=1

∣∣∣∣ 1
p(i)
− 1
qk(i)

∣∣∣∣ ≤ N β√
T k

2
p2

min

.

Since 1 ≤ 1/p(i) ≤ 1/pmin, we have thatN ≤ P ≤ N/pmin. By Claim 11 we have |p(i)−qk(i)| ≤ β/
√
T k,

and this implies that,∣∣p(i)P − qk(i)Qk
∣∣ ≤ P ∣∣p(i)− qk(i)

∣∣+ qk(i)
∣∣P −Qk∣∣ ≤ N

pmin

β√
T k

+N
β√
T k

2
p2

min

≤ 3Nβ

p2
min

√
T k

.

Since P ≥ N and similarly Qk ≥ N , this implies that,∣∣w∗i − optk(i)
∣∣ =

∣∣∣∣1/p(i)P
− 1/qk(i)

Qk

∣∣∣∣ =
|p(i)P − qk(i)Qk|
p(i)Pqk(i)Qk

≤ 2(|p(i)P − qk(i)Qk|)
p2

minN
2

=
6β

Np4
min

√
T k

,

which establishes the lemma.

To establish the number of time steps in phases which are shorter than A, we need to lower bound w∗(i).

Lemma 13 For any action i we have w∗(i) ≥ pmin/N , which implies that the total time at the last logA
phases is bounded by O(A) = O(log(1/η)/p10

min).

Proof: Since the length of the phases decays by factor of two, it is enough to bound
A = max{4β2/p2

min, 4α
2/w∗(i)2}. Consider action i. We have that P =

∑n
j=1 1/p(j) ≥ 1/p(i) +

(1/pmin)(N − 1). Thus,

w∗(i) =
1/p(i)
P

≥ 1/p(i)
1/p(i) + (N − 1)/pmin

=
pmin

p(i)pmin + p(i)(N − 1)
≥ pmin

N
.

Substituting the value of α we obtain the lemma.

Proof of Theorem 9 : By Lemma 12 and Claims 11, 10 show the first log T/A phases are (α, β)-opt-stable.
Lemma 13 bounds the length of the other phases. Applying Corollary 8 proves the theorem.

4.2 Unknown Distribution
The algorithm for an unknown distribution relies heavily on the application developed in the previous sub-
section for the known distribution model. We partition the time T to log(T/2) blocks, where the r-th block,
Br, has 2r time steps. In block r we run Gr∞, the generic algorithm G with the following parameters:

• Set wr,∗(i) using the observed probabilities in block Br−1 as follows. Let optr−1(i) be the optimal
weight for action i in block Br−1, then wr,∗(i) = optr−1(i). (For r = 1 set w1,∗ arbitrarily, note that
there are only two time steps in B1.)

• In block Br we have m = r phases, where the duration of phase k is T r,k = |Br|/2k = 2r−k.

We now need to show that the algorithm Gr∞ is (α, β)-opt-stable. We start by showing that property P3
is satisfied.

Claim 14 With probability 1−mNη we have that |wr,∗(i)−optr,k(i)| ≤ 2α/
√
T r,k, where β =

√
1
2 ln(1/η)

and α = 6β/(Np4
min).

Proof: Let w∗(i) = (1/p(i))/P . Then,

|wr,∗(i)− optr,k(i)| = |optr−1(i)− optr,k(i)| ≤ |optr−1(i)− w∗(i)|+ |w∗(i)− optr,k(i)|

≤ α

2(r−1)/2
+

α

2(r−k)/2
≤ 2α√

T r,k
,

where we used Lemma 12 twice for the second inequality.

Remember that A = max{4β2/p2
min, 4α

2/w∗(i)2}. Thus for all blocks with Br < A, our regret bounds
will be trivial. A more subtle point is that A is actually Ar as w∗(i) changes between the different blocks. So
we still need to compute Ar for any block to be able to compute the regret bounds. Note that by definition
P1 and P3 are satisfied by the same reasoning as in the previous section,

Lemma 15 If Br−1 > 4β2/p2
min, then wr,∗ ≥ pmin/(2N) and Ar = O(log 1/η/p10

min) with probability at
least 1− η.

Proof: Let q̂ be the average loss at the r−1 block. SinceBr−1 > 4β2/p2
min, then q̂r(i) ≥ p(i)−β/

√
Br−1 ≥

p(i)/2. Thus 1/q̂r(i) ≤ pmin/2. Thus

1/q̂r(i)∑
j∈N 1/q̂r(j)

≥ 1∑
j∈N 1/q̂r(j)

≥ pmin

2N
.

The second of the part of the proof is identical to the proof in Lemma 13

In each block Br, Theorem 9 bounds the regret of Gr∞, and we derive the following,

Lemma 16 With probability 1− rNη, the regret during Br is at most

O

(
log(|Br|) log(1/η)

Np4
min

+
1

p10
min

log(1/η)
)
.

Summing over the m blocks we obtain the following theorem.

Theorem 17 With probability 1− δ, the regret is at most

O

(
log2 T log

(
N log T

δ

)
1

p4
min

+
log T
p10

min

log
(
N log T

δ

))
= O(log2 T log log T).

5 Ld norm
As in the makespan case (in the previous section) we apply the generic algorithm to the Ld norm global cost
function. Note that the generic algorithm behaves differently for different global cost functions, even if the
same parameters are used since OPT is different. From the implementation perspective, the only difference is
that we set the base distribution w∗ to the optimal one with respect to the Ld norm rather than the makespan.
From the proof perspective, the key difference between the makespan and theLd norm is the proof of property
P2. Also, since the optimal allocation is different, we will have a different value of α. (The proofs of this
section are omitted.)

5.1 Known distribution
In this section we define Gknd , which will have a low regret for the Ld norm in the known distribution model.
Let Gknd be the generic algorithm G the following parameters.

• Set w∗(i) = (p(i))−λ/Pλ, where λ = d/(d − 1) and Pλ =
∑n
i=1(p(i))−λ, i.e., the optimal allocation

for p under the Ld norm.

• Set the number of phases m = log(T) and the length of phase k to be T k = T/2k for k ∈ [1,m].

The following lemma will be used to show property P2, and is similar to Lemma 12 for the makespan.

Lemma 18 With probability 1−Nmη, for any action i and phase k < log(T/A) and A = (4β2/p2
min), we

have ∣∣w∗(i)− optk(i)
∣∣ ≤ α√

T k
,

where β =
√

0.5 ln(1/η), and α = O
(
d
√

ln(1/η)/
(

(d− 1)Np4d/(d−1)
min

))
.

To apply Corollary 8 we need to bound the sum of the lengths of phases of size less thanA, which is done
in the following lemma.

Lemma 19 For any action i we have w∗(i) ≥ pmin/N , which implies that the total time in the last logA
phases is bounded by O(A) = O

(
d2 log(1/η)/

(
(d− 1)2p

10d/(d−1)
min

))
.

Similarly to the previous section we obtain the following.

Theorem 20 Algorithm Gknd , with probability at least 1− δ, has regret at most

O

(
log(T) log

(
N log T

δ

)
d

(d− 1)Np4d/(d−1)
min

+
d2

(d− 1)2p
10d/(d−1)
min

log
(
N log T

δ

))
= O(log T log log T).

5.2 Unknown distribution
Similar to the makespan case, algorithm Gund , for Ld norm in the unknown distribution model, runs in blocks
of increasing size, where in each block uses as the base distribution the optimal allocation for the previous
block. The proofs are similar to the makespan case, where the differences are due to the different global cost
function.

For algorithm Gund , we partition the time first to log(T/2) blocks, where the r-th block, Br, has 2r time
steps. In block r we run Grd, the generic algorithm G with the following parameters:

• Set wr,∗(i) using the observed probabilities in block Br−1 as follows. Let optr−1(i) be the optimal
weight for action i in block Br−1, then wr,∗(i) = optr−1(i). (For r = 1 set w1,∗ arbitrarily, note that
there are only two time steps in B1.)

• In block Br we have m = r phases, where the duration of phase k is T r,k = |Br|/2k = 2r−k.

Similarly to the previous section we obtain the following.

Theorem 21 Algorithm Gund , with probability 1− δ, has regret at most

O

(
log2 T log

(
N log T

δ

)
d

(d− 1)p4d/(d−1)
min

+
d2 log T

(d− 1)2p
10d/(d−1)
min

log
(
N log T

δ

))
= O(log2 T log log T).

6 Any Time Regret
The regret algorithms presented so are optimizing the regret at the termination time T . It is not hard to see that
the previous algorithms have regret of O(

√
T) at the initial part of the sequence. In this section we develop

algorithms that have low regret at any time t ∈ [1, T], and develop a different application of the generic
algorithm which guarantees at an anytime a regret of O(T 1/3). We start from the case of known distribution
and move to the case of an unknown one. (The proofs are omitted.)

6.1 Known Distribution
For the known distribution model we will describe two algorithms: Gany∞ for the makespan and Ganyd for the
Ld norm. We set the parameters of the algorithms as follows:

• For Gany∞ set w∗(i) = (p(i))−1/P , where P =
∑n
i=1(p(i))−1. For Ganyd set w∗(i) = (p(i))−λ/Pλ ,

where Pλ =
∑n
i=1(p(i))−λ and λ = d/(d− 1).

• For both Gany∞ and Ganyd set m = T 1/3, the number of phases, and let the phase length be constant:
T k = T 2/3 for k ∈ [1,m].

The main result of this section is the following theorem.

Theorem 22 Given the expected loss p(i) of each action i, then with probability at least 1 − Nmη, the
regret of Gany∞ and Ganyd at any t ∈ [1, T] is O(α∞T 1/3) and O(αdT 1/3), respectively, where α∞ =

O
(√

log(1/η)/(Np4
min)

)
, αd = O

(
d
√

ln(1/η)/
(

(d− 1)Np4d/(d−1)
min

))
, and β = O(

√
log(1/η)).

When all the phases have identical length, using Eq. (1), we observe that wk(i) is simply optk−1(i).

Observation 23 If T k = T k−1 then wk(i) = optk−1(i).

One advantage of the above observation is that we are guarantee that wk is a distribution. Therefore, we
can drop the requirement that the phase length is at least 4α2/w∗(i)2, which comes from Claim 5.

Claim 24 Suppose that all phases have identical length T k > 4β2/p2
min. Then for β = O(

√
log(1/η)), for

the makespanα∞ = O(
√

log(1/η)/(Np4
min)), for theLd normαd = O

(
d
√

ln(1/η)/
(

(d− 1)Np4d/(d−1)
min

))
,

then with probability at least 1− ηNm all phases are (α, β)-opt-stable.

The next lemma bounds the regret from the start of phase k until some time t in phase k, compared to the
optimal allocation for this time period.

Lemma 25 Suppose that the global cost C is convex and C((a, . . . , a)) = a and that an algorithm is (α, β)-
opt-stable algorithm at stages 1, 2, . . . , k. Then, at any time t during phase k, the regret is at mostO(αT 1/3).

Proof: By Observation 23 during phase k we use weight wk(i) = optk−1(i) for action i. Since all phases
are (α, β)-opt-stable then this weight is close to the base weight, namely, we have that |wk(i) − w∗(i)| =
|optk−1(i)−w∗(i)| ≤ α/

√
T k. Let τ = 1 +

∑k−1
j=1 T

j be the start of phase k. Let optk,t(i) be the weight of
the optimal allocation for the period starting at phase k and until time t, i.e., during time steps [τ, t]. Similarly
to the proofs of Claims 12 and 18, just for t− τ time steps (rather than Tk) we get that |w∗(i)− optk,t(i)| ≤
α/
√
t− τ . Combining the two and using the fact that T k = T k−1 we obtain that|wk(i) − optk,t(i)| ≤

2α/
√
t− τ . The difference between weight of the algorithm and the optimal allocation during [τ, t] in phase

k, for any action i is at most 2α(t − τ)/
√
t− τ ≤ 2α

√
T 2/3. Since the global cost C is convex and

C((a, . . . , a)) = a the regret is at most O(αT 1/3).

We are now ready to bound the anytime regret.
Proof of Theorem 22 : Consider a time t in phase k. By Claim 24, the algorithm is (α, β)-opt-stable.
Applying Lemma 25 to phase k − 1 we have that we have that Rk−1 = O(α∞T 1/3) for makespan and
Rk−1 = O(αdT 1/3) for Ld norm. By Lemma 25 the regret in the period [τ, t] is at most O(α∞T 1/3) for
makespan and O(αdt1/3) for Ld norm. We apply Corollary 8 to derive the theorem.3

6.2 Unknown distribution
Similar to the case before, of the makespan and Ld norm, we use blocks of increasing size to (implicitly)
estimate the expectation of the losses. Formally, we have m = log(T/2) blocks, where the r-th block, Br,
has 2r time steps. In each block we run our Gany∞ and Ganyd algorithms. The parameters are:

• Set wr,∗(i) to be the optimal allocation in the previous block, i.e., optk−1(i), where in Gany∞ we use the
makespan and in Ganyd we use the Ld norm.

• In block Br we have m = |Br|1/3 phases, where the duration of phase k is T r,k = |Br|2/3.

LetA = 4β2/p2
min. For all blocks which are smaller thanA3/2 we simply bound their regret by their time.

For the longer blocks, we show that in each block all phases are (α, β)-opt-stable (with high probability).
Therefore, we obtain the following theorem.

Theorem 26 With probability 1−NηT 1/3, at anytime the regret is at most O(T 1/3α+ log3/2 1/η/p3
min) =

O(T 1/3), where α = O((
√

log(1/η))/(Np4
min)) for makespan and α = O(

d
q

ln 1
η

(d−1)Np
4d/(d−1)
min

) for Ld norm.

7 Least Loaded Machine Scheduler
The Least load machine (LLM) scheduler is an intuitive and frequently used algorithm to minimize the
makespan. The LLM scheduler puts all the weight of the next job on the least loaded machine machine, or, in
our terminology, LLM selects the action with the least observed losses. The LLM scheduler is geared towards
minimizing the makespan, and we will show that the regret of the LLM scheduler is at most O(

√
T log T) in

the anytime model. On the other hand, the LLM scheduler suffers a regret which is Ω(
√
T), a property that

is common to all deterministic schedulers that allocate all the weight to a single machine.
In our setting all losses are bounded by 1 so at any time t the LLM scheduler will satisfy that the difference

between the load of different actions is bounded by 1.

Lemma 27 At time t ∈ [t, T] the difference between the load of any two actions is bounded by 1, i.e.,
|LLLMt (i)− LLLMt (j)| ≤ 1 for any t ∈ [1, T] and i ∈ N .

We prove in the following sequence of lemmas that the frequency of LLM using machine i is proportional
to 1/p(i). The first step is to define when the realized loses are “representative” of the expectations. A
realization of the losses is a matrix M of size n × T , where the entry (i, k) is distributed according to `(i)
(using D). We can view the generation process of the losses as follows. The k-th time LLM uses action i we
return the loss in entry M [i, k]. One can see that this gives an identical distribution to D.

Definition 28 A realization matrixM is representative if for any i and k we have
∣∣∣∑k

j=1M [i, j]/k − p(i)
∣∣∣ ≤√

(log 1/η)/(2k).

Using a simple concentration bound (Lemma 2) we have the following lemma.

Lemma 29 With probability 1− 2NTη the realization matrix M is representative.

We are interested in cases where the loads on the actions is almost balanced. This definition will formally
specify when an action selection vector results in an almost balanced loads.

Definition 30 An integer vector (k(1), . . . k(N)) is ` balanced for a matrix M if
∑N
i=1 k(i) = T and for

every i we have
∑k(i)
j=1M [i, j] ∈ [`, `+ 1].

The following lemma shows that if the loads are almost balanced then the makespan is close to T/P .

3Technically, the bound of the minimum phase required in Corollary 8 does not hold, but using Observation 23 we
can derive an identical statement with an almost identical proof.

Lemma 31 Given a representative matrix M and an ` balanced vector (k(1), . . . , k(N)), we have that
|`− T/P | = O(

√
T log(1/η)).

Proof: Since M is representative, for each i we have that |
∑k(i)
j=1M [i, j]− p(i)k(i)| ≤

√
0.5k(i) log(1/η).

Since (k(1), . . . , k(N)) is ` balanced we have that |` − p(i)k(i)| ≤
√

0.5k(i) log 1/η) + 1. Let k(i) =
`/p(i) + λ(i)/p(i), where we have shown that |λ(i)| ≤

√
0.5k(i) log(1/η) + 1. Summing over all actions,

we obtain that T =
∑N
i=1 k(i) = `P + Λ, where Λ =

∑N
i=1 λ(i)/p(i). Therefore T/P − ` = Λ/P =∑N

i=1 λ(i)(1/p(i))/P . The lemma follows since Λ/P < maxi λ(i) ≤
√

0.5T log(1/η) + 1.

The next claim states that the LLM scheduler produces balanced vectors, given its selection of actions.

Claim 32 Let k(i) be the number of times LLM used action i. Then (k(1), . . . , k(N)) is ` balanced, where
the makespan of the LLM in in the range [`, `+ 1].

In order to bound the regret, we need to lower bound the performance of the optimal allocation.

Lemma 33 Let p̂(i) be the empirical loss of action i, and p̂(i) = p(i)(1 + δ(i)). Then the optimal makespan
is at least (1 − δ)T/P , where δ = maxi |δ(i)|. In addition, with probability 1 − Nη, we have that δ <√

(log(1/η))/T .

Proof: The optimal makespan has value T/P̂ where P̂ =
∑N
i=1 1/p̂(i). By our assumption p̂(i) > p(i)(1−

δ), and the lemma follows.

We bounded, with high probability, the deviation of the LLM scheduler above the T/P bound (Lemma
31), and the deviation of the optimal below the T/P bound (Lemma 33). Therefore, we derived the following
theorem.

Theorem 34 With probability 1− 3NTη we have that the regret is at most O(
√

(log(1/η))/T).

The LLM scheduler, as any deterministic scheduler that always assign at each time step all the weight
to a single action, is bound to have a regret of the order of at least

√
T with some constant probability. As

stated in the the introduction, for any such scheduler, the sum of the loads is a sum of T IID Bernoulli random
variables, and with constant probability some load would be of the order of

√
T above the expectation. We

summarize the result in the following theorem.

Theorem 35 The expected regret of any deterministic scheduler (including LLM) is Ω(
√
T), for N = 2.

The influence of the number of actions N is interesting. Somewhat counterintuitively, the regret may
drop with the increase in N . To slightly de-mystify this, note that when T = N the makespan of LLM and
also the uniform weights is bounded by 1, and therefore the regret is at most 1.

8 Simulations
We demonstrate the algorithms introduced in this paper by running several toy simulations with makespan
cost. Of particular interest in the simulations below is the behaviour of the algorithms in different phases the
way their variance changes.

We compare the algorithms we developed to several standard algorithms and show considerable gain for
all variants of the generic algorithm. As in the theoretical part of the paper we consider two settings, the case
where the distributionD is known and where the distributionD is unknown. In the known distribution model
we compare the optimal allocation given the distribution to several applications of our algorithm, namely
both anytime and the logarithmic regret. In the unknown distribution we compare our algorithms to the least
loaded machine algorithm, and the algorithm presented by [4] that is suited to an adversarial setting. We use
our algorithm for unknown distribution, with a small modification where in the first phase instead of using
random weights we run least loaded machine algorithm (to avoid random guess in the beginning).

Table 1 summarizes the behavior of the different algorithms that were run 200 times where each run
consisted of 107 time steps. The table demonstrates a few interesting points. First, all of variants of our
algorithm enjoy lower regret, and even more striking they enjoy a very low standard deviation compared to
the more intuitive algorithms (LLM and the a-priori optimal). This suggests that one can regard our method
as a method for a variance reduction. The first two rows of Table 1 present the case where the distribution
D is a product distribution, where each mean value is chosen uniform at random at [0, 1]. The last two rows
present a case where the distribution D is correlated and in particular is the multinomial distribution.

Gkn∞ Gun∞ Gkn∞ (anytime) LLM A-priori Optimal Adverserial
Uniform D
Average regret 1.6380 6.502 10.3375 20.3173 75.3860 169.3265
STD regret 1.2586 6.0256 5.5891 31.9719 39.8705 104.1208
Multinomial D
Average regret 1.8890 5.4982 8.1424 12.0866 47.0461 160.6345
Std regret 1.3544 4.5942 4.0043 20.5329 24.9777 98.2591

Table 1: Regret of different algorithms for uniform and correlated D.

Figure 1: A demonstration of the regret growth of the
algorithm when the termination time is known. The
number of machines is 8 and each point is an average
of 100 runs. In each time D is a product distribution
where the expectation of each machine is chosen at
uniform at [0, 1].

Figure 2: A demonstration of the regret the differ-
ent algorithms as the time grows. All algorithms
know the termination time which is 108 and each
point is an average of 20 runs.

As can be observed, the results of for correlated and product D are similar demonstrating the ability of
our algorithm to work even when there are correlations. Figure 1 depicts the regret of each algorithm as a
function of the termination time T . 4 As expected, the algorithm which balances at the end outperforms
the other algorithms significantly. Another point of interest is that although the adversarial and the LLM
algorithm have both O(

√
T) regret, the LLM algorithm outperform the adversarial one.

Figure 2 provides some intuition on how the logarithmic regret algorithmGun∞ behaves during each phase.
Namely, the regret grows at the beginning of a phase and then starts to decrease until it is very small. In
addition, it demonstrates the advantage of the anytime algorithm over other algorithms.

References
[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem. Machine Learning,

47(2-3):235–256, 2002.
[2] P. Auer and R. Ortner. Logarithmic online regret bounds for undiscounted reinforcement learning. In Advances in

Neural Information Processing Systems 19, pages 49–56. MIT Press, 2007.
[3] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press, New York, 2006.
[4] E. Even-Dar, R. Kleinberg, S. Mannor, and Y. Mansour. Online learning for global cost functions. In The 22nd

Annual Conference on Learning Theory (COLT) 2009, pages 41–52, 2009.
[5] T.L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in Applied Mathematics,

6:4–22, 1985.
[6] H. Robbins. Some aspects of sequential design of experiments. Bull. Amer. Math. Soc., 55:527–535, 1952.
[7] A. Tewari and P. L. Bartlett. Optimistic linear programming gives logarithmic regret for irreducible MDPs. In

Advances in Neural Information Processing Systems Conference (NIPS), 2007.

4Note that algorithm at time 10000 and the one at time 20000 will be different since they both know the end time.

