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Abstract

We analyze the regret, measured in terms of log loss, of thermemn likelihood (ML) sequential
prediction strategy. This “follow the leader” strategy mldefines one of the main versions of
Minimum Description Length model selection.

We proved in prior work for single parameter exponential #gmmodels that (a) in the misspecified
case, the redundancy of follow-the-leademds % logn+0O(1), asitis for other universal prediction
strategies; as such, the strategy also yields suboptimi@idual sequence regret and inferior model
selection performance; and (b) that in general it is not iptes$o achieve the optimal redundancy
when predictions are constrained to the distributions éabnsidered model.

Here we describe a simple “flattening” of the sequential Mld aelated predictors, that does
achieve the optimal worst casedividual sequenceegret of (k/2)logn + O(1) for k parame-
ter exponential family models for bounded outcome spacasufbounded spaces, we provide
almost-sure results. Simulations show a major improveroétite resulting model selection crite-
rion.

1 Introduction

Letxq,zo,... € X", be asequence of outcomes revealed one at atime. Aftenatgel” = z1, o, ..., T,,
a forecaster assigns a probability distribution 8ndenotedP(- | ™). Then, afterx, 1, is revealed, the
forecaster incurs thivg loss— log P(x,+1 | ™). The performance of the strategy is measured relative to
the best in a reference set of strategies, which we calribeel M. The difference between the accumulated
loss of the prediction strategy and the best strategy in thaetis called theegret The goal is to minimize
the regret in the worst case over all possible data sequences

Sequential prediction of individual sequences with loglbas been extensively studied in learning the-
ory, in the framework ofrediction with expert advicéAzoury & Warmuth, 2001; Cesa-Bianchi & Lugosi,
2001; Cesa-Bianchi & Lugosi, 2006). However, it has alsah@aying an important role in the information
theory: a key result based on the Kraft-McMillan inequafgge, e.g., (Cover & Thomas, 1991)) states that,
ignoring rounding issues, for every uniquely decodableetemgth functionL there is a probability distri-
bution P such thatl(x) = —log P(x) and vice versa Thus, at least wheA’ is countable, any prediction
strategy can also be thought of aardversal source coding algorithnthe cumulative logarithmic loss cor-
responds exactly to the incurred codelength. As Rissarke&y of Minimum Description Length (MDL)
learning (Barron et al., 1998; Gnwald, 2005) is based on universal coding, a sequentidigiren strategy
with log loss defines an MDL model selection criterion. Sarly, in statistics Dawid’s theory of prequen-
tial model assessment (Dawid, 1984) is based on sequengidicfion. Thus we use the terms “prediction
strategy” and “code” interchangeably, as we do for “acclated log loss” and “codelength”.

For parametric modeldt = {Fy | 6 € O}, there are three “universal codes” (prediction strategiitls
low regret) that are particularly well known in the sourcelity and MDL communities: (1) after putting
a prior distribution7 on the model parameters, one can predict usingBiigesian predictive distribution
Popves(- | 2) = [ Po(- | ™)m(0 | ™) d6. (2) If there is a known horizon (maximal number of outcomes)
the Shtarkov code (Shtarkov, 1987), also known as the NaathMaximum Likelihood code (Rissanen,
1996), can be defined. This universal codimimizeghe worst-case regret. (3) Given an estimatort? —

Throughout this text, all logarithms are to the basad we use nats rather than bits as units of information; however,
all results presented here are valid for logarithms of any base.



O, one can sequentially select an element of the model usaggtimator and use that to predict the next
outcome, i.e.Porye-in (- | ") = Pyuny(+ | ™). Such “plug-in codes” were introduced independently in
the context of MDL learning (Rissanen, 1984) and in the cdré prequential model validation (Dawid,
1984). If we taked(z™) equal to the maximum likelihood (ML) estimaté(m”), then the resulting strategy
is called the “ML plug-in strategy”, which corresponds te ttiollow the leader” strategy in learning theory
terminology (Kalai & Vempala, 2003; Hutter & Poland, 2005}rategy (3) always predicts using an element
of the model, whereas strategies (1) and (2) do not.

Under weak regularity conditions on the sequence of outspitie Bayesian and NML strategies have
been shown to achieve asymptotically optimal worst-cageeté¢k/2) logn + O(1), wherek is the number
of parameters of the model (Rissanen, 1989; Rissanen, XSf&fwald, 2007). As a consequence, the
same(k/2)logn + O(1)-result holds in expectation and almost surely, if the datasampled from some
distributionP*, as long ag’* satisfies some very weak regularity conditions. In paréicuP* is notrequired
to lie in the modelM: the results still hold ifP* ¢ M, i.e. the “model is wrong”, or, as statisticians call
it, “the misspecified case”. Now iP* does lie inM, then the samék/2) logn + O(1)-regret is achieved
in expectation undeP* for a large variety of plug-in models including multivaaéxponential families,
ARMA processes, regression models and so on; examples &®a(fen, 1986; Hemerly & Davis, 1989;
Wei, 1990; Li & Yu, 2000). However, in contrast to the Bayesand NML results, the plug-in result does
not hold under misspecification, i.e. #* ¢ M. We reported earlier (Ginwald & de Rooij, 2005) that
under misspecification, already for single parameter egptial family models, the expected regret of the
ML plug-in strategy i%clogn + O(1) wherec is the variance of an outcome under the true distribufin
divided by the variance under the element of the mdgethat minimizes the Kullback-Leibler divergence
D(P*||Py). Moreover, it is shown by (@nwald & Kottowski, 2010) thaho plug-in estimator can achieve
¢ = 1 (thus it does not help to replace maximum likelihood pradi by, say, Bayesian posterior mean or
moment-estimator-based predictions). This behaviompeeislly undesirable when the plug-in ML estimator
is used to define an MDL or prequential model selection promedecause in those circumstances, as we
explained in Section 6, it is by definition not safe to assuna¢®* < M. This is quite clearly visible in the
results of model selection experiments described by (D&jRoGr inwald, 2006), where the plug-in based
version of MDL is significantly outperformed by MDL based oay&sian and NML strategies.

While the ML plug-in strategy does not achieve the desireceetqul regret, (@mwald & Kottowski,
2010) describe a simple modification of the plug-in predictstrategy that does do so, in the somewhat
specific case wherk = 1 and the outcomes are generated i.i.d. from some distributia In this paper,
we extend this result to the much more general scenario wheaa be larger thaih and where we consider
worst-case individual sequence regret rather than exgeetget. Our only assumption is that the outcome
spaceX is bounded in some sense. Following {@Gwald & Kottowski, 2010), we propose tlittenedML
prediction strategy, a modification of the ML strategy thatsat slightly outsideM, and in Theorem 11 we
show that this strategy achieves optimal asymptotic mixinegret(k/2) logn + O(1). We also show that
when the outcomes are generated i.i.d. from some distabut* of which the first four central moments
exist, we can remove the assumption of boundédnd still our prediction strategy achieves the optimal
regret(k/2) log n with probability one.

Our result is important in practice since, in contrast to Bagesian predictive distribution, the flattened
ML strategy is in general just as easy to compute as the Mimestir itself. The flattened ML strategy can
be used to define an efficient MDL model selection criterior; repeated the model selection experiments
of (De Rooij & Grinwald, 2006) including this new criterion to find that it plisys acceptable performance,
unlike the ML plug-in strategy.

Related Work The idea of changing a “follow the leader”-strategy by mupifi§ the leader is not new
(Kalai & Vempala, 2003; Hutter & Poland, 2005); however, 6ilattened” leader is quite different from
the “perturbed” leader described in these earlier paperd, aso the setting is quite different: flattened
leaders make sense relative to parametric statistical lpoddich may be regarded as an uncountable set
of experts satisfying continuity requirements; perturlbeaders make sense relative to finite or countable
sets of otherwise unrelated experts, and the regret bountdéned in the latter settings are quite different
from the (k/2) logn regret obtained here. The flattened leader is more closédyerkto the predictive
densities considered by (Vidoni, 2008) and (Corcuera & Gnaig, 1999). These authors provid&1/n)-
modifications of the ML density that are similar (but noneqiént) to ours, and they investigate the behavior
of these modifications in terms of expected KL-divergendbaiathan cumulative regret, in a stochastic,
rather than an individual sequence setting.

The paper is organized as follows. We introduce the matheedatontext for our results in Section 2.
We subsequently define the flattened ML strategy 3 and praiethie regret igk/2)logn + O(1) in the
individual sequence setting with bounded sample space. iVéeag example of how this estimator can be
used in practice in Section 4, where we apply it to the modéBerfoulli distributions and show how its
worst case regret develops as a function of the sample siZgedtion 5 we return to theory by providing an



“almost sure” analogue of our individual sequence resufterg we can relax the boundedness assumption
somewhat. The prediction strategy based on the flatteneddtitnator can be used to define an MDL model
selection criterion; in Section 6 this criterion is evakgin a series of model selection experiments, showing
that it overcomes many of the weaknesses of the ML plug-idiptien strategy without flattening. We end
with a conclusion in Section 7.

2 Notation and Definitions

Let X be a set of outcomes, taking values either in a finite or cdlatset, or in a subset of Euclidean
space. Exponential family models are families of distiitmos on X’ defined relative to a random variable

¢ : X — R¥ (called “sufficient statistic”), and a functidn: X — [0, 00). Let Z(n) = [, _, e @) h(z) dw
(the integral to be replaced by a sum for countable and©n, = {n € R* : Z(n) < oo}.

Definition 1 (Exponential family) Theexponential family (Barndorff-Nielsen, 197®jth sufficient statistic

¢ andcarrierh is the family of distributions with densitié3, (z) = ﬁe”%(@h(x), wheren € Onar Onat

is called thenatural parameter spac€he family is calledegularif O, is an open and convex subsefif,
and if the representatio®, (=) is minimal, i.e. the functions;(z),¢ = 1,..., k are linearly independent.

We only consider regular exponential families, but thisldieation will henceforth be omitted. Exam-
ples include the Poisson, geometric and multinomial fasjland the model of multidimensional Gaussian
distributions. Moreover, without loss of generality, wdlwnake the simplifying assumption thafz) = z,

i.e. the exponential family is in the canonical form. All vits in this paper are valid for more geneval

The statisticp(X) = X is sufficient forn (Barndorff-Nielsen, 1978). This suggests reparametagizi
the distribution by the expected value &f, which is called thenean value parameterizatiohe function
u(n) = Ep, [X] maps parameters in the natural parameterization to the neae parameterization. Itis a
diffeomorphism (Barndorff-Nielsen, 1978), therefore thean value parameter spa®geanisS also an open
set of R*. We write M = {P, | 1t € Omean} WhereP, is the distribution with mean value parameger

The sequence of outcomes, . . ., z,, is abbreviated by™ (z° denotes the empty sequence). At every
iterationn = 0,1,2,..., the predictionP(- | ™) depends on the past outcomé&s and has the form of
a probability distribution on¥’, therefore it can be considered as a conditional of the jdistribution of
outcomes inX™, which is P(z™) = [];_, P(z;|z"~'). Conversely, any probability distributioR on the
setX™ defines a prediction strategy induced by its conditionatithistions P( - | z%) for 0 < i < n (Cesa-
Bianchi & Lugosi, 2006; Ginwald, 2007).

We are now ready to define the plug-in prediction strategy.

Definition 2 (Plug-in prediction strategy) Let M = {P, | i € ©Omean} be an exponential family with mean
value parameter domai®mean Given M, and a functionz : X* — Onean, define theplug-in prediction
strategyPe, e by setting, for alln, all z7+1:

Prruc-in ($n+1 | xn) = Pﬁ(m")(xn+1)~
We will be mostly concerned with the maximum likelihood (Mplug-in prediction strategy:

Definition 3 (ML prediction strategy) Given M and constantsy € Omean o > 0 we define theviL
prediction strategyy, (z,+1|z™) as a plug-in strategy witly = 12, where

faa) = T D i
ng +n

To understand this definition, note that for exponentialifi@s in the mean value parameterization, for
any sequence of data, the maximum likelihood paramtes given by the averagg, = n~' >_ z; of the
observations (Barndorff-Nielsen, 1978). Here we definepbug-in model in terms of a smoothed maximum
likelihood estimator; that introduces a ‘fake initial outcome’, with multiplicity n, in order to avoid
infinite log loss for the first few outcomes, and to ensure thatplug-in ML code of the first outcome is
well-defined. The estimatgr, can also be interpreted as “maximum a posteriori” estimai®it maximizes
the posterior distribution with appropriate conjugateoprin practice we can take, = 1 but our result holds
foranyng > 0.

Definition 4 (Regret) We defingegretwith respect to a sequenaé of a prediction strategyP relative to
the modelM, as a difference between the accumulated log log3 afid the accumulated log loss of the best



strategy fromM:

n n

R(P;z™) = Z —log P(z|z" 1) — Meigf —log P, (z;)
i—1 meani:1 (1)
= —log P(z") — inf —logP,(z").
HEOmean

From the definition, the minimizer:

fin = arg inf —log Py(a") = arg Hggj;n&(z")

is the ordinary maximum likelihood estimatqt,, = n~' 3" z;. Note, however, thaf’; is notthe same
as the ML plug-in strategy with, = 0: sinceP;,, uses the ML estimatdrsased on the whole sequertce
predict all outcomes from the start, its predictions areggelty much better than for the ML plug-in criterion.

Under some mild assumptions about the outcomes, two imptgatadiction strategies, NMLnprmalized
maximum likelihoogland Bayes, achieve regrets that are (in an appropriatexelose to optimal. To be
more specific, we must introduce the notiorirdfccsisubsets 00 eanand the related sequences (Bwald,
2007). These are formally defined as follows.

Definition 5 (Ineccsi subsets and sequenceget M be a model with a smooth parameterizatién(e.qg.,
M may be an exponential family aktimay represent its mean-value parameterization). The séhse ©
is ineccsi(“interior (is) non-empty; closure (is) compact subset mtigrior”) if:

1. the interior of© is nonempty;

2. the closure 00 is a compact subset of the interior ©f

The sequence;, xo, . . . is a Og-sequence if there exists, such that for alln > m, the ML estimatoi,,
exists, is unigue and satisfigg € 9.

Now, the formal definitions of NML and Bayes strategies fallo

Definition 6 (NML prediction strategy) Given M, an ineccsi subséd, C Onean and a finite horizom,
define theNML prediction strategy with respect 9, as:
sup,ce, Pu(r")

Py (z™) = .
ML an Sup,,co, Pu(z) dzn

Definition 7 (Bayes prediction strategy) Given M and a probability distributiont(x) on ©mean define the
Bayes prediction strategs:

Peaves(z") = P, (z™)m(p) dp.

emean

Note that the NML does not define a random process, since éigtions depend on the horizon i.e.
marginalizing the NML distribution with some horizon larghann over the firstn outcomes does not yield
the NML distribution with horizom. This is not an issue with the Bayesian strategy, which dedise a
random process.

The following theorem characterizes the regret of the NMH Bayes prediction strategies:

Theorem 8 Let M = {P, | 1 € Omean} be ak-dimensional exponential family with mean-value paramete
spaceOmean LELO( be an ineccsi subset 6fneanand letxy, zo, . . . be a®y-sequence. Then,

R(Pa") = & logn +0(1), @)

where P is either the NML strategy with respect &, with horizonn, or the Bayesian prediction strategy,
based on a prior with sUppo® mean

For a proof, see e.g. (@Gnwald, 2007). (2) is the famous bver2 log n formula’, refinements of which lie
at the basis of practical approximations to MDL and Bayekaming, most notably BIC (Gnwald, 2007).
Since the NML strategy in fachinimizeghe worst-case regret, it follows that a Worst—cas§ tfgn+0O(1)

is optimal. We remark that, if;, o, . .. do not form an ineccsi sequence, then the empirical meareaf;th
tends to the boundary of the parameter space. In that caségtiavior of the Bayesian strategy critically
depends on the prior, e.g. with the Bernoulli model and thiéoum (Laplace) prior, the worst-case regret
becomedog n; with Jeffreys’ prior, it is still(1/2) log n + O(1) (Freund, 1996); see also Section 4. In this



paper we concentrate on the ineccsi-case, where the datanr&ounded away from the boundary, and the
(k/2)log n regret is achieved for Bayes witlll priors with supportmean

It is known that when outcomes are generated by one of thékdisons in M, the plug-in strategy
satisfies (2) as well. However it was shown by (De Rooij &iBwvald, 2005; Qinwald & de Rooij, 2005)
that when the outcomes are generated i.i.d. by some distthi* outsideM, the ML plug-in strategyPy,.
behaves suboptimally. Specifically, its expected regnisfess, for allu™ € Omean

1 varp- X

Ep-[R(Pu,n)] 2 2varp X

logn 4+ O(1), 3)

wherey* = Ep-[X]is the element i®meanminimizing KL divergenceD (P*|| P,) for i € Omean A similar
result in a different context was already proved earlierWei; 1990). The result was later extended to hold
(essentially) for all plug-in prediction strategies (nas§ ML plug-in) by (Giinwald & Kottowski, 2010). As
(3) is satisfied in the average case, the situation can omlgrbe worse in the individual sequence case.

3 The Flattened ML Strategy achieves Optimal Regret

While the plug-in strategies behave suboptimally as shovtherprevious section, it remains possible that a
small modification of the plug-in strategy, which puts thedictions slightly outsidé\, might lead to the
optimal regret (2). As a first example, consider the Bayepiadlictive distribution wheno\ is the normal
family with fixed variances2. In this case (see, e.g. (Bwald, 2007)), the Bayesian code based on prior
N (o, 7-0) has a simple formPsaves(zn+1]2™) = f(zn+1), Wheref is the density of normal distribution
N(/"m n) with

n

02 02 2 2 02
,LL7L<<ZIZ')+T02,LLO>/<”+T3>3 and T7LO'/<77,+7_()).

=1

Thus, the Bayesian predictive distribution is itself a Gaas with mean equal to the smoothed maximum
likelihood estimatori? with ng = o2 /7¢ andzy = o, albeit with a slightly larger variance? + O(1/n).
This shows that for the normal family with fixed variance,rthexists an “almost” plug-in strategy, which
satisfies (2). This led to the conjecture, also ini(@wald, 2007), that something similar should be possible
for exponential families in general. In this section we stibat this is indeed the case: we propose a simple
modification of the ML strategy, obtained by predicting, ; using a slightly “flattened” versiof,, of the

ML strategy P, , defined as:

Definition 9 (Flattened ML prediction strategy) Given M and constantsg € Omean 7o > 0, we define
theflattened ML prediction strateg¥-,, by setting for alin:

n+no+ 5 (@n1 — A TI(AS) (Tpg1 — A
Pew (Tng1]n) = Pas (Tni1) 2 (Tnt )T (@ne ),

n—+ng + g
wherel (1) is the Fisher information matrix for mode.
We first check thaf, is properly defined:
Lemma 10 For everyn = 0,1,..., Peu (z,41]|2™) represents a valid probability distribution, i.e. it is

nonnegative and the sum/integral ougy,; € X is equal tol.

Proof: For everyx € X, Pry.(z | 2™) > 0 because the information matri i, ) is positive definite. To
show thatPFML( | ™) normalizes tal, let E,, denote the expectation with respectig, i.e. o [f(X)] =

S f (z) da. Then:

/ FML($n+1|$n) depi1 = Eﬂg,

PFML(X|:L'")1
Py (X)

(n+n0+ ) ntmo -+ g g [(X = i) T()(X — )]

(
:G+m+ (n+n0+ E[ﬂﬂX‘)“' meﬂ>
(

53
_ (n+n0+ ’;) ntmo -+ 5] (Covp, X)133) L) = 1,



where Covp, o X is the covariance matrix oP;. and the last equality uses a standard result (Barndorff-

Nielsen, 1978) for the mean-value parametenzatlon of egptial families which says that for all € Omean
Cov, X = I"(p). u

The predictions of the corresponding flattened ML strategyret harder to calculate than those of the
ordinary ML strategy, which is often much easier than caltioty the predictive distribution of the Bayesian
strategy. Moreover, we show below in Theorem 11 that underesmild assumptions about the sequence of
outcomes, the flattened ML strategy always achieves thenaptiegret, satisfying (2). To this end, we need
the following two propositions:

Proposition 1 Let X ~ P* with meanu*, and let M be the exponential family with sufficient statisiic
and mean-value parameter spa®gean such thatu* € Omean Then for every: € OpeanWe have:

Ep- [~log P,(X) +log P, (X)] = D(u"||1s),
whereD( - || - ) is the Kullback-Leibler divergence.

Proof: By working out both sides of the equation using Definition J find that they both reduce to
n(p*)p* —log Z(n(p*)) — n(p)p™ + log Z(n()). L

Proposition 2 Let M be the exponential family with sufficient statisicand mean-value parameter space
Omean Then for every., u* € ©g, where©y is the ineccsi subset @iean We have:

=TI (0 — 1) + Ol — ).

D(p*|lp) = 5

Proof: We need two standard results regarding the properties ofi¥drgence (see, e.g. (Barndorff-Nielsen,
1978; Giinwald, 2007)): for any:, u* € Omean it holds:

1. D(p*||) > 0 and the equality only holds for = 1*,
2. For exponential familie)? D(u*||p)/OuiOp; = 1;; ().

By Taylor expandingD(u*||1+) aroundu™ up to the second order, we get:
* * * * * 1 * - *
D(p[l) = D™ [l™) + VD )], (o= 1) + 5 (= ") (@) (1 = ),

for somen betweenu andp*. Due to the first property the zeroth order term disappeaessecond order
term also disappears because the gradient vanishes atrireuni, so we have:

p=p*

D) = 50— Y TGE) Gt — %) = 5 G T() i) 5 )T () — 1) ()
< U= )T — ) + 51T — TG0l — w2 @

where|| - || denotes vector or matrix norm, depending on the contextlofaxpandingl (i) aroundu up to
the first order gived (i) = I(n) + VI (i)™ (i — p), for someji betweeny and . From that we get:

(1) = Ll < IVI@) 7 = pll < Clla = pll, (%)

whereC = sup,,cq, [|VI(1)]| is finite since closure o is compact and all derivatives of the information
matrix are continuous. It follows from the definition pfthat ||z — || < ||u — p*||; using this in (5) and
plugging the result into (4) finishes the proof. |

Theorem 11 Let M be ak-dimensional exponential family with with mean-value paeger spac®mean
Let ©g be an ineccsi subset &¥neanand letxy, zo, ... be aBy-sequence, i.e. for ab > m, i, € Oy.
Moreover, assume that the outcomes are bounded| < B for all i = 1,2,... Then the flattened ML
strategy Py, With xg € ©¢ achieves asymptotically optimal regret, i.e.

k
R(Pewe, ™) = b} logn + O(1), (6)

where the constant undél( - ) depends only o, ©, andm, while it does not depend on the outcom&s



Proof: Letx{ be the sequence of outcomes, composed,déke outcomes and the original sequenaé€,
ie.zf = zo,...,%0,%1,--.,%n, and we denote_; = g, i = 0,...,n9 — 1. We will use it to cope with
the fact that we predict withi;, using the ML strategy, while we comparejiq in the definition of regret (1).
Although /i;, and /i, are not the same, they are sufficiently similar that if we aeplthe termog Py, («™)
with the termlog P;. (23) in the definition (1); the difference is only small. Let us densuch a modified
regret byR' (Pey., x"1). We have:

n n

R (Pewp, 2") — R(Pey,2") = Z —log Py () — Z —log P, (x;)

i=—ngp—1 =1

n P T Py (X
= —Nyo log Pﬂ% (Z‘O) + Z 10g n( ) = O( ) + nEPemp 1Og P/f: EX§‘|
Pl Hy
n

s, (€4)
= O0@) +nD (il i) = O) = 5 (fin — ) T I(5) (in = fi5,) +nO(|lfin — fi5]I),
wherePemp is the empirical distribution functlon which puts mdgs: on every outcome of”, E X] =
fin, and we used Proposition 1 with* = P,,,,, and then Proposition 2. Using the fact that:
~ oy _ Moll(mo — )]l _ 2n0B
i = 5 = =5 < =
0 n

and sincegi;, € ©¢ for n > m, we get for alln > m:

Pawns |

n n 4n2 B2
5 = )T TGER) (i = 5) < ST Mo — 51> < =5 sup [ T0)]| = O(n ™),
HEBOg
where||I (1) || denotes the matrix norm and we used the factshgf, .o [ /(1) is finite due to compactness
of the closure 0B, and continuity of information matrix.

Thus, we proved thaR'(Pey,, ™) — R(Pew, ™) = O(1). To show (6), it now suffices to show that
A(n) = R (Pau, z"+1) — R!(Pewc, 2) = 2= + O(n~2), where the constant undex( - ) does not depend
on the outcomes™. Then, sincdogn < Y ; % <logn +1,and)_, n~? converges, (6) follows. From
the definition, we have:

n+1 n
A(n) = —log Pewy (Tp41]2™) — Z —log Ppo, () + Z —log Ppe (x;)
i=—no+1 i=—ng+1
k 1 s, 5o, (Ti)
=log(1+=——— |-log [1+ —— (2, I(ag)(xn lo ”“ o
e (14 gy ) 108 (1 gy (o = A1) s - )Z_;Oﬂg R

Let us denoté,, = Tno)(xnﬂ 22T T(2) (w41 — f22). We will show thaﬂog(1+§n) =&, +0(n™2).

To this end, we use the fact that for every> —1itholds—z < —log(1 +2) < —z + %~ (thls follows e.g.
from a Taylor expansion dbg(1 + 2) aroundz = 0) and show thag? = O(n~2):

2 g Pl — il < g2 (s 11601) (2008) = 0007,

for all n > m. Thus we provedog(1 + &,) = &, + O(n™2). Moreoverlog(l + £) = £ + O(n~2), so

2n
n+1
A = ﬁ — i —0° T] l‘n+1( Z) 1) _9 7
(n) = 2n 2n(x"+1 fin) " L (i) (g1 = i) + Z ;) (n™). (7)
i=—ng+1 '“n Ti

To bound the sum, we note that it equéls+ no + 1) D(ji5, || /1;,) where we used Proposition 1 with the
empirical distribution again. Then, using Proposition 2, get:

n+1
H,L .’131) n+n0+1 ~0 ~0 ~O ~O ~O i1° 1°
> log wy g Ui ) TR (AR = ) + (o + DO = ).
i=—ng+1
Sincefiy, — fig 1 = (ﬂz — Tpt1)/(n+no + 1), and| 8, — zp41]| < 2B, it follows that:
n+1
1 A0 ~ 0 ~ 0 —
> 108, (@) Pag (@) = 5 (@ass = )T (i) (@1 — ) + O(n ™).
i1=—no+1

Putting this into (7) givesA(n) = &= + O(n~?2), as claimed.

The constant i) (1) does not depend on the sequentebecause fon < m, i, (as a convex combi-
nation ofzy and,) is kept away from the boundary &¥eanand thusl(4iS) is bounded from above by a
constant independent of the sequente ]



4 Example: the Bernoulli model

The Bernoulli model i P, | 1« € [0, 1]}, whereX = {0,1} and P, (z) = (1 — p)'~*. The Fisher infor-
mation isI(u) = Epﬂ[(d% log P,(X))?] = 1/(p(1 — w)). After observingz™, the likelihood is maximized
by /i = o/nwhereo = z1+. ..+ x,; we will also usez = n— o. It turns out not to be necessary to introduce
any fake outcomes in this case (irg, — 0). Thus,i,, = i, and the flattened ML prediction is

1 1 - 1
n+3 n+s; n+ 3

PFML(]- ‘ fn) = fin (

The regret for this estimator is maximized for

n+ 51 (n) (1~ W) 30— ) 0+ 5

the all-zero or all-one sequence; an easy calcula- ! T 2)ogx) — -
tion shows it to be-2 log(16/7) + log(I'(n + %)/ 6l Fattenegl
I'(n)) = ilogn + O(1). Thus, even though the LRl R o oo
worst case is achieved for non-ineccsi sequences ° | Last step minimax

for which technically Theorem 11 does not apply,
we find that the flattened ML prediction strategy
achieves asymptotically optimal worst-case regret. 3|

In Figure 1, we plot this worst-case regret to-
gether with the worst-case regret for a number of 2
other estimators: (1) the traditional Laplace esti-
mator P(1 | z") = (o + 1)/(n + 2), which is
equal to the Bayes predictive distribution using a o “=— : :
uniform prior ong, and which does not behave very ~ * 10 100 1000
well on non-ineccsi sequences, (2) the Krichevsky- o
Trofimov estimatorP(1 | z™) = (o + %)/(n+1)  Figure 1. Worst-case regret of Bernoulli estimators.
(Krichevsky & Trofimov, 1981), which is equal to
the Bayes predictive distribution using Jeffreys’ priandg3) the “Last Step Minimax” estimator (Takimoto
& Warmuth, 2000), also known as “Conditional NML” estimai{@&tissanen & Roos, 2007). The regret for
this last estimator was shown to be at mé%g(n +1)+ % in (Takimoto & Warmuth, 2000). As baselines,
we plot the function% log n andlogn, as well as the regret under the Shtarkov (or NML) distribati As
mentioned in the introduction, the NML distribution is defthonly with respect to a known horizon; here
the horizon is increased with the sample size, so the Shtadsults do not reflect a valid prediction strategy
but rather provide a tight lower bound on the worst-caseategr

The figure shows that the flattened ML model shows performaoogparable to the KT and last step
minimax estimators, although the constant term is slighigjher.

4t

5 Almost Sure Convergence in the Stochastic Case

In Section 3, we showed that the flattened ML strategy achiepéimal regret under a mild assumption that
the outcomes are bounded and forf®@sequence. For those cases where this condition is nofiedfithe
boundedness requirement can be replaced with the assuntpéibthe data are generated i.i.d. from some
distribution of which the first four moments exist. We canrtiodbtain the result (6) with probability one.

The idea of the proof is that when the outcomes are generatbdthey are in some sense bounded with
high probability anyway. Specifically, if we allow the boutalincrease with, and if the rate of increase
is fasterthann'/4, one can show that when the first four moments of the disidbugxist, the outcomes
are actually “bounded” (i.e., for ah, the outcomeX,, is bounded by the bound for sample sizewith
probability one; this is the content of Lemma 12. In Theoreimvie show that if the bound increasesre
slowlythann!/3, most of the analysis done in the proof of Theorem 11 stillkgorCombining those two
facts gives (6) with probability one.

Lemma 12 Let X, X5, ... be i.i.d. random variables and suppose the firsmoments ofX,, exist. Then,
. . . 1
for everyB > 0, « > 0, with probability 1 there exists an’ such that| X,,|| < Bn=-= foralln > n'.

Proof: Equivalently, we prove that almost surely, the event = {|| X,,| > Bnﬁ} occurs only finitely
often. From the Borel-Cantelli lemma we know that this is¢ase wherp" >~ | P(4,,) < oo; we have

P(A,) = P (|X,l| = Bni'= ) = P (| X, = B3 ) < B||X,|" B~ "0 @,

where the last step follows from Markov’s inequality. Singé— > 1, the sum converges. |

The next lemma is purely technical and will be needed in rrfiroofs:



Lemma 13 Letaq, ao, . . . be a positive infinite sequence andietb,, . . . be a positive nonincreasing infinite
sequence. Defing,, = a1 +...+an, B, =b1+...+b, andC,, = a1by + ...+ anb,. If A, = O(n) and
B, = 0(1), thenC,, = O(1).

Proof: By assumption there are ny such that for everyr > ng we haveA,, < ¢-n. Fix somen > ng
and A,,. Now suppose there is an,, > ¢ for someng < n’ < n. SinceA,r < c¢-n, there must be an
earlier terma,,» < c for somel < n” < n’. By increasingz,, to c and decreasing,,, by the same amount,
A,, is unchanged while the value 6f, cannot decrease. Thus we may assume w.l.0.g.athat ¢ for all
ng <14 < n. Butin that case we hawg,, = C,,_1 + Z?zno aib; < Cpo—1+c- >0 b =0(1). |

i=ng
Theorem 14 Let X, X5,... be i.i.d. generated by a probability distributioR* of which the first four
moments exist and such thB{X] € Onean Let M be ak-dimensional exponential family with mean-value

parameter spac®nean Then the flattened ML strateds:y,,. almost surely achieves asymptotically optimal
regret, i.e.

k
R(PFML,In) = Elogn—FO(l) (8)
holds with probability one.

Proof: Since the first four moments @* exists, Lemma 12 states that for langethe sequence of outcomes
x1,x2,... is bounded byBn? for everyq > 1/4 with probability one. For simplicity, we take = 0.3, but
anyq € (1/4,1/3) would work. From the strong law of large numbers, we know that smoothed ML
estimatoriS, converges with probability one. Therefore, for largeis, is bounded||s || < C.

We only give the sketch of the proof, because it closely fedidhe proof of Theorem 11. The main
difference is that in Theorem 11, we hid, || < B, while here we have (with probability ongy., || < Bn®3
for largen. A closer look at the proof of Theorem 11 shows that after wealg the bound ofjz,, || we still
get the same rates. The only problem is that now we are nottalpeove, thatA(n) = £ + O(n™2).
However, to obtain (8), it is enough to show thatn) = 2= + f(n), where f(n) is a function such that
>, f(n) converges and thus @(1). To this end, instead of directly boundigg, we will show thaty ", &2
converges. Since for large

_ llzuall 4+ 00

2

1
2 o I()|12(|| 2 C)*
&= 2 SuECII (W (zn+1ll +C) -

[l

for some constanf”’, we only need to show that the supm,, ””jl%”[l converges. But this follows from
Lemma 13 witha; = |jz;41|* andb; = i~2: we haved,, = Y1, |lzi41]|* = O(n) becaused, /n
converges with probability one from the strong law of largenbers (because the fourth momentrf
exists), andB,, = >, i~ 2 = O(1). This means that with probability ong;, 2 converges. |

6 Application: Model Selection

The strange behavior of the ML plug-in code first became apyan a simulation study, where it was found
that this code gives rise to much weaker model selectioropmence than other model selection criteria, such
as Bayes factors model selection or even naive maximumihidet model selection (De Rooij & @nwald,
2005; De Rooij & Giinwald, 2006); this is especially disturbing since the glugased version of MDL has
often been advocated for practical use (Rissanen, 1986afés, 1989; Ginwald, 2007). As mentioned in
the introduction, while the expected regret for the ML pliagestimator isg logn + O(1) when the model
contains the data generating distribution, it behavegwdfitly when it does not. This is quite undesirable for
model selection: if it is certain that the true distributigrin all considered models, then there is ho need to
do model selection in the first place!

Since the flattened ML prequential code described in thigpedpes not suffer from anomalous redun-
dancy under misspecification, we may reasonably hope foetetodel selection performance. Therefore
we have come full circle by turning back to our original (20@%odel selection experiments, in order to de-
termine to what extent the flattened ML prequential plugéde avoids the shortcomings of the unflattened
version, and whether or not it yields a useful model selectiiterion.

The experimental setup is the same as it was in (De Rooij &@&ald, 2006), but we provide a brief
description here as well to make this paper self-containEde experiments involve a number of model
selection criteria: one based on the flattened ML plug-irecaid a number of others, which will be used as
a basis for comparison. After defining these model seledardaria, we show the results of the simulation
and discuss how the performance of the criterion based ofiattened ML plug-in estimator relates to the
results we reported earlier.



6.1 Experiments

All experiments are based on repeatedly sampling a numbeutomes from either the Poisson model
Mp = {Po(X;p) | p € (0,00)} wherePe(z; 1) = et /z! or the geometric modeM = {Ps(X; p) |
1 € (0,00)} where Ps(z; 1) = p®(p + 1)@+, To make the models easier to compare, both are pa-
rameterized by the mean, which is standard for Poisson butondhe geometric model. We first define
a number of criteria to select between these models. Alegatcan be described in terms of a func-
tion L that maps a modeM and a sequence of outcome’ to a codelength (negative loglikelihood, ac-
cumulated prediction error). Subsequently define the lefaedvidence in favor of the Poisson model as
A(z™) = L(Mg,z™) — L(Mp, z™). We select Poisson ik (™) > 0 and geometric otherwise.

Many common model selection criteria can be defined in terfnasfonction L. Our experiments involve
the following model selection criteria:

The Known meancriterion is defined byL(M, z™) = —log P(z™); hereP € M is the distribution that
satisfiesEp[X] = p, wherep is the true mean of the data. Although the true mean is not krinwractice,
this criterion is useful as an ideal baseline. It has the @tigs that (1) one of the two hypotheses equals the
generating distribution and (2) the sample consists ofmutes which are i.i.d. according to this distribution.
In (Cover & Thomas, 1991), Sanov’s Theorem is used to showithsuch a situation, the probability that
the criterion prefers the wrong model (“error probabilixyfecreases exponentially in the sample size. If the
data are generated using Poiggdmhen the error probability decreases exponentially in #mepde size, with
some error exponent; if the data are generated with Gearfgtthen the overall probability is exponentially
decreasing with the same exponent (Cover & Thomas, 199réhel2.9.1 on page 312 and text thereafter).
Thus, when the error probability is plotted on a log scale,glope should be equal whether the generating
distribution is Poisson or geometric. This can be obsergdiktthe case in Figures 2a and 2b.

The Maximum Likelihood (ML) criterion  is defined byL(M, 2™) = —logsuppea P(2™). This is the
same as a (generalized) likelihood ratio test (GLRT) withraghold of one. The ML criterion is well known
to be prone to overfitting: in a complex model, there may bes#riiution that provides good fit to the
data purely by chance. Two approaches to penalize compleeismiare known as AIC (Akaike, 1974) and
BIC (Schwarz, 1978). However, for both these methods thalpeterm depends only on the number of
parameters in the models. In this case, both models haveaosilygle parameter, so ii(z"™) the penalty
terms cancel: in this case, both AIC and BIC are equivaleat® RT with zero threshold!

Bayes factor model selection is obtained if we sb{M, z") = —log fu P,(«™)m(n) dp, where the prior

7 may depend on the model. In this cage(z™) is equal to the logarithm of the Bayes factor. We use
Jeffreys’ prior in our experiments. Because it is impropgerthe Poisson and geometric models, we use the
first observation to normalize the prior. Lettisg= >, =;, We obtain the following expressions:

1 1
67# -101—5 x1—§
mo(pla) = Ty mo(pler) = (@1 + §)———
(§ + 51/'1) (,u + 1):v1+§
o0 Iz, + 4 i
L(Mp,z") = flog/ Po(ay; p)me(plz1) dp = log (173) +(S+3)logn + ) log(ai);
0 LS+ 3) —
L(S+n+1)

L(Mg,z™) = —1 Ps(xh; dp = —1 + 1) +log ———22.
(Mo,a7) = —log | Pufasmolpler) dp = —log(es + )+ log g o 2
The ML plug-in criterion is defined by settind.(M, z") = —log Py.(z™) where P, is as in Defini-
tion 3. This codelength does not correspond to a Bayesiaginadikelihood, so this criterion does not
yield Bayes factor model selection; howewvgy, is a valid universal code so it does lead to an MDL model
selection procedure.

The flattened ML plug-incriterion is defined by settind.(M, ™) = —log Pry. (™), whereU is as in
Definition 9.
These five criteria are subjected to two different kinds sfge

Error probability = The error probability for a criterion is the probability thia will select a model that
does not contain the distribution from which the data aregach We estimate the error probability through
repeated sampling: in our experiments, samples are alwayadrom a Poissdp] distribution with prob-
ability p, or from a Georfy| distribution with probabilityl — p. Figure 2 shows the error probability as a
function of the sample size on a log scale, for various vatiigsandy:. After the first two graphs, we plot the
ratio of the error probability of a criterion with the errorgbability of the baseline “known mean” criterion:
this allows for better distinction between the criteria.
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Figure 2: Error probability. For Figures (c) and (d), theoerirequency is divided by the baseline, the error
frequency of the Known mean criterion. Estimated usifgtrials.

Bias LetA,(z") be the evidence in favor of the Poisson model according téribe/n mean criterion. For
other criteriaC, the quantityA can be interpreted as astimatorfor A,,. The bias of such an estimator is
E[Ac(X™)—A,(X™)], where the expectation is taken under the true distribuiéa subsequently estimate
this bias for all criteria by calculating the average ovengntials. The results are in Figure 3.

6.2 Discussion

In order to establish a context to discuss the behavior oflgteened ML plug-in criterion, we first briefly
summarize the conclusions from (De Rooij &iBwald, 2006), which still apply to the current experiments

e ML and ML plug-in exhibited worst performance; the Bayesisiterion performed reasonably on all tests.

e We found that the ML criterion consistently displays thegkst bias in favor of Poisson. Figure 3 shows
how on average, for ML we obtained at le@st nats more evidence in favor of the Poisson model than for
known mean. The Poisson model appears to have a greateiptigequower, even though the two models
have the same number of parameters: intuitively, the Poigsadel allows more information about the
data to be stored in the parameter estimate.

¢ Inall graphs in Figure 2 one can observe the unusual slogeedditror rate line of the ML plug-in criterion,
which clearly favors the geometric distribution. This igywendesirable for model selection, because the
error rate when data are sampled from Poisson with prolahiland from geometric with probability
1 — p, is dominated by the worst of the two cases, i.e. the casdhbatata are Poisson distributed. This
explains why the error rate is so poor in the case whete 0.5 (Figures 2c and 2d). The bias is visible
more explicitly in Figure 3, where ML plug-in can be obserntedhecome more and more favorable to the
geometric model as the sample size increases, regardledwetiier the data were sampled from a Poisson
or geometric distribution.
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Figure 3: The classification bias in favor of the Poisson nhadeats, estimated usint)? trials.

The new experiments also include results for the new flattéie plug-in criterion. Figure 2 shows that,
compared to ML plug-in, the slope of the error probabilitydifor the flattened ML plug-in estimator is much
closer to that of known mean. Nevertheless, when the meaurisased in subfigure (d), we see that the error
probability seems to go down at a somewhat slower rate thdwei$ for the Bayes and ML criteria.

In Figure 3 we find that, like ML plug-in, flattened ML plug-ia biased in favor of the geometric model.
If the data are geometric, then this bias increases with Easipe, as it does for ML plug-in, albeit at a
slower rate. However, for Poisson data most of this effepeaps to have been suppressed. This means that
the probability that Poisson data are incorrectly judgebde@eometric never becomes much larger than for
other criteria, regardless of sample size. So for modetsele purposes, the bias is acceptable.

In conclusion, the flattened ML plug-in criterion does indseem to provide a substantial improvement
in model selection performance over the ML plug-in criterid’ hat said, the bias in favor of the geometric
model has not completely vanished, which may be becauseeab(lh) terms in the redundancy of the
estimator which we did not analyze. The Bayesian criteroaléarly somewhat more reliable, but may be
too computationally intensive depending on the consideredels.

7 Conclusion

Given a model (set of probability distributiong)t, the maximum likelihood estimat@(z") based on past
observationst™ = x1,...,x, indexes a distribution that is a natural and easy to companelidate for
prediction of the next observation. However, previous watkws that if the data generating distributiBn
is notin the model, then such a “ML plug-in” prediction s&gy yields suboptimal expected regret: unlike for
other prediction strategies, such as Bayesian predidti@expected regret i®ot (k/2) logn + O(1), where
k is the number of parameters in the model. This is a serioudgmowhen the “ML plug-in” strategy is used
for model selection: there, by its very nature, the possjtihat P* ¢ M deserves serious consideration.
To address this issue, we described a simple “flatteninghefML distribution and related predictors,
using which the optimal worst casedividual sequenceegret of (k/2) logn + O(1) can be achieved, for
exponential family models and bounded outcome spaces (@hmebl on page 6). For unbounded spaces,
we provided an almost-sure result (Theorem 14 on page 9)etticéh 6, we subjected the new prediction
strategy to the same model selection experiments that shtiweeML plug-in strategy to be suboptimal,
obtaining a major improvement in performance.
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