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Abstract

A sequence x1, . . . , xn, . . . of discrete-valued observations is generated according to some
unknown probabilistic law (measure) µ. After observing each outcome, it is required to
give the conditional probabilities of the next observation. The realizable case is when
the measure µ belongs to an arbitrary but known class C of process measures. The non-
realizable case is when µ is completely arbitrary, but the prediction performance is measured
with respect to a given set C of process measures. We are interested in the relations between
these problems and between their solutions, as well as in characterizing the cases when a
solution exists, and finding these solutions. We show that if the quality of prediction is
measured by total variation distance, then these problems coincide, while if it is measured
by expected average KL divergence, then they are different. For some of the formalizations
we also show that when a solution exists, it can be obtained as a Bayes mixture over a
countable subset of C. As an illustration to the general results obtained, we show that a
solution to the non-realizable case of the sequence prediction problem exists for the set of
all finite-memory processes, but does not exist for the set of all stationary processes.

1 Introduction

A sequence x1, . . . , xn, . . . of discrete-valued observations (xi ∈ X , X is finite) is generated according
to some unknown probabilistic law (measure). That is, µ is a probability measure on the space
Ω = (X∞,B) of one-way infinite sequences (here B is the usual Borel σ-algebra). After each new
outcome xn is revealed, it is required to predict conditional probabilities of the next observation
xn+1 = a, a ∈ X , given the past x1, . . . , xn. Since a predictor ρ is required to give conditional
probabilities ρ(xn+1 = a|x1, . . . , xn) for all possible histories x1, . . . , xn, it defines itself a probability
measure on the space Ω of one-way infinite sequences. In other words, a probability measure on Ω
can be considered both as a data-generating mechanism and as a predictor.

Therefore, given a set C of probability measures on Ω, one can ask two kinds of questions about
it. First, does there exist a predictor ρ, whose forecast probabilities converge (in a certain sense) to
the µ-conditional probabilities, if an arbitrary µ ∈ C is chosen to generate the data? Here we assume
that the “true” measure that generates the data belongs to the set C of interest, and would like to
construct a predictor that predicts all measures in C. The second type of questions is as follows:
does there exist a predictor that predicts at least as well as any predictor ρ ∈ C, if the measure that
generates the data comes possibly from outside of C? Therefore, here we consider elements of C as
predictors, and we would like to combine their predictive properties, if this is possible. Note that in
this setting the two questions above concern the same object: a set C of probability measures on Ω.

Each of these two questions, the realizable and non-realizable one, have enjoyed much attention
in the literature; the setting for the non-realizable case is usually slightly different, which is probably
why it has not (to the best of the author’s knowledge) been studied as another facet of the realizable
case. The realizable case traces back to Laplace, who has considered the problem of predicting
outcomes of a series of independent tosses of a biased coin. That is, he has considered the case when
the set C is that of all i.i.d. process measures. Other classical examples studied are the set of all
computable (or semi-computable) measures [Solomonoff, 1978], the set of k-order Markov and finite-
memory processes (e.g. [Krichevsky, 1993]) and the set of all stationary processes [Ryabko, 1988].
The general question of finding predictors for an arbitrary given set C of process measures has been



addressed in [Ryabko and Hutter, 2007, Ryabko and Hutter, 2008, Ryabko, 2010]; the latter work
shows that when a solution exists it can be obtained as a Bayes mixture over a countable subset
of C.

The non-realizable case is usually studied in a slightly different, non-probabilistic, setting. We
refer to [Cesa-Bianchi and Lugosi, 2006] for a comprehensive overview. It is usually assumed that
the observed sequence of outcomes is an arbitrary (deterministic) sequence; it is required not to give
conditional probabilities, but just deterministic guesses (although these guesses can be selected using
randomisation). Predictions result in a certain loss, which is required to be small as compared to the
loss of a given set of reference predictors (experts) C. The losses of the experts and the predictor are
observed after each round. In this approach, it is mostly assumed that the set C is finite or countable.
The main difference with the formulation considered in this work is that we require a predictor to
give probabilities, and thus the loss is with respect to something never observed (probabilities,
not outcomes). The loss itself is not completely observable in our setting. In this sense our non-
realizable version of the problem is more difficult. Assuming that the data generating mechanism is
probabilistic, even if it is completely unknown, makes sense in such problems as, for example, game
playing, or market analysis. In these cases one may wish to assign smaller loss to those models or
experts who give probabilities closer to the correct ones (which are never observed), even though
different probability forecasts can often result in the same action. Aiming at predicting probabilities
of outcomes also allows us to abstract from the actual use of the predictions (e.g. making bets) and
thus from considering losses in a general form; instead, we can concentrate on the form of losses
(measuring the discrepancy between the forecast and true probabilities) which are more convenient
for the analysis. In this latter respect, the problems we consider are easier than those considered in
prediction with expert advice. (However, in principle nothing restricts us to considering the simple
losses that we chose; they are just a convenient choice.) Noteworthy, the probabilistic approach also
makes the machinery of probability theory applicable, hopefully making the problem easier.

In this work we consider two measures of the quality of prediction. The first one is the total
variation distance, which measures the difference between the forecast and the “true” conditional
probabilities of all future events (not just the probability of the next outcome). The second one is
expected (over the data) average (over time) Kullback-Leibler divergence. Requiring that predicted
and true probabilities converge in total variation is very strong; in particular, this is possible if
[Blackwell and Dubins, 1962] and only if [Kalai and Lehrer, 1994] the process measure generating
the data is absolutely continuous with respect to the predictor. The latter fact makes the sequence
prediction problem relatively easy to analyse. Here we investigate what can be paralleled for the
other measure of prediction quality (average KL divergence), which is much weaker, and thus allows
for solutions for the cases of much larger sets C of process measures (considered either as predictors
or as data generating mechanisms).

Having introduced our measures of prediction quality, we can further break the non-realizable case
into two problems. The first one is as follows. Given a set C of predictors, we want to find a predictor
whose prediction error converges to zero if there is at least one predictor in C whose prediction error
converges to zero; we call this problem simply the “non-realisable” case, or Problem 2 (leaving the
name “Problem 1” to the realizable case). The second problem is the “fully agnostic” problem: it
is to make the prediction error asymptotically as small as that of the best (for the given process
measure generating the data) predictor in C (we call this Problem 3). Thus, we now have three
problems about a set of process measures C to address.

We show that if the quality of prediction is measured in total variation, then all the three problems
coincide: any solution to any one of them is a solution to the other two. For the case of expected
average KL divergence, all the three problems are different: the realizable case is strictly easier than
non-realizable (Problem 2), which is, in turn, strictly easier than the fully agnostic case (Problem 3).
We then analyse which results concerning prediction in total variation can be transferred to which
of the problems concerning prediction in average KL divergence. It was shown in [Ryabko, 2010]
that, for the realizable case, if there is a solution for a given set of process measures C, then a
solution can also be obtained as a Bayesian mixture over a countable subset of C; this holds both
for prediction in total variation and in expected average KL divergence. Here we show that this
result also holds true for the (non-realizable) case of Problem 2, for prediction in expected average
KL divergence. For the fully agnostic case of Problem 3, we show that separability with respect to
a certain topology given by KL divergence is a sufficient (though not a necessary) condition for the
existence of a predictor. This is used to demonstrate that there is a solution to this problem for the
set of all finite-memory process measures, complementing similar results obtained earlier in different
settings. On the other hand, we show that there is no solution to this problem for the set of all
stationary process measures, in contrast to a result of [Ryabko, 1988] which gives a solution to the



realizable case of this problem (that is, a predictor whose expected average KL error goes to zero if
any stationary process is chosen to generate the data).

2 Preliminaries

Let X be a finite set. The notation x1..n is used for x1, . . . , xn. We consider stochastic processes
(probability measures) on Ω := (X∞,B) where B is the sigma-field generated by the cylinder sets
[x1..n], xi ∈ X , n ∈ N and [x1..n] is the set of all infinite sequences that start with x1..n. For a finite
set A denote |A| its cardinality. We use Eµ for expectation with respect to a measure µ.

Next we introduce the measures of the quality of prediction used in this paper. For two measures
µ and ρ we are interested in how different the µ- and ρ-conditional probabilities are, given a data
sample x1..n. Introduce the (conditional) total variation distance

v(µ, ρ, x1..n) := sup
A∈B
|µ(A|x1..n)− ρ(A|x1..n)|,

if µ(x1..n) 6= 0 and ρ(x1..n) 6= 0, and v(µ, ρ, x1..n) = 1 otherwise.

Definition 1 We say that ρ predicts µ in total variation if

v(µ, ρ, x1..n)→ 0 µ-a.s.

This convergence is rather strong. In particular, it means that ρ-conditional probabilities of arbitrary
far-off events converge to µ-conditional probabilities. Moreover, ρ predicts µ in total variation if
[Blackwell and Dubins, 1962] and only if [Kalai and Lehrer, 1994] µ is absolutely continuous with
respect to ρ. Denote ≥tv the relation of absolute continuity (that is, ρ ≥tv µ if µ is absolutely
continuous with respect to ρ).

Thus, for a class C of measures there is a predictor ρ that predicts every µ ∈ C in total variation
if and only if every µ ∈ C has a density with respect to ρ. Although such sets of processes are
rather large, they do not include even such basic examples as the set of all Bernoulli i.i.d. processes.
That is, there is no ρ that would predict in total variation every Bernoulli i.i.d. process measure
δp, p ∈ [0, 1], where p is the probability of 0. Therefore, perhaps for many (if not most) practical
applications this measure of the quality of prediction is too strong, and one is interested in weaker
measures of performance.

For two measures µ and ρ introduce the expected cumulative Kullback-Leibler divergence (KL
divergence) as

dn(µ, ρ) := Eµ

n∑
t=1

∑
a∈X

µ(xt = a|x1..t−1) log
µ(xt = a|x1..t−1)

ρ(xt = a|x1..t−1)
, (1)

In words, we take the expected (over data) cumulative (over time) KL divergence between µ- and
ρ-conditional (on the past data) probability distributions of the next outcome.

Definition 2 We say that ρ predicts µ in expected average KL divergence if

1

n
dn(µ, ρ)→ 0.

This measure of performance is much weaker, in the sense that it requires good predictions only one
step ahead, and not on every step but only on average; also the convergence is not with probability 1
but in expectation. With prediction quality so measured, predictors exist for relatively large classes
of measures; most notably, [Ryabko, 1988] provides a predictor which predicts every stationary
process in expected average KL divergence. We will use the following well-known identity

dn(µ, ρ) = −
∑

x1..n∈Xn
µ(x1..n) log

ρ(x1..n)

µ(x1..n)
, (2)

where on the right-hand side we have simply the KL divergence between measures µ and ρ restricted
to the first n observations.

Thus, the results of this work will be established with respect to two very different measures of
prediction quality, one of which is very strong and the other rather weak. This suggests that the
facts established reflect some fundamental properties of the problem of prediction, rather than those
pertinent to particular measures of performance. On the other hand, it remains open to extend the
results below to different measures of performance.



Definition 3 Introduce the following classes of process measures: P the set of all process measures,
D the set of all degenerate discrete process measures, S the set of all stationary processes, and Mk

the set of all stationary measures with memory not greater than k (k-order Markov processes, with
M0 being the set of all i.i.d. processes):

D := {µ ∈ P : ∃x ∈ X∞µ(x) = 1} , (3)

S := {µ ∈ P : ∀n, k ≥ 0 ∀a1..n ∈ Xn µ(x1..n = a1..n) = µ(x1+k..n+k = a1..n)} . (4)

Mk :=
{
µ ∈ S : ∀n ≥ 0 ∀a ∈ X ∀a1..n ∈ Xn

µ(xn+1 = a|x1..n = a1..n) = µ(xk+1 = a|x1..k = a1..k)
}
, (5)

Abusing the notation, we will sometimes use elements of D and X∞ interchangeably. The following
simple statement (whose proof is obvious) will be used repeatedly in the examples.

Lemma 4 For every ρ ∈ P there exists µ ∈ D such that dn(µ, ρ) ≥ n log |X | for all n ∈ N.

3 Sequence prediction problems

For the two notions of predictive quality introduced, we can now start stating formally the sequence
prediction problems.
Problem 1(realizable case). Given a set of probability measures C, find a measure ρ such that ρ
predicts in total variation (expected average KL divergence) every µ ∈ C, if such a ρ exists.

Thus, Problem 1 is about finding a predictor for the case when the process generating the data
is known to belong to a given class C. The set C here is a set of measures generating the data. Next
let us formulate the questions about C as a set of predictors.
Problem 2 (non-realizable case). Given a set of process measures (predictors) C, find a process
measure ρ such that ρ predicts in total variation (in expected average KL divergence) every measure
ν ∈ P such that there is µ ∈ C which predicts (in the same sense) ν.

While Problem 2 is already quite general, it does not yet address what can be called the fully
agnostic case: if nothing at all is known about the process ν generating the data, it means that there
may be no µ ∈ C such that µ predicts ν, and then, even if we have a solution ρ to the Problem 2,
we still do not know what the performance of ρ on ν is going to be, compared to the performance
of the predictors from C. To address the fully agnostic case, we have to introduce the notion of loss.

Definition 5 Introduce the almost sure total variation loss of ρ with respect to µ

ltv(µ, ρ) := inf{α ∈ [0, 1] : lim sup
n→∞

v(µ, ρ, x1..n) ≤ α µ–a.s.},

and the asymptotic KL loss

lKL(ν, ρ) := lim sup
n→∞

1

n
dn(ν, ρ).

We can now formulate the fully agnostic version of the sequence prediction problem.
Problem 3. Given a set of process measures (predictors) C, find a process measure ρ such that ρ
predicts at least as well as any µ in C, if any process measure ν ∈ P is chosen to generate the data:
l(ν, ρ) ≤ l(ν, µ) for every ν ∈ P and every µ ∈ C, where l(·, ·) is either ltv(·, ·) or lKL(·, ·).

The three problems just formulated represent different conceptual approaches to the sequence
prediction problem. Let us illustrate the difference by the following informal example. Suppose that
the set C is that of all (ergodic, finite-state) Markov chains. Markov chains being a familiar object
in probability and statistics, we can easily construct a predictor ρ that predicts every µ ∈ C (for
example, in expected average KL divergence, see [Krichevsky, 1993]). That is, if we know that the
process µ generating the data is Markovian, we know that our predictor is going to perform well.
This is the realizable case of Problem 1. In reality, rarely can we be sure that the Markov assumption
holds true for the data at hand. We may believe, however, that it is still a reasonable assumption, in
the sense that there is a Markovian model which, for our purposes (for the purposes of prediction),
is a good model of the data. Thus we may assume that there is a Markov model (a predictor) that
predicts well the process that we observe, and we would like to combine the predictive qualities of
all these Markov models. This is the “non-realizable” case of Problem 2. Note that this problem
is more difficult than the first one; in particular, a process ν generating the data may be singular
with respect to any Markov process, and still be well predicted (in the sense of expected average



KL divergence, for example) by some of them. Still, here we are making some assumptions about
the process generating the data, and if these assumptions are wrong, then we do not know anything
about the performance of our predictor. Thus we may ultimately wish to acknowledge that we do
not know anything at all about the data; we still know a lot about Markov processes, and we would
like to use this knowledge on our data. If there is anything at all Markovian in it (that is, anything
that can be captured by a Markov model), then we would like our predictor to use it. In other
words, we want to have a predictor that predicts any process measure whatsoever (at least) as well
as any Markov predictor. This is the “fully agnostic” case of Problem 3.

Of course, Markov processes were just mentioned as an example, while in this work we are only
concerned with the most general case of arbitrary unknown (uncountable) sets C of process measures.

The following statement is rather obvious.

Proposition 1 Any solution to Problem 3 is a solution to Problem 2, and any solution to Problem 2
is a solution to Problem 1.

Despite the conceptual differences in formulations, it may be somewhat unclear whether the three
problems are indeed different. It appears that this depends on the measure of predictive quality
chosen: for the case of prediction in total variation distance, all the three problems coincide, while
for the case of prediction in expected average KL divergence, they are different.

4 Prediction in total variation

As it was mentioned, if a measure µ is absolutely continuous with respect to a measure ρ if and
only if ρ predicts µ in total variation distance, [Blackwell and Dubins, 1962, Kalai and Lehrer, 1994].
This reduces the study of at least Problem 1 for total variation distance to studying the relation of
absolute continuity. Introduce the notation ρ ≥KL µ for this relation.

Let us briefly recall some facts we know about ≥tv; details can be found, for example, in
[Plesner and Rokhlin, 1946]. Let [P]tv denote the set of equivalence classes of P with respect to
≥tv, and for µ ∈ [P]tv denote [µ] the equivalence class that contains µ. Two elements σ1, σ2 ∈ [P]tv
(or σ1, σ2 ∈ P) are called disjoint (or singular) if there is no ν ∈ [P]tv such that σ1 ≥tv ν and
σ2 ≥tv ν; in this case we write σ1 ⊥tv σ2. We write [µ1] + [µ2] for [1/2(µ1 + µ2)]. Every pair
σ1, σ2 ∈ [P]tv has a supremum sup(σ1, σ2) = σ1 + σ2. Introducing into [P]tv an extra element 0
such that σ ≥tv 0 for all σ ∈ [P]tv, we can state that for every ρ, µ ∈ [P]tv there exists a unique pair
of elements µs and µa such that µ = µa + µs, ρ ≥ µa and ρ ⊥tv µs. (This is a form of Lebesgue
decomposition.) Moreover, µa = inf(ρ, µ). Thus, every pair of elements has a supremum and an
infimum. Moreover, every bounded set of disjoint elements of [P]tv is at most countable.

Furthermore, introduce the (unconditional) total variation distance between process measures.

Definition 6 (unconditional total variation distance) Introduce the (unconditional) total vari-
ation distance

v(µ, ρ) := sup
A∈B
|µ(A)− ρ(A)|.

Known characterizations of sets C bounded with respect to ≥KL can now be related to our
prediction problems 1-3 as follows.

Theorem 7 Let C ⊂ P. The following statements about the set C are equivalent.

(i) There exists a solution to Problem 1 in total variation.

(ii) There exists a solution to Problem 2 in total variation.

(iii) There exists a solution to Problem 3 in total variation.

(iv) C is upper-bounded with respect to ≥tv.
(v) There exists a sequence µk ∈ C, k ∈ N such that for some (equivalently, for every) sequence

of weights wk ∈ (0, 1], k ∈ N such that
∑
k∈N wk = 1, the measure ν =

∑
k∈N wkµk satisfies

ν ≥tv µ for every µ ∈ C.

(vi) C is separable with respect to the total variation distance.

(vii) Let C+ := {µ ∈ P : ∃ρ ∈ C ρ ≥tv µ}. Every disjoint (with respect to ≥tv) subset of C+ is at most
countable.



Moreover, every solution to any of the Problems 1-3 is a solution to the other two, as is any upper
bound for C. The sequence µk in the statement (v) can be taken to be any dense (in the total variation
distance) countable subset of C (cf. (vi)), or any maximal disjoint (with respect to ≥tv) subset of C+
of statement (vii), in which every measure that is not in C is replaced by any measure from C that
dominates it.

Proof: The implications (i) ⇐ (ii) ⇐ (iii) are obvious (see Proposition 1). The implication
(i)⇒ (iv) is a reformulation of the result of [Blackwell and Dubins, 1962]. The converse (and hence
(iv) ⇒ (i)) was established in [Kalai and Lehrer, 1994]. (i) ⇒ (ii) follows from the equivalence
(i) ⇔ (iv) and the transitivity of ≥tv; (i) ⇒ (iii) follows from this equivalence and from Lemma 8
below. The equivalence of (v), (vi), and (i) was established in [Ryabko, 2010]. The equivalence of
(iv) and (vii) was proven in [Plesner and Rokhlin, 1946]. The concluding statements of the theorem
are easy to demonstrate from the results cited above.

The following lemma is an easy consequence of [Blackwell and Dubins, 1962].

Lemma 8 Let µ, ρ be two process measures. Then v(µ, ρ, x1..n) converges to either 0 or 1 with
µ-probability 1.

Proof: Assume that µ is not absolutely continuous with respect to ρ (the other case is covered
by [Blackwell and Dubins, 1962]). By Lebesgue decomposition theorem, the measure µ admits a
representation µ = αµa + (1 − α)µs where α ∈ [0, 1] and the measures µa and µs are such that
µa is absolutely continuous with respect to ρ and µs is singular with respect to ρ. Let W be such
a set that µa(W ) = ρ(W ) = 1 and µs(W ) = 0. Note that µa = µ|W and µs = µ|X∞\W . From
[Blackwell and Dubins, 1962] we have v(µa, ρ, x1..n)→ 0 µa-a.s., as well as v(µa, µ, x1..n)→ 0 µa-a.s.
and v(µs, µ, x1..n) → 0 µs-a.s. Moreover, v(µs, ρ, x1..n) ≥ |µs(W |x1..n) − ρ(W |x1..n)| = 1 so that
v(µs, ρ, x1..n)→ 1 µs-a.s. We have

v(µ, ρ, x1..n) ≤ v(µ, µa, x1..n) + v(µa, ρ, x1..n) = I

and
v(µ, ρ, x1..n) ≥ −v(µ, µs, x1..n) + v(µs, ρ, x1..n) = II

for x1,... ∈ W we have I → 0 µ-a.s., and for x1,... /∈ W we have II → 1 µ-a.s., which concludes the
proof.

Using Lemma 8 we could also define expected (rather than almost sure) total variation loss of ρ
with respect to µ, as the probability that v(µ, ρ) converges to 1, and reformulate Problem 3 for this
notion of loss. However, it is easy to see that for this reformulation Theorem 9 holds true as well.

Thus, we can see that for the case of prediction in total variation, all the sequence prediction
problems formulated reduce to studying the relation of absolute continuity for process measures,
and those families of measures that are absolutely continuous (have a density) with respect to some
measure (a predictor). On the one hand, from statistical point of view such families are rather
large: the assumption that the probabilistic law in question has a density with respect to some
(nice) measure is a standard one in statistics. It should also be mentioned that such families can
easily be uncountable. On the other hand, even such basic examples as the set of all Bernoulli i.i.d.
measures does not allow for a predictor that predicts every measure in total variation. Indeed, all
these processes are singular with respect to one another; in particular, each of the non-overlapping
sets Tp of all sequences which have limiting fraction p of 0s has probability 1 with respect to one of
the measures and 0 with respect to all others; since there are uncountably many of these measures,
there is no measure ρ with respect to which they all would have a density (since such a measure
should have ρ(Tp) > 0 for all p).

That is why we have to consider weaker notions of predictions; from these, prediction in expected
average KL divergence is perhaps one of the weakest. The goal of the next sections is to see which
of the properties that we have for total variation can be transferred (and in which sense) to the case
of expected average KL divergence.

5 Prediction in expected average KL divergence

First of all we have to observe that for prediction in KL divergence Problems 1, 2, and 3 are different,
as the following theorem shows. While the examples provided in the proof are artificial, there is a
very important example illustrating the difference between Problem 1 and Problem 3 for expected
average KL divergence: the set S of all stationary processes, given in Theorem 15 in the end of this
section.



Theorem 9 For the case of prediction in expected average KL divergence, Problems 1, 2 and 3 are
different: there exists a set C1 ⊂ P for which there is a solution to Problem 1 but there is no solution
to Problem 2, and there is a set C2 ⊂ P for which there is a solution to Problem 2 but there is no
solution to Problem 3.

Proof:We have to provide two examples. Fix the binary alphabet X = {0, 1}. For each deterministic
sequence t = t1, t2, · · · ∈ D construct the process measure γt as follows: γt(xn = tn|t1..n−1) := 1− 1

n
and for x1..n−1 6= t1..n−1 let γt(xn = 0|x1..n−1) = 1/2, for all n ∈ N. That is, γt is Bernoulli i.i.d.
1/2 process measure strongly biased towards one deterministic sequence, t. Let also γ(x1..n) = 2−n

for all x1..n ∈ Xn, n ∈ N (the Bernoulli i.i.d. 1/2). For the set C1 := {γt : t ∈ X∞} we have a
solution to Problem 1: indeed, dn(γt, γ) ≤ 1 = o(n). However, there is no solution to Problem 2.
Indeed, for each t ∈ D we have dn(t, γt) = log n = o(n) (that is, for every discrete measure there
is an element of C1 which predicts it), while by Lemma 4 for every ρ ∈ P there exists t ∈ D such
that dn(t, ρ) ≥ n for all n ∈ N (that is, there is no predictor which predicts every measure that is
predicted by at least one element of C1).

The second example is similar. For each deterministic sequence t = t1, t2, · · · ∈ D construct
the process measure γt as follows: γ′t(xn = tn|t1..n−1) := 2/3 and for x1..n−1 6= t1..n−1 let γ′t(xn =
0|x1..n−1) = 1/2, for all n ∈ N. It is easy to see that γ is a solution to Problem 2 for the set
C2 := {γ′t : t ∈ X∞}. However, there is no solution to Problem 3 for C2. Indeed, for every t ∈ D we
have dn(t, γ′t) = n log 3/2 + o(n). Therefore, if ρ is a solution to Problem 3 then lim sup 1

ndn(t, ρ) ≤
log 3/2 < 1 which contradicts Lemma 4.

Thus, prediction in expected average KL divergence turns out to be a more complicated matter
than prediction in total variation. The next idea is to try and see which of the facts about prediction
in total variation can be generalized to some of the problems concerning prediction in expected
average KL divergence.

First, observe that for the case of prediction in total variation, the equivalence of Problems 1
and 2 was derived from the transitivity of the relation ≥tv of absolute continuity. For the case of
expected average KL divergence, the relation “ρ predicts µ in expected average KL divergence” is
not transitive (and Problems 1 and 2 are not equivalent). However, for Problem 2 we are interested
in the following relation: ρ “dominates” µ if ρ predicts every ν such that µ predicts ν. This relation
is transitive. Denote it by ≥0

KL.

Definition 10 (≥0
KL) We write ρ ≥0

KL µ if for every ν ∈ P the equality lim sup 1
ndn(ν, µ) = 0

implies lim sup 1
ndn(ρ, µ) = 0.

Similarly to ≥tv, we can see that for any µ, ρ any strictly convex combination αµ + (1 − α)ρ is a
supremum of {ρ, µ} with respect to ≥0

KL. Next we will obtain a characterization of predictability
with respect to ≥0

KL similar to one of those obtained for ≥tv.
The key observation is the following. If there is a solution to Problem 2 for a set C, then a

solution can be obtained as a Bayesian mixture over a countable subset of C. For total variation,
this is (v) of Theorem 7.

Theorem 11 Let C be a set of probability measures on Ω. If there is a measure ρ such that ρ ≥0
KL µ

for every µ ∈ C (ρ is a solution to Problem 2), then there is a sequence µk ∈ C, k ∈ N such that∑
k∈N wkµk ≥0

KL µ for every µ ∈ C, where wk are some positive weights.

The proof is deferred to Appendix. An analogous result for Problem 1 was established in
[Ryabko, 2009]. (The proof of Theorem 11 is based on similar ideas, but is more involved.)

For the case of Problem 3, it remains open to prove a result similar to Theorem 11 (or statement
(v) of Theorem 7). However, we can take a different route and extend another part of Theorem 7
to obtain a characterization of sets C for which a solution to Problem 3 exists.

We have seen that in the case of prediction in total variation, separability with respect to the
topology of this distance is a necessary and sufficient condition for the existence of a solution to
Problems 1-3. In the case of expected average KL divergence the situation is somewhat different,
since, first of all, (asymptotic average) KL divergence is not a metric. While one can introduce a
topology based on it, separability with respect to this topology turns out to be a sufficient but not
a necessary condition for the existence of a predictor, as is shown in the next theorem.

Definition 12 Define the distance d∞(µ1, µ2) on process measures as follows

d∞(µ1, µ2) = lim sup
n→∞

sup
x1..n∈Xn

1

n

∣∣∣∣log
µ1(x1..n)

µ2(x1..n)

∣∣∣∣ . (6)



Clearly, d∞ is symmetric and transitive, but is not exact. Moreover, for every µ1, µ2 we have

lim sup
n→∞

1

n
dn(µ1, µ2) ≤ d∞(µ1, µ2). (7)

The distance d∞(µ1, µ2) measures the difference in behaviour of µ1 and µ2 on all individual se-
quences. Thus, using this distance to analyze Problem 3 is most close to the traditional approach to
the non-realizable case, which is formulated in terms of predicting individual deterministic sequences.

Theorem 13 (i) Let C be a set of process measures. If C is separable with respect to d∞ then there
is a solution to Problem 3 for C, for the case of prediction in expected average KL divergence.

(ii) There exists a set of process measures C such that C is not separable with respect to d∞, but
there is a solution to Problem 3 for this set, for the case of prediction in expected average KL
divergence.

Proof: For the first statement, let C be separable and let (µk)k∈N be a dense countable subset of C.
Define ν :=

∑
k∈N wkµk, where wk are any positive summable weights. Fix any measure τ and any

µ ∈ C. We will show that lim supn→∞
1
ndn(τ, ν) ≤ lim supn→∞

1
ndn(τ, ν). For every ε, find such a

k ∈ N that d∞(µ, µk) ≤ ε. We have

dn(τ, ν) ≤ dn(τ, wkµk) = Eτ log
τ(x1..n)

µk(x1..n)
− logwk

= Eτ log
τ(x1..n)

µ(x1..n)
+ Eτ log

µ(x1..n)

µk(x1..n)
− logwk

≤ dn(τ, µ) + sup
x1..n∈Xn

log

∣∣∣∣ µ(x1..n)

µk(x1..n)

∣∣∣∣− logwk.

From this, dividing by n taking lim supn→∞ on both sides, we conclude

lim sup
n→∞

1

n
dn(τ, ν) ≤ lim sup

n→∞

1

n
dn(τ, µ) + ε.

Since this holds for every ε > 0 the first statement is proven.
The second statement is proven by the following example. Let C be the set of all deterministic

sequences (measures concentrated on just one sequence) such that the number of 0s in the first n
symbols is less than

√
n. Clearly, this set is uncountable. It is easy to check that µ1 6= µ2 implies

d∞(µ1, µ2) = ∞ for every µ1, µ2 ∈ C, but the predictor ν given by ν(xn = 0) = 1/n independently
for different n, predicts every µ ∈ C in expected average KL divergence. Since all elements of C are
deterministic, ν is also a solution to Problem 3 for C.

Although simple, Theorem 13 can be used to establish the existence of a solution to Problem 3 for
an important class of process measures: that of all processes with finite memory, as the next theorem
shows. Results, similar to Theorem 14 are known in different settings, e.g. [Ziv and Lempel, 1978,
Ryabko, 1984, Cesa-Bianchi and Lugosi, 1999] and others.

Theorem 14 There exists a solution to Problem 3 for prediction in expected average KL divergence
for the set of all finite-memory process measures M := ∪k∈NMk.

Proof: We will show that the set M is separable with respect to d∞. Then the statement will
follow from Theorem 13. It is enough to show that each set Mk is separable with respect to d∞.

Observe that the familyMk of k-order stationary binary-valued Markov processes is parametrized
by |X |k+1 [0, 1]-valued parameters: probability of observing 0 after observing x1..k, for each x1..k ∈
X k. For each k ∈ N let µkq , q ∈ Q2k be the (countable) family of all stationary k-order Markov
processes with rational values of all the parameters. We will show that this family is dense in Mk.
Indeed, for any µ1, µ2 ∈ Mk and every x1..n ∈ Xn such that µi(x1..n) 6= 0, i = 1, 2, it is easy to see
that

1

n

∣∣∣∣log
µ1(x1..n)

µ2(x1..n)

∣∣∣∣ ≤ 2 log(a+ τ) (8)

where a = infx1..k:µi(x1..k)6=0,i=1,2 µi(x1..k) and τ := infx∈X ,x1..k∈Xk |µ1(x|x1..k − µ2(x|x1..k)|. Since

the set µkq , q ∈ Q2k is dense in Mk with respect to this parametrization, for each µ ∈ Mk the

expression (8) can be made arbitrary small for appropriate µkq , so thatMk is separable with respect
to d∞.



Another important example is the set of all stationary process measures S. This example also
illustrates the difference between the prediction problems that we consider. For this set a solution
to Problem 1 was given in [Ryabko, 1988]. In contrast, here we show that there is no solution to
Problem 3 for S.

Theorem 15 There is no solution to Problem 3 for the set of all stationary processes S.

Proof: This proof is based on the construction similar to the one used in [Ryabko, 1988] to demon-
strate impossibility of consistent prediction of stationary processes without Cesaro averaging.

Let m be a Markov chain with states 0, 1, 2, . . . and state transitions defined as follows. From
each sate k ∈ N ∪ {0} the chain passes to the state k + 1 with probability 2/3 and to the state 0
with probability 1/3. It is easy to see that this chain possesses a unique stationary distribution on
the set of states (see e.g. [Shiryaev, 1996]); taken as the initial distribution it defines a stationary
ergodic process with values in N∪{0, 1}. Fix the ternary alphabet X = {a, 0, 1}. For each sequence
t = t1, t2, · · · ∈ {0, 1}∞ define the process µt as follows. It is a deterministic function of the chain
m. If the chain is in the state 0 then the process µt outputs a; if the chain m is in the state k > 0
then the process outputs tk. That is, we have defined a hidden Markov process which in the state
0 of the underlying Markov chain always outputs a, while in other states it outputs either 0 or 1
according to the the sequence t.

To show that there is no solution to Problem 3 for S, we will show that there is no solution to
Problem 3 for the smaller set C := {µt : t ∈ {0, 1}∞}. Indeed, for any t ∈ {0, 1}∞ we have dn(t, µt) =
n log 3/2 + o(n). Then if ρ is a solution to Problem 3 for C we should have lim supn→∞

1
ndn(t, ρ) ≤

log 3/2 < 1 for every t ∈ D, which contradicts Lemma 4.

From the proof Theorem 15 one can see that, in fact, the statement that is proven is stronger:
there is no solution to Problem 3 for the set of all functions of stationary ergodic countable-state
Markov chains. We conjecture that a solution to Problem 2 exists for the latter set, but not for the
set of all stationary processes.

6 Discussion

It has been long realized that the so-called probabilistic and agnostic (adversarial, non-stochastic,
deterministic) settings of the problem of sequential prediction are strongly related. This has been
most evident from looking at the solutions to these problems, which are usually based on the same
ideas. Here we have proposed a formulation of the agnostic problem as a non-realizable case of
the probabilistic problem. While being very close to the traditional one, this setting allows us to
directly compare the two problems. As a somewhat surprising result, we can see that whether the
two problems are different depends on the measure of performance chosen: in the case of prediction
in total variation distance they coincide, while in the case of prediction in expected average KL
divergence they are different. In the latter case, the distinction becomes particularly apparent
on the example of stationary processes: while a solution to the realizable problem has long been
known, here we have shown that there is no solution to the agnostic version of this problem. The
new formalization also allowed us to introduce another problem that lies in between the realizable
and the fully agnostic problems: given a class of process measures C, find a predictor that is predicts
asymptotically optimal every measure for which at least one of the measures in C is asymptotically
optimal (Problem 2). This problem is less restrictive then the fully agnostic one (in particular,
it is not concerned with the behaviour of a predictor on every deterministic sequence) but at the
same time the solutions to this problem have performance guarantees far outside the model class
considered.

Since the problem formulations presented here are mostly new (at least, in such a general form),
it is not surprising that there are many questions left open. A promising route to obtain new results
seems to be to first analyse the case of prediction in total variation, which amounts to studying
the relation of absolute continuity and singularity of probability measures, and then to try and find
analogues in less restrictive (and thus more interesting and difficult) cases of predicting only the next
observation, possibly with Cesaro averaging. This is the approach that we took in this work. Here it
is interesting to find properties common to all or most of the prediction problems (in total variation
as well as with respect to other measures of the performance). A candidate is the “countable Bayes”
property of Theorem 11: if there is a solution to a given sequence prediction problem for a set C,
then a solution can be obtained as a mixture over a suitable countable subset of C.

Another direction for future research concerns finite-time performance analysis. In this work
we have adopted the asymptotic approach to the prediction problem, ignoring the behaviour of
predictors before asymptotic. While for prediction in total variation it is a natural choice, for other



measures of performance, including average KL divergence, it is clear that Problems 1-3 admit
non-asymptotic formulations. It is also interesting what are the relations between performance
guarantees that can be obtained in non-asymptotic formulations of Problems 1–3.

Appendix: Proof of Theorem 11

Proof: Define the weights wk := wk−2, where w is the normalizer 6/π2. Define the sets Cµ as the set
of all measures τ ∈ P such that µ predicts τ in expected average KL divergence. Let C+ := ∪µ∈CCµ.
For each τ ∈ C+ let p(τ) be any (fixed) µ ∈ C such that τ ∈ Cµ. In other words, C+ is the set
of all measures that are predicted by some of the measures in C, and for each measure τ in C+ we
designate one “parent” measure p(τ) from C such that p(τ) predicts τ .
Step 1. For each µ ∈ C+ let δn be any monotonically increasing function such that δn(µ) = o(n) and
dn(µ, p(µ)) = o(δn(µ)). Define the sets

Unµ :=

{
x1..n ∈ Xn : µ(x1..n) ≥ 1

n
ρ(x1..n)

}
, (9)

V nµ :=
{
x1..n ∈ Xn : p(µ)(x1..n) ≥ 2−δn(µ)µ(x1..n)

}
, (10)

and
Tnµ := Unµ ∩ V nµ . (11)

We will upper-bound µ(Tnµ ). First, using Markov’s inequality, we derive

µ(Xn\Unµ ) = µ

(
ρ(x1..n)

µ(x1..n)
> n

)
≤ 1

n
Eµ

ρ(x1..n)

µ(x1..n)
=

1

n
. (12)

Next, observe that for every n ∈ N and every set A ⊂ Xn, using Jensen’s inequality we can obtain

−
∑

x1..n∈A
µ(x1..n) log

ρ(x1..n)

µ(x1..n)
= −µ(A)

∑
x1..n∈A

1

µ(A)
µ(x1..n) log

ρ(x1..n)

µ(x1..n)

≥ −µ(A) log
ρ(A)

µ(A)
≥ −µ(A) log ρ(A)− 1

2
. (13)

Moreover,

dn(µ, p(µ)) = −
∑

x1..n∈Xn\V nµ

µ(x1..n) log
p(µ)(x1..n)

µ(x1..n)

−
∑

x1..n∈V nµ

µ(x1..n) log
p(µ)(x1..n)

µ(x1..n)
≥ δn(µn)µ(Xn\V nµ )− 1/2,

where in the inequality we have used (10) for the first summand and (13) for the second. Thus,

µ(Xn\V nµ ) ≤ dn(µ, p(µ)) + 1/2

δn(µ)
= o(1). (14)

From (11), (12) and (14) we conclude

µ(Xn\Tnµ ) ≤ µ(Xn\V nµ ) + µ(Xn\Unµ ) = o(1). (15)

Step 2n: a countable cover, time n. Fix an n ∈ N. Define mn
1 := maxµ∈C ρ(Tnµ ) (since Xn are

finite all suprema are reached). Find any µn1 such that ρn1 (Tnµn1 ) = mn
1 and let Tn1 := Tnµn1 . For k > 1,

let mn
k := maxµ∈C ρ(Tnµ \Tnk−1). If mn

k > 0, let µnk be any µ ∈ C such that ρ(Tnµnk \T
n
k−1) = mn

k , and

let Tnk := Tnk−1 ∪ Tnµnk ; otherwise let Tnk := Tnk−1. Observe that (for each n) there is only a finite

number of positive mn
k , since the set Xn is finite; let Kn be the largest index k such that mn

k > 0.
Let

νn :=

Kn∑
k=1

wkp(µ
n
k ). (16)

As a result of this construction, for every n ∈ N every k ≤ Kn and every x1..n ∈ Tnk using the
definitions (11), (9) and (10) we obtain

νn(x1..n) ≥ wk
1

n
2−δn(µ)ρ(x1..n). (17)



Step 2: the resulting predictor. Finally, define

ν :=
1

2
γ +

1

2

∑
n∈N

wnνn, (18)

where γ is the i.i.d. measure with equal probabilities of all x ∈ X (that is, γ(x1..n) = |X |−n for
every n ∈ N and every x1..n ∈ Xn). We will show that ν predicts every µ ∈ C+, and then in the end
of the proof (Step r) we will show how to replace γ by a combination of a countable set of elements
of C (in fact, γ is just a regularizer which ensures that ν-probability of any word is never too close
to 0).

Step 3: ν predicts every µ ∈ C+. Fix any µ ∈ C+. Introduce the parameters εnµ ∈ (0, 1),
n ∈ N, to be defined later, and let jnµ := 1/εnµ. Observe that ρ(Tnk \Tnk−1) ≥ ρ(Tnk+1\Tnk ), for any
k > 1 and any n ∈ N, by definition of these sets. Since the sets Tnk \Tnk−1, k ∈ N are disjoint,
we obtain ρ(Tnk \Tnk−1) ≤ 1/k. Hence, ρ(Tnµ \Tnj ) ≤ εnµ for some j ≤ jnµ , since otherwise mn

j =
maxµ∈C ρ(Tnµ \Tnjnµ ) > εnµ so that ρ(Tnjnµ+1\Tnjnµ ) > εnµ = 1/jnµ , which is a contradiction. Thus,

ρ(Tnµ \Tnjnµ ) ≤ εnµ. (19)

We can upper-bound µ(Tnµ \Tnjnµ ) as follows. First, observe that

dn(µ, ρ) = −
∑

x1..n∈Tnµ ∩Tnjnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

−
∑

x1..n∈Tnµ \Tnjnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

−
∑

x1..n∈Xn\Tnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

= I + II + III. (20)

Then, from (11) and (9) we get
I ≥ − log n. (21)

From (13) and (19) we get

II ≥ −µ(Tnµ \Tnjnµ ) log ρ(Tnµ \Tnjnµ )− 1/2 ≥ −µ(Tnµ \Tnjnµ ) log εnµ − 1/2. (22)

Furthermore,

III ≥
∑

x1..n∈Xn\Tnµ

µ(x1..n) logµ(x1..n) ≥ µ(Xn\Tnµ ) log
µ(Xn\Tnµ )

|Xn\Tnµ |

≥ −1

2
− µ(Xn\Tnµ )n log |X |, (23)

where the first inequality is obvious, in the second inequality we have used the fact that entropy
is maximized when all events are equiprobable and in the third one we used |Xn\Tnµ | ≤ |X |n.
Combining (20) with the bounds (21), (22) and (23) we obtain

dn(µ, ρ) ≥ − log n− µ(Tnµ \Tnjnµ ) log εnµ − 1− µ(Xn\Tnµ )n log |X |,

so that

µ(Tnµ \Tnjnµ ) ≤ 1

− log εnµ

(
dn(µ, ρ) + log n+ 1 + µ(Xn\Tnµ )n log |X |

)
. (24)

From the fact that dn(µ, ρ) = o(n) and (15) it follows that the term in brackets is o(n), so that
we can define the parameters εnµ in such a way that − log εnµ = o(n) while at the same time the
bound (24) gives µ(Tnµ \Tnjnµ ) = o(1). Fix such a choice of εnµ. Then, using (15), we conclude

µ(Xn\Tnjnµ ) ≤ µ(Xn\Tnµ ) + µ(Tnµ \Tnjnµ ) = o(1). (25)



We proceed with the proof of dn(µ, ν) = o(n). For any x1..n ∈ Tnjnµ we have

ν(x1..n) ≥ 1

2
wnνn(x1..n) ≥ 1

2
wnwjnµ

1

n
2−δn(µ)ρ(x1..n) =

wnw

2n
(εnµ)22−δn(µ)ρ(x1..n), (26)

where the first inequality follows from (18), the second from (17), and in the equality we have used
wjnµ = w/(jnµ)2 and jnµ = 1/εµn. Next we use the decomposition

dn(µ, ν) = −
∑

x1..n∈Tnjnµ

µ(x1..n) log
ν(x1..n)

µ(x1..n)
−

∑
x1..n∈Xn\Tnjnµ

µ(x1..n) log
ν(x1..n)

µ(x1..n)
= I + II. (27)

From (26) we find

I ≤ − log
(wnw

2n
(εnµ)22−δn(µ)

)
−

∑
x1..n∈Tnjnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)

= (1 + 3 log n− 2 log εnµ − 2 logw + δn(µ)) +

dn(µ, ρ) +
∑

x1..n∈Xn\Tnjnµ

µ(x1..n) log
ρ(x1..n)

µ(x1..n)


≤ o(n)−

∑
x1..n∈Xn\Tnjnµ

µ(x1..n) logµ(x1..n)

≤ o(n) + µ(Xn\Tnjnµ )n log |X | = o(n), (28)

where in the second inequality we have used − log εnµ = o(n), dn(µ, ρ) = o(n) and δn(µ) = o(n), in
the last inequality we have again used the fact that the entropy is maximized when all events are
equiprobable, while the last equality follows from (25). Moreover, from (18) we find

II ≤ log 2 −
∑

x1..n∈Xn\Tnjnµ

µ(x1..n) log
γ(x1..n)

µ(x1..n)
≤ 1 + nµ(Xn\Tnjnµ ) log |X | = o(n), (29)

where in the last inequality we have used γ(x1..n) = |X |−n and µ(x1..n) ≤ 1, and the last equality
follows from (25).

From (27), (28) and (29) we conclude 1
ndn(ν, µ)→ 0.

Step r: the regularizer γ. It remains to show that the i.i.d. regularizer γ in the definition of
ν (18), can be replaced by a convex combination of a countably many elements from C. Indeed, for
each n ∈ N, denote

An := {x1..n ∈ Xn : ∃µ ∈ C µ(x1..n) 6= 0},
and let for each x1..n ∈ Xn the measure µx1..n be any measure from C such that µx1..n(x1..n) ≥
1
2 supµ∈C µ(x1..n). Define

γ′n(x′1..n) :=
1

|An|
∑

x1..n∈An

µx1..n
(x′1..n),

for each x′1..n ∈ An, n ∈ N, and let γ′ :=
∑
k∈N wkγ

′
k. For every µ ∈ C we have

γ′(x1..n) ≥ wn|An|−1µx1..n
(x1..n) ≥ 1

2
wn|X |−nµ(x1..n)

for every n ∈ N and every x1..n ∈ An, which clearly suffices to establish the bound II = o(n) as
in (29).
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