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Abstract

We present a new online learning algorithm in the selecaweing framework, where labels must
be actively queried before they are revealed. We prove ®andhe regret of our algorithm and
on the number of labels it queries when faced with an adaptiiversarial strategy of generating
the instances. Our bounds both generalize and strictlydwgpover previous bounds in similar
settings. Using a simple online-to-batch conversion teghe our selective sampling algorithm can
be converted into a statistical (pool-based) active legraigorithm. We extend our algorithm and
analysis to the multiple-teacher setting, where the algarican choose which subset of teachers
to query for each label.

1 Introduction

A selective samplinglgorithm (Cohn et al., 1990; Freund et al., 1997) is an enl@arning algorithm that
actively decides which labels to query. More preciselyriesy takes place in a sequence of rounds. On
roundt, the online learner receives an instasgec R? and predicts a binary labg) € {—1,+1}. Then, the
learner decides whether or notquerythe true label;, associated witk,. If the label is queried, the learner
incurs a unit cost and uses the label to improve his futurdigtiens. If the label is not queried, the learner
never knows whether his prediction was correct. Nevertiselthe accuracy of the learner is evaluated on
both queried and unqueried instances. We say that a seleetivpling algorithm isobustif it works even
when the instance sequenke xo, ... is generated by aadaptive adversaryRobustness thereby implies a
high level of adaptation to the learning environment.

Inspired by known online ridge regression algorithms (dldoerl & Kennard, 1970; Lai & Wei, 1982;
Vovk, 2001; Azoury & Warmuth, 2001; Cesa-Bianchi et al., 20Cesa-Bianchi et al., 2005; Li et al., 2008;
Strehl & Littman, 2008; Cavallanti et al., 2009; Cesa-Biainet al., 2009)), we begin by presenting a new
robust selective sampling algorithm within the label-edstting considered in (Cavallanti et al., 2009; Cesa-
Bianchi et al., 2009; Strehl & Littman, 2008). We measureghedictive accuracy of our learner using the
game-theoretic notion aegret (formally defined below) and prove formal bounds on this ditanWe also
prove bounds on the number of queries issued by the learnarb@unds are strictly better than the best
available bounds in the robust selective sampling setting, can be shown to be optimal with respect to
certain parameters. A detailed comparison of our resulis tive results of the predominant previous papers
on this topic (Cesa-Bianchi et al., 2006; Strehl & Littma®08; Cesa-Bianchi et al., 2009) is given in
Section 2.5, after our results are presented.

Selective sampling can be viewed as an online-learningntaf active learning. The literature on active
learning is vast, and we can hardly do it justice here. Repapers on active learning include (Balcan
et al., 2006; Balcan et al., 2007; Castro & Nowak, 2008; Dpsget al., 2008; Dasgupta et al., 2005;
Hanneke, 2007; Hanneke, 2009). All of these papers contfidezase where instances are drawn i.i.d. from
a fixed distribution (either known or unknown). As a by-prodaf our adversarial analysis, we also obtain
a tight regret bound in the case where the instasgese generated i.i.d. according to a fixed and unknown
distribution. Moreover, using a simple online-to-batctmgrsion technique, our online learner becomes a
randomized statistical pool-based active-learning algar, with a high-probability risk bound.

In the second part of this paper, we extend our algorithm aradyais to the case where the learner
has access to multiple teachers, each one with a differeat @rexpertise and a different level of overall
competence. In other words, the learner is free to query abget of teachers and each teacher is capable
of providing accurate labels only within some subset of the&ance space. The learner is not given any
information on the expertise region of each teacher, and mies this information directly from the labels.
Roughly speaking, the goal of the learner is to perform ad aglkach teacher in his respective area of



expertise. We first present an online learner that eitheriegi@ll of the teachers or does not query any
teacher. We then enhance this learner to query only thoskdesit believes to be experts gp

The general aim of this line of research is to provide alpomng of practical utility for which we can
also prove formal performance guarantees. The motivatémnid selective sampling is the same as the
motivation behind any active learning algorithm: humaneyated labels are expensive and therefore we
only want labels that improve our ability to make accuraedpstions. Our work within the multiple teacher
setting is motivated by an Internet search company that askse learning techniques to determine the
results of its search engine. More concretely, the instapcepresents the pairing of a search-engine query
with a candidate web page; the goal of the online learnerdgtermine whether or not this pair constitutes a
good match. The company employs human teachers to prowdsotihect answer for any instance. Clearly,
there is no way to manually label the millions of daily seagolgine queries, and some intelligent mechanism
of choosing which instances to label is required. Each teqgiovides labels of different quality in different
regions of the instance space. To make accurate predictiom$earner must figure out which teachers to
trust for each instance.

A learning framework sharing similar motivations to ourghe proactive learning setting (Donmez &
Carbonell, 2008; Yang & Carbonell, 2009a), where the leahas access to teachers of different quality,
with associated costs per label. Yang and Carbonell (20pg#gents a theoretical analysis of proactive
learning, however, this analysis relies on the strong apsomthat each teacher gives the correct label most
of the time. We make no such assumption in our analysis. Meireour setting supports the realistic scenario
where each teacher has a very narrow area of expertise aggligieless labels outside of this area.

2 TheSingle Teacher Case

In this section, we focus on the standard online selectiug$iag setting, where the learner has to learn an
accurate predictor while determining whether or not to guke label of each instance it observes. In this
setting, the learner has no control over where the label sdroen.

2.1 Preliminariesand Notation

As mentioned above, on rouraf the online learning process, the learner receives input R?, predicts
9+ € {—1,+1}, and chooses whether or not to query the correct lapel {—1,+1}. We setZ; = 1 if

a query is issued and; = 0 otherwise. The only assumption we make on the process thatraesx; is
that ||x;|| < 1; for all we know instances may be generated byadaptiveadversary. Note that most of
the previous work on this topic makes stronger assumptionthe process that generates leading to a
less general setting. As for the labels, we adopt the stdratachastic linear noisenodel for this problem
(Cesa-Bianchi et al., 2003; Cavallanti et al., 2009; Cersaéhi et al., 2009; Strehl & Littman, 2008) and
assume that eacp) € {—1,+1} is sampled according to the laiR(y; = 1|x;) = (1 + u'x;)/2, where
u € R?is a fixed but unknown vector withu|| < 1. Note that under this setuf [y; |x;] = u'x;,
and we denote the latter b¥,. The learner uses hyperplanes to predict the label on eagtdroThat
is, on roundt the learner predictg, = sign(At) whereA; = w,_; "x;. Let P, denote the conditional
probability P(-| x1,...,x;—1,%X¢, 41, - - -, Yt—1). We evaluate the accuracy of the learner’s predictions using
its cumulativeregret, defined as

RT = Z?:l (Pf(yfAt < 0) — Pt(ytAt < O))

Additionally, we are interested in the number of querieséssby the learneN; = Zthl Zy. Our goal is
to simultaneously bound the cumulative regiet and the number of querig$, with high probability over
the random draw of labels.

2.2 Algorithm

The single teacher algorithm is a margin-based selectivpkiag procedure. The algorithm “Selective Sam-
pler” (Algorithm 1) depends on a confidence paraméter (0, 1]. As in known online ridge-regression-like

algorithms (e.g., (Hoerl & Kennard, 1970; Vovk, 2001; Azp8& Warmuth, 2001; Cesa-Bianchi et al., 2003;
Cesa-Bianchi et al., 2005; Li et al., 2008; Strehl & Littm2A08; Cavallanti et al., 2009; Cesa-Bianchi et al.,
2009)), our algorithm maintains a weight vectoy (initialized asw, = 0) and a data correlation matrik;

(initialized asA, = I). After receivingx, and predictingj; = sign(A,), the algorithm computes an adaptive
data-dependent threshdlg defined as

02 = x] A7 x, (1 AT 2o+ 3610g(t/5)) :
The noise model we are adopting here not only can be made moretgreer highly nonlinear) by the use of kernel

functions (see Section 2.2), but has also undergone a rather tioegpgrimental validation on real-world data (Caval-
lanti et al., 2009; Cesa-Bianchi et al., 2009).



wherer; = xiTAjle-. The definition off; derives from our analysis, and can be interpreted as the algo
rithm’s uncertainty in its own predictions. More preciséahe learner believes thbﬁt — Ay < 0;. Aquery
is issued only # \At| < 64, or in other words, when the algorithm is unsure about the sfg\;.

It is important to stress ho#, depends on the three terr@ﬁ;} Ziri, log(t/s), andx, A" x;. We
can prove thaEﬁ:1 Z;r; grows only logarithmically with the number of querids, and obviouslylog(t/d)
grows logarithmically witht. The behavior of the third ternx,” A; !, x;, depends on the relationship between
the current instance; and the previous instances. x%f lies along the directions spanned by the previous
instances then we can show thﬁA;_llxt tends to shrink a$/N;. As a result, the thresholg} is on the
order oflog(t/0)/N; and the algorithm keeps querying labels at a slow logarittnatie. On the other hand,
if the adversary chooses to lie outside of the subspace spanned by the previous erantplen the term
xtTA;_llxt caused, to be large, and the algorithm is more likely to issue a quemerall, to ensure a small
uncertainty threshold, over all input directions determined by the adversarialiahof x;, the algorithm
must query on the order dbg(t) labels for each such direction in the instance space.

If the label is not queried,4; = 0) then the algorithm does not update its internal state. dflébel
is queried ¢; = 1), then the algorithm computes the intermediate veetpr, in such a way thaf\, =

wg_fxt is at most one in magnitude. Observe thatand A/ have the same sign and only their magnitudes
can differ. In particular, it holds that
A= JSONAL) if A >1
¢ A, otherwise.

Next, the algorithm defines the new vectof so thatA;w, undergoes an additive update, whetgis a
rank-one adjustment of;_;.

It is not hard to show that this algorithm has a quadratic mgtime per round, where quadratic means
O(d?) if it is run in primal form, andO(N?) if it is run in dual form (i.e., in a reproducing kernel Hiller
space). In the dual case, since the algorithm updates orén®h= 1, the number of labeld/, corresponds
to the number of support vectors used to define the currerdthgpis.

2.3 Analysis

We now prove formal guarantees on the regret of the algordghththe number of labels it queries. Some
details are omitted due to space constraints, and the gtéeteeader is referred to (Dekel et al., 2010) for a
more complete analysis. Following (Cesa-Bianchi et al0®0the bounds we give depend on how many of
the (adversarially chosen) inputs are close to being complete noise. To capture this depeadércany

e > 0, define

T
T.=> 1Al <. (1)
t=1

Note that if|A;| < ethenP;(y, = 1) € [1/2 +¢€,1/2 — ¢]. In short, T, is a “hardness” parameter which is
essentially controlled by the adversary. This need not be#ise when data is i.i.d. (see Section 2.4). The
following theorem is the main result of this section, andiéged so as to emphasize both the data-dependent
and the time-dependent aspects of our bounds.

Theorem 1 Assume that Selective Sampler is run with confidence paeaet (0, 1]. Then with probabil-
ity at leastl — ¢ it holds that for all7” > 0 that

2 + 8log|Ar| + 14410g(T/9) }
€ €
| log | A| log(T/8) + log? [ Az | P 1og(T/5)
Ny < {7+ 0( 3 )} = mi{T o= )

where| Ar| is the determinant of the matrig.

Ry < ?;E{ETGJF _ ing{eTe+O(d10gT+lOg(T/6))}

€>

As in (Cesa-Bianchi et al., 2009) it is easy to see that therdilgn can also be run in an infinite dimen-
sional reproducing kernel Hilbert space. In this case, theedsiond in the bounds above is replaced by a
guantity that depends on the spectrum of the data’s Gramxmatr

The proof of Theorem 1 splits into a series of lemmas. Fone¥er 0 ande > 0, we define

T T
(JT’6 = ZZt H{AtAt < 0} and C?T;6 = ZZt I[{AtAt < 07A§ > 62}|At| 5
t=1

t=1

“This is denoted byZ; =1 {|A;| < 6;} in the algorithm’s pseudocode. Here and throughiofit } denotes the
indicator function.



Algorithm 1. Selective Sampler
input confidence leved € (0, 1]
initialize wy =0, Ag =1
fort=1,2,...
receive x; € R7: [|x4]| < 1, and setd; = w;_; 'x;
predict §; = sgn(A¢) € {—1,+1}
0 = x] A x(1+ 4212 Ziri + 36log(¢/9))
Z, =1{A? <67} € {0,1}
if Z, =1
query y € {—1,+1}
W e (%) A%, 0f A > 1
t—1 = t 1t .
Wi otherwise
At = At—l +XtX;r, Ty = X:At_lxt, Wi = At_l(At_1W2_1 + tht)
else
\ Ay =A1, we=wiqg, 1t =0

whereZ; = 1 — Z,. In the abovel/r . deals with rounds where the algorithm does not make a quéiije w
Qr, deals with rounds where the algorithm does make a query. idwé exploits the potential-based method
(e.g., (Cesa-Bianchi & Lugosi, 2006)) for online ridge+eggion-like algorithms introduced in (Azoury &
Warmuth, 2001). See also (Hazan et al., 2006; Dani et al8)2@0 a similar use in different contexts. The
potential function we use is the (quadratic) Bregman dierogd; (u, w) = % (u—w) " A;(u —w), where
A, is the matrix computed by Selective Sampler at tim@he proof structure is as follows. First, Lemma
2 below decomposes the regret into 3 parts:Ry < €T, + Ur, + Q7. The bound orUr . is given by
Lemma 3. For the bound o7 and the bound on the number of queri¥s, we use Lemmas 4 and 5,

respectively. However, both of these lemmas require(that- At)Z < 02 for all t. This assumption is taken
care of by the subsequent Lemma 6. Siacea positive free parameter, we can take the infimum ever0
to get the required results.

Lemma 2 Foranye > Oitholds that Ry < €I, + Ur. + Q1 -
Proof: We have
Pt(Atyt < 0) - Pt(Atyt < 0) S ]].{AtAt S 0}‘2Pt(yt = 1) - 1‘ = H{AtAt S 0}|At|

- ll{AtAt <0,A2< 62}|At\ + ]l{AtAt <0,A2> 62}|At\
< e]l{AtAt <0,A2 < 62} + ll{AtAt <0,A2 > 62}|At| @)
< e]l{AtAt <0,A% < 62} + ]l{AtAt <0,A2> ¢ 7, = 0}|At\

+ ll{AtAt <0,A2> ¢ 7, = 1}|At|

< 6]1{AtAt < O,A? < 62} + Ztl{AtAt < O,A? > 62} + Zt]l{AtAt < O,A% > 62}|At|.

Summing ovet = 1...7T completes the proof. |

Lemma 3 For anye > 0 andT > 0, with probability at least — § it holds that
2+ 8log|Ar| 4 144log(T/5) 0 <d log T + log(T/§)>

QT,C <

€ €

Proof Sketch: Using the fact that sga\,) = sgn{A}) and the inequalityl{ A7 > 2} < |A,|/¢, we upper
boundQr. < 132, Z, H{A;At < O}Af. Moreover A/ A, < 0impliesA2 < (A, — A})2 and therefore
Qr.e < LT Zy(A, — A})2. Next, we definéV; = Z,(A; — y,)(A; — A}) and note that

T 1 X 1 )
> oM, = 3 D ZuA = AY? - 3 > % ((yt —AD? = (ye — At)Q)
t=1 t=1 t=1



We also note that)M;)~_, is a martingale difference sequence witf;| < 4. Using martingale tail bounds
from (Kakade & Tewari, 2008), we obtain a high probabilitypep bound o@le M;, which implies that

1< 2 & 144
-N"z(A,-A) < 2Nz —ADZ — (g — AD?) + — log(T/5) .
DIICEE DY e (e = A2 = (e — D)) + — log(T/9)

Finally, we use techniques from (Azoury & Warmuth, 2001) pper bound the above by

T
4 144
p > Zi (di(u,wi_y) — dy(u, wp) + 2log | Ay — 2log [A;1]) + — log(T/9) .

t=1

We are left with a telescoping sum that collapses to the e@sipper bound. |

Lemma4 Assume thatA, — A,)? < 62 holds for allt. Then, for any: > 0, we havel/z. = 0

Proof: We rewrite our assumptiom\, — A,)? < 62 as A, A, > A$+A22’Qf > Afggf. However, ifZ, = 1,
then Af > 6% and soA,A, > 0. Hence, under the above assumption, we can guarantee theyfo,
Z R{AtAt < 0} =0, thereby implying/r.. = 1, Z, ]l{AtAt <0,A2 > 62} =0. ]

Lemma5 Assume thatA, — A,)? < 62 holds for all¢. Then, for any: > 0, we have

2 2 2
o < 7+ (RELTSE v Url) _ g (£EEDY .

€2 €2

2 T A7 1 i
Exts% and rewrite

Proof Sketch: Defines; =

Zy = L0607 < B} + Z{67 > B} = H{Af <07, 07 <ﬁt} + Z,1{07 > B} .

We begin by dealing with the first term on the right-hand sideva. Our assumption implies that whenever
A? < 67 italso holds tha\? < 467. Hence we can upper bound the first termIyA? < 467, 7 < 53, }.
Using technical results from (Azoury & Warmuth, 2001), wedithat3;, < ¢2/4, and we can further upper
boundI{ A7 < 467, 67 < 3,} < 1{A? < ¢*}. Summing ovet gives

T T
Nr =Y 7 < Te+ Y Z{6; > B} .
t=1 t=1

Next, we use the definitions df;, 5, andé, to get,

T T
S 206} = i} =3 287 (14 452] Zirs + 3610g(t/6)) = €}
t=1 t=1

T
8 _
< 5 > Zure (L+4X02, Zirs + 361og(t/0)) -
t=1

Once again relying on results from (Azoury & Warmuth, 2004¢, have thatZ;r; < log|A;| — log|A4;_1]
and the above can be upper bounded by

8 16
= (1+36log(T/6))log [Ar| + log? |Ap]| .
This concludes the proof. |

Lemma6 If Selective Sampler is run with confidence paraméter (0, 1], then with probability at least
1 — 4, the inequality(A; — A,)2 < 62 holds simultaneously for ail

Proof Sketch: First note that by Klder’s inequality,
(A — At)Q = ((wy—1 — U—)TXt)2 <2 XtTA;_l1Xt di—1(Wi—1,1) . 3)



The algorithm only performs an update whBn= 1. Since this update is that of online ridge regression, we
can use techniques in (Azoury & Warmuth, 2001) to show that

1< . 1 _
5 z Z ((yi — AP = (yi — Ai)z) <5~ d—1(u,wi1) + 23000, Ziry
=1
Plugging back into (3) gives
(A= A)? < XAk (144800 Zir - S0 Zi - AP - - 2%) . @)

As in the proof of Lemma 3, we construct the martingale déffexe sequenckl; = Z,;(A; — y;)(A; — A;)
and use tail bounds from (Kakade & Tewari, 2008) to prove fitiaany givent > 1, with probability at least
1—6/t%,

_% Sz ((y AN (g, — A,;)2> < 36log(t/d) .

Plugging the above into Eq. (4) and recalling the definitib;0 we have thatA, — At)Q < #2. A union
bound over alt concludes the proof. |

Remark 1 Computing the intermediate vecter,_, from w;_;, as defined in the Selective Sampler pseu-
docode, corresponds to projecting; _; onto the convex sef; = {w € R? : |w'x;| < 1} w.rt. the
Bregman divergencé; 1, i.e.,w; ; = argmin, o, d;—1(u,w;_1). Notice thatC; includes the unit ball
sincex; is normalized. This projection step is needed for techrpeeiposes during the construction of our
bounded martingale difference sequence (see previousdsjnrnlike similar constructions (e.g. (Hazan
et al., 2006; Dani et al., 2008)), we do not project onto thé ball, which would involve a line search over
matrices and would slow down the algorithm to a significatieex Moreover, we can prove that the total
number of times that Selective Sampler projects 6htis O (d? logQ(T/(S)).

2.4 An Online-to-Batch Conversion

It is instructive to see what the bound in Theorem 1 looks likeen we assume that the instansegsare
drawn i.i.d. according to an unknown distribution over thecktlean unit sphere, and to compare this bound
to standard statistical learning bounds. We model theibligion of the instances near the hyperplde:
u'x = 0} using the well-knowrMammen-Tsybakov low noise conditid(T sybakov, 2004):

There exist > 0 anda > 0 such thatP(ju'x| <€) < ce* forall e > 0.

We now describe a simple randomized algorithm which, wightprobability over the sampling of the data,
returns a linear predictor with a small expected risk (etquémn is taken over the randomization of the
algorithm). The algorithm is as follows:

1. Run Algorithm 1 with confidence levélon the datdx1, y1), ..., (X7, yr), and obtain the sequence of
predictorswg, wi, ..., Wr_1

2. Pickr € {0,1,...,T — 1} uniformly at random and returw,..

Due to the unavailability of all labels, standard convengiechniques that return a single deterministic hy-
pothesis (e.g., (Cesa-Bianchi & Gentile, 2008)) do notitgabply here. The following theorem states a
high probability bound on the risk and the label complexitpar algorithm. We omit the proof due to space
constraints.

Theorem 7 Letw, be the linear hypothesis returned by the above algorithnenTith probability at least
1 — 4 we have

atl a+tl log T
E. [P/(yw, x <0)] <Pyu'x<0)+0 ((dlog(T/cS))“i2 T & + log ( Oé’; ) /T) ,

Ny =0 ((d2 log?(T/8))7 T2 + log(1 /5)) :
whereE, is the expectation over the randomization in the algorittand P/(-) denotes the conditional
prOba.blllty4 P( ‘ X1y oy Xp—1,Y1y- - - ,yrfl).

3The constant: might actually depend on the input dimensi@nFor notational simplicity, Theorem 7 regardas a
constant, hence it is hidden in the big-oh notation.
“Notice the difference with the conditional probabili(-) defined in Section 2.1.



As « goes from 0 (no assumptions on the noise)xighard separation assumption), the above bound on the
average regret roughly interpolates betwégr/T and1/7". Correspondingly, the bound on the number of
labelsN- goes fromil" tolog? 7. In particular, observe that, viewed as a functioiVgf (and disregarding log

a+1

factors), the instantaneous regret is of the fd\@%. These bounds are sharper than those in (Cavallanti
et al., 2009) and, in fact, no further improvement is gemgg@bssible (see Castro and Nowak (2008)). The
same rates are obtained by (Hanneke, 2009) under much mueeafjeonditions, for less efficient algorithms
that are based on empirical risk minimization.

One might wonder whether an adaptively adversarial mod&arhing might somehow be overkill for
obtaining i.i.d. results. As a matter of fact, the way ouroaithm works makes an adaptively adversarial
analysis a very natural one even for deriving the above results.

2.5 Related Work

Selective sampling is an online learning framework lyingameen passive learning (where the algorithm has
no control over the learning sequence) and fully activenlieayr (where the learning algorithm is allowed to
select the instances;). Recent papers on active learning include (Balcan et @62Bach, 2006; Balcan
et al., 2007; Castro & Nowak, 2008; Dasgupta et al., 2008gDpta et al., 2005; Hanneke, 2007; Hanneke,
2009). All of these papers consider the case when instameetrawn i.i.d. from a fixed distribution (either
known or unknown). In particular, (Dasgupta et al., 200%egian efficient Perceptron-like algorithm for
learning within accuracythe class of homogeneodsiimensional half-spaces under the uniform distribution
over the unit ball, with label complexity of the fordlog % Still in the i.i.d. setting, more general results
are given in (Balcan et al., 2007). A neat analysis of preslpproposed general active learning schemes
(Balcan et al., 2006; Dasgupta et al., 2008) is provided byafbrementioned paper (Hanneke, 2009). Due to
their generality, many of the above results rely on scheima&isare computationally prohibitive (exceptions
being the results in (Dasgupta et al., 2005) and the reddizatses analyzed in (Balcan et al., 2007)). Finally,
pool-based active learning scenarios are considered ich(B2006, and the references therein), though the
analysis is only asymptotic in nature and no quantificatiogiven of the trade-off between risk and number
of labels.

The results of Theorem 1 are more in line with the worst-camdyaes in (Cesa-Bianchi et al., 2006;
Strehl & Littman, 2008; Cesa-Bianchi et al., 2009). Thesagpa present variants of Recursive Least Squares
algorithms that operate on arbitrary instance sequendas amalysis in (Cesa-Bianchi et al., 2006) is com-
pletely worst case: the authors make no assumptions wivatsoa the mechanism generating instances
or labels; however, they are unable to prove bounds on thel iqleery rate. The setups in (Strehl &
Littman, 2008; Cesa-Bianchi et al., 2009) are closest t@ @quthat they assume the same linear stochas-
tic noise-model used in our analysis. The algorithm presgbimt (Strehl & Littman, 2008) approximates
the Bayes margin to within a given accuragyand querie@(d3/e4) labels; this bound is significantly in-
ferior to our bound, and it seems to hold only in the finite-eitsional case. A more precise comparison
can be made to the (expectation) bounds presented in (GasaFB et al., 2009), which are of the form

Ry < mingecec1 (e T + % + 6% lnT) ,andNr = O(dT*InT), wherex € [0, 1] is a parameter of

their algorithm. In contrast, our bound in Theorem 1 has apshadependence an and a better trade-off
betweenR; and N7. Moreover, unlike the analysis in (Cesa-Bianchi et al.,900ur analysis covers the
case where the instances are generated by an adaptiveasgivers

3 TheMultiple Teacher Case

The problem is still online binary classification, where atle time steg = 1,2, ... the learner receives
an inputx; € R?, with ||x;|| < 1, and outputs a binary predictiajy. However, there are no available
teachers, each with his own area of expertisex;Ifalls within the expertise region of teachgrthen that
teacher can provide an accurate label. After making eadrypjprediction, the learner chooses if to issue a
query to one or more of th& teachers. The learner is free to query any subset of teadhdrsach teacher
charges a unit cost per label. The expertise region of eadée is unknown to the learner, and can only be
inferred indirectly from the binary labels purchased frdrattteacher.

Formally, we assume that teachgis associated with a weight vectar; € R9, where|lu;|| < 1.
If teacher; is queried on round, he stochastically generates the binary lapgl according to the law
Pi(yj+ = 1x¢) = (1 + Aj4)/2, whereA; , = u; 'x,; and, as in Section X, can be chosen adversarially
depending on previous's andy;’s. We considetA; ;| to be theconfidencef teacher; in his label forx;.
When the learner issues a query, he receives nothing othettirainary label itself, and the confidence is
only part of our theoretical model of the teacherx/fis almost orthogonal ta; then teachey has a very
low confidence in his label, and we say thatlies outside the expertise region of teacher

It is no longer clear how we should evaluate the performari¢beolearner, since th& teachers will



often give inconsistent labels on the given and we do not have a well defined ground truth to compare
against. Intuitively, we would like the learner to predicttlabel ofx, as accurately as the teachers who are
experts orx,. To formalize this intuition, define the average margin otaeyic subset of teachér§' C K]
asAct = ﬁ > icc Air. We define the set of experts for each instance using a useifigol parameter
7 > 0. Define

i = argma};mj,t\ and Cy = {i:|Ajs] > [Ajs | =7} . (5)
In words, j; is themost confident teachet timet, andC, is theset of confident teacheet timet. This
means that is a tolerance parameter that defines how confident a teaa&rba, compared to the most
confident teacher, to be considered a confident teacheiougtir does not appear explicitly in the notation
Ct, the reader should keep in mind ti@atand other sets defined later on in this section all depend tising
the definitions above) ¢, ; is the average margin of the confident teachers, and we dbteéy, = Ag, ;.

Now, lety, be the random variable that takes valueg+nl, 1}, with Py(y: = 1|x:) = (1 + Ay)/2. In
words,y, is the binary label generated according to the average mafgie confident teachers. We consider
the sequence, ..., yr to be our ad-hoc ground-truth, and the goal of our algorithto iaccurately predict
this sequence. Note that an equivalent way of generafirig by picking a confident teachgruniformly
at random fromC, and settingy, = y; .. Indeed there are other reasonable ways to define the gitowhd-
for this problem, however, we feel that our definition codtes with our intuitions on learning from teachers
with different areas of expertise. 1fis set to bel, the learner is compared against the average margin of all
K teachers, while it- = 0, the learner is compared against the single most confidachée.

We now describe and analyze two algorithms within the migtipacher setting. We call these algorithms
“first version” and “second version”. In the first versionetalgorithm queries either all of the teachers or
none of the teachers. The second version is more refinedtithhalgorithm may query a different subset of
teachers on each round.

3.1 Algorithm, First Version

The learner attempts to model each weight veatowith a sequence of weight vectofe; ;)7_;. As in the
single teacher case, the learner maintains a variablehibiceg;, which can be interpreted as the learner’s
confidence in its current set of weight vectors. The learttengts to mimic the process of generatindy

choosing its own set of confident teachers at each time suelpo@lgA]—,t = wj_,tht, the learner defines
jo = argmax|A; | and Cp = {i:|A | >|A; | —7—26,},

Wherejt is the learner’s estimate of the most confident teacher(ans the learner’s estimate of the set of
confident teachers. Note that the definitiorCgfis more inclusive than the definition 6f; in Eq. (5), in that
it also includes teachers whose confidence falls b¢mytvt\ — 7. This accounts for the uncertainty regarding
the learner’s set of weight vectors.

As above, we define the notatioAq; = I—é‘ ZieC A; ¢, and abbreviateh, = Aém. The

learner predicts the binary labgl = sgn(A,). Let P, denote the conditional probability,(-) =
P X1, Y11, YK 1, X2, Y1,2 - - -, YK, 2, - - - Xe—1,Y1.t—1, - - - YK 1—1, Xt ), and let the regret of the learner be

T
Rp = (Pt(ytAt <0) = Py < 0)) : (6)

t=1

Next, we proceed to describe our criterion for querying eas. We present a simple criterion that either
setsZ, = 1 and queries all of the teachers or s&ts= 0 and queries none of them. Hence, the learner either

incurs a cost of< or a cost of) on each round. We partition the set of confident teachegiigto two sets,
Ht = {’L . ‘Ai,t| Z ‘Ait,t‘ —T+20t}
By = {i + |A;, | =7 =20, < |Aiy] < |A; | —7+20,}.

H, is the set of teachers with especially high confidence, whilds the set of teachers with borderline
confidence. Intuitively, the learner is unsure whether daehers inB, should or should not be included in
C;. The learner issues a query (to Aliteachers) if there exists a s8C B, such that eitheAtAHtUSA . <0

or \Aﬁtus’t| < 6,. In other words, the learner searches for a subsét,afuch that replacind?, with that
subset would either flip the sign @, or make it too small. If a query is issued, each weight veetor is
updated as in the single teacher case. Pseudocode of ttmedéagiven in Algorithm 2.

®Here and throughoutk] = {1,2,..., K}.



Algorithm 2: Multiple Teacher Selective Sampler — first version

input confidence leved € (0, 1], tolerance parameter> 0
initialize Ay =1, Vj € [K] wjo=0
fort=1,2,...
receive x; € R% : ||x4|| <1
07 = x A x, (1 + 4301 Ziry + 36log(Kt/5))
vy € [K] Aj,t =w;—1 % and je = argma)g\AjA
predict j; = sgn(A,) € {—1,+1}
B {1 if 3SC By« AAg <0 or |Ag m | <0,
710 otherwise
if Z,=1
query yie, .., YKt
Ay = Ay +xex), 1= xtTAt_lxt
forj=1,...,K A1 » o
W= {W - (W) Ao WAl > 1,

Wit—1 otherwise

—1
Wit = Ay (A1Wi g +yja%Xe)
else

| A=Ay, r=0 and Vj € [K] wj; =W

3.2 Analysis, First Version

Our learning algorithm relies on labels it receives fromtao$éeachers, and therefore our bounds should nat-
urally depend on the ability of those teachers to provideiate labels for the concrete sequerge. . . , xr.

For example, if an input;, lies outside the expertise regions of all teachers, we ddrope to learn anything
from the labels provided by the teachers for this input. &irtyj, there is nothing we can do on rounds where
the set of confident teachers is split between two equalljident but conflicting opinions. We count these
difficult rounds by defining, for any > 0,

T

T. = Y 1A <. @

t=1

The above is just a multiple teacher counterpart to (1). Hewé is interesting to note that even in a case
where most teachers have low confidence in their predicticany given round]’. can still be small provided
that the experts in the field have a confident opinion.

A more subtle difficulty presents itself when the collectiyginion expressed by the set of confident
teachers changes qualitatively with a small perturbaticth@ inputx, or one of the weight vectors;. To
state this formally, define for any> 0

Hep = {i 2 |Ais] > [Ajsa| =7+ €}
Bey = {i: [Ajsil —7—¢€ < [Ais] < [Ajrel =7 +€} .

The setH. ; is the subset of teachers @ with especially high confidence higher than the minimal confi-
dence required for inclusion ift;. In contrast, the seB. , is the set of teachers with borderline confidence:
either teachers i@, that would be excluded if their margin were smaller d)yor teachers that are not in
C; that would be included if their margin were larger byWe say that the average margin of the confident
teachers isinstablewith respect tor ande if |A;| > € but we can find a subsét C B, , such that either
AtAsum,,,+ < 00r|Asum, . ¢« < e Inother words, we are dealing with the situation whaveis suffi-
ciently confident, but a smadtperturbation to the margins of the individual teachersaaurse its sign to flip,



or its confidence to fall below. We count the unstable rounds by defining, for&ny 0,
T
T = > W{|A] > e} 1{IS C Bey :+ AAsun
t=1
Intuitively 7 counts the number of rounds on which aperturbation of theA, ; of the teachers either
changes the sign of the average margin or results in an avenaggin close to zero. Lik&., this quantity
measures an inherent hardness of the multiple teachergpnobl
The following theorem is the main theoretical result of théstion. It provides an upper bound on the
regret of the learner, as defined in Eq. (6), and on the tostl @oqueries Ny = Kthzl Z:. Again, we
stress both the data and the time-dependent aspects ofuithd.bo

<0V |ASUH€7t,t| < 6} . (8)

et

Theorem 8 Assume Algorithm 2 is run with a confidence paraméter 0. Then with probability at least
1 — ¢ it holds for all’T” > 0 that

log | Ar| log(KT log? |A

Rr < inf{eTe—f—Te’—i-O(Og | Log(KT/6) + log” | T')}
>0 €

e>0

d? 1og2(KT/6)> } ’

= 1nf{eTE+T€/+O( 5
€

N

IN

log | Ar| log(KT/5) + log” |AT|>}
62

2 2
- K igg{Te+Té+@<W>}

K inf{Te—&—Té—F@(
e>0

€

As in the proof of Theorem 1, we begin by decomposing the tedfer anye > 0, Lemma 9 states that
Ry < T, +T! + Ur. + Qr., whereT, is defined in Eq. (7)] is defined in Eq. (8), and
Ur,.= Zthl Zy H{AtAt < 0}7 Qr,c = Zle Zy R{VS C Ber + AAsum, =0, ‘ASUH
T. and T/ deal with time steps on which the ground truth itself is uiatde, U, . sums over rounds
where the learner does not make a query, @hd. sums over rounds where a query is issued. Simi-
larly, for anye > 0, Lemma 10 upper bounds the number of time steps on which g gsiéssued by
T. + T/ + Qr,.. Lemma 11 upper boundgr . and Lemma 12 upper bound-.. Both lemmas rely
on the assumption than\,; , — A; ;)2 < 67 for all t € [T] and;j € [K]. A straightforward stratification of

Lemma 6 in Section 2 over th§ teachers verifies that this condition holds with high prolitgbThe proofs
of the mentioned lemmas are omitted.

Lemma9 Foranye > Oitholds thatRy < €T, + 7!+ Ur. + Qr.e.

Lemma 10 For anye > 0, itholds thaty"/_, Z; < T. + T/ + Qr...

Lemmall If (A,, — A;,)? < 62 holds for allj € [K] andt € [T7], then
_o (log|AT log(KT/6) 4 log® AT> _o <d2 logQ(KT/d))

Q1.

€2 €2

Lemmal2 If (A, — A;,)? < #?forall j € [K] andt € [T}, thenUr, = 0 for all € > 0.

3.3 Algorithm, Second Version

The second version differs from the first one in that now eaellierj has its own threshold, ;, and also
its own matrixA4, ;. As a consequence, the set of confident teactierand the partition of”, into highly
confident ¢7;) and borderline B,) teachers have to be redefined as follows:

Co={j:1A > |A] o= 0jt — 65, 4}, where j; = argma>§|Aj7t\,
Hy = {i : |[A] > |A; | T+ 0 +max; ¢ 051},
B, = { |A]tt| ejt jtt < ‘Azt| < ‘A] il — T+9't+maxjeé jt}'

The pseudocode is glven in Algorlthm 3. Notice that the qummdition definingZ; now depends on an
average thresholdg 5 , = ‘SUHt‘ > jesum, it

Notice that, up to degenerate cases, latand7! tend to vanish as — 0. Hence, as in the single teacher case, the
free parameter trades-off hardness terms against regret terms.



Algorithm 3: Multiple Teacher Selective Sampler — second version

input confidence leved € (0, 1], tolerance parameter> 0
initialize Aj_’() =1, W0 = 0, VJ S [K]
fort=1,2,...
receive x; € R% : ||x4|| <1
Vi€ K], 02, =x] A7} x,(1+ 4371 Zirj; + 36log(Kt/5))
Vje (K], Ajy=wj1'x, and j, = argma%|Ajyt|
predict j, = sgn(A,) € {—1,+1}
B 1 if 35 C Bt : AtASUHg,t <0 or |A5uﬁt,t‘ < QSUHt,t
! 0 otherwise
if Z,=1andj € C,
query y;.¢
Ajﬂg = Aj,t—l + XtX;r, Tt = X;rAjthXt
|Aj.¢|-1 -1 TN
Wi {W () A 1A >0,

W1 otherwise

—1
Wi = A5 (Aj W)+ Yj4Xe)
else
Ajp=Aj0-1, 154 =0 and w;, =wj;

3.4 Analysis, Second Version

The following theorem bounds the cumulative regret and dted humber of queries with high probability.
The proof is similar to the proof of Theorem 8. We keep the dsdims of the setdd. , and B, ; as given in
Section 3.2, but in the bound d¥; in Theorem 13, we replacE’ with the more refined quantity”’, where

L |Hep U By

TE// = Z%l{|At| > 6} :“.{EIS Q Be,t . AtASUHe)t,t < O V IASUHQf,,t‘ S 6} .
t=1

Note that7)’ is similar toT except that whilél! only counts the number of times that perturbations to the

A, ,'s lead to conflict or low confidence predictiols; counts the fraction of confident teachers involved in

the conflict. If for mostx; only a few of theK teachers are experts (highly confident), then one wouldatxpe

T! to be much smaller thah! and thus we expect the number of queries to be small.

Theorem 13 Assume Algorithm 3 is run with a confidence paraméter 0. Then with probability at least
1 — ¢ it holds for all'T" > 0 that

K log|Ar| log(KT/é) + K log? AT|>}
2

Rr < inf{eTf+T€’+(9<
e>0

€

K d? 1og2(KT/5)> } ’

€2

= inf {eTe—i—TE/—l—O(
e>0

K log |Ar| log(KT/8) + K log* |Ar| >}
2

Nr <K inf{Te+TF”+(9(
e>0 } €

K d? 1og2(KT/6)) } .

:Kinf{Te+Tg’+o( i
e>0 €

Note that the above theorem holds at the cost of losing arfdctelsewhere in the regret terms, thereby
making Theorem 8 and Theorem 13 incomparable.
4 Conclusions and Ongoing Research

We introduced a new Ridge-Regression-like algorithm dpegan a robust selecting sampling environment,
where the adversary can adapt on the fly to the algorithm&eloWe gave sharp bounds on the cumulative



regret and the number of queries made by this algorithmjreplguestions left open in previous investiga-
tions. We then lifted this machinery to solving the more imed problem where multiple unreliable teachers
are available. We gave two algorithms and correspondinty ses

We are currently running experiments on real-world data éxperimental setting is somewhat similar to
the one described in (Donmez & Carbonell, 2008)) to see tHermeance of the multiple teacher algorithms
compared to the simple baseline whéfdndependent instances of the single teacher algorithmoigm
1) are run in parallel. An implementation issue of the mugtigacher algorithms we have presented is the
exponential explosion that seemingly arises when comgufjindue to the need to check all possible subsets
S C B,. As a matter of fact, this check can be computed efficientlgdnying the teachers according to their
estimated confidenqe&jvt\. Though preliminary, our experiments suggest that theiplefteacher algorithm
largely outperforms the baseline, both in terms of accueand/total number of requested labels.

On the theoretical side, a few points we are presently iyatsng are the following: i) The bound a¥y
in Theorem 1 is tight w.r.te (see the lower bound in (Cesa-Bianchi et al., 2009)), bud mee be tight w.r.t.
d. This might be due to the way we constructed our martingaaraent to prove Lemma 6. ii) As a more
general issue, we are trying to generalize our results thdulabel noise models, such as logistic models.
iii) The bounds for the multiple teacher algorithms in Theros 8 and 13 are likely to be suboptimal, and
we are currently trying to better exploit the interactiorusture among teachers. iv) Proactive learning, as
presented in (Donmez & Carbonell, 2008; Yang & Carboneld®f) Yang & Carbonell, 2009a), also allows
for different costs for different teachers, the idea beimaf more expensive teachers may be more reliable.
We are trying to see whether we can incorporate costs intonaolltiple teacher analysis.
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