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Abstract

We introduce a new online convex optimization algorithm that adaptively chooses its regulariza-
tion function based on the loss functions observed so far. This is in contrast to previous algo-
rithms that use a fixed regularization function such as L2-squared, and modify it only via a single
time-dependent parameter. Our algorithm’s regret bounds are worst-case optimal, and for certain
realistic classes of loss functions they are much better than existing bounds. These bounds are
problem-dependent, which means they can exploit the structure of the actual problem instance.
Critically, however, our algorithm does not need to know this structure in advance. Rather, we
prove competitive guarantees that show the algorithm provides a bound within a constant factor of
the best possible bound (of a certain functional form) in hindsight.

1 Introduction

We consider online convex optimization in the full information feedback setting. A closed, bounded convex
feasible set F ⊆ Rn is given as input, and on each round t = 1, . . . , T , we must pick a point xt ∈ F . A
convex loss function ft is then revealed, and we incur loss ft(xt). Our regret at the end of T rounds is

Regret ≡
T∑
t=1

ft(xt)−min
x∈F

T∑
t=1

ft(x). (1)

Existing algorithms for online convex optimization are worst-case optimal in terms of certain fundamental
quantities. In particular, online gradient descent attains a bound of O(DM

√
T ) where D is the L2 diameter

of the feasible set and M is a bound on L2-norm of the gradients of the loss functions. This bound is tight in
the worst case, in that it is possible to construct problems where this much regret is inevitable. However, this
does not mean that an algorithm that achieves this bound is optimal in a practical sense, as on easy problem
instances such an algorithm is still allowed to incur the worst-case regret. In particular, although this bound
is minimax optimal when the feasible set is a hypersphere (Abernethy et al., 2008), we will see that much
better algorithms exist when the feasible set is the hypercube.

To improve over the existing worst-case guarantees, we introduce additional parameters that capture
more of the problem’s structure. These parameters depend on the loss functions, which are not known in
advance. To address this, we first construct functional upper bounds on regret BR(θ1, . . . , θT ; f1, . . . , fT )
that depend on both (properties of) the loss functions ft and algorithm parameters θt. We then give algorithms
for choosing the parameters θt adaptively (based only on f1, f2, . . . , ft−1) and prove that these adaptive
schemes provide a regret bound that is only a constant factor worse than the best possible regret bound of the
form BR. Formally, if for all possible function sequences f1, . . . fT we have

BR(θ1, . . . , θT ; f1, . . . , fT ) ≤ κ inf
θ′1,...,θ

′
T∈ΘT

BR(θ′1, . . . , θ
′
T ; f1, . . . , fT )

for the adaptively-selected θt, we say the adaptive scheme is κ-competitive for the bound optimization prob-
lem. In Section 1.2, we provide realistic examples where known bounds are much worse than the problem-
dependent bounds obtained by our algorithm.



1.1 Follow the proximally-regularized leader
We analyze a follow the regularized leader (FTRL) algorithm that adaptively selects regularization functions
of the form

rt(x) =
1
2
‖(Q

1
2
t (x− xt)‖22

where Qt is a positive semidefinite matrix. Our algorithm plays x1 = 0 on round 1 (we assume without loss
of generality that 0 ∈ F), and on round t+ 1, selects the point

xt+1 = arg min
x∈F

(
t∑

τ=1

(
rτ (x) + fτ (x)

))
. (2)

In contrast to other FTRL algorithms, such as the dual averaging method of Xiao (2009), we center the ad-
ditional regularization at the current feasible point xt rather than at the origin. Accordingly, we call this
algorithm follow the proximally-regularized leader (FTPRL). This proximal centering of additional regular-
ization is similar in spirit to the optimization solved by online gradient descent (and more generally, online
mirror descent, (Cesa-Bianchi & Lugosi, 2006)). However, rather than considering only the current gradient,
our algorithm considers the sum of all previous gradients, and so solves a global rather than local optimization
on each round. We discuss related work in more detail in Section 4.

The FTPRL algorithm allows a clean analysis from first principles, which we present in Section 2. The
proof techniques are rather different from those used for online gradient descent algorithms, and will likely
be of independent interest.

We write ~QT as shorthand for (Q1, Q2, . . . , QT ), with ~gT defined analogously. For a convex set F , we
define Fsym = {x− x′ | x, x′ ∈ F}. Using this notation, we can state our regret bound as

Regret ≤ BR( ~QT , ~gT ) ≡ 1
2

T∑
t=1

max
ŷ∈Fsym

(
ŷ>Qtŷ

)
+

T∑
t=1

g>t Q
−1
1:t gt (3)

where gt is a subgradient of ft at xt and Q1:t =
∑t
τ=1Qτ . We prove competitive ratios with respect to this

BR for several adaptive schemes for selecting the Qt matrices. In particular, when the FTPRL-Diag scheme
is run on a hyperrectangle (a set of the form {x | xi ∈ [ai, bi]} ⊆ Rn), we achieve

Regret ≤
√

2 inf
~Q∈QTdiag

BR( ~QT , ~gT )

where Qdiag = {diag(λ1, . . . , λn) | λi ≥ 0}. When the FTPRL-Scale scheme is run on a feasible set of the
form F = {x | ‖Ax‖2 ≤ 1} for A ∈ Sn++, it is competitive with arbitrary positive semidefinite matrices:

Regret ≤
√

2 inf
~Q∈(Sn+)T

BR( ~QT , ~gT ) .

Our analysis of FTPRL reveals a fundamental connection between the shape of the feasible set and the
importance of choosing the regularization matrices adaptively. When the feasible set is a hyperrectangle,
FTPRL-Diag has stronger bounds than known algorithms, except for degenerate cases where the bounds
are identical. In contrast, when the feasible set is a hypersphere, {x | ‖x‖2 ≤ 1}, the bound BR is always
optimized by choosing Qt = λtI for suitable λt ∈ R. The FTPRL-Scale scheme extends this result to
hyperellipsoids by applying a suitable transformation. These results are presented in detail in Section 3.

1.2 The practical importance of adaptive regularization
In the past few years, online algorithms have emerged as state-of-the-art techniques for solving large-scale
machine learning problems (Bottou & Bousquet, 2008; Zhang, 2004). Two canonical examples of such large-
scale learning problems are text classification on large datasets and predicting click-through rates for ads on
a search engine. For such problems, extremely large feature sets may be considered, but many features only
occur rarely, while few occur very often. Our diagonal-adaptation algorithm offers improved bounds for
problems such as these.

As an example, suppose F = [− 1
2 ,

1
2 ]n (so D =

√
n). On each round t, the ith component of Oft(xt)

(henceforth gt,i) is 1 with probability i−α, and is 0 otherwise, for some α ∈ [1, 2). Such heavy-tailed
distributions are common in text classification applications, where there is a feature for each word. In this
case, gradient descent with a global learning rate1 obtains an expected regret bound of O(

√
nT ). In contrast,

1The O(DM
√

T ) bound (mentioned in the introduction) based on a 1/
√

t learning rate gives O(n
√

T ) here; to get
O(
√

nT ) a global rate based on ‖g2
t ‖ is needed, e.g., Corollary 8.



the algorithms presented in this paper will obtain expected regret on the order of

E

 n∑
i=1

√√√√ T∑
t=1

g2
t,i

 ≤ n∑
i=1

√√√√ T∑
t=1

E
[
g2
t,i

]
=

n∑
i=1

√
Ti−α = O(

√
T · n1−α2 )

using Jensen’s inequality. This bound is never worse than the O(
√
nT ) bound achieved by ordinary gradient

descent, and can be substantially better. For example, in problems where a constant fraction of examples
contain a new feature, n is Ω(T ) and the bound for ordinary gradient descent is vacuous. In contrast, the
bound for our algorithm is O(T

3−α
2 ), which is sublinear for α > 1.

This performance difference is not merely a weakness in the regret bounds for ordinary gradient descent,
but is a difference in actual regret. In concurrent work (Streeter & McMahan, 2010), we showed that for
some problem families, a per-coordinate learning rate for online gradient descent provides asymptotically
less regret than even the best non-increasing global learning rate (chosen in hindsight, given the observed
loss functions). This construction can be adapted to FTPRL as:

Theorem 1 There exists a family of online convex optimization problems, parametrized by the number of
rounds T , where online subgradient descent with a non-increasing learning rate sequence (and FTPRL with
non-decreasing coordinate-constant regularization) incurs regret at least Ω(T

2
3 ), whereas FTPRL with ap-

propriate diagonal regularization matrices Qt has regret O(
√
T ).

In fact, any online learning algorithm whose regret isO(MD
√
T ) (whereD is the L2 diameter of the feasible

region, and M is a bound on the L2 norm of the gradients) will suffer regret Ω(T
2
3 ) on this family of

problems. Note that this does not contradict the O(MD
√
T ) upper bound on the regret, because in this

family of problems D = T
1
6 (and M = 1).

1.3 Adaptive algorithms and competitive ratios
In Section 3, we introduce specific schemes for selecting the regularization matricesQt for FTPRL, and show
that for certain feasible sets, these algorithms provide bounds within a constant factor of those for the best
post-hoc choice of matrices, namely

inf
~QT∈QT

BR( ~QT , ~gT ) (4)

where Q ⊆ Sn+ is a set of allowed matrices; Sn+ is the set of symmetric positive semidefinite n× n matrices,
with Sn++ the corresponding set of symmetric positive definite matrices. We consider three different choices
for Q: the set of coordinate-constant matrices Qconst = {αI | α ≥ 0}; the set of non-negative diagonal
matrices,

Qdiag = {diag(λ1, . . . , λn) | λi ≥ 0} ;

and, the full set of positive-semidefinite matrices, Qfull = Sn+.
We first consider the case where the feasible region is an Lp unit ball, namely F = {x | ‖x‖p ≤ 1}. For

p ∈ [1, 2], we show that a simple algorithm (an analogue of standard online gradient descent) that selects
matrices fromQconst is

√
2-competitive with the best post-hoc choice of matrices from the full set of positive

semidefinite matrices Qfull = Sn+. This algorithm is presented in Corollary 8, and the competitive ratio is
proved in Theorem 13.

In contrast to the result for p ∈ [1, 2], we show that for Lp balls with p > 2 a coordinate-independent
choice of matrices (Qt ∈ Qconst) does not in general obtain the post-hoc optimal bound (see Section 3.3),
and hence per-coordinate adaptation can help. The benefit of per-coordinate adaptation is most pronounced
for the L∞-ball, where the coordinates are essentially independent. In light of this, we develop an efficient
algorithm (FTPRL-Diag, Algorithm 1) for adaptively selecting Qt from Qdiag, which uses scaling based on
the width of F in the coordinate directions (Corollary 9). In this corollary, we also show that this algorithm√

2-competitive with the best post-hoc choice of matrices fromQdiag when the feasible set is a hyperrectangle.
While per-coordinate adaptation does not help for the unit L2-ball, it can help when the feasible set is

a hyperellipsoid. In particular, in the case where F = {x | ‖Ax‖2 ≤ 1} for A ∈ Sn++, we show that an
appropriate transformation of the problem can produce significantly better regret bounds. More generally,
we show (see Theorem 12) that if one has a κ-competitive adaptive FTPRL scheme for the feasible set
{x | ‖x‖ ≤ 1} for an arbitrary norm, it can be extended to provide a κ-competitive algorithm for feasible sets
of the form {x | ‖Ax‖ ≤ 1}. Using this result, we can show FTPRL-Scale is

√
2-competitive with the best

post-hoc choice of matrices from Sn+ when F = {x | ‖Ax‖2 ≤ 1} and A ∈ Sn++; it is
√

2-competitive with
Qdiag when F = {x | ‖Ax‖p ≤ 1} for p ∈ [1, 2).



Of course, in many practical applications the feasible set may not be so nicely characterized. We empha-
size that our algorithms and analysis are applicable to arbitrary feasible sets, but the quality of the bounds
and competitive ratios will depend on how tightly the feasible set can be approximated by a suitably cho-
sen transformed norm ball. In Theorem 10, we show in particular that when FTPRL-Diag is applied to an
arbitrary feasible set, it provides a competitive guarantee related to the ratio of the widths of the smallest
hyperrectangle that contains F to the largest hyperrectangle contained in F .

1.4 Notation and technical background

We use the notation g1:t as a shorthand for
∑t
τ=1 gτ . Similarly we write Q1:t for a sum of matrices Qt, and

f1:t to denote the function f1:t(x) =
∑t
τ=1 fτ (x). We write x>y or x · y for the inner product between

x, y ∈ Rn. The ith entry in a vector x is denoted xi ∈ R; when we have a sequence of vectors xt ∈ Rn
indexed by time, the ith entry is xt,i ∈ R. We use ∂f(x) to denote the set of subgradients of f evaluated at x.

Recall A ∈ Sn++ means ∀x 6= 0, x>Ax > 0. We use the generalized inequality A � 0 when A ∈ Sn++,
and similarly A ≺ B when B − A � 0, implying x>Ax < x>Bx. We define A � B analogously for
symmetric positive semidefinite matrices Sn+. ForB ∈ Sn+, we writeB1/2 for the square root ofB, the unique
X ∈ Sn+ such that XX = B (see, for example, Boyd and Vandenberghe, (2004, A.5.2)). We also make use
of the fact that any A ∈ Sn+ can be factored as A = PDP> where P>P = I and D = diag(λ1, . . . , λn)
where λi are the eigenvalues of A.

Following the arguments of Zinkevich (2003), for the remainder we restrict our attention to linear func-
tions. Briefly, the convexity of ft implies ft(x) ≥ g>t (x − xt) + ft(xt), where gt ∈ ∂f(xt). Because this
inequality is tight for x = xt, it follows that regret measured against the affine functions on the right hand
side is an upper bound on true regret. Furthermore, regret is unchanged if we replace this affine function
with the linear function g>t x. Thus, so long as our algorithm only makes use of the subgradients gt, we may
assume without loss of generality that the loss functions are linear.

Taking into account this reduction and the functional form of the rt, the update of FTPRL is

xt+1 = arg min
x∈F

(
1
2

t∑
τ=1

(x− xτ )>Qτ (x− xτ ) + g1:t · x

)
. (5)

2 Analysis of FTPRL
In this section, we prove the following bound on the regret of FTPRL for an arbitrary sequence of regulariza-
tion matrices Qt. In this section ‖ · ‖ always means the L2 norm, ‖ · ‖2.

Theorem 2 Let F ⊆ Rn be a closed, bounded convex set with 0 ∈ F . Let Q1 ∈ Sn++, and Q2, . . . , QT ∈
Sn+. Define rt(x) = 1

2‖Q
1
2
t (x − xt)‖22, and At = (Q1:t)

1
2 . Let ft be a sequence of loss functions, with

gt ∈ ∂ft(xt) a sub-gradient of ft at xt. Then, the FTPRL algorithm that that faces loss functions f , plays
x1 = 0, and uses the update of Equation (5) thereafter, has a regret bound

Regret ≤ r1:T (̊x) +
T∑
t=1

‖A−1
t gt‖2

where x̊ = arg minx∈F f1:T (x) is the post-hoc optimal feasible point.

To prove Theorem 2 we will make use of the following bound on the regret of FTRL, which holds
for arbitrary (possibly non-convex) loss functions. This lemma can be proved along the lines of (Kalai &
Vempala, 2005); for a complete proof see (McMahan & Streeter, 2010, Appendix A).

Lemma 3 Let r1, r2, . . . , rT be a sequence of non-negative functions. The regret of FTPRL (which plays xt
as defined by Equation (2)) is bounded by

r1:T (̊x) +
T∑
t=1

(ft(xt)− ft(xt+1))

where x̊ is the post-hoc optimal feasible point.

Once Lemma 3 is established, to prove Theorem 2 it suffices to show that for all t,

ft(xt)− ft(xt+1) ≤ ‖A−1
t gt‖2. (6)



To show this, we first establish an alternative characterization of our algorithm as solving an unconstrained
optimization followed by a suitable projection onto the feasible set. Define the projection operator,

PF,A(u) = arg min
x∈F

‖A(x− u)‖

We will show that the following is an equivalent formula for xt:

ut+1 = arg min
u∈Rn

(r1:t(u) + g1:t · u)

xt+1 = PF,At (ut+1) . (7)

This characterization will be useful, because the unconstrained solutions depend only on the linear func-
tions gt, and the quadratic regularization, and hence are easy to manipulate in closed form.

To show this equivalence, first note that because Qt ∈ Sn+ is symmetric,

rt(u) =
1
2

(u− xt)>Qt(u− xt) =
1
2
u>Qtu− x>t Qtut +

1
2
x>t Qtxt.

Defining constants qt = Qtxt and kt = 1
2x
>
t Qtxt, we can write

r1:t(u) =
1
2
u>Q1:tu− q1:tu+ k1:t. (8)

The equivalence is then a corollary of the following lemma, choosing Q = Q1:t and h = g1:t− q1:t (note
that the constant term k1:t does not influence the argmin).

Lemma 4 Let Q ∈ Sn++ and h ∈ Rn, and consider the function

f(x) = h>x+
1
2
x>Qx.

Let ů = arg minu∈Rn f(u). Then, letting A = Q
1
2 , we have PF,A(̊u) = arg minx∈F f(x).

Proof: Note that Ouf(u) = h+Qu, implying that ů = −Q−1h. Consider the function

f ′(x) =
1
2
‖Q 1

2 (x− ů)‖2 =
1
2

(x− ů)>Q(x− ů).

We have

f ′(x) =
1
2

(
x>Qx− 2x>Qů+ ů>Qů

)
(because Q is symmetric)

=
1
2

(
x>Qx+ 2x>Q(Q)−1h+ ů>Qů

)
=

1
2

(
x>Qx+ 2x>h+ ů>Qů

)
= f(x) +

1
2
ů>Qů .

Because 1
2 ů
>Qů is constant with respect to x, it follows that

arg min
x∈F

f(x) = arg min
x∈F

f ′(x) = PF,A(̊u),

where the last equality follows from the definition of the projection operator.

We now derive a closed-form solution to the unconstrained problem. It is easy to show Ort(u) = Qtu−
Qtxt, and so

Or1:t(u) = Q1:tu−
t∑

τ=1

Qτxτ .

Because ut+1 is the optimum of the (strongly convex) unconstrained problem, and r1:t is differentiable, we
must have Or1:t(ut+1) + g1:t = 0. Hence, we conclude Q1:tut+1 −

∑t
τ=1Qτxτ + g1:t = 0, or

ut+1 = Q−1
1:t

(
t∑

τ=1

Qτxτ − g1:t

)
. (9)

This closed-form solution will let us bound the difference between ut and ut+1 in terms of gt. The next
Lemma relates this distance to the difference between xt and xt+1, which determines our per round regret
(Equation (6)). In particular, we show that the projection operator only makes ut and ut+1 closer together, in
terms of distance as measured by the norm ‖At · ‖. We defer the proof to the end of the section.



Lemma 5 Let Q ∈ Sn++ with A = Q
1
2 . Let F be a convex set, and let u1, u2 ∈ Rn, with x1 = PF,A(u1)

and x2 = PF,A(u2). Then,
‖A(x2 − x1)‖ ≤ ‖A(u1 − u2)‖.

We now prove the following lemma, which will immediately yield the desired bound on ft(xt)−ft(xt+1).

Lemma 6 Let Q ∈ Sn++ with A = Q
1
2 . Let v, g ∈ Rn, and let u1 = −Q−1v and u2 = −Q−1(v+ g). Then,

letting x1 = PF,A(u1) and x2 = PF,A(u2),

g>(x1 − x2) ≤ ‖A−1g‖2.

Proof: The fact that Q = A>A � 0 implies that ‖A · ‖ and ‖A−1 · ‖ are dual norms (see for example (Boyd
& Vandenberghe, 2004, Sec. 9.4.1, pg. 476)). Using this fact,

g>(x1 − x2) ≤ ‖A−1g‖ · ‖A(x1 − x2)‖
≤ ‖A−1g‖ · ‖A(u1 − u2)‖ (Lemma 5)

= ‖A−1g‖ · ‖A(Q−1g)‖
= ‖A−1g‖ · ‖A(A−1A−1)g)‖ (Because Q−1 = (AA)−1)

= ‖A−1g‖ · ‖A−1g‖.

Proof of Theorem 2: First note that because rt(xt) = 0 and rt is non-negative, xt = arg minx∈F rt(x). For
any functions f and g, if x∗ = arg minx∈F f(x) and x∗ = arg minx∈F g(x), then

x∗ = arg min
x∈F

(f(x) + g(x)) .

Thus we have

xt = arg min
x∈F

(g1:t−1x+ r1:t−1(x))

= arg min
x∈F

(g1:t−1x+ r1:t(x)) (Because xt = arg min
x∈F

rt(x).)

= arg min
x∈F

(
hx+

1
2
x>Q1:tx

)

where the last line follows from Equation (8), letting h = g1:t−1−q1:t = g1:t−1−
∑t
τ=1Qτxτ , and dropping

the constant k1:t. For xt+1, we have directly from the definitions

xt+1 = arg min
x∈F

(g1:tx+ r1:t(x)) = arg min
x∈F

(
(h+ gt)x+

1
2
x>Q1:tx

)
.

Thus, Lemma 4 implies xt = PF,At(−(Q1:t)−1h) and similarly xt+1 = PF,At(−(Q1:t)−1(h+ gt)). Thus,
by Lemma 6, gt(xt − xt+1) ≤ ‖A−1

t gt‖2. The theorem then follows from Lemma 3.

Proof of Lemma 5: Define

B(x, u) =
1
2
‖A(x− u)‖2 =

1
2

(x− u)>Q(x− u),

so we can write equivalently
x1 = arg min

x∈F
B(x, u1).

Then, note that OxB(x, u1) = Qx−Qu1, and so we must have (Qx1−Qu1)>(x2−x1) ≥ 0; otherwise for
δ sufficiently small the point x1 + δ(x2 − x1) would belong to F (by convexity) and would be closer to u1

than x1 is. Similarly, we must have (Qx2 −Qu2)>(x1 − x2) ≥ 0. Combining these, we have the following
equivalent inequalities:

(Qx1 −Qu1)>(x2 − x1)− (Qx2 −Qu2)>(x2 − x1) ≥ 0

(x1 − u1)>Q(x2 − x1)− (x2 − u2)>Q(x2 − x1) ≥ 0

−(x2 − x1)>Q(x2 − x1) + (u2 − u1)>Q(x2 − x1) ≥ 0

(u2 − u1)>Q(x2 − x1) ≥ (x2 − x1)Q(x2 − x1).



Letting û = u2 − u1, and x̂ = x2 − x1, we have x̂>Qx̂ ≤ û>Qx̂. Since Q is positive semidefinite, we have
(û− x̂)>Q(û− x̂) ≥ 0, or equivalently û>Qû+ x̂>Qx̂− 2x̂>Qû ≥ 0 (using the fact Q is also symmetric).
Thus,

û>Qû ≥ −x̂>Qx̂+ 2x̂>Qû ≥ −x̂>Qx̂+ 2x̂>Qx̂ = x̂>Qx̂,

and so
‖A(u2 − u1)‖2 = û>Qû ≥ x̂>Qx̂ = ‖A(x2 − x1)‖2.

3 Specific Adaptive Algorithms and Competitive Ratios
Before proceeding to the specific results, we establish several results that will be useful in the subsequent
arguments. In order to prove that adaptive schemes for selecting Qt have good competitive ratios for the
bound optimization problem, we will need to compare the bounds obtained by the adaptive scheme to the
optimal post-hoc bound of Equation (4). Suppose the sequence Q1, . . . , QT is optimal for Equation (4), and
consider the alternative sequence Q′1 = Q1:T and Q′t = 0 for t > 1. Using the fact that Q1:t � Q1:t−1

implies Q−1
1:t � Q

−1
1:t−1, it is easy to show the alternative sequence also achieves the minimum. It follows that

a sequence with Q1 = Q on the first round, and Qt = 0 thereafter is always optimal. Hence, to solve for the
post-hoc bound we can solve an optimization of the form

inf
Q∈Q

(
max
ŷ∈Fsym

(
1
2
ŷ>Qŷ

)
+

T∑
t=1

g>t Q
−1gt

)
. (10)

The diameter of F is D ≡ maxy,y′∈F ‖y − y′‖2, and so for ŷ ∈ Fsym, ‖ŷ‖2 ≤ D. When F is symmetric
(x ∈ F implies −x ∈ F), we have y ∈ F if and only if 2y ∈ Fsym, so (10) is equivalent to:

inf
Q∈Q

(
max
y∈F

(
2y>Qy

)
+

T∑
t=1

g>t Q
−1gt

)
. (11)

For simplicity of exposition, we assume g1,i > 0 for all i, which ensures that only positive definite matrices
can be optimal.2 This assumption also ensures Q1 ∈ Sn++ for the adaptive schemes discussed below, as
required by Theorem 2. This is without loss of generality, as we can always hallucinate an initial loss function
with arbitrarily small components, and this changes regret by an arbitrarily small amount. We will also use
the following Lemma (Auer & Gentile, 2000):

Lemma 7 For any non-negative real numbers x1, x2, . . . , xn,

n∑
i=1

xi√∑i
j=1 xj

≤ 2

√√√√ n∑
i=1

xi .

3.1 Adaptive coordinate-constant regularization
We derive bounds where Qt is chosen from the setQconst, and show that this algorithm comes within a factor
of
√

2 of using the best constant regularization strength λI . This algorithm achieves a bound of O(DM
√
T )

where D is the diameter of the feasible region and M is a bound on ‖gt‖2, matching the best possible bounds
in terms of these parameters (Abernethy et al., 2008). We will prove a much stronger competitive guarantee
for this algorithm in Theorem 13.

Corollary 8 Suppose F has L2 diameter D. Then, if we run FTPRL with diagonal matrices such that

(Q1:t)ii = ᾱt =
2
√
Gt
D

where Gt =
∑t
τ=1

∑n
i=1 g

2
τ,i, then

Regret ≤ 2D
√
GT .

If ‖gt‖2 ≤M , thenGT ≤M2T , and this translates to a bound ofO(DM
√
T ). WhenF = {x | ‖x‖2 ≤ D/2},

this bound is
√

2-competitive for the bound optimization problem over Qconst.
2In the case where F has 0 width in some direction, the infimum will not be attained by a finite Q, but by a sequence

that assigns 0 penalty (on the right-hand side) to the components of the gradient in the direction of 0 width, requiring
some entries in Q to go to ∞.



Algorithm 1 FTPRL-Diag
Input: feasible set F ⊆ ×ni=1[ai, bi]
Initialize x1 = 0 ∈ F
(∀i), Gi = 0, qi = 0, λ0,i = 0, Di = bi − ai
for t = 1 to T do

Play the point xt, incur loss ft(xt)
Let gt ∈ ∂ft(xt)
for i = 1 to n do
Gi = Gi + g2

t,i

λt,i = 2
Di

√
Gi − λ1:t−1,i

qi = qi + xt,iλt,i
ut+1,i = (g1:t,i − qi)/λ1:t,i

end for
At = diag(

√
λ1:t,1, . . . ,

√
λ1:t,n)

xt+1 = ProjectF,At(ut+1)
end for

Algorithm 2 FTPRL-Scale
Input: feasible set F ⊆ {x | ‖Ax‖ ≤ 1},

with A ∈ Sn++

Let F̂ = {x | ‖x‖ ≤ 1}
Initialize x1 = 0, (∀i) Di = bi − ai
for t = 1 to T do

Play the point xt, incur loss ft(xt)
Let gt ∈ ∂ft(xt)
ĝt = (A−1)>gt
ᾱ =

√∑t
τ=1

∑n
i=1 ĝ

2
τ,i

αt = ᾱ− α1:t−1

qt = αtxt
ût+1 = (1/ᾱ)(q1:t − g1:t)
At = (ᾱI)

1
2

x̂t+1 = ProjectF̂,At(ût+1)
xt+1 = A−1x̂

end for

Proof: Let the diagonal entries ofQt all be αt = ᾱt−ᾱt−1 (with ᾱ0 = 0), so α1:t = ᾱt. Note αt ≥ 0, and so
this choice is feasible. We consider the left and right-hand terms of Equation (3) separately. For the left-hand
term, letting ŷt be an arbitrary sequence of points from Fsym, and noting ŷ>t ŷt ≤ ‖ŷt‖2 · ‖ŷt‖2 ≤ D2,

1
2

T∑
t=1

ŷ>t Qtŷt =
1
2

T∑
t=1

ŷ>t ŷtαt ≤
1
2
D2

T∑
t=1

αt =
1
2
D2ᾱT = D

√
GT .

For the right-hand term, we have
T∑
t=1

g>t Q
−1
1:t gt =

T∑
t=1

n∑
i=1

g2
t,i

α1:t
=

T∑
t=1

D

2

∑n
i=1 g

2
t,i√

Gt
≤ D

√
GT ,

where the last inequality follows from Lemma 7.
In order to make a competitive guarantee, we must prove a lower bound on the post-hoc optimal bound

function BR, Equation (10). This is in contrast to the upper bound that we must show for the regret of the
algorithm. When F = {x | ‖x‖2 ≤ D/2}, Equation (10) simplifies to exactly

min
α≥0

(
1
2
αD2 +

1
α
GT

)
= D

√
2GT (12)

and so we conclude the adaptive algorithm is
√

2-competitive for the bound optimization problem.

3.2 Adaptive diagonal regularization
In this section, we introduce and analyze FTPRL-Diag, a specialization of FTPRL that uses regularization
matrices from Qdiag. Let Di = maxx,x′∈F |xi − x′i|, the width of F along the ith coordinate. We construct
a bound on the regret of FTPRL-Diag in terms of these Di. The Di implicitly define a hyperrectangle that
contains F . When F is in fact such a hyperrectangle, our bound is

√
2-competitive with the best post-hoc

optimal bound using matrices from Qdiag.

Corollary 9 Let F be a convex feasible set of width Di in coordinate i. We can construct diagonal matrices
Qt such that the ith entry on the diagonal of Q1:t is given by:

λ̄t,i =
2
D i

√√√√ t∑
τ=1

g2
τ,i.

Then the regret of FTPRL satisfies

Regret ≤ 2
n∑
i=1

Di

√√√√ T∑
t=1

g2
t,i.



When F is a hyperrectangle, then this algorithm is
√

2-competitive with the post-hoc optimal choice of Qt
from the Qdiag. That is,

Regret ≤
√

2 inf
Q∈Qdiag

(
max
ŷ∈Fsym

(
1
2
ŷ>Qŷ

)
+

T∑
t=1

g>t Q
−1gt

)
.

Proof: The construction of Q1:t in the theorem statement implies (Qt)ii = λt,i ≡ λ̄t,i − λ̄t−1,i. These
entries are guaranteed to be non-negative as λ̄t,i is a non-decreasing function of t.

We begin from Equation (3), letting ŷt be an arbitrary sequence of points from Fsym. For the left-hand
term,

1
2

T∑
t=1

ŷ>t Qtŷt =
1
2

T∑
t=1

n∑
i=1

ŷ2
t,iλt,i ≤

1
2

n∑
i=1

D2
i

T∑
t=1

λt,i =
1
2

n∑
i=1

D2
i λ̄T,i =

n∑
i=1

Di

√√√√ T∑
t=1

g2
t,i.

For the right-hand term, we have

T∑
t=1

g>t Q
−1
1:t gt =

T∑
t=1

n∑
i=1

g2
t,i

λ̄t,i
=

n∑
i=1

Di

2

T∑
t=1

g2
t,i√∑t
τ=1 g

2
τ,i

≤
n∑
i=1

Di

√√√√ T∑
t=1

g2
t,i,

where the last inequality follows from Lemma 7. Summing these bounds on the two terms of Equation (3)
yields the stated bound on regret.

Now, we consider the case where the feasible set is exactly a hyperrectangle, that is,F = {x | xi ∈ [ai, bi]}
where Di = bi − ai. Then, the optimization of Equation (10) decomposes on a per-coordinate basis, and in
particular there exists a ŷ ∈ Fsym so that ŷ2

i = D2
i in each coordinate. Thus, for Q = diag(λ1, . . . , λn), the

bound function is exactly
n∑
i=1

1
2
λiD

2
i +

1
λi

T∑
t=1

g2
t,i.

Choosing λi = 1
Di

√
2
∑T
t=1 g

2
t,i minimizes this quantity, producing a post-hoc bound of

√
2

n∑
i=1

Di

√√√√ T∑
t=1

g2
t,i,

verifying that the adaptive scheme is
√

2-competitive with matrices from Qdiag.

The regret guarantees of the FTPRL-Diag algorithm hold on arbitrary feasible sets, but the competitive
guarantee only applies for hyperrectangles. We now extend this result, showing that a competitive guarantee
can be made based on how well the feasible set is approximated by hyperrectangles.

Theorem 10 Let F be an arbitrary feasible set, bounded by a hyperrectangleHout of widthWi in coordinate
i; further, let H in be a hyperrectangle contained by F , of width wi > 0 in coordinate i. That is, H in ⊆ F ⊆
Hout. Let β = maxi Wi

wi
. Then, the FTPRL-Diag is

√
2β-competitive with Qdiag on F .

Proof: By Corollary 9, the adaptive algorithm achieves regret bounded by 2
∑n
i=1Wi

√∑T
t=1 g

2
t,i. We now

consider the best post-hoc bound achievable with diagonal matrices on F . Considering Equation (10), it is
clear that for any Q,

max
y∈Fsym

1
2
y>Qy +

T∑
t=1

g>t Q
−1gt ≥ max

y∈H in
sym

1
2
y>Qy +

T∑
t=1

g>t Q
−1gt,

since the feasible set for the maximization (Fsym) is larger on the left-hand side. But, on the right-hand
side we have the post-hoc bound for diagonal regularization on a hyperrectangle, which we computed in the

previous section to be
√

2
∑n
i=1 wi

√∑T
t=1 g

2
t,i. Because wi ≥ Wi

β by assumption, this is lower bounded by
√

2
β

∑n
i=1Wi

√∑T
t=1 g

2
t,i, which proves the theorem.

Having had success with L∞, we now consider the potential benefits of diagonal adaptation for other
Lp-balls.



3.3 A post-hoc bound for diagonal regularization on Lp balls

Suppose the feasible set F is an unit Lp-ball, that is F = {x | ‖x‖p ≤ 1}. We consider the post-hoc bound
optimization problem of Equation (11) withQ = Qdiag. Our results are summarized in the following theorem.

Theorem 11 For p > 2, the optimal regularization matrix for BR in Qdiag is not coordinate-constant (i.e.,
not contained in Qconst), except in the degenerate case where Gi ≡

∑T
t=1 g

2
t,i is the same for all i. However,

for p ≤ 2, the optimal regularization matrix in Qdiag always belongs to Qconst.

Proof: Since F is symmetric, the optimal post-hoc choice will be in the form of Equation (11). Letting
Q = diag(λ1, . . . , λn), we can re-write this optimization problem as

max
y:‖y‖p≤1

(
2

n∑
i=1

y2
i λi

)
+

n∑
i=1

Gi
λi

. (13)

To determine the optimal λ vector, we first derive a closed form for the solution to the maximization problem
on the left hand side, assuming p ≥ 2 (we handle the case p < 2 separately below). First note that the
inequality ‖y‖p ≤ 1 is equivalent to

∑n
i=1 |yi|p ≤ 1. Making the change of variable zi = y2

i , this is

equivalent to
∑n
i=1 z

p
2
i ≤ 1, which is equivalent to ‖z‖ p

2
≤ 1 (the assumption p ≥ 2 ensures that ‖ · ‖ p

2
is a

norm). Hence, the left-hand side optimization reduces to

max
z:‖z‖ p

2
≤1

2
n∑
i=1

ziλi = 2‖λ‖q,

where q = p
p−2 , so that ‖ · ‖ p

2
and ‖ · ‖q are dual norms (allowing q = ∞ for p = 2). Thus, for p ≥ 2, the

above bound simplifies to

B(λ) = 2‖λ‖q +
n∑
i=1

Gi
λi
. (14)

First suppose p > 2, so that q is finite. Then, taking the gradient of B(λ),

∇B(λ)i =
2
q

(
n∑
i=1

λqi

) 1
q−1

· qλq−1
i − Gi

λ2
i

= 2
(

λi
‖λ‖q

)q−1

− Gi
λ2
i

,

using 1
q − 1 = − 1

q (q − 1). If we make all the λi’s equal (say, to λ1), then for the left-hand side we get

(
λi
‖λ‖q

)q−1

=

(
λ1

(nλq1)
1
q

)q−1

=
(

1

n
1
q

)q−1

= n
1
q−1 .

Thus the ith component of the gradient is 2n
1
q−1 − Gi

λ2
1

, and so if not all the Gi’s are equal, some component
of the gradient is non-zero. Because B(λ) is differentiable and the λi ≥ 0 constraints cannot be tight (recall
g1 > 0), this implies a constant λi cannot be optimal, hence the optimal regularization matrix is not inQconst.

For p ∈ [1, 2], we show that the solution to Equation (13) is

B∞(λ) ≡ 2‖λ‖∞ +
n∑
i=1

Gi
λi
. (15)

For p = 2 this follows immediately from Equation (14), because when p = 2 we have q =∞. For p ∈ [1, 2),
the solution to Equation (13) is at least B∞(λ), because we can always set yi = 1 for whatever λi is largest
and set yj = 0 for j 6= i. If p < 2 then the feasible set F is a subset of the unit L2 ball, so the solution to
Equation (13) is upper bounded by the solution when p = 2, namely B∞(λ). It follows that the solution is
exactly B∞(λ). Because the left-hand term of B∞(λ) only penalizes for the largest λi, and on the right-hand
we would like all λi as large as possible, a solution of the form λ1 = λ2 = · · · = λn must be optimal.



3.4 Full matrix regularization on hyperspheres and hyperellipsoids
In this section, we develop an algorithm for feasible sets F ⊆ {x | ‖Ax‖p ≤ 1}, where p ∈ [1, 2] and
A ∈ Sn++. When F = {x | ‖Ax‖2 ≤ 1}, this algorithm, FTPRL-Scale, is

√
2-competitive with arbitrary

Q ∈ Sn+. For F = {x | ‖Ax‖p ≤ 1} with p ∈ [1, 2) it is
√

2-competitive with Qdiag.
First, we show that rather than designing adaptive schemes specifically for linear transformations of norm

balls, it is sufficient (from the point of view of analyzing FTPRL) to consider unit norm balls if suitable
pre-processing is applied. In the same fashion that pre-conditioning may speed batch subgradient descent
algorithms, we show this approach can produce significantly improved regret bounds when A is poorly con-
ditioned (i.e., the ratio of the largest to smallest eigenvalue is large).

Theorem 12 Fix an arbitrary norm ‖·‖, and define an online linear optimization problem I = (F , (g1, . . . , gT ))
where F = {x | ‖Ax‖ ≤ 1} with A ∈ Sn++. We define the related instance Î = (F̂ , (ĝ1, . . . , ĝT )), where
F̂ = {x̂ | ‖x̂‖ ≤ 1} and ĝt = A−1gt. Then:

• If we run any algorithm dependent only on subgradients on Î, and it plays x̂1, . . . , x̂T , then by playing
the corresponding points xt = A−1x̂t on I we achieve identical loss and regret.

• The post-hoc optimal bound over arbitrary Q ∈ Sn++ is identical for these two instances.

Proof: First, we note that for any function h where minx:‖Ax‖≤1 h(x) exists,

min
x:‖Ax‖≤1

h(x) = min
x̂:‖x̂‖≤1

h(A−1x̂), (16)

using the change of variable x̂ = Ax. For the first claim, note that ĝ>t = g>t A
−1, and so for all t, ĝ>t x̂t =

g>t A
−1Axt = g>t xt, implying the losses suffered on Î and I are identical. Applying Equation (16), we have

min
x:‖Ax‖≤1

g>1:tx = min
x̂:‖x̂‖≤1

g>1:tA
−1x̂ = min

x̂:‖x̂‖≤1
ĝ>1:tx̂,

implying the post-hoc optimal feasible points for the two instances also incur identical loss. Combining these
two facts proves the first claim. For the second claim, it is sufficient to show for any Q ∈ Sn++ applied to the
post-hoc bound for problem I, there exists a Q̂ ∈ Sn++ that achieves the same bound for Î (and vice versa).
Consider such a Q for I. Then, again applying Equation (16), we have

max
y:‖Ay‖p≤1

(
2y>Qy

)
+

T∑
t=1

g>t Q
−1gt = max

ŷ:‖ŷ‖≤1

(
2ŷ>A−1QA−1ŷ

)
+

T∑
t=1

ĝ>t AQ
−1Aĝt.

The left-hand side is the value of the post-hoc bound on I from Equation (11). Noting that (A−1QA−1)−1 =
AQ−1A, the right-hand side is the value of the post hoc bound for Î using Q̂ = A−1QA−1. The fact A−1

and Q are in Sn++ guarantees Q̂ ∈ Sn++ as well, and the theorem follows.

We can now define the adaptive algorithm FTPRL-Scale: given a F ⊆ {x | ‖Ax‖p ≤ 1}, it uses the
transformation suggested by Theorem 12, applying the coordinate-constant algorithm of Corollary 8 to the
transformed instance, and playing the corresponding point mapped back into F .3 Pseudocode is given as
Algorithm 2.

Theorem 13 The diagonal-constant algorithm analyzed in Corollary 8 is
√

2-competitive with Sn+ when
F = {x | ‖x‖p ≤ 1} for p = 2, and

√
2-competitive against Qdiag when p ∈ [1, 2). Furthermore, when

F = {x | ‖Ax‖p ≤ 1} with A ∈ Sn++, the FTPRL-Scale algorithm (Algorithm 2) achieves these same
competitive guarantees. In particular, when F = {x | ‖x‖2 ≤ 1}, we have

Regret ≤
√

2 inf
Q∈Sn+

(
max
y∈F

(
2y>Qy

)
+

T∑
t=1

g>t Q
−1gt

)
.

Proof: The results for Qdiag with p ∈ [1, 2) follow from Theorems 11 and 12 and Corollary 8. We now
consider the case p = 2. Consider a Q ∈ Sn++ for Equation (11) (recall only a Q ∈ Sn++ could be optimal
since g1 > 0). We can write Q = PDP> where D = diag(λ1, . . . , λn) is a diagonal matrix of positive
eigenvalues and PP> = I . It is then easy to verify Q−1 = PD−1P>.

3By a slightly more cumbersome argument, it is possible to show that instead of applying this transformation, FTPRL
can be run directly on F using appropriately transformed Qt matrices.



When p = 2 and F = {x | ‖x‖p ≤ 1}, Equation (15) is tight, and so the post-hoc bound for Q is

2 max
i

(λi) +
T∑
t=1

g>t (PD−1P>)gt.

Let zt = P>gt, so each right-hand term is
∑n
i=1

z2t,i
λi

. It is clear this quantity is minimized when each λi is
chosen as large as possible, while on the left-hand side we are only penalized for the largest eigenvalue of Q
(the largest λi). Thus, a solution where D = αI for α > 0 is optimal. Plugging into the bound, we have

B(α) = 2α+
T∑
t=1

g>t

(
P

(
1
α
I

)
P>
)
gt = 2α+

1
α

T∑
t=1

g>t gt = 2α+
GT
α

where we have used the fact that PP> = I . Setting α =
√
GT /2 produces a minimal post-hoc bound of

2
√

2GT . The diameter D is 2, so the coordinate-constant algorithm has regret bound 4
√
GT (Corollary 8),

proving the first claim of the theorem for p = 2. The second claim follows from Theorem 12.

Suppose we have a problem instance where F = {x | ‖Ax‖2 ≤ 1} where A = diag(1/a1, . . . , 1/an)
with ai > 0. To demonstrate the advantage offered by this transformation, we can compare the regret bound
obtained by directly applying the algorithm of Corollary 8 to that of the FTPRL-Scale algorithm. Assume
WLOG that maxi ai = 1, implying the diameter of F is 2. Let g1, . . . , gT be the loss functions for this
instance. Recalling Gi =

∑T
t=1 g

2
t,i, applying Corollary 8 directly to this problem gives

Regret ≤ 4

√√√√ n∑
i=1

Gi. (17)

This is the same as the bound obtained by online subgradient descent and related algorithms as well.
We now consider FTPRL-Scale, which uses the transformation of Theorem 12. Noting D = 2 for the

hypersphere and applying Corollary 8 to the transformed problem gives an adaptive scheme with

Regret ≤ 4

√√√√ n∑
i=1

T∑
t=1

ĝ2
t,i = 4

√√√√ n∑
i=1

a2
i

T∑
t=1

g2
t,i = 4

√√√√ n∑
i=1

a2
iGi.

This bound is never worse than the bound of Equation (17), and can be arbitrarily better when many of the ai
are much smaller than 1.

4 Related work
In the batch convex optimization setting, it is well known that convergence rates can often be dramatically
improved through the use of preconditioning, accomplished by an appropriate change of coordinates taking
into account both the shape of the objective function and the feasible region (Boyd & Vandenberghe, 2004).
To our knowledge, this is the first work that extends these concepts (necessarily in a quite different form) to
the problem of online convex optimization, where they can provide a powerful tool for improving regret (the
online analogue of convergence rates).

Perhaps the closest algorithms in spirit to our diagonal adaptation algorithm are confidence-weighted
linear classification (Drezde et al., 2008) and AROW (Crammer et al., 2009), in that they make different-sized
adjustments for different coordinates. Unlike our algorithm, these algorithms apply only to classification
problems and not to general online convex optimization, and the guarantees are in the form of mistake bounds
rather than regret bounds.

FTPRL is similar to the lazily-projected gradient descent algorithm of (Zinkevich, 2004, Sec. 5.2.3), but
with a critical difference: the latter effectively centers regularization outside of the current feasible region
(at ut rather than xt). As a consequence, lazily-projected gradient descent only attains low regret via a re-
starting mechanism or a constant learning rate (chosen with knowledge of T ). It is our technique of always
centering additional regularization inside the feasible set that allows us to make guarantees for adaptively-
chosen regularization.

Most recent state-of-the-art algorithms for online learning are in fact general algorithms for online convex
optimization applied to learning problems. Many of these algorithms can be thought of as (significant) exten-
sions of online subgradient descent, including (Duchi & Singer, 2009; Do et al., 2009; Shalev-Shwartz et al.,
2007). Apart from the very general work of (Kalai & Vempala, 2005), few general follow-the-regularized-
leader algorithms have been analyzed, with the notable exception of the recent work of Xiao (2009).



The notion of proving competitive ratios for regret bounds that are functions of regularization parameters
is not unique to this paper. Bartlett et al. (2008) and Do et al. (2009) proved guarantees of this form, but for
a different algorithm and class of regularization parameters.

In concurrent work (Streeter & McMahan, 2010), the authors proved bounds similar to those of Corol-
lary 9 for online gradient descent with per-coordinate learning rates. These results were significantly less
general that the ones presented here, and in particular were restricted to the case where F was exactly a
hyperrectangle. The FTPRL algorithm and bounds proved in this paper hold for arbitrary feasible sets, with
the bound depending on the shape of the feasible set as well as the width along each dimension. Some re-
sults similar to those in this work were developed concurrently by Duchi et al. (2010), though for a different
algorithm and using different analysis techniques.

5 Conclusions
In this work, we analyzed a new algorithm for online convex optimization, which takes ideas both from
online subgradient descent as well as follow-the-regularized-leader. In our analysis of this algorithm, we
show that the learning rates that occur in standard bounds can be replaced by positive semidefinite matrices.
The extra degrees of freedom offered by these generalized learning rates provide the key to proving better
regret bounds. We characterized the types of feasible sets where this technique can lead to significant gains,
and showed that while it does not help on the hypersphere, it can have dramatic impact when the feasible set
is a hyperrectangle.

The diagonal adaptation algorithm we introduced can be viewed as an incremental optimization of the
formula for the final bound on regret. In the case where the feasible set really is a hyperrectangle, this allows
us to guarantee our final regret bound is within a small constant factor of the best bound that could have
been obtained had the full problem been known in advance. The diagonal adaptation algorithm is efficient,
and exploits exactly the kind of structure that is typical in large-scale real-world learning problems such as
click-through rate prediction and text classification.

Our work leaves open a number of interesting directions for future work, in particular the development of
competitive algorithms for arbitrary feasible sets (without resorting to bounding norm-balls), and the devel-
opment of algorithms that optimize over richer families of regularization functions.
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