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Consider the following version of Talagrand’s probabilistic construction of a monotone functionf :
{0, 1}

n

→ {0, 1}. Let f be ann-term monotone DNF formula where each term is selected independently
and uniformly at random (with replacement) from the set of all nΩ(log log n) possible terms of lengthlog(n)
over the firstlog2(n) variables. Let us call such a DNF formula aTalagrand DNF formula. This is a
scaled-down version of the construction by Talagrand (1996) which is defined over alln variables and has
subexponentially many terms. I am interested in the following problem:

Does there exist a polynomial-time algorithm for learning the class of Talagrand DNF formulas
over the uniform distribution on{0, 1}n given uniform random examples?

Ideally, I am looking for algorithms that will learn the class of all possible Talagrand DNF formulas in the
worst-case. However, an average-case learning algorithm that succeeds with high probability over the choice
of the Talgrand DNF formula as described above would be of significant interest as well.

Motivation: This problem is of course a special case of the correspondinglearning problem for general
polynomial-size DNF formulas. The problem of learning polynomial-size DNF formulaswithout queries has
been open for almost twenty years (Valiant, 1984) and there has been no significant progress on the question
until the last couple years.

Current Status: Recently,random DNF formulas were shown to be learnable in the following sequence
of work (Jackson & Servedio, 2006; Jackson et al., To appear;Sellie, 2008; Sellie, 2009). The algorithms for
learning random DNF formulas only work when the terms are well-separated,i.e., when the terms share very
few variables, which is clearly not the case for Talagrand DNF formulas.

Some Observations:

1. Unlike the class of all polynomial-size DNF formulas, theclass of Talagrand DNF formulas as defined
above do not suffer from the “junta” problem (Blum, 2003). Weknow exactly which variables are
relevant.

2. The Talagrand functions are sensitive to noise as small as1/ log(n), i.e., Pr[f(x) 6= f(y)] ≥ Ω(1) where
y is x with each bit flipped independently with probability1/ log(n) (Mossel & O’Donnell, 2003). Thus,
any variant of the “low-degree algorithm” (Linial et al., 1993) is unlikely to work for this problem.

3. Unlike for the case of all polynomial-size DNF formulas, there are no known reasons for ruling out
statistical query (SQ) algorithms for this problem. (The algorithms for learning random DNF formulas
cited above can all be couched as SQ algorithms.) Strong SQ lower bounds are known for depth-3
monotone formulas (Feldman et al., 2010), but there are no known strong SQ lower bounds for any
subclass of monotone DNF formulas.

Rewards:
A hand shake: Demonstrate a uniform-distribution learning algorithm for Talagrand DNF formulas in the
average-case.
A hand shake and a pat on the back: Demonstrate a uniform-distribution learning algorithm for Talagrand
DNF formulas in the worst-case.
A surprised look: Prove a super-polynomial strong-SQ lower bound for the class of Talagrand DNF formu-
las.
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