Robust causal inference under covariate shift via worst-case subpopulation treatment effects

Sookyo Jeong, Hongseok Namkoong

[Proceedings link] [PDF]

Subject areas: Privacy, fairness, causal inference

Presented in: Session 4B, Session 4D

[Zoom link for poster in Session 4B], [Zoom link for poster in Session 4D]

Abstract: We propose a notion of worst-case treatment effect (WTE) across all subpopulations of a given size, a conservative notion of topline treatment effect. Compared to the average treatment effect (ATE) that solely relies on the covariate distribution of collected data, WTE is robust to unanticipated covariate shifts, and ensures reliable inference uniformly over underrepresented minority groups. We develop a semiparametrically efficient estimator for the WTE, leveraging machine learning-based estimates of heterogenous treatment effects and propensity scores. By virtue of satisfying a key (Neyman) orthogonality property, our estimator enjoys central limit behavior---oracle rates with true nuisance parameters---even when estimates of nuisance parameters converge at slower-than-parameteric rates. In particular, this allows using black-box machine learning methods to construct asymptotically exact confidence intervals for the WTE. For both observational and randomized studies, we prove that our estimator achieves the optimal asymptotic variance, by establishing a semiparametric efficiency lower bound. On real datasets, we illustrate the non-robustness of ATE under even small amounts distributional shift, and demonstrate that WTE allows us to guard against brittle findings that are invalidated by unanticipated covariate shifts.

Summary presentation

Full presentation